Parallel Computing 47 (2015) 19-37

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Parallel heuristics for scalable community detection @ CrossMark

Hao Lu?, Mahantesh Halappanavar”, Ananth Kalyanaraman **

2School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164, United States
b Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, United States

ARTICLE INFO ABSTRACT

Article history: Community detection has become a fundamental operation in numerous graph-theoretic

Available online 14 March 2015 applications. It is used to reveal natural divisions that exist within real world networks
without imposing prior size or cardinality constraints on the set of communities. Despite

Keywords: its potential for application, there is only limited support for community detection on

Community detection large-scale parallel computers, largely owing to the irregular and inherently sequential

Parallel graph heuristics
Graph coloring
Graph clustering

nature of the underlying heuristics. In this paper, we present parallelization heuristics
for fast community detection using the Louvain method as the serial template. The
Louvain method is a multi-phase, iterative heuristic for modularity optimization.
Originally developed by Blondel et al. (2008), the method has become increasingly popular
owing to its ability to detect high modularity community partitions in a fast and memory-
efficient manner. However, the method is also inherently sequential, thereby limiting its
scalability. Here, we observe certain key properties of this method that present challenges
for its parallelization, and consequently propose heuristics that are designed to break the
sequential barrier. For evaluation purposes, we implemented our heuristics using
OpenMP multithreading, and tested them over real world graphs derived from multiple
application domains (e.g., internet, citation, biological). Compared to the serial Louvain
implementation, our parallel implementation is able to produce community outputs with
a higher modularity for most of the inputs tested, in comparable number or fewer itera-

tions, while providing absolute speedups of up to 16x using 32 threads.
© 2015 The Authors and Battelle Memorial Institute. Published by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).

1. Introduction

Community detection, or graph clustering, is becoming pervasive in the data analytics of various fields including (but not
limited to) scientific computing, life sciences, social network analysis, and internet applications [1]. As data grows at explo-
sive rates, the need for scalable tools to support fast implementations of complex network analytical functions such as com-
munity detection is critical. Given a graph, the problem of community detection is to compute a partitioning of vertices into
communities that are closely related within and weakly across communities. Modularity is a metric that can be used to mea-
sure the quality of communities detected [2]. Modularity maximization is an NP-Complete problem [3] and therefore fast
approximation heuristics are used in practice. One such heuristic is the Louvain method [4].

Our basis for selecting the Louvain heuristic for parallelization hinges on its increasing popularity within the user com-
munity and owing to its strengths in algorithmic and qualitative robustness. With well over 1700 citations to the original
paper (as of this writing), the user base for this method has been rapidly expanding in the last few years. As network sizes

* Corresponding author.
E-mail addresses: luhowardmark@wsu.edu (H. Lu), hala@pnnl.gov (M. Halappanavar), ananth@eecs.wsu.edu (A. Kalyanaraman).

http://dx.doi.org/10.1016/j.parco.2015.03.003
0167-8191/© 2015 The Authors and Battelle Memorial Institute. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2015.03.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.parco.2015.03.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:luhowardmark@wsu.edu
mailto:hala@pnnl.gov
mailto:ananth@eecs.wsu.edu
http://dx.doi.org/10.1016/j.parco.2015.03.003
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco

20 H. Lu et al./Parallel Computing 47 (2015) 19-37

continue to grow rapidly into scales of tens or even hundreds of billions of edges [5], the memory and runtime limits of the
serial implementation are likely to be tested. However, parallelization of this inherently serial algorithm can be challenging
(as discussed in Section 4).

The parallel solutions presented in this paper (Section 5) provide a way to overcome key scalability challenges. In devising
our algorithm, we factored in the need to parallelize without compromising the quality of the original serial heuristic and yet
be capable of achieving substantial speedup. Where possible, we also factored in the need for guaranteeing stability in out-
put across different platforms and programming models. The resulting algorithm, presented in Section 5.4, is a combination
of heuristics that can be implemented on both shared and distributed memory machines. As demonstrated in our experi-
mental section (Section 6), our multi-threaded implementations output results that have either a higher or comparable
modularity to that of the serial method, and is able to reduce the time to solution by factors of up to 16x. These observations
are supported over a number of real-world networks.

Contributions: The main contributions of this paper are:

(i) Introduction of novel and effective heuristics for parallelization of the Louvain algorithm on multithreaded
architectures;
(ii) Experimental studies using 11 real-world networks obtained from varied sources including the DIMACS10 challenge
website, University of Florida sparse matrix collection and biological databases; and
(iii) A thorough comparative study of the performance and related trade-offs among the different parallel heuristics along
with the serial Louvain method.

2. Problem statement and notation

Let G(V,E, w) be an undirected weighted graph, where V is the set of vertices, E is the set of edges and w(.) is a weighting
function that maps every edge in E to a non-zero, positive weight.! In the input graph, edges that connect a vertex to itself are
allowed — i.e., (i,i) can be a valid edge. However, multi-edges are not allowed. Let the adjacency list of i be denoted by
['(i) = {jl(i.j) € E}. Let k; denote the weighted degree of vertex i — i.e, ki = >, @(i,j). We will use n to denote the number

of vertices in G; M to denote the number of edges in the graph; and m to denote the sum of all edge weights —ie,m=1%",, ki
A community within graph G represents a (possibly empty?) subset of V. In practice, for community detection, we are inter-
ested in partitioning the vertex set V into an arbitrary number of disjoint non-empty communities, each with an arbitrary size
(> 0 and < n). We call a community with just one element as a singlet community. We will use C(i) to denote the community
that contains vertex i in a given partitioning of V. We use the term intra-community edge to refer to an edge that connects two
vertices of the same community. All other edges are referred to as inter-community edges. Let E;_c refer to the set of all edges
connecting vertex i to vertices in community C. And let e;_.c denote the sum of the edge weights for the edges in E;_.

ec= Y o) (1)

(if)€Eic

Let ac denote the sum of the degrees of all the vertices in community C (also referred to as community degree).

=3k @)
ieC

Modularity: Let P = {C;,C,,...C;} denote the set of all communities in a given partitioning of the vertex set V in

G(V,E,w), where 1 < k < n. Consequently, the modularity (denoted by Q) of the partitioning P is given by the following
expression [2]:

1 dc dc
Q= ﬁiezve.ﬂcm - ;(ﬁ : ﬁ) 3)

Modularity is not an ideal metric for community detection and issues such as resolution limit have been identified [1,6]; a
few variants of modularity definitions have also been devised [6-8]. However, the definition provided in Eq. (3) continues to
be the more widely adopted version in practice, including in the Louvain method [4], and therefore, we will use that def-
inition for this paper.

Community detection: Given G(V, E, w), the problem of community detection is to compute a partitioning P of communi-
ties that maximizes modularity.

This problem has been shown to be NP-Complete [3]. Note that this problem is different from graph partitioning problem
and its variants [9], where the number of clusters and the rough size distribution of those target clusters are known a priori.
In the case of community detection, both quantities are unknown prior to computation. In fact they encapsulate the input
properties that one seeks to discover out of the community detection exercise.

! If the graph is unweighted, then we treat every edge to be of weight 1.
2 The notion of empty communities does not have practical relevance. We have intentionally defined it this way so as to make our later algorithmic
descriptions easier. It is guaranteed, however, that all output communities at the end of our algorithm will be non-empty subsets.

H. Lu et al./Parallel Computing 47 (2015) 19-37 21
3. The Louvain algorithm

In 2008, Blondel et al. presented an algorithm for community detection [4]. The method, called the Louvain method, is a
multi-phase, iterative, greedy heuristic capable of producing a hierarchy of communities. The main idea of the algorithm can
be summarized as follows: The algorithm has multiple phases, and within each phase it carries out multiple iterations until a
convergence criterion is met.

At the beginning of the first phase, each vertex is assigned to a separate community. Subsequently, the algorithm pro-
gresses from one iteration to another until the net modularity gain becomes negligible (as defined by a predefined thresh-
old). Within each iteration, the algorithm linearly scans the vertices in an arbitrary but predefined order. For every vertex i, all
its neighboring communities (i.e., the communities containing i’s neighbors) are examined and the modularity gain that
would result if i were to move to each of those neighboring communities from its current community is calculated. Once
the gains are calculated, the algorithm assigns a neighboring community that would yield the maximum modularity gain,
as the new community for i (i.e., new C(i)), and updates the corresponding data structures that it maintains for the source
and target communities. Alternatively, if all gains turn out to be negative, the vertex stays in its current community. An itera-
tion ends once all vertices are linearly scanned in this fashion. Consequently, the modularity is a monotonically increasing
function across iterations of a phase.

Once the algorithm converges within a phase, it proceeds to the next phase by collapsing all vertices of a community to a
single “meta-vertex”; placing an edge from that meta-vertex to itself with an edge weight that is the sum of weights of all
the intra-community edges within that community; and placing an edge between two meta-vertices with a weight that is
equal to the sum of the weights of all the inter-community edges between the corresponding two communities. The result is
a condensed graph G'(V',E’, '), which then becomes the input to the next phase. Subsequently, multiple phases are carried
out until the modularity score converges. Note that each phase represents a coarser level of hierarchy in the community
detection process.

At any given iteration, let AQ;_;, denote the modularity gain that would result from moving a vertex i from its current
community C(i) to a different community C(j). This term is given by:

_einc) — Cimcingiy , 2 Ki Aeingy — 2 ki~ dgg

AQicj = + 4

i—C(j) m (Zm)z ()
Consequently, the new community assignment for i at an iteration is determined as follows. For j € I'(i) U {i}:

C(i) = arg ngél)xA Qi cqy (5)

In the implementation [10], several data structures are maintained such that each instance of AQ; ¢ can be computed in
0(1) time. Consequently, the algorithm’s time complexity per iteration is O(M). While no upper bound has been established
on the number of iterations or on the number of phases, it should be evident that the algorithm is guaranteed to terminate
with the use of a cutoff for the modularity gain (because of the modularity being a monotonically increasing function until
termination). In practice, the method needs only tens of iterations and fewer phases to terminate on most real world inputs.

4. Challenges in parallelization

Any attempt at parallelizing the Louvain method should factor in the sequential nature in which the vertices are visited
within each iteration and the impact it has on convergence. Visiting the vertices sequentially gives the advantage of working
with the latest information available from all the preceding vertices in this greedy procedure. Furthermore, in the serial algo-
rithm, when a vertex computes its new community assignment (using Eq. (5)), it does so with the guarantee that no other
part of the community structure is concurrently being altered. These guarantees may not hold in parallel. In other words, if
communities are updated in parallel, it could lead to some interesting situations with an impact on the convergence process
as described below.

4.1. Negative gain scenario

To illustrate the case in point, consider the example scenario illustrated in Fig. 1, where two vertices i and j are both con-
nected to a third vertex k with all three of them in different communities initially — i.e., i € C(i), j € C(j), k € C(k) s.t.
C(i) # C(j) # C(k). If both vertices i and j evaluate the possibility of moving to C(k) independently, using Eq. (4), then from
each of their perspectives, their predicted value for the new modularity is Qqq + AQ;_cqy and Qqq + AQ;_c(), respectively.
However, if both i and j decide to move to C(k) in parallel, then the actual value for the new modularity will be
Qoid + AQyijy—.cry, Where:

(U(l,j) 2. k,‘ . kj
AQqiji—cty = AQi_cy + AQj_cqy + —-—— 6
(i) —C) c)) 2m)? (6)
If (i.j) ¢ E, o(ij) = 0, implying:
2-ki- ki
AQij—cay = AQi_ciy + AQj_cy — —121 < AQi_cuwy + AQjcri (7)

(2m)

22 H. Lu et al./Parallel Computing 47 (2015) 19-37

Fig. 1. Illustration of the negative gain scenario using an example of three vertices (Lemma 1).

. 2-k;-k;
Furthermore, if AQ;_cu) + AQj_cx) < W

= AQijj—ci <0 (8)

On the other hand, if# > (22’;‘1)’2 (can be true only if (i,j) € E), then:

AQij—cay > AQicuy + AQj_ciy 9

This is because AQ;_cx > 0 and AQ;_c, > 0; the latter two inequalities follow from the fact that i and j chose to move to
C(k). Note that if this happens, then parallel version could potentially surpass the serial version toward modularity
convergence.

Lemma 1. At any given iteration of the Louvain algorithm, if community updates for vertices are performed in parallel, then the
net modularity gain achieved cannot be guaranteed to be always positive.

Proof. Follows directly from inequality (7). O

The above lemma has a direct implication on the convergence property of the Louvain method, one way or another.
Pessimistically speaking, if the net modularity gain can become negative between consecutive iterations of the algorithm,
then there is no theoretical guarantee that the algorithm will terminate. Even if the chances of non-termination turn out
to be bleak, it could potentially slow down the rate at which the algorithm progresses toward a solution, causing more num-
ber of iterations. For this reason, the number of iterations that the algorithm takes to converge toward the solution and the
quality of the solution relative to the serial algorithm’s can be good indicators of the effectiveness of a parallel strategy. Note
that the above example with three vertices can be extended to scenarios where multiple unrelated vertices are trying to
enter a community at its periphery without mutual knowledge.

4.2. Swap and local maxima scenarios

There exists another scenario that could impede the progression of the parallel algorithm toward a solution. Consider a
simple example where two vertices i and j connected by an edge (i,j) € E s.t., C(i) = {i} and C(j) = {j}. In the interest of
increasing modularity, if the two vertices make a decision to move to each other’s community concurrently, then such an
update could potentially result in both vertices simply swapping their community assignments without achieving any
modularity gain. This could also happen in a more generalized setting, where subsets of vertices between two different
communities swap their community assignments, each unaware of the other’s intent to also migrate.

A parallel algorithm also runs the risk of settling on locally optimal decisions. This could happen even in serial; in parallel
such scenarios may arise if a single community gets partitioned into equally weighted sub-communities, in which there is no
incentive for any individual vertex to merge with any of the other sub-communities; and yet, if all vertices from each of the
sub-communities were to merge together to form a single community the net modularity gain could be positive. An example
of this case will be shown later in Section 5.1. Getting stuck in a locally optimal solution, however, can be resolved when the
algorithm progresses to subsequent phases.

5. Parallel heuristics

In this section, we present our ideas to tackle the challenges outlined above in parallelizing the Louvain heuristic com-
munity detection.

H. Lu et al./Parallel Computing 47 (2015) 19-37 23
5.1. The minimum label heuristic

Section 4.2 elaborated on the possibilities of swapping conditions that may delay the parallel algorithm’s convergence to
a solution. In this section we present a heuristic designed to address some of these cases. Let us consider the simple case of
two vertices i and j outlined in Section 4.2. Here both vertices are initially in communities of size one, and a decision in favor
of merging at any given iteration will lead them to simply swap their respective communities without resulting in any net
modularity gain. This is outlined in the Case 1a of Fig. 2. Such a swap can be easily prevented by introducing a labeling
scheme where it can be enforced that only one of them move to other’s community. More specifically, let the communities
at any given stage of the algorithm be labeled numerically (in an arbitrary order). We will use the notation ¢(C) to denote the
label of a community C. Then the heuristic is as follows:

The singlet minimum label heuristic: In the parallel algorithm, at any given iteration, if a vertex i which is in a commu-
nity by itself (i.e., C(i) = {i}), decides (in the interest of modularity gain) to move to another community C(j) which also con-
tains only one vertex j, then that move will be performed only if ¢(C(j)) < ¢(C(i)).

The above heuristic can be generalized to other cases of swapping or local maxima. For instance, let us consider the 4-
clique of {i4,is,is,i7} shown in Fig. 2: case 2, assuming that each vertex is in its own individual community to start with.
Here, in the absence of an appropriate heuristic there is a chance that the algorithm would settle on a local maxima. For
instance, maximum modularity gains can be achieved at vertex iy by either moving to C(is) or C(i7), and similarly for vertex
is. However, if iy moves to C(is) and is to C(i;), then the resulting solution {i4,is}, {is,i7} (shown in case 2a of Fig. 2) will
represent a local maxima from which the algorithm may not proceed in the current phase. This is because, once these partial
communities form, there is no incentive for i or i to individually move to the community containing {is, i;}, without each
other’s company. This is a limitation imposed by the Louvain heuristic, which makes decisions at the vertex level. However, if
we label and treat the communities in a certain way then such local maxima situations can be avoided.

The generalized minimum label heuristic: In the parallel algorithm, at any given iteration, if a vertex i has multiple
neighboring communities yielding the maximum modularity gain, then the community which has the minimum label
among them will be selected as irs destination community.

In the example for Fig. 2: case 2, vertices i and i; will both yield the maximum modularity gain for vertices iy and is.
However, using the above minimum label heuristic, all three vertices {is, is,i;} will migrate to C(is), while is stays in C(is)
— i.e., assuming ¢(C(is)) < €(C(is)) < £(C(ig)) < £(C(i7)).

While swap situations may delay convergence, they can never lead to nontermination of the algorithm due to the use of a
minimum required net modularity gain threshold to continue a phase. As for local maxima, a general proof that effects of
elimination of local maxima cases progressively as the algorithm progresses is not possible due to the heuristic nature of
algorithm. However, many situations, similar to those explained earlier in Section 4.2, typically get resolved in subsequent
phases; this is because the representation of the individual sub-communities as meta-vertices is likely to lead them to merge
with one another forming the containing communities eventually in the output.

5.2. Coloring

In this section, we explore the idea of graph coloring to address some of the parallelization challenges outlined in
Section 4. A distance-k coloring of a graph is an assignment of colors to vertices such that no two vertices separated by a

(assuming C'(j) < C(7)) Case 2a: Without heuristic Case 2b: With min. degree heuristic

Fig. 2. Examples of cases which can be handled by using the minimum labeling heuristic. The dotted arrows point to the direction of the vertex migration.
Case 1 shows a scenario of vertex swap between two communities. Case 2 shows the evolution of two different communities {i;,i,i3} and {is, is, s, 7 }.
Without the application of any heuristic (Case 2b), the algorithm may either form partial communities (e.g., {i1}, {i>,i3}) or may settle on a local maxima
(e.g., {ia,is}, {is,i7}). Whereas the use of a minimum label heuristic could help the communities converge to the final solutions faster (as shown in Case 2b).

24 H. Lu et al./Parallel Computing 47 (2015) 19-37

distance of at most k are assigned the same color. It should be easy to see that using distance-1 coloring to partition the ver-
tices into color sets prior to the processing would prevent vertex-to-vertex swap scenarios. In this scheme, vertices of the
same color are processed in parallel, and this is equivalent of guaranteeing that no two adjacent vertices will be processed
concurrently. However, distance-1 coloring may not be adequate to address other potential complications that may arise
during parallelization (see Section 4.1).

Corollary 2. Applying and processing the vertices in parallel by distance-1 coloring does not necessarily preclude the possibility of
negative modularity gains between iterations.

Proof. Follows directly from the three vertex example case presented for Lemma 1. O

In fact the same result can be extended for application of a distance-k coloring scheme, where k > 1, as was shownin [11].

Despite these lack of guarantees for a positive modularity gain between iterations, coloring still could be effective as a
heuristic in practice, as we will demonstrate in Section 6. The performance trade-off presented by coloring is a potential
reduction in the degree of parallelism versus faster convergence to higher modularity. Coloring also presents an added
advantage of being able to use higher modularity gain thresholds during the earlier phases of the algorithm, as will be
explored in Section 6. The run-time cost of coloring is expected to be dominated by the time spent within iterations; further-
more, for scalability in preprocessing, we use a parallel implementation to perform coloring [12].

5.3. The vertex following heuristic

In this section, we will layout a particular property of the serial Louvain algorithm in the way it treats vertices with
single neighbors, and devise a heuristic around it. For the purpose of the lemma below, we will assume a version of
Louvain algorithm which continues with iterations within a phase, until the communities stop changing. We also distinguish
between vertex i being a single degree vertex and a single neighbor vertex — the former is when the only edge incident
on i is (i,j), whereas the latter is when i could have up to two edges incident with (i,j) being mandatory and (i,i) being
optional.

Lemma 3. Given an input graph G(V,E, w), let i and j be two different vertices such that i is a single degree vertex with only one
incident edge (i,j) € E. Then, in the final solution C(i) = C(j) — i.e., i should be part of the same community as j.

Proof. Consider any iteration r in which vertices i and j are in two different communities — i.e., C(i) # C(j). During iteration r,
the value of AQ;_¢; will evaluate to the following:

o)) 2-ki-acpy —2-ki-acy o@j) 2-ki-dey _ o)) (5 ki-dc
AQincj =—=+ 2m)? > 2m)? (- deany = 0) =7 (2m =5 (10)
Since vertex i is a single degree vertex, k; = (i, j). Therefore,
w(i,j)
AQi_cj = m2 (2m — ac)) (11)

AQ;_c;, and also that all edge weights are non-negative:

Now, if i were to decide against moving to C(j), AQ;_c(; < 0. Given that the above inequality (11) is a lower bound for

= 2m — Acjy < 0
= 2m < dg) (12)

But inequality (12) is not possible because acj; < 2m for any community (by the definition in Eq. 2) and in this case, since
i ¢ C(j), acj < (2m — w(i,j)) < 2m. This implies that i will have no choice but to move to C(j) in iterationr. O

We refer to the guarantee provided by the above lemma as the vertex following (VF) rule. Note that it is guaranteed to hold
only for single degree vertices in the input graph. The implication of this rule is that there is no need to explicitly make deci-
sions on single degree vertices during the Louvain algorithm’s iterations. Instead, we can preprocess the input such that all
single degree vertices are merged a priori into their respective neighboring vertex. More specifically, let i be a single degree
vertex with j as its neighbor. Then, we remove vertex i from the graph, and replace j with a new vertex j/, such that
I'GH={TCGH\{i}}u{}and w(,j) = w(ij) if (j,j) ¢ E; and o' ,j) = w(j,j) + o(i,j) otherwise.

This preprocessing not only could help reduce the number of vertices that need to be considered during each iteration,
but it also allows the vertices that contain multiple neighbors (that tend to be the hubs in the networks) be the main drivers
of community migration decisions. This is more important under a parallel setting because if the single degree vertices were
retained in the network the hub nodes could potentially gravitate temporarily toward one of their single degree mates,
thereby delaying progression of solution or getting stuck in a local maxima.

We could also extend the result of the Lemma 3 to benefit cases where vertex i is a single neighbor vertex. The idea is
similar to that of a k-core decomposition of the graph [13]. Intuitively, during preprocessing, single neighbor vertices can
be collapsed into their only neighboring vertex recursively until the negative component of the inequality (10) starts to
dominate its positive counterpart. Termination of this recursive merging can be implemented either by explicitly calculating

H. Lu et al./Parallel Computing 47 (2015) 19-37 25

both sides of the inequality (10) or by estimating through other means via lower bounds or statistical thresholds. The idea is
to lead to fast compression of chains within the input graph prior to application of the Louvain heuristic. We omit further
details of this idea and for the purpose of this paper, we only consider the single degree version of the vertex following
heuristic for implementation and experimental evaluation.

Algorithm 1. The parallel Louvain algorithm for a single phase. The inputs are a graph (G(V,E, w)) and an array of size
|V| that represents an initial assignment of community for every vertex Cjp;

1: procedure ParaLLEL LouvaiN(G(V, E, @), Cinit)

2: ColorSets « Coloring(V), where ColorSets represents a color-based partitioning of V.
> If the coloring step is omitted, then it automatically implies that all vertices belong to the same color set.

3: Qe <0

4: Qprey +— —00 > Current & previous modularity

5: Ccurr — Cinit

6: while true do > Iterate until modularity gain becomes negligible.

7: for each V € ColorSets do

8: Cprev — Ceurr

9: for each i € V| in parallel do

10: N; — Cpres]i]

11: for each j € I'(i) do N; — N; U {Cpres|j]}

12: target «— argmaXgen, AQ; ¢

13: if AQi_targer > O then

14: Ceurr[i] < target

15:

16: Cser + the set of non-empty communities corresponding to Ceyr

17: Qe < Compute modularity as defined by Cet

18: if Qc“a;fy"’” < 0 then > 0 is a user specified threshold.

19: break > Phase termination

20: else

21: Qprev — Qeurr

5.4. Parallel algorithm
Our parallel algorithm has the following major steps:

(1) VF preprocessing (Optional): Apply the vertex following heuristic by merging all single degree vertices into their respec-
tive neighboring vertices (as explained in Section 5.3). This step is performed in parallel. Label the resulting vertices
from 1...n using an arbitrary ordering.

(2) Coloring preprocessing (Optional): Color the input vertices using distance-k coloring. For this paper, we only explore
distance-1 coloring. For coloring, we used the parallel implementation from [12].

(3) Phases: Execute phases one at a time as per Algorithm 1. Within each phase, the algorithm runs multiple iterations,
with each iteration performing a parallel sweep of vertices without locks and using the community information avail-
able from the previous iteration. If coloring was applied, then the processing of each color set is parallelized internally
and the community information from the previous coloring stages is available to make migration decisions in subse-
quent coloring stages. This is carried on until the modularity gain between successive iterations becomes negligible.

(4) Graph rebuilding: Between two successive phases, the community assignment output of the completed phase is used to
construct the input graph for the next phase. This is done by representing all communities of the completed phase as
“vertices” and accordingly introducing edges, identical to the manner in which it is done in the serial algorithm. This
step is also implemented in parallel as described in Section 5.5.

We note here that the above parallel algorithm, with the exception of coloring heuristic, is stable in that it always pro-
duces the same output regardless of the number of cores used. When coloring is applied, the use of multiple threads within a
given iteration could potentially vary the order in which decisions are made, thereby leading to potential variations in the
output. In our experiments, we found the magnitudes of such variations to be negligible.

5.5. Implementation

We implemented our parallel heuristics in C++ and OpenMP. It is to be noted that the heuristics themselves are agnostic
to the underlying parallel architecture. There are a few implementation level variations to Algorithm 1. In Algorithm 1 the

26 H. Lu et al./Parallel Computing 47 (2015) 19-37

modularity calculation happens in lines 16-17. In our actual implementation we do not explicitly calculate the intra- and
inter-community edges required for modularity calculation. Instead we pre-aggregate these values in steps 7-14 as the
net modularity gains are being calculated for each vertex. This saves significant recomputation. Secondly, to update the
source and target communities for each vertex i, we use intrinsic atomic operations __sync_fetch_and_add() and
__sync_fetch_and_sub().

We use a compressed storage format for graph data structures that store the adjacency lists for all the vertices in a con-
tiguous memory location. Specific memory pointers for each vertex is maintained in a separate list. This format enables effi-
cient access to neighborhood information for each vertex. We use the C++ STL map data structure to store the set of unique
clusters that a vertex is connected to (i.e., neighboring communities). The number of possible choices is upperbounded by
the degree of a vertex initially and depending on how fast the algorithm converges from iteration to iteration, the number
of choices decreases. Since this step appears in the computation for every vertex, we also experimented with several alter-
natives including the use of C++ STL unordered_map data structure, but did not find any significant improvements in
performance.

The step to rebuild the graph between consecutive phases is implemented in parallel and serial in parts. This is achieved
in a sequence of steps. Assume that the phase transition is between phase i— to i. We use G;_; and G; to refer to the graphs
input to phases i — 1 and i respectively. (i) First, the set of vertices in G; is constructed from the communities output from
phase i — 1. Since many communities which existed at the start of phase i — 1 could have become empty by the end of that
phase, we first renumber of communities numerically, using only non-empty communities. This step is currently imple-
mented in serial, although our future plan is to explore a parallelization using prefix computation-based approach. (ii) In
the next step, a STL map structure is allocated for every new vertex in G; to concisely store the set of neighboring communi-
ties attached to it. This step is parallel. (iii) In the following step, all edges in G;_; are traversed in parallel. If an edge is an
intra-community edge, then the weight for the corresponding edge (connecting the community vertex to itself) in G; is
updated. Alternatively, an inter-community edge leads to an update to each of the two corresponding community vertices
in G;. The former requires one lock and the latter requires two.

Our implementation is named Grappolo.® The software is available for download under the BSD 3-Clause license from here:
http://hpc.pnl.gov/people/hala/grappolo.html.

5.6. Analysis

Within each iteration (refer to Algorithm 1), the vertices are scanned in parallel, and for every vertex their vertex neigh-
borhood is scanned first to curate the set of distinct neighboring communities (steps 10-11). Subsequently, the main step of
modularity gain calculation is performed only for each distinct neighboring community (step 12), which is equal to vertex
degree initially but is expected to rapidly reduce as the iterations progress. Consequently, the worst-case runtime complex-

ity per iteration is O(max {M;”'Z,Zmux}>. where p denote the number of processing cores, 2 is the average (unweighted)

degree of a vertex and /g is the maximum (unweighted) degree of a vertex. The space complexity is linear in the input
for shared memory implementation (i.e., O(m + n)). The above analysis assumes that the entire collection of vertices is pro-
cessed in one parallel step within each iteration. With the application of coloring, parallelism is limited to each color set,
implying the number of color sets to correspond to the number of parallel steps within each iteration.

6. Experimental evaluation
6.1. Experimental setup

The test platform for our experiments is an Intel Xeon X7560 server with four sockets and 256 GB of memory. Each socket
is equipped with eight cores running at 2.266 GHz, leading to a total of 32 cores. The system is equipped with 32 KB of L1 and
256 KB L2 caches per core, and 24 MB of cache per socket. Each socket has 64 GB of DDR3 memory with a peak bandwidth of
34.1 GB per second. The software was compiled with GCC version 4.8.2 using -Ofast option. We also enabled non-uniform
memory distribution using numact1l command and enabled thread binding by using GOMP_CPU_AFFINITY environment
variable. The thread binding variable was configured to place the threads across the system as evenly as possible with
the goal of maximizing the memory bandwidth. All experiments were run using one thread per core.

We tested our heuristics on 11 different real world input graphs, which are summarized in Table 1. With the exception of
inputs labeled “MG1” and “MG2", all other inputs were downloaded from the DIMACS10 challenge website [5,14], and the
University of Florida sparse matrix collection [15]. “MG1” and “MG2"” are graphs constructed for two different ocean metage-
nomics data, using the construction procedure described in [16].

The input graphs were tested using multiple variants of our implementation that use different combination of the pro-
posed heuristics. These variants are as follows:

3 Italian word meaning a cluster (of grapes).

http://hpc.pnl.gov/people/hala/grappolo.html

H. Lu et al./Parallel Computing 47 (2015) 19-37 27

Table 1
Input statistics for the real world networks used in our experimental study. “RSD” represents the relative standard deviation of vertex degrees for each graph. It
is given by the ratio between the standard deviation of the degree and its mean.

Input graph Num. vertices (n) Num. edges (M) Degree statistics (1)
Max. Avg. RSD

CNR 325,557 2,738,970 18,236 16.826 13.024
coPapersDBLP 540,486 15,245,729 3,299 56.414 1.174
Channel 4,802,000 42,681,372 18 17.776 0.061
Europe-osm 50,912,018 54,054,660 13 2.123 0.225
Soc-LiveJournal1l 4,847,571 68,475,391 22,887 28.251 2.553
MG1 1,280,000 102,268,735 148,155 159.794 2.311
Rgg n_2_24 s0 16,777,216 132,557,200 40 15.802 0.251
uk-2002 18,520,486 261,787,258 194,955 28.270 5.124
NLPKKT240 27,993,600 373,239,376 27 26.666 0.083
MG2 11,005,829 674,142,381 5,466 122.506 2.370
friendster 51,952,104 1,801,014,245 8,603,554 69.333 17.354

¢ Baseline: represents our parallel implementation with only the Minimum Labeling (ML) heuristic;

o Baseline + VF: represents the baseline implementation with the application of the Vertex Following (VF) heuristic in a
preprocessing step. There were a few inputs (viz., Channel, MG1, MG2) for which their single degree vertices had already
been pruned off when their respective graphs were generated, and consequently their baseline runs are equivalent to
their baseline + VF runs. For the remaining inputs, VF preprocessing was run only once, prior to the start of the first phase;

o Baseline + VF + Color: represents the baseline implementation with the application of both the VF and coloring heuristics
(in that order). Coloring was used as a preprocessing step for multiple phases until either the number of input vertices
reduced below a preset cutoff (100 K used for this paper) or the net modularity gain between phases is less than the

user-defined threshold (1072). Once either of these conditions is met, the implementation does not perform coloring any-
more and the remaining phases are executed using a default net modularity gain threshold of 10~° for termination.

6.2. Performance evaluation

To assess the effectiveness of our parallel heuristics, we studied how quickly a given algorithm converges to its final
modularity (as a function of the number of iterations) and compared it against the convergence rate of the corresponding
serial Louvain® execution. We also compared the difference in runtimes and final modularities output by the individual
approaches. Figs. 3-6 show the evolution of modularity from the first iteration of the first phase to the last iteration of the last
phase for all the 11 test inputs, and the parallel runtimes as a function of the number of cores.

Effectiveness of the VF heuristic: The run-time charts in Figs. 3-6 show the effectiveness of the VF heuristic in reducing
run-time relative to our baseline implementation. The reduction in run-time can be attributed to the reduction in the num-
ber of vertices to be processed within each iteration. However, the effectiveness of the VF heuristic is also tied to the number
of single degree vertices in the original input graph. While our results show that VF is able to produce run-time savings in
most input cases, there were two exceptions: Europe-osm (Fig. 4) and Rgg_n_2_24 _s0 (Fig. 5g), for which the run-time was
observed to increase. Upon further investigation, we found that the application of VF for these two inputs indeed caused a
reduction in the time spent per iteration as expected; however, it also led to prolonging the convergence of the algorithm
within the initial phases — i.e,, it led to an increase in the number of iterations within a phase.

This delay in convergence within a phase shows a potential drawback of the VF heuristic on some input cases that can be
intuitively explained as follows: consider a chain of “hub” nodes where the hubs are individually connected to a number of
single degree vertices (“spokes”). In such cases, the compacted representation that results from the application of VF would
have more incentive to continue in the current phase by gradually collapsing the chain into larger communities and achiev-
ing smaller gains in modularity that still surpass the minimum required cutoff. This results in prolonging the termination of
the current phase. In contrast, if we were to omit applying the VF heuristic on the input graph, then a hub node could poten-
tially migrate into one of its spokes’ communities and when that happens, there is an increased probability that the algo-
rithm terminates the current phase sooner due to negligible modularity gain. While the resulting final modularity figures
could be slightly lower than obtained with the application of VF, the gains in runtime may be more pronounced, which is
what we observed for the two inputs Europe-osm and Rgg_n_2_24 s0. It is to this end, that the proposed extension of
the VF heuristic that also seeks to compress paths (see discussion at the end of Section 5.3) could aid in obtaining a better
balance between run-time benefit and modularity gain.

Effectiveness of coloring: The design intent of coloring is to reduce the number of iterations required to converge on a
solution, and in the process reduce the time to solution. However, a potential drawback of coloring is reduced parallelism

4 For this reason, we show only their baseline + VF runs in their respective charts.
5 All references to the “serial” implementation in the experimental results section corresponds to the original Louvain implementation available from [10].

28 H. Lu et al./Parallel Computing 47 (2015) 19-37

baseline mmmm
baseline+VF
L/ baseline+VF+Color mmmm
4
o
&
£ £
K] [2
S
H £
= <
S
4
1
serial ——
baseline+VF+Color —e—
baseline+VF —a—
baseline —a— 0.5
0 5 10 15 20 25 30 35 40 45 ’ 2 4 8 16 32
tteration number Number of threads
(a) Input: CNR
1 32 -
baseline mmmm
baseline+VF m—
baseline+VF+Color s
08
[+
@
> 08 2
s ©
S
H £
S o4 z
S
[
= serial ——
baseline+VF+Color —e—
baseline+VF —a—
o baseline —a—
0 5 10 15 20 25 30 35 2 4 8 16 32
tteration number Number of threads
(b) Input: coPapersDBLP
! Rig baseline+VF mmmm
baseline+VF+Color mmm
08
[+
@
> 08 2
s ©
S
K £
S o4 z
S
[
02
serial —%—
baseline+VF+Color —e—
o baseling+VF —a—
0 20 40 60 80 100 120 140 160 180 2 4 8 16 32
tteration number Number of threads

(c) Input: Channel

Fig. 3. Charts showing the evolution of modularity (left column) and the parallel runtime performance (right column) for each test input. The steep climbs
in modularity visible in the modularity curves correspond to phase transitions. Also shown for comparison are the corresponding performance of the serial
algorithm.

within each iteration; more specifically, the presence of numerous small color sets could result in an under-utilization of
threads. In our experimental results, we found coloring to be highly effective in reducing both the number of iterations
and the overall time to solution. The run-time improvements of baseline + VF + coloring over baseline + VF were anywhere
from ~ 3.48x to 16.52 x. However, the run-time improvements were either negligible in the case of MG2 (Fig. 6j) or negative
in the case of uk-2002 (Fig. 5h). These observations correlate with the highly skewed color size distributions for these two
graphs. For instance, 943 colors were used for uk-2002 in the first phase and the color sets had a high Relative Standard
Deviation (RSD) of 18.876 in their sizes. We are exploring an alternative approaches to create balanced coloring sets that
are targeted at addressing this performance issue. For all other inputs, however, the benefit of coloring is evident in the dras-
tically reduced number of iterations for convergence and subsequent savings in the time to solution. These results also show
the combined effect of applying both VF and coloring heuristics, as they yield an additive net gain in performance.

6.2.1. Scaling and run-time results
Fig. 7 shows the speedup curves for our parallel implementation (baseline + VF + Color). Two speedup curves are shown:
(a) relative speedup, which calculates the speedup of the parallel execution over the corresponding 2-thread run (discussed in

H. Lu et al./Parallel Computing 47 (2015) 19-37 29

1 . 2048 .
baseline mmmm
baseline+VF
1024 baseline+VF+Color mmmm
08
§ 512
z % £
] 4 © 256
g E
S o4 ":
© 128
02 64
baseline+VF+Color —e—
baseline+VF —a—
o baseline —a— 22
0 100 200 300 400 500 2 4 8 16 32
tteration number Number of threads
(d) Input: Europe-osm
1 2048 -
baseline mmmm
baseline+VF m—
1024 baseline+VF+Color mmmm
08
f—-l"" r-?_ 512
[+
H
z o € 26
K] o
3 £
o =
= 04 & 128
&
64
02
serial ——
baseling+VF+Color —e— 32
baseline+VF —a—
baseline —a—
ot 16
0 20 40 60 80 100 120 140 160 2 4 8 16 32
tteration number Number of threads
(e) Input: Soc-LiveJournall
! 000000 sasassissssant Rig baseline+VF mmmm
baseline+VF+Color s
256
08
§ 128
z % <
s
= o
_§ g 64
= o4 3
© 32
02 16
serial —%—
baseline+VF+Color —e—
o baseling+VF —a— 8
0 10 20 30 40 50 60 2 4 8 16 32
tteration number Number of threads

(f) Input: MG1

Fig. 4. Charts showing the evolution of modularity (left column) and the parallel runtime performance (right column) for each test input.

this section); and (b) absolute speedup, which is the speedup calculated over the corresponding serial Louvain imple-
mentation’s execution [10] (to be discussed in Section 6.2.2).

The relative speedup curves show that on most inputs, the parallel implementation continues to deliver increasing speed-
ups up to 32 threads, although the speedups become sub-linear beyond 8 threads. While the input sizes play a role, it can be
observed from the results that the size alone is not the sole determinant of performance. For instance, the implementation
achieves higher peak relative speedups (~ 8x) on some of the smaller inputs such as coPapersDBLP (540 K vertices, 15 M
edges) and Rgg n_2_24 s0 (16 M vertices, 132 M edges) than on a larger input such as NLPKKT240 (51 M vertices, 1.8B
edges). Parallel performance is affected by a combination of input characteristics and the serial bottlenecks within the par-
allel implementation.

Inputs Channel and NLPKKT240 have a low RSD in vertex degree distribution (Table 1) and also have a poor community
structure (reflected in their low modularity scores). This combination leads to an increased number of iterations in the initial
phases, as the algorithm continues within a phase albeit incremental modularity gains. The increased number of iterations in
the first phase in particular (where the graph size is the largest) adversely affects on performance. This is because within
each iteration the step to recalculate the new modularity score involves updating community structures (internal edge

30 H. Lu et al./Parallel Computing 47 (2015) 19-37

256 -
baseline mmmm
baseline+VF
baseline+VF+Color s
o
&
,E‘ £
K] o
S
g £
= <
3
4
= serial ——
baseline+VF+Color —e—
baseline+VF —a—
o baseline —a—
0 10 20 30 40 50 60 70 2 4 8 16 32
tteration number Number of threads
(g) Input: Rgg n 224 s0
1 1024 .
5o N v baseline mmmm
baseline+VF mm—
baseline+VF+Color mmmm
512
08
o 256
> 08 2
= 128
S
g £
= 04 <
& 64
02 serial —s— 32
baseline+VF+Color —e—
baseline+VF —a—
baseline —a—
0 16
0 5 10 15 20 25 30 35 40 2 4 8 16 32
tteration number Number of threads
(h) Input: uk-2002
! 8192 baseline+VF mmmm
(baseline+VF+Color mmmm
08 4096
[+
@
» 08 © 2048
s »
3 £
S 04 T 1024
3
[
02 512
serial —x—
baseline+VF+Color —e—
o baseling+VF —a— 256
0 100 200 300 400 500 600 2 4 8 16 32
tteration number Number of threads

(i) Input: NLPKKT240

Fig. 5. Charts showing the evolution of modularity (left column) and the parallel runtime performance (right column) for each test input.

and incident edge counts); and as the number of communities begins to reduce in the later iterations of a phase, more par-
allel overhead due to locking is incurred.

In contrast, consider the input Rgg_n_2_24_s0 which also has a low RSD in its vertex degree distribution but for which a
superior parallel performance is observed. This input is a random geometric graph, which despite its uniform degree dis-
tribution, is also known to have a high community structure (reflected by its high modularity score). This attribute allows
the algorithm to rapidly converge within the first phase, thereby aiding better overall parallel performance.

Another significant contributing factor affecting parallel performance is the time taken to rebuild the graph between con-
secutive phases. To analyze this effect, we recorded the breakdown of total run-time by the different phases of the parallel
algorithm (described in Section 5.4). Fig. 8 shows the breakdown - viz. time to rebuild the graph between phases (VF cost is
included here), time to perform coloring, and the remaining time attributed to performing the iterations (“clustering”). The
charts (shown for four representative inputs) explain the discrepancies in scaling among the inputs. For Rgg_n_2_24_s0 and
MG2, we can see that the time spent in the main clustering iterations dominates, which is desirable from a scaling point of
view. However, for inputs Europe-osm and NLPKKT240, an increasing portion of time is being spent in the rebuild phase with
an increase in the number of cores. Given that our current implementation of the rebuild phase has serial bottlenecks (as

H. Lu et al./Parallel Computing 47 (2015) 19-37

1
08
o
&
z 0 c
s
s o
S
g £
= 04 ":
3
4
02
serial —w—
baseline+VF+Color —e—
o baseline+VF —a—
0 5 10 15 20 25 30 35 40
tteration number
(j) Input:
1
08
[+
H
z 0 c
= £
= o
S
g £
= 04 z
3
[
02
baseline+VF+Color —e—
o baseline+VF —a—

0 50 100

tteration number

F

-

150

200

(k) Input: friendster

CNR "——
uk-2002 ——
8L NLPKKT240 ——

MG2 —5—
MG1
Channel —s—
coPapersDBLP
Rgg n_2_24 sO0 —a—
Soc-LiveJournal1
Europe-osm ——
friendster

Relative speedup

Absolute speedup

2 4 8
Number of threads

32

2048

31

1024

512

256

128

64

MG2

65536

baseline+VF mmmm
baseline+VF+Color s

2 4 8
Number of threads

16 32

32768

16384

8192

4096

2048

1024

512

256

32

baseline+VF mmmm
baseline+VF+Color s

2 4 8 16
Number of threads

32

g. 6. Charts showing the evolution of modularity (left column) and the parallel runtime performance (right column) for each test input.

0.25
2

CNR —— MG2 —5— coPapersDBLP
uk-2002 —x— MG1 Rgg_n_2_24_s0 —a—
NLPKKT240 —x— Channel —e— Soc-LiveJournal1
. h h
4 8 16 32

Number of threads

Fig. 7. Speedup charts for our parallel implementation, Grappolo. The chart on left shows the relative speedup of the parallel implementation using the 2-
thread run as the reference. The chart on the right shows the absolute speedup — i.e., relative to the serial Louvain implementation [10]. All speedups are
calculated using the baseline + VF + Color implementation of Grappolo. Note that in the absolute speedup chart, curves for Europe-osm and friendster are not

shown because the serial Louvain implementation failed to complete on these two inputs.

explained in Section 5.5), the speedups achieved for these inputs become sub-linear for higher number of cores. Fig. 9 con-
firms these observations about the rebuild phase. More specifically, for inputs Europe-osm and NLPKKT240, the first phase
ends in a low modularity (0.533470 and 0.038107 respectively), which implies that a dominant fraction of the edges remain
as inter-community edges. In the graph rebuild phase, each such edge corresponds to two locks (one for each community)

32 H. Lu et al./Parallel Computing 47 (2015) 19-37

120 . 120 .
clustering s clustering s
rlebuild — rlebuild —
100 coloring mmm 100 coloring s
ES ES
£ £
z 8 z 8
H H
o o
T T
% 60 % 60
o o
s s
g 40 g 40
z z
3 3
® 20 ® 20
0 0
4 8 16 4 8 16
Number of threads Number of threads
(a) Input: Rggn 224 50 (b) Input: MG2
120 . 120 .
clustering s clustering s
rlebL_JiId — rlebL_JiId —
100 coloring s 100 coloring s
B B
£ £
z 8 z 8
3 3
(=] (=]
© ©
% 60 % 60
o o
s s
g 40 g 40
£ £
=] =]
® 20 ® 20
0 0
2 4 8 16 32 2 4 8 16 32
Number of threads Number of threads
(¢) Input: Europe-osm (b) Input: NLPKKT240

Fig. 8. Breakdown of the parallel run-times by the different steps of the algorithm - viz. coloring, time to perform the graph transformations between
phases, and the time spent in the iterations. The runs correspond to the baseline + VF + Color implementation.

affecting parallel performance. In contrast, input MG2 ends with a high modularity score of 0.969587 resulting in an
improved performance during the rebuild phase as well.

6.2.2. Comparison to serial Louvain

We also comparatively evaluated the performance of our parallel implementations proposed in this paper against the
publicly available serial Louvain distribution [10]. Fig. 7 shows the absolute speedup achieved over the serial imple-
mentation for 9 out of the 11 inputs. (For the remaining two inputs, Europe-osm and friendster, the serial implementation
failed to run.) Table 2 compares the final modularities achieved by both implementations and also the corresponding run-
times. For 7 out of the 11 inputs, our parallel implementation delivers higher modularity compared to the serial imple-
mentation in shorter time to solution. For example, this difference is as much as >0.1 for coPapersDBLP and > 0.08 for
Channel. Even in 3 out of the 4 cases where the serial implementation delivers higher modularity, the modularities reported
by both methods agree up to the first three decimal places. Note that the heuristic nature of the algorithm combined with the
parallel ordering of vertices which could differ from the serial ordering imply that serial and parallel results cannot be guar-
anteed to be identical. Our results demonstrate that parallelization is at least capable of preserving (if not surpassing) output
quality for most of the inputs tested.

As for the run-times, our parallel implementation delivers absolute speedups in the range of 1.45x to 13.07x using 8
threads. Larger speedups were observed using more number of threads, as can be observed from the absolute speedup chart
in Fig. 7. A top speedup of 16.51x was observed for the NLPKKT240 input using 32 cores. The two cases where we observe
low speedups — Channel (1.45x) and uk-2002 (1.59x) — represent two different cases. For the Channel input, observe from
Table 1 that the degree distribution is highly uniform. This could cause vertices to migrate to any one of the neighboring
communities and therefore the vertex ordering is expected to have a more pronounced effect on the convergence rate. It
is for this reason that the serial implementation, which uses an arbitrary ordering, converges faster albeit with a lower
modularity, while our parallel implementation with coloring takes more iterations to converge and does so with a higher
modularity. For uk-2002, the skew in the color set size distribution is the reason behind low speedup (as was explained ear-
lier in the section).

H. Lu et al./Parallel Computing 47 (2015) 19-37 33

Europe-osm —
NLPKKT240 —s¢—
MG2 —x—

4]]

N

Rebuild phase speedup

-

0.5 1 I 1
2 4 8 16 32

Number of threads

Fig. 9. Chart showing the speedup curves for the graph rebuilding phase of our parallel algorithm.

Table 2

Comparison of the modularities and run-times achieved by our parallel implementation baseline + VF + Color (using 8 threads) against the corresponding values
achieved by the serial Louvain implementation [10]. All runs were performed on the same test platform described under Experimental Setup. The “N/A’ entries
denote cases where the serial Louvain implementation did not complete (i.e., crashed). Bold face numbers correspond to the top performing entries. It is to be
noted that the serial Louvain implementation is a 32-bit implementation.

Input Output modularity Run-time (in sec)

Parallel Serial Parallel (8 threads) Serial Speedup (8 threads)
CNR 0.912608 0.912784 0.8 43 5.37x
coPapersDBLP 0.858088 0.848702 3.7 7.7 2.08x
Channel 0.933388 0.849672 21.2 30.9 1.45x%
Europe-osm 0.994996 N/A 63.4 N/A N/A
MG1 0.968723 0.968671 28.8 126.6 4.39x
uk-2002 0.989569 0.9897 2103 335.9 1.59x
MG2 0.998397 0.998426 457.8 1313.7 2.86x
NLPKKT240 0.934717 0.952104 388.4 5077.2 13.07x
Rgg_n_2_24_s0 0.992698 0.989637 34.2 1111 3.24x
Soc-LiveJournal 0.751404 0.726785 67.05 182.7 2.72x
Friendster 0.626139 N/A 2036.8 N/A N/A

6.2.3. Performance charts and qualitative evaluation

Fig. 10 shows the relative performance profiles among the three parallel implementations - baseline, baseline + VF, and
baseline + VF + Color - along with the serial Louvain implementation for the collection of inputs tested. For plotting these per-
formance charts, we used results from all 9 inputs for which we had results from both serial and parallel implementations.
The X-axis represents the factor by which a given scheme fares relative to the best performing scheme for that particular
input. The Y-axis represents the fraction of problems (i.e., inputs). The closer a heuristic curve is to the Y-axis the more super-
ior its performance is relative to the other schemes over a wider range of inputs. Also, in these performance charts, the order
in which inputs appear along each curve is strictly a function of that corresponding heuristic’s relative performance to the
other schemes — i.e., the points along a curve are sorted from the corresponding heuristic’s best to worst performing inputs.
Thus, the charts illustrate the relative performance of each scheme over other schemes for the collection of 9 inputs tested (as
opposed to the individual inputs).

The following observations can be made from the two performance charts. The baseline + VF + Color shows an overall run-
time performance advantage over all other schemes. For instance, consider the run-time curve for baseline + VF + Color in
Fig. 10b. This implementation outperforms all other heuristics for about 70% of the problems, about 1.5x worse compared
to a best performing implementation for 20% of the problems, and 3x worse than the best for 10 percent of the problems.
Similarly, the serial implementation is the slowest ranging from 2x-5x relative to other best performance schemes. From a
modularity standpoint, all parallel heuristics perform comparably to serial method across the input set.

Qualitative comparison: In addition to comparing modularities, we also compared the sets of communities by their com-
position generated by the parallel and serial implementations. The methodology for comparison is as follows. Let S denote
the set of communities generated by the serial implementation; and P denote the set of communities generated by one of our
parallel implementations — we used results from the baseline + VF + Color for this purpose. Treating the serial output as the

34 H. Lu et al./Parallel Computing 47 (2015) 19-37

o
@
s

o
2
L

o
o
L

o
o
o
o

Fraction of Problems
Fraction of Problems

4
04 1 04F -
4
03 ——Serial i 03 ——Serial i
—®— Baseline —®— Baseline
0 —#— Baseline+VF H ot —#— Bassline+VF H

—— Baseline+VF+Color —— Baseline+VF+Color
T T T

0. L
1

o

T T
15 2 25 3 35 4 45 5 55

Performance Relative to the Best Algorithm

15 2 25
Performance Relative to the Best Algorithm

(a) Modularity profile (b) Run-time profile

Fig. 10. Relative profile of performance for three combinations of heuristics: The relative performance of different heuristics and serial implementation for
the test problems with respect to the best algorithm for a given problem. Europe-osm and friendster are not included in the comparison because the serial
Louvain implementation crashes on those inputs. Final modularity scores are shown in the figure on left (part a), and run-times are shown on the right (part
b). Run-time results from 32 thread runs were used to plot curves for the parallel heuristics. It is to be noted that the longer a heuristic’s curve stays near the
Y-axis the more superior its performance relative to the other schemes over a wider range of inputs.

Table 3
Qualitative comparison between the parallel and serial community outputs by their composition.

Input SP (%) SE (%) 0Q (%) Rand index (%)
CNR 83.41 89.71 76.13 99.42
MG1 99.60 99.83 99.43 100.00

Table 4

Comparative results showing the effect of using coloring for only the first phase input vs. for multiple phases of the parallel algorithm. The multi-phase coloring
scheme is same as the baseline + VF + Color scheme. All run-times are reported in seconds for runs corresponding to two threads.

Input First phase coloring Multi-phase coloring

[Min.,Max.] modularity Run-time (#iter) [Min.,Max.] modularity Run-time (#iter)
Channel [0.9344, 0.9352] 103.22 (96) [0.9304, 0.9333] 52.96 (58)
uk-2002 [0.9895, 0.9895] 670.12 (18) [0.9894, 0.9895] 748.15 (18)
Europe-osm [0.9988, 0.9988] 759.94 (306) [0.9988, 0.9989] 118.97 (38)
MG2 [0.9984, 0.9984] 1422.75 (14) [0.9984, 0.9984] 1397.90 (12)

“benchmark” we compared the parallel output against it as follows. Any vertex pair (i,) can be categorized into one of the
four following bins:

o True Positive (TP): if u and v belong to the same community in both partitions;

« False Positive (FP): if u and v belong to the same community only in partition P;

o False Negative (FN): if u and » belong to the same community only in partitions S;

e True Negative (TN): if u and v belong to two different communities in both partitions;

Based on the above measures, more qualitative measures, viz. specificity (SP), sensitivity (SE), overlap quality (0Q) and
Rand Index, can be calculated as follows: SP = 5B SE = lho . 0Q = i, and Rand index = 00—

Note that if both results match identically, all these measures will evaluate to 100%. Also note that this comparison takes
©®(n?) time because there are (3}) pairs. For this reason, we performed this qualitative comparison only for two of the inputs —
CNR and MG1.

Table 3 shows the results of our comparative study. There are two observations that one can make from these results.
First, as can be expected, the partitioning produced by the two methods are different. However, the fact that there is no expli-
cit biasing toward false positives or false negatives implies that the cores of communities captured by both methods agree to
a large extent — the OQ values reflect the degree of this agreement. Secondly, given that these two partitioning yield nearly
identical modularities imply that the vertex pairs consistently grouped by both schemes (i.e., True Positives) contribute to
the bulk of the modularity score.

H. Lu et al./Parallel Computing 47 (2015) 19-37 35

Table 5
Table showing the effect of varying the modularity gain threshold. Two sets of experiments were performed, each running the baseline + VF + Color
implementation, while one using 10~% and another 10~* as the value for the modularity gain threshold used within the colored phases.

Input Threshold = 107 Threshold = 1072

[Min.,Max.] modularity Run-time (#iter) [Min.,Max.] modularity Run-time (#iter)
CNR [0.9125, 0.9125] 5.00 (48) [0.9125,0.9126] 1.77 (24)
CoPaperDBLP [0.8555, 0.8577] 16.17 (27) [0.8570, 0.8580] 10.64 (23)
Channel [0.9423, 0.9485] 816.79 (282) [0.9304, 0.9333] 52.96 (58)
Europe-osm [0.9989, 0.9989] 250.62 (56) [0.9947, 0.9949] 125.35 (17)
MG1 [0.9687, 0.9687] 271.23 (41) [0.9687, 0.9687] 73.80 (18)
Rgg n_2_24 s0 [0.9926, 0.9927] 227.03 (52) [0.9926, 0.9926] 118.21 (35)
uk-2002 [0.9895, 0.9896] 1768.73 (22) [0.9894, 0.9895] 748.15 (18)
Nlpktt240 [0.9426, 0.9476] 3563.41 (147) [0.9319, 0.9347] 880.94 (78)
MG2 [0.9984, 0.9984] 2652.37 (16) [0.9983, 0.9983] 1312.44 (7)

6.3. Effect of multiphase coloring

Coloring can be potentially applied to preprocess the input for any phase of the algorithm. However, the time spent color-
ing is an overhead and a colored graph exposes less parallelism. Therefore, it can be expected that the benefits of coloring,
which is to hasten convergence, is expected to diminish as phases progress and the transformed graph becomes smaller. It is
for this reason we used a scheme in which coloring is applied until either the number of input vertices reduces below a cutoff
(100 K for our experiments) or the net modularity gain between phases diminishes below a relatively higher threshold (1072)
as described in Section 6.1. However, to clearly demonstrate the effect of coloring multiple phases, we devised an alternative
implementation in which coloring is applied only to the first phase input. The goal was to observe differences in reported
modularity and run-times between the two schemes.

Table 4 shows the effect of coloring single phase to multiphase. Inputs picked are those for which at least two phases of
coloring was applicable. For the other inputs, the results are identical between single phase and multiphase coloring
schemes. The results demonstrate the benefit of multi-phase coloring as it produces highly comparable modularities over
multiple experiments while reducing time-to-solution, for all inputs except uk-2002.

6.4. Effect of varying the modularity gain threshold

We also studied the effect of varying the modularity gain threshold used within the coloring phases. Using a larger value
of threshold may prompt phase transitions to happen earlier (and possibly faster convergence) but at the possible expense of
the final output modularity. On the other hand, a smaller value could help improve gains within phases but also could pro-
long phase transitions and eventual completion. Two sets of experiments were performed, using values of 1072 and 10~ for
the threshold and the results are summarized in Table 5. As can be observed, the modularities achieved by both schemes are
highly comparable, while there is a marked run-time advantage if the threshold is higher. This study shows that the run-time
benefit of using a higher threshold outweighs the qualitative gains of using a lower threshold, at least for the threshold val-
ues compared.

From a modularity standpoint, coloring has a more pronounced effect than the threshold used. The charts in Fig. 3a, d and
e illustrate this effect — observe that coloring provides substantial increases in the modularity at the initial phases of the
algorithm before a finer modularity threshold could take effect in the later phases.

7. Related work

For an extensive review on community detection methods and comparisons, please refer to [1,17]. Although the notion of
community detection is not new, the field took a significant shape with the introduction of the modularity measure to quan-
tify the quality of community outputs by Newman and Girvan in 2004 [2]. Newman'’s pioneering works on discovering com-
munity structure from networks also included developing both divisive [2,18] and agglomerative [19] clustering methods.
The divisive method use the edge betweenness centrality index to detect bridges between communities but due to the
underlying computation involved, it is also very slow (O(n?) for sparse inputs), limiting its scalability to sparse networks with
tens of thousands of vertices. The other class of algorithms use an agglomerative clustering approach where at any stage a
greedy merging is performed between any two communities that provide the maximum modularity gain. This technique was
originally introduced by the classical Clauset-Newman-Moore (CNM) algorithm [19] and since been adopted/tailored into

many other methods (e.g., [20]). With an average time complexity of O(nlogzn) this approach have shown better scaling to

networks containing x10°—10° nodes and x10°—10” edges. The Louvain method [4] can also be thought of as a variant of
this agglomerative strategy but with the key differences being that instead of carrying out the merging at a community-to-
community level, the Louvain heuristic allows vertices to independently make decisions from within each community at

36 H. Lu et al./Parallel Computing 47 (2015) 19-37

every time step, and with a flexibility for those decisions to be undone at later iterations. Although input dependent, it has
been shown that the Louvain approach is able to produce communities with better modularity scores than the other
agglomerative strategies. On the other hand, the cluster hierarchies produced by agglomerative techniques tend to be more
meaningful.

In the past few years, there have been several efforts in parallelizing modularity-based community detection. As part of
the DIMACS10 clustering challenge, Riedy et al. presented a highly parallel agglomerative implementation for the CNM algo-
rithm[21,22]. Auer and Bisseling [23] present another way to achieve agglomerative clustering on GPUs using graph coarsen-
ing. In a recent study, Bhowmick and Srinivasan [24] present a shared memory parallel algorithm for the Louvain method.
Their approach is to update the community structures on-the-fly from within each iteration as vertices are evaluated in par-
allel. This creates a need to introduce critical sections in parts which limits the method’s scalability to small synthetic inputs

(x10* vertices). The modularities reported also show variability across the processor spectrum.

There are two parallel efforts to this paper that also describe parallelization of the Louvain algorithm. The work by
Wickramaarachchi et al. [25] targets distributed memory parallelism, with the primary approach being to use a graph parti-
tioner to partition the input graph a priori and subsequently run the sequential algorithm on each part separately (ignoring
the contribution from cross-partition edges) before merging the results through an aggregation process at a master proces-
sor. In another parallel effort, Staudt and Meyerhenke [26] present an alternative approach called PLM that uses label prop-
agation to parallelize the Louvain method. A comparison of our parallel results with their published results reveals that our
parallel implementation baseline + VF + Color delivers higher modularity than PLM for the inputs both tested — viz.
coPapersDBLP, uk-2002, and Soc-LiveJournal. With respect to the run-time performance, a more direct comparison of the
two methods on the same platform is required to enable a fair comparison.

8. Conclusion

In this paper, we introduced effective heuristics for parallelizing an important and widely used community detection
method — the Louvain method. We attempted to address the dual objectives of maximizing concurrency, and retaining
the quality with respect to the serial implementation. To this end, we made two main contributions in this paper. First,
we presented a detailed discussion of the challenges pertaining to parallelization of the Louvain algorithm for community
detection, and described effective heuristics to extract parallelism from the algorithm. Second, we empirically supported
the observations with a set of carefully conducted experiments using 11 real-world networks representing a diverse set
of application domains. Compared to the serial Louvain implementation [10], our parallel implementation is able to produce
community outputs with a higher modularity for many of the inputs tested, in comparable number of iterations, while pro-
viding real speedups of up to 16x using 32 threads. In addition, our parallel implementation was able to scale linearly up to
16 threads for larger inputs.

We believe that the mathematical discussion, heuristics, and experimental evidence provided in this paper will benefit a
wide range of researchers dealing with increasingly larger data sets and continually weaker serial hardware performance.
Our future work include: (i) extending the experiments to larger-scale inputs with tens of billions of edges and targeting
community detection in real-time; (ii) a more thorough comparison of communities produced by the serial and different
parallel implementations by delineating differences by composition; (iii) investigating the value of the vertex following
heuristic in the context of the serial Louvain algorithm and other modularity-based community detection algorithms; and
(iv) extension of our parallel algorithms to account for alternative modularity definitions (e.g., [6]) in order to overcome
the known resolution-limit issues of the standard modularity definition used in this paper.

Acknowledgments

The authors would like to thank Drs. Emilie Hogan and Daniel Chavarria for input. The research was in part supported by
DOE award DE-SC-0006516, NSF award IIS 0916463, and the Center for Adaptive Super Computing Software Multithreaded
Architectures (CASS-MT) at the U.S. Department of Energy Pacific Northwest National Laboratory (PNNL). PNNL is operated
by Battelle Memorial Institute under Contract DE-AC06-76RL01830. A preliminary version of this paper appeared in [11].

References

[1] S. Fortunato, Community detection in graphs, Phys. Rep. 486 (3-5) (2010) 75-174, http://dx.doi.org/10.1016/j.physrep.2009.11.002.

[2] M.E]. Newman, M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E 69 (2) (2004) 026113.

[3] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, D. Wagner, On modularity clustering, IEEE Trans. Knowl. Data Eng. 20 (2) (2008)
172-188.

[4] V. Blondel,].-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech. Theory Exp. (2008) P10008, http://
dx.doi.org/10.1088/1742-5468/2008/10/P10008.

[5] DIMACS10, The 10th DIMACS implementation challenge - graph partitioning and graph clustering. <http://www.cc.gatech.edu/dimacs10/>.

[6] V.A. Traag, P. Van Dooren, Y. Nesterov, Narrow scope for resolution-limit-free community detection, Phys. Rev. E 84 (1) (2011) 016114.

[7] D. Bader,]J. McCloskey, Modularity and graph algorithms, SIAM AN10 Minisymposium on Analyzing Massive Real-World Graphs (2009) 12-16.

[8] J.W. Berry, B. Hendrickson, R.A. LaViolette, C.A. Phillips, Tolerating the community detection resolution limit with edge weighting, Phys. Rev. E 83 (5)
(2011) 056119.

[9] B. Hendrickson, T.G. Kolda, Graph partitioning models for parallel computing, Parallel Comput. 26 (12) (2000) 1519-1534.

http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0010
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0015
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0015
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://www.cc.gatech.edu/dimacs10/
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0030
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0040
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0040
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0045

H. Lu et al./Parallel Computing 47 (2015) 19-37 37

[10] Louvain, findcommunities. <https://sites.google.com/site/findcommunities/>.

[11] H. Lu, M. Halappanavar, A. Kalyanaraman, S. Choudhury, Parallel heuristics for scalable community detection, in: 2014 IEEE International Parallel &
Distributed Processing Symposium Workshops (IPDPSW), IEEE, 2014, pp. 1374-1385.

[12] U. Catalyurek, J. Feo, AH. Gebremedhin, M. Halappanavar, A. Pothen, Graph coloring algorithms for multi-core and massively multithreaded
architectures, Parallel Comput. 38 (11) (2012) 576-594.

[13] V. Batagelj, M. Zaversnik, Generalized cores, arXiv preprint cs/0202039 (2002).

[14] D.A. Bader, H. Meyerhenke, P. Sanders, D. Wagner, Graph partitioning and graph clustering, in: 10th DIMACS Implementation Challenge Workshop,
2012.

[15] T.A. Davis, Y. Hu, The university of Florida sparse matrix collection, ACM Trans. Math. Softw. 38 (1) (2011) 1:1-1:25.

[16] C. Wu, A. Kalyanaraman, W.R. Cannon, pGraph: efficient parallel construction of large-scale protein sequence homology graphs, IEEE Trans. Parallel
Distrib. Syst. 23 (10) (2012) 1923-1933.

[17] M.EJ. Newman, The structure and function of complex networks, SIAM Rev. 45 (2003) 167-256.

[18] M.EJ. Newman, Analysis of weighted networks, Phys. Rev. E 70 (5) (2004) 056131, http://dx.doi.org/10.1103/PhysRevE.70.056131.

[19] A. Clauset, M.EJ. Newman, C. Moore, Finding community structure in very large networks, Phys. Rev. E 70 (6) (2004) 066111, http://dx.doi.org/
10.1103/PhysRevE.70.066111.

[20] K. Wakita, T. Tsurumi, Finding community structure in mega-scale social networks: [extended abstract], in: Proceedings of the 16th International
Conference on World Wide Web, ACM, 2007, pp. 1275-1276.

[21]]. Riedy, D.A. Bader, H. Meyerhenke, Scalable multi-threaded community detection in social networks, in: 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), IEEE, 2012, pp. 1619-1628.

[22] EJ. Riedy, H. Meyerhenke, D. Ediger, D.A. Bader, Parallel community detection for massive graphs, in: Parallel Processing and Applied Mathematics,
Springer, 2012, pp. 286-296.

[23] B.F. Auer, R.H. Bisseling, Graph coarsening and clustering on the GPU, Graph Partitioning Graph Clustering 588 (2012) 223.

[24] S. Bhowmick, S. Srinivasan, A template for parallelizing the Louvain method for modularity maximization, Dynamics On and Of Complex Networks, vol.
2, Springer, 2013, pp. 111-124.

[25] C. Wickramaarachchi, M. Frincu, P. Small, V. Prasanna, Fast parallel algorithm for unfolding of communities in large graphs, in: IEEE High Performance
Extreme Computing Conference (HPEC 14), Waltham, MA, 2014, pp. 1-6.

[26] C. Staudt, H. Meyerhenke, Engineering high-performance community detection heuristics for massive graphs, 2013 42nd International Conference on
Parallel Processing (ICPP), (2013) 180-189 doi:10.1109/ICPP.2013.27.

http://https://sites.google.com/site/findcommunities/
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0055
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0055
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0055
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0060
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0060
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0075
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0080
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0080
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0085
http://dx.doi.org/10.1103/PhysRevE.70.056131
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0100
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0100
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0100
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0105
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0105
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0105
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0110
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0110
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0110
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0115
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0120
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0120
http://refhub.elsevier.com/S0167-8191(15)00047-2/h0120

	Parallel heuristics for scalable community detection
	1 Introduction
	2 Problem statement and notation
	3 The Louvain algorithm
	4 Challenges in parallelization
	4.1 Negative gain scenario
	4.2 Swap and local maxima scenarios

	5 Parallel heuristics
	5.1 The minimum label heuristic
	5.2 Coloring
	5.3 The vertex following heuristic
	5.4 Parallel algorithm
	5.5 Implementation
	5.6 Analysis

	6 Experimental evaluation
	6.1 Experimental setup
	6.2 Performance evaluation
	6.2.1 Scaling and run-time results
	6.2.2 Comparison to serial Louvain
	6.2.3 Performance charts and qualitative evaluation

	6.3 Effect of multiphase coloring
	6.4 Effect of varying the modularity gain threshold

	7 Related work
	8 Conclusion
	Acknowledgments
	References

