
Parallel k-Clique Community Detection
on Large-Scale Networks

Enrico Gregori, Member, IEEE, Luciano Lenzini, Member, IEEE, and Simone Mainardi

Abstract—The analysis of real-world complex networks has been the focus of recent research. Detecting communities helps in

uncovering their structural and functional organization. Valuable insight can be obtained by analyzing the dense, overlapping, and

highly interwoven k-clique communities. However, their detection is challenging due to extensive memory requirements and execution

time. In this paper, we present a novel, parallel k-clique community detection method, based on an innovative technique which enables

connected components of a network to be obtained from those of its subnetworks. The novel method has an unbounded, user-

configurable, and input-independent maximum degree of parallelism, and hence is able to make full use of computational resources.

Theoretical tight upper bounds on its worst case time and space complexities are given as well. Experiments on real-world networks

such as the Internet and the World Wide Web confirmed the almost optimal use of parallelism (i.e., a linear speedup). Comparisons

with other state-of-the-art k-clique community detection methods show dramatic reductions in execution time and memory footprint. An

open-source implementation of the method is also made publicly available.

Index Terms—k-clique communities, parallel community detection method

Ç

1 INTRODUCTION

COMPLEX networks—in the sense in which they are used
in this paper—are essentially graphs modeling real-

world complex systems. Detecting communities from these
networks may be decisive in the understanding of their
structural and functional properties [1], [2]. Examples
include, but are not limited to, the Internet [3], [4] and the
World Wide Web [5] as well as mobile phone [6],
collaboration [7], citation [8], and biological [7] networks.

Specifically, the Internet topology at the Autonomous
System (AS)1 level has several zones which are extremely
rich of connections. A study of such well interconnected
zones can be helpful in the understanding of the complex
dynamics at play in the business realm of the Internet.
These dynamics can be to some extent inferred from the
connections between ASes since they are the natural
consequences of meticulous market strategies pursued by
a myriad of interplaying forces. In one of our first analyses,
we studied the cliques of ASes as we believe they represent

the most tight concept of community—all possible pairs of
ASes in a clique are interacting each other. In addition, it has
been shown in [9] that the main properties of networks may
be viewed as consequences of their underlying clique
structure. We found that cliques of ASes were large in
number, big-sized and highly overlapped. Leveraging on
this result, we decided to adopt the k-clique community [2]
definition to investigate the structure and the properties of
the Internet at the AS level. The rationale behind this choice
is that k-clique communities are unions of cliques well-
interwoven and reachable each other through paths invol-
ving other cliques only. To the best of our knowledge, that
of k-clique community is the only definition which is based
on the concept of clique and at the same time:

. Is formally defined, i.e., is based on topological
properties and uses neither heuristics nor function
optimizations;

. Is totally deterministic, i.e., has no stochastic elements
embedded and communities are not execution-
dependent;

. Allows overlap, i.e., communities can be partially or
also almost completely superimposed;

. Is local, i.e., each community exists independently of
the other communities.

We used the k-clique community definition to analyze
the Internet from a new perspective [4]. Nevertheless, this
definition was successfully applied also in other areas. For
example, in [10] Hui and Crowcroft identify k-clique
communities among the participants of Infocom06 and the
students in the MIT Media Laboratory and exploit this
information to design efficient forwarding algorithms for
mobile networks. Similarly, in [11] Hui et al. propose a
distributed k-clique community detection method to be
used for social-based message forwarding. k-clique commu-
nities also find application in social sciences. For example,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013 1651

. E. Gregori is with the Institute of Informatics and Telematics (IIT), Italian
National Research Council (CNR), via Moruzzi 1, Pisa 56124, Italy.
E-mail: enrico.gregori@iit.cnr.it.

. L. Lenzini is with the Department of Information Engineering (IET),
University of Pisa, via Diotisalvi 2, Pisa 56122, Italy.
E-mail: luciano.lenzini@iet.unipi.it.

. S. Mainardi is with the Institute of Informatics and Telematics (IIT),
Italian National Research Council (CNR), via Moruzzi 1, Pisa 56124, and
the Department of Information Engineering (IET), University of Pisa, via
Diotisalvi 2, Pisa 56122, Italy. E-mail: simone.mainardi@iet.unipi.it.

Manuscript received 30 Mar. 2012; revised 29 June 2012; accepted 12 July
2012; published online 25 July 2012.
Recommended for acceptance by J. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-03-0333.
Digital Object Identifier no. 10.1109/TPDS.2012.229.

1. At the AS level, the Internet topology consists of Internet service
providers and Internet users (each one corresponding to an AS),
interconnected through Border Gateway Protocol sessions, with the aim
of exchanging traffic.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

in [12] they are used to capture the relationships character-
izing the collaboration between scientists and the calls
between mobile phone users.

The first method for extracting k-clique communities is
the Clique Percolation Method (CPM) [13], which is
prohibitively memory and time expensive. To the best of
our knowledge, this had prevented k-clique communities
from being extracted from large-scale networks such as
those considered here. In this paper, we address CPM
scalability issues and present the novel CPM On Steroids
(COS). COS is the refinement of a working proof-of-
concept, which is presented first to clarify the problem of
parallel k-clique community detection. COS exploits paral-
lel processing to reduce execution time and has a low
memory footprint. Its maximum degree of parallelism,
unbounded, user-configurable and input-independent, en-
ables hardware resources to be used efficiently. In addition,
we provide analytical tight upper bounds on its execution
time and space requirements, which are given as function
of: 1) the number of maximal cliques in the network; 2) the
size of the maximal cliques; and 3) the number of
processors available. These bounds prove that COS has a
linear space dependence on the number of maximal cliques
and a worst case execution time inversely proportional to
the number of processors. By means of the aforesaid
bounds we can answer questions such as “Is memory
available on this hardware enough to extract k-clique
communities from this network?” or “If the number of
processors installed on a particular machine is doubled,
would COS halve its execution time?”. Therefore, we are
providing a framework with which it is possible not only to
extract k-clique communities efficiently, but also to
estimate in advance the required amount of computing
resources. These theoretical bounds are validated in a
series of experiments. We experimentally measured a linear
speedup: COS execution time halves when the number of
processors it uses is doubled. Dramatic reductions in
execution time and memory footprint are brought to light
by comparisons with other state-of-the-art k-clique com-
munity detection methods. The implementation of COS is
open-source and freely available [14].

Another major contribution of this paper is the innova-
tive CONNECted componenTs MErging (CONNECT_ME)
technique. By taking advantage of CONNECT_ME, it is
possible to split a network into an arbitrary number of
subnetworks with arbitrary topologies, and still be able to
obtain its connected components. This novel low-complex-
ity technique plays a key role in COS, by combining
together partial results from all processors.

The remainder of this paper is structured as follows:
The next section contains a brief overview of the efforts
toward efficient community detection, with special em-
phasis on k-clique communities. In Section 3, we formulate
the problem of k-clique community detection. We discuss
CPM in Section 4, highlighting its scalability issues. In
Section 5, we present the novel CONNECT_ME technique.
A working proof-of-concept parallel k-clique community
method and its worst case complexities are presented in
Section 6. In the same section, we propose COS and two
enhancements at the basis of its functioning. In Section 7,
we examine COS performances via experiments. The paper
concludes with a short summary in Section 8.

2 RELATED WORK

Traditionally, the relevance of the discovered network
communities has been traded off with the complexity
required for their extraction. For example, k-core commu-
nities [15] can be obtained with low complexity [16]
but they are loosely connected and nonoverlapping.
Conversely, k-clique communities [2] are fine-grained,
overlapping, and tightly connected but their extraction is
extremely demanding in terms of computational resources
[13]. Very little work has been done to avoid trading off
the quality of the extracted communities for complexity.
Parallelism has been proposed in [17] and [18] as a means
to alleviate computational costs. In [17] Zhang et al.
heuristically evaluate the propinquity, i.e., the probability
that a pair of nodes is involved in a coherent community.
They update the original network by adding (removing)
edges if the propinquity is higher (lower) than a given
threshold. A parallel method is used to update propin-
quity incrementally, to reflect network changes. Through
this, they were able to extract meaningful communities
from the huge Wikipedia linkage network. Rather than
introducing a new definition of community, in [18] Sadi
et al. propose a method to reduce the size of the networks.
In parallel, they use a heuristic to locate quasicliques and
assign them as nodes in a reduced graph to be used with
standard community detection methods. These reduced
graphs have a size which is approximately one half of the
original size. Alternatively than exploiting parallelism,
computational costs can be mitigated by designing
efficient heuristics and greedy local function optimiza-
tions. To the best of our knowledge, methods proposed in
[19] and [20] are two of the fastest (and best-performing
according to [21]) optimization-based community detection
methods. In Appendix B in the Supplemental Material,
which can be found on the Computer Society Digital
Library at http://doi.eeecomputersociety.org/10.1109/
TPDS.2012.229, we analyse their performance on real-
world networks.

The first k-clique community detection method is the
CPM [13]. It first lists all the maximal cliques from the
input network and then analyses the overlap between each
possible pair of them. Although the number of maximal
cliques in a network could be exponential with the number
of nodes [22], none of the real-world networks we studied
has a number of maximal cliques greater than few
millions—this means that their actual number is from tens
to tens of thousands orders of magnitude smaller that their
maximum theoretical number. As a consequence, we were
able to obtain the whole list of maximal cliques from the
networks considered in this paper in at most a couple of
minutes with a serial algorithm [23]. Therefore, we do not
add anything new to this point and we refer the interested
reader to [24, Section 5] for a review of such algorithms (or
to [25], [26], and [27] for parallel algorithms). The real
challenge is finding an efficient way to store and analyse
the overlap between maximal cliques. In Section 4,
we show that this has a complexity proportional to the
square of the number of maximal cliques.

In [28] the first effort toward efficient k-clique community
detection was made. The authors proposed the Sequential

1652 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013

Clique Percolation (SCP) method, which enables k-clique
communities to be detected at multiple weight thresholds in
a single run. Although SCP can detect communities on
weighted networks, it cannot produce k-clique communities
for each possible k in a single execution. Moreover, since it
enumerates cliques rather than maximal cliques, it only
works well on sparse networks. In fact, as also highlighted
by the authors, given that a clique with size h contains h

k

� �
�

hk=k! smaller cliques with size k, the huge number of cliques
it generates on networks with fairly large maximal
cliques—as those considered in this paper—prevents com-
munities to be obtained in a reasonable amount of time.

In [29], we drew our first ideas on how to enhance CPM
and proposed a simple parallel k-clique community
detection method. Although this method is parallel and
has a reduced memory footprint with reference to CPM, it
does have several drawbacks. For example, its maximum
degree of parallelism is: 1) upper bounded by the size of
the largest maximal cliques; 2) strongly affected by
maximal cliques distribution; and 3) a decreasing function
of the execution time.

3 PROBLEM FORMULATION

Let G ¼ ðV ;EÞ be an undirected, unweighted graph with-
out isolated nodes (vertices) and self-edges. V is its vertex
set and E � V � V its edge set. A k-clique in G is a subset of
the vertex set c � V such that there is an edge ði; jÞ 2 E
between any two nodes i; j 2 c and jcj ¼ k. A clique is a k-
clique for some k. Two k-cliques are adjacent if they have
ðk� 1Þ nodes in common. Based on this notion of adjacency,
we can define a k-clique community as follows:

Definition 1. A k-clique community is the union of all the k-
cliques that can be reached by each other through a series of
adjacent k-cliques.

Fig. 1 shows a graph with its k-clique communities at
k ¼ 3 and k ¼ 4. At k ¼ 2 there exists only one community,
corresponding to the whole graph.

Now observe that each h-clique always contains a
number h

k

� �
of adjacent k-cliques for each k � h. For this

reason an h-clique is (in a) k-clique community for each
k � h. For example the clique f1; 2; 3; 4g of Fig. 1 contains

4
3

� �
¼ 4 adjacent 3-cliques: f1; 2; 3g, f1; 2; 4g, f1; 3; 4g, and

f2; 3; 4g and therefore is in a 3-clique community. Similarly,
it has 4

2

� �
¼ 6 adjacent 2-cliques and hence is also in a 2-

clique community. Furthermore, if the h-clique is not
contained in any other larger clique, i.e., it is a maximal h-
clique, it can belong only to k-clique communities with
k � h. This is because it cannot share a number of nodes
greater than or equal to its size with any other clique.
Otherwise it should be contained in a larger clique and it
could therefore not be a maximal clique. For instance clique
f6; 9; 10g of Fig. 1, which is maximal since there not exists
another larger clique containing it, is in a 3-clique
community as well as in a 2-clique community, but it
cannot belong to any community with size greater than or
equal to 4. Instead, the clique f3; 4; 5g, which is not
maximal, belongs also to a 4-clique community. These
observations allow us to formulate an equivalent definition
of k-clique community.

Definition 2. A k-clique community is the union of all the
maximal h-cliques, k � h, that can be reached by each other
through a series of adjacent k-cliques.

Accordingly, the problem of k-clique community detec-
tion on networks i) is to find all the possible unions of
maximal cliques satisfying Definition 2; equivalently, ii) it is
to find all the possible unions of cliques satisfying
Definition 1. In the remainder of this paper we concentrate
on formulation i).

From formulation i), it follows that the lower the k, the
higher the number Lk of maximal h-cliques, k � h, among
which to search for k-clique communities. If lk denotes the
number of maximal k-cliques in G, we can express this
number as Lk ¼

Pkmax
h¼k lh, where kmax is the maximal cliques

maximum size. Lk is maximum for k ¼ 2. In fact, L2 is equal
to the number l ¼

P
k lk of maximal cliques in G.

4 CPM AND RELATED ISSUES

In this section, we discuss the CPM, pointing out its
scalability issues. We partition CPM into three subsequent
phases for the sake of simplifying the presentation, namely:
maximal cliques listing; clique-clique overlap matrix con-
struction; k-clique community extraction. However, as
already discussed in Section 2, maximal cliques listing does
not represent an issue when dealing with real-world
networks, at least with the ones we considered. For that
reason, in the remainder of this section we concentrate only
on the latter two phases.

4.1 Clique-Clique Overlap Matrix Construction

Given the whole list of maximal cliques, CPM builds a
clique-clique overlap matrix as described in [30]. Each
maximal clique is associated with a row (column) and the
elements of the matrix represent the number of shared
nodes between the corresponding maximal cliques. In the
remainder of this paper, we assume maximal clique ci to
be always associated with row (column) i. Fig. 2a shows the
list of the l ¼ 6 maximal cliques extracted from the graph in
Fig. 1, whereas Fig. 2b shows the resulting clique-clique
overlap matrix. The clique-clique overlap matrix is sym-
metric and diagonal elements represent the size of the
maximal cliques.

GREGORI ET AL.: PARALLEL k-CLIQUE COMMUNITY DETECTION ON LARGE-SCALE NETWORKS 1653

Fig. 1. A graph with its k-clique communities for k ¼ 4 and k ¼ 3.

It is clear that with a standard storage format, the space

complexity of the matrix scales quadratically with l; this is

in spite of simple optimizations that take into account, for

example, the symmetry of the matrix. More efficient storage

formats have been proposed for sparse matrices [31],

however experimental results have shown that clique-

clique overlap matrices can be very dense, i.e., have almost

all nonzero elements. This quadratic dependence on l

represents the first scalability issue that makes CPM

inapplicable on graphs that model real-world complex

systems. The second issue concerns the worst case time

complexity for computing the clique-clique overlap matrix

which is in �ðl2Þ since overlap has to be computed for each

of the l
2

� �
possible pairs of maximal cliques.

4.2 k-Clique Community Extraction

CPM extracts k-clique communities starting from the clique-

clique overlap matrix as follows: It 1) puts at 1 every on-

diagonal element greater than or equal to k and every off-

diagonal element greater than or equal to ðk� 1Þ, and then,

it 2) zeroes each other element, obtaining a binary matrix.

Finally, it extract communities by carrying out a component

analysis of this binary matrix.
Rather than accomplishing such analysis, we can relate

k-clique communities to the connected components of a

graph Gk, which we call henceforth the clique-clique graph.

More precisely, if Gk ¼ ðVk; EkÞ is a graph whose adjacency

matrix is obtained according to 1 and 2, and if no node

whose row (column) has all zero elements is in Vk, then k-

clique communities are the unions of maximal cliques

associated with nodes in the connected components of Gk.

Indeed, it is easy to check that 1 and 2 assure that an edge

exists between two nodes of Gk iff the corresponding

maximal cliques have size greater than or equal to k and

share at least ðk� 1Þ nodes. Fig. 3b shows the binary matrix

obtained from the clique-clique overlap matrix of Fig. 2b for

k ¼ 3. The row with index 5 contains only zeros since it

relates to c5 ¼ f1; 6g, which cannot share ðk� 1Þ ¼ 2 nodes

with any other maximal clique. The resulting clique-clique

graph G3 ¼ ðV3; E3Þ is shown in Fig. 3b. It has jV3j ¼ L3 ¼ 5

nodes. Edges represent the condition of having 2 nodes in

common. The two connected components of G3, highlighted

with different colors, contain maximal cliques correspond-

ing to the two 3-clique communities of G.

5 CONNECTED COMPONENTS MERGING

In Section 4.2, we showed a relation between k-clique
communities and the connected components of a graph.
Here, we propose the innovative CONNECted componenTs
MErging (CONNECT_ME) technique, which enables the
connected components of the union of two graphs to be
obtained without knowing their topologies. CONNECT_ME
will be used in the next sections when combining parallel
processors’ partial results. Since CONNECT_ME has to
manipulate disjoint sets to efficiently maintain the con-
nected components, in this section, we also briefly discuss
the set union problem and a well-known algorithm for
its solution.

5.1 Connected Components as a Solution to the Set
Union Problem

Connected Components, which are disjoint sets of nodes,
can be obtained using any algorithm for solving the set
union problem [32]. This problem consists in maintaining a
collection F of disjoint sets under an intermixed sequence of
findF and unionF operations. findF ðpÞ returns the canoni-
cal element of the set containing element p—the canonical
element is an arbitrary but unique element identified within
each set, which is used to represent the set. unionF ðP;QÞ
combines the sets whose canonical elements are P and Q
into a single set, and make P the canonical element of the
new set.

If we initialize F with jV j singleton sets fvg such that
v 2 V , we can obtain the connected components of a graph
in F after MERGE SETSðF; p; qÞ has been called on each
edge ðp; qÞ 2 E [33]. MERGE SETS, which is presented in
Method 1, retrieves the canonical elements P and Q of the
sets containing p and q via two findF operations. If P 6¼ Q,
then p and q are in two different sets which are merged
with a unionF .

1654 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013

Fig. 2. (a) The l ¼ 6 maximal cliques c0; � � � ; c5 extracted from the graph
in Fig. 1. (b) The resulting clique-clique overlap matrix. Maximal clique ci
is associated with row (column) i.

Fig. 3. (a) The binary matrix obtained from the clique-clique overlap
matrix of Fig. 2b for k ¼ 3. (b) The resulting clique-clique graph G3.

To the best of our knowledge, the fastest algorithm for
the solution of the set union problem is presented and
analyzed in [34]. This algorithm represents each set in F as
a rooted tree2 whose nodes are the elements in the set and
whose root is the canonical element. Each node has an
outgoing link to its father-node—itself if the root—in the
tree. findF ðpÞ returns the root of the tree containing p and
unionF ðP;QÞ combines the trees whose roots are P and Q,
by making P the new root of Q. If two simple optimization
rules are applied, this algorithm reaches an Oðf�ðf; gÞÞ
worst case time complexity for f operations on g initially
singleton sets, assuming f ¼ �ðgÞ. � is a functional inverse
of Ackermann’s function. This function grows very slowly
and for all practical purposes is a constant no larger than
four [32]. In Appendix D.1 in the Supplemental Material,
which is available online, we give an example of the
dynamic evolution of a collection F of disjoint sets.

5.2 The CONNECT_ME Technique

We now present CONNECT_ME which, starting from the
connected components of two graphs H1 ¼ ðV1; E1Þ and
H2 ¼ ðV2; E2Þ, V2 � V1, enables the connected components of
their union H1 [H2 to be obtained. If F1 and F2 contain
disjoint sets equivalent to the connected components of H1

and H2, respectively, CONNECT MEðF1; F2Þ, produces
the connected components of the union of the two graphs
without any information neither on the edges E1 nor on the
edges E2. CONNECT ME is described in Method 2. For
each element u 2 V2, the canonical element U of the set
containing u is found in F2 and both U and u are merged in
F1. The basic idea behind this method is: “given that u and
U are in the same connected component of H2, they must
also be in the same connected component of H1 [H2”. The
idea is formalized in the following theorem.

Theorem 1. If F1 and F2 are collections of sets corresponding to
the connected components of graphs H1 ¼ ðV1; E1Þ and
H2 ¼ ðV2; E2Þ, V2 � V1, then CONNECT MEðF1; F2Þ en-
sures F1 contains sets corresponding to the connected
components of H1 [H2.

Proof. See Appendix C.1 in the Supplemental Material,
which is available online. tu

A general approach, which uses CONNECT_ME to

merge the connected components of an arbitrary number

of subgraphs, is developed in the next section.

6 DETECTING k-CLIQUE COMMUNITIES IN

PARALLEL

In this section, we first present a k-clique community

detection method which serves as a working proof-of-

concept for addressing the following issues:

1. the ability to reduce the execution time by exploiting
parallel architectures;

2. the need to efficiently distribute the load between
the processors;

3. the ability to drastically reduce memory requirements
by avoiding the use of clique-clique overlap matrices;

4. the need to analytically determine the set of
resources to be provisioned.

Then, we describe the COS which includes some

additional mechanisms that further reduce execution time.

6.1 A Working Proof-of-Concept

The proof-of-concept CPM On Steroids (COSpoc) is

described in Method 3. COSpoc is designed for a p-

processor shared-memory architecture. The method takes

as input c0; . . . ; cl�1, where ci contains the list of nodes in the

ith maximal clique in G and ci � cj iff ci has a size greater

than or equal to the size of cj.

Immediately after the beginning, in line 2, p processors

start their execution in parallel. At first, each processor q,

q 2 ½0; p� 1	, initializes ðkmax � 1Þ collections Fq;kmax ; . . . ;

GREGORI ET AL.: PARALLEL k-CLIQUE COMMUNITY DETECTION ON LARGE-SCALE NETWORKS 1655

2. In the remainder of this section, we use rooted trees to graphically
represent disjoint sets.

Fq;3; Fq;2 on which it will be the only one to operate on.
Collection Fq;k has size Lk. Processor q uses Fq;k for
extracting the connected components of a subgraph Gq;k ¼
ðVk; Eq;kÞ of the clique-clique graph Gk. This subgraph has
the same vertex set Vk of Gk and an edge set Eq;k � Ek which
is determined by the condition in line 5. Formally,
Eq;k ¼ fði; jÞ 2 Ek : q ¼ imodp ^ j > ig. Processor q obtains
the connected components of each subgraph Gq;k as follows:
First, it executes OVERLAP ðci; cjÞ3 to obtain the number
ovi;j of nodes in common between maximal cliques ci; cj.
Then, since ci and cj belong to the same k-clique community
for each k 2 ½2; ovi;j þ 1	, it merges disjoint sets containing i
and j in Fq;2; . . . ; Fq;ovi;jþ1.

When each processor p has terminated its parallel
execution, connected components of the subgraphs Gq;k

are merged together in the loop starting at line 10. For each
k, F0;k is updated with the connected components of
Gq;k, q 2 ½1; p� 1	, through CONNECT MEðF0;k; Fq;kÞ.
Therefore, after the ith iteration of the loop, according to
Theorem 1, F0;k contains the connected components of a
graph

S
q2½0;i	Gq;k. Now, by observing that the remainder of

a division by p is always a number between 0 and p� 1,
each possible pair of maximal cliques is processed since we
have p processors with indices q 2 ½0; p� 1	. Hence,S
q2½0;p�1	Gq;k ¼ Gk and F0;k contains the connected compo-

nents of Gk after the loop starting at line 10 has completed.
These connected components are equivalent to the k-clique
communities of G. COSpoc worst case time complexity is
given in the following theorem—the assumptions, reason-
able, and well-supported by the experiments, are discussed
in Appendix C.2 in the Supplemental Material, which is
available online.

Theorem 2. If operations on collections of disjoint sets are inOð1Þ,
perfect load balancing is achieved and overlap is calculated
through binary searches, then COSpocðc0; . . . ; cl�1Þworst case
time complexity is in:

O
l2

p
kmaxlog2kmax

� �
: ð1Þ

Proof. See Appendix C.2 in the Supplemental Material,
which is available online. tu

Although COSpoc complexity is inversely proportional
to the number of processors, the bound derived does not
allow to analytically determine the speedup, i.e., the ratio
between the execution time of the sequential method and
the execution time of the parallel method. However, as we
discuss in Section 7, we experimentally measured a linear
speedup of the method, which is as good as we can possibly
hope for. Worst case space complexity is given in the
following theorem.

Theorem 3. COSpocðc0; . . . ; cl�1Þ worst case space complexity
is in:

Oðp � l � kmaxÞ:

Proof. See Appendix C.2 in the Supplemental Material,
which is available online. tu

This complexity depends linearly on l, while in CPM this
dependence is quadratic. The substantial reduction in the
space required enabled COS to extract k-clique commu-
nities from real-world networks, such as those shown in
Section 7. The advantages arising from the linear depen-
dence of the space on l far outweigh the disadvantages
arising from the linear dependence on p. In fact, l2
 p in
any realistic case. The lack of dependence of CPM on p is
due to the fact that it is not a parallel algorithm.

6.2 CPM on Steroids

In this section, we introduce COS. Compared to the proof-
of-concept COSpoc, in COS we drastically reduce the
number of operations on collections of disjoint sets, by
ensuring that MERGE_SETS is called at most one time for
each possible pair of maximal cliques. To achieve this
improvement we: 1) use a sliding window over the clique-
clique overlap matrix, and 2) exploit the fact that k-clique
communities are nested [35]—nested in the sense that
each k-clique community is contained in one and only one
h-clique community for each h < k.

The enhanced method COS, designed for a p-processors
shared-memory architecture, uses a sliding window to
efficiently process the clique-clique overlap matrix in
chunks of configurable size. Indeed, when multiple flows
of execution are available, the clique-clique overlap matrix
can be used to facilitate cooperation between threads.
However, we reduced the standard Oðl2Þ worst case space
complexity to OðWÞ, with W constant and user-configur-
able. We achieved this reduction with a negligible worst
case time complexity since the most expensive operation
consists in solving a second-order equation. For a detailed
description of the sliding window see Appendix A.1 in the
Supplemental Material, which is available online.

For each chunk, parallel operations are divided into two
blocks. Two synchronization points are introduced at the
end of each block. In the first parallel block the
OVERLAP ðci; cjÞ is computed for each pair of maximal
cliques associated with rows of the matrix in the current
chunk. When the overlap is computed, it is written to the
buffer. Write operations are performed simultaneously
since no two processors ever write to the same location. In
the second parallel block the overlap is analyzed to extract
the connected components of the clique-clique graphs Gk,
according to a strictly decreasing order of k, i.e., from kmax
down to 2. More precisely, for each chunk, processors keep
updated the connected components of subgraphs of Gkmax .
Then, they exploit the information already encoded in
these connected components to keep updated the con-
nected components of a subgraph Gkmax�1 and so on until
G2. This information can be exploited in accordance to the
theorem in [35]. The theorem guarantees that each k-clique
community is contained in one and only one h-clique
community, h 2 ½2; k	, implying Gk � Gk�1 for each k.

A comprehensive description of COS, including its
complexity analysis, is omitted here due to space limits
but is given in Appendix A in the Supplemental Material,
which is available online. We demonstrate that COS has a

1656 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013

3. In practice, if ci and ci are represented as ordered vectors, this function
can be efficiently implemented by performing a binary search on the larger
vector for each element of the smaller one.

worst case space complexity in Oð l � ðpþ kmaxÞ þW Þ. In
addition, we prove that COS can achieve the same worst
case time complexity of COSpoc. Nevertheless, by compar-
ing COSpoc and COS in Appendix B.2 in the Supplemental
Material, which is available online, we highlighted great
reductions in execution time. This is mainly due to the
strongly reduced number of operations on collections of
disjoint sets.

7 EXPERIMENTAL RESULTS

We implemented COSpoc and COS in Appendix C, which
is available online, in a freely and publicly available
software [14]. Maximal Cliques were listed using the
open-source implementation of the (serial) Bron-Kerbosh
(BK) algorithm available in the igraph library [36]. For
parallel programming we used the standard POSIX
Threads.4 We used a CPM implementation available in
CFinder5 [2] and a python SCP implementation retrieved
from http://www.lce.hut.fi/~mtkivela/kclique.html. The
machine on which we ran the experiments has four Intel
Xeon processors E7-48506 and 128 GB RAM. It runs a GNU/
Linux Operating System (OS) with a kernel Linux 3.0.6.

Graphs used in the experiments, together with the type
of complex system they model, their references and their
number of nodes jV j and edges jEj are reported in Table 1.
LINX graph was obtained according to [37] whereas the
others were retrieved from [38] and [47]. All the graphs
were considered undirected, unweighted, without isolated
nodes and without self- and multiple-edges. Table 2 reports
the total number of maximal cliques l in each graph, their
maximum size kmax, their average size � ¼ l�1

P
k k � lk, their

variance �2 ¼ l�1
P

k lkðk� �Þ
2 and the number l2 of

maximal cliques with size 2. In addition, a fine estimation

~s of the size of the clique-clique overlap matrix CPM has to
build is reported. This estimation was computed as the
square of the number of maximal cliques with size strictly
greater than 2, assuming that a byte is used for each
element. With this estimation it is possible to know, a priori,
which graphs can be processed by CPM on our 128 GB
memory machine. The accuracy of this estimation was
experimentally validated by monitoring CPM runtime
memory footprint in Appendix B in the Supplemental
Material, which is available online. In the experiment we
compare CPM runtime memory footprint with that of COS.
We show that COS maximum memory footprint is, at most,
approximately equal to the size of the sliding window
buffer. Therefore, the upper bound on its worst case space
complexity can actually be considered W in practice. In the
aforementioned Appendix B, we also compare COS and
COSpoc execution time, with the aim of demonstrating that
the techniques introduced in COS dramatically improve the
overall performance. In fact, COS is from one to two orders
of magnitude faster than COSpoc. In addition, still in
Appendix B, which is available in the online supplemental
material, we performed an experiment to determine how
changes in the sliding window buffer size W impact on the
execution time. We observed that for buffer sizes greater
than 8 GB the execution time is minimized and its almost
constant values suggest a low sensitivity of COS to changes
in the sliding window buffer size in this range. We have
chosen the size W ¼ 32 GB as the default size for
subsequent experiments.

In Fig. 4, we show the execution time of COS versus an
exponentially increasing number of threads. Plotted values
do not include the time to list maximal cliques with the BK
algorithm. LINX, NDWWW, and AstroPh were chosen as
inputs since their execution times always differ for at least
one order of magnitude, regardless of the number of
threads. An ideal case reference (dashed line), where
doubling the number of threads halves the execution time,
is drawn for each input. It is worth noting how COS
reaches—or is very close to—the ideal case, at least up to
32 threads. The distance from the ideal case that is
experienced for 64 and 80 threads is due to the fact that
our hardware’s physical degree of parallelism is 40. Hence,
we can conclude that COS speedup on our machine is linear
with the number of physical cores available.

GREGORI ET AL.: PARALLEL k-CLIQUE COMMUNITY DETECTION ON LARGE-SCALE NETWORKS 1657

4. POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995).
5. Experiments were carried out with version 2.0.5, 64 bit.
6. 24M Cache, 2.00 GHz, 10 cores, 20 threads, HT capable.

TABLE 1
Graphs Used in the Experiments

TABLE 2
Features of the Graphs Used in the Experiments

In Fig. 5, we show the time COS took to execute on
graphs for which it was not possible to run CPM on. In
particular, it was not possible to execute CPM on SFwww,
Amazon, and HepTh due to their clique-clique overlap
matrix size, exceeding the amount of memory available on
our hardware. Conversely, despite matrix sizes of LINX,
AstroPh, and EmlEnron would allow CPM to run, we (on
LINX and AstroPh after two days) or the OS (on EmlEnron
after 12 hours) stopped the execution. Values plotted
include the time taken by serially extracting maximal
cliques. Even with the inclusion of this time, COS continues
to achieve a very good speedup. Hence—as also stated in
Section 2—maximal cliques listing time is negligible if
compared with the total time.

In Fig. 6, we compare COS, CPM, and SCP execution
times. On our hardware, we were able to execute success-
fully CPM on NDwww, CAquery, Yeasy, NetSci, Erdos,
Geom, and CondMat. We were able to run also SCP on all
these graphs except NDwww. Since SCP is designed to
extract k-clique communities for a given k, we obtained its
execution time by summing the times it takes to extract k-
clique communities for each possible value of k. Execution
times of both CPM and SCP are given in the bottom right
corner of Fig. 6. In the other plots of the same figure, we
show the values of two execution time ratios, namely:
CPM/COS (in red), and SCP/COS (in blue). For each
number of threads in the x-axis, we computed the ratio
CPM/COS (SCP/COS) by dividing the execution time of
CPM (SCP) with that of COS executed with the correspond-
ing number of threads. These ratios, which are always
greater than 1, reveal that COS is always faster than both
CPM and SCP. In particular, it is always more than 10 times
faster than SCP on any input, even when run with 1 thread.
By increasing the number of threads, we see that it becomes
100 to more than 1,000 times faster. Best performance is
obtained for CondMat where COS terminate its 80-threaded
execution in one 10,000th the time it takes SCP. Very good
execution time reductions are experienced also with
reference to CPM. In this case, shortening in the execution
time starts from a few units for single threaded executions,
and reach 10-20 when the number of threads is increased.
Although these reductions are important in both cases,
absolute execution times are too small (only NDwww takes

more than 10 seconds) to enable the identification of a clear
link between number of threads and COS execution time
variations. Finally, with this experiment we can say that
SCP, although designed to overcome its drawbacks, it is
actually slower than CPM and differences in their execution
time always exceed the order of magnitude. In Appendix B
in the Supplemental Material, which is available online, we
also compare COS with other state-of-the art methods,
detecting communities different from the k-clique commu-
nities. For the comparison we carefully selected 6 of the
best-performing methods available in the literature. We
observed that COS performance is as good as the fastest
methods on some graphs, even when it is not executed in
parallel. Performance degradations are observed on graphs
with an extremely high number of maximal cliques with
large sizes.

8 DISCUSSION AND CONCLUSIONS

In this paper, we addressed the problem of extracting k-
clique communities in parallel from real-world networks
such as the Internet and the World Wide Web. We

1658 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013

Fig. 5. Execution time of COS versus number of threads.

Fig. 6. CPM/COS (SCP/COS) execution time ratio and execution times
of CPM and SCP.

Fig. 4. Execution time of COS versus number of threads.

theoretically analyzed the existing CPM, highlighting its

scalability issues. The identification of these scalability

issues enabled us to design and develop COS. COS

efficiently extracts k-clique communities, with low memory

requirements and has an unbounded, user-configurable

degree of parallelism. Analytical tight upper bounds on

COS execution time and space requirements, providing

strong evidence about its efficiency, are presented as well. A

key role in COS is played by the innovative CONNECted

ComponenTs MErging (CONNECT_ME) technique. With

this technique we can obtain the connected components of a

network, even if it has previously been split into and

arbitrary number of subnetworks that could be processed in

parallel. Through extensive experiments run on real-world

networks, we showed that COS has a linear speedup and

constantly outperform all the other state-of-the-art k-clique

community detection methods in terms of both space

requirements and execution time. In our opinion, it should

be the method of choice for k-clique communities extraction

aiming at very high performance and low resource

requirements. As a future work we plan to extend the

design of COS for a message-passing architecture and to

investigate its performance on mega-scale networks such as

Wikipedia, Facebook, and Twitter.

REFERENCES

[1] S. Fortunato, “Community Detection in Graphs,” Physics Reports,
vol. 486, nos. 3-5, pp. 75-174, 2010.

[2] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering the
Overlapping Community Structure of Complex Networks in
Nature and Society,” Nature, vol. 435, no. 7043, pp. 814-818,
2005.

[3] E. Gregori, L. Lenzini, and C. Orsini, “k-Dense Communities in
the Internet AS-Level Topology,” Proc. Third Int’l Conf. Comm.
Systems and Networks (COMSNETS), 2010.

[4] E. Gregori, L. Lenzini, and C. Orsini, “K-Clique Communities in
the Internet AS-Level Topology Graph,” Proc. 31st Int’l Conf.
Distributed Computing Systems Workshops (ICDCSW ’11), 2011.

[5] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins,
“Trawling the Web for Emerging Cyber-Communities,” Computer
Networks, vol. 31, nos. 11-16, pp. 1481-1493, 1999.

[6] J.P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski,
J. Kertész, and A.L. Barabási, “Structure and Tie Strengths in
Mobile Communication Networks,” Proc. Nat’l Academy of Sciences
of USA, vol. 104, no. 18, pp. 7332-7336, 2007.

[7] M. Girvan and M. Newman, “Community Structure in Social and
Biological Networks,” Proc. Nat’l Academy of Sciences of USA,
vol. 99, no. 12, pp. 7821-7826, 2002.

[8] P. Chen and S. Redner, “Community Structure of the Physical
Review Citation Network,” J. Informetrics, vol. 4, no. 3, pp. 278-290,
2009.

[9] J.-L. Guillaume and M. Latapy, “Bipartite Graphs as Models of
Complex Networks,” Physica A: Statistical Mechanics and Its
Applications, vol. 371, no. 2, pp. 795-813, 2006.

[10] P. Hui and J. Crowcroft, “Human Mobility Models and
Opportunistic Communications System Design,” Philosophical
Trans. Royal Soc. A: Math., Physical and Eng. Sciences, vol. 366,
no. 1872, pp. 2005-2016, 2008.

[11] P. Hui, E. Yoneki, S.Y. Chan, and J. Crowcroft, “Distributed
Community Detection in Delay Tolerant Networks,” Proc. ACM/
IEEE Second Int’l Workshop Mobility in the Evolving Internet
Architecture, pp. 7:1-7:8, 2007.

[12] G. Palla, A. Barabasi, and T. Vicsek, “Quantifying Social Group
Evolution,” Nature, vol. 446, pp. 664-667, Apr. 2007.

[13] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering the
Overlapping Community Structure of Complex Networks in
Nature and Society - Supplementary Material,” Nature, vol. 435,
no. 7043, pp. 814-818, 2005.

[14] E. Gregori, L. Lenzini, and S. Mainardi, “Parallel K-Clique
Community Detection on Large-Scale Networks,” http://
cosparallel.sourceforge.net/, 2013.

[15] K. Saito, T. Yamada, and K. Kazama, “Extracting Communities
from Complex Networks by the k-Dense Method,” IEICE Trans.
Fundamentals of Electronics Comm. Computer Sciences, vol. E91-A,
no. 11, pp. 3304-3311, 2008.

[16] V. Batagelj and M. Zaversnik, “An o(m) Algorithm for Cores
Decomposition of Networks,” J. Computing Research Repository,
vol. 0310049, 2003.

[17] Y. Zhang, J. Wang, Y. Wang, and L. Zhou, “Parallel Community
Detection on Large Networks with Propinquity Dynamics,” Proc.
ACM SIGKDD 15th Int’l Conf. Knowledge Discovery and Data
Mining, pp. 997-1006, 2009.

[18] S. Sadi, S.G. Ögüdücü, and A.S. Etaner-Uyar, “An Efficient
Community Detection Method Using Parallel Clique-Finding
Ants,” Proc. IEEE Congress on Evolutionary Computation, pp. 1-7,
2010.

[19] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
Unfolding of Communities in Large Networks,” J. Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[20] M. Rosvall and C.T. Bergstrom, “Maps of Random Walks on
Complex Networks Reveal Community Structure,” Proc. Nat’l
Academy of Sciences of USA, vol. 105, no. 4, pp. 1118-1123, 2008.

[21] A. Lancichinetti and S. Fortunato, “Community Detection Algo-
rithms: A Comparative Analysis,” Physical Rev. E, vol. 80,
p. 056117, 2009.

[22] J. Moon and L. Moser, “On Cliques in Graphs,” Israel J. Math.,
vol. 3, pp. 23-28, 1965.

[23] C. Bron and J. Kerbosch, “Algorithm 457: Finding All Cliques of an
Undirected Graph,” ACM Comm., vol. 16, no. 9, pp. 575-577, 1973.

[24] I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo, “The
Maximum Clique Problem,” Handbook of Combinatorial Optimiza-
tion, pp. 1-74, Kluwer Academic Publishers, 1999.

[25] N. Du, B. Wu, L. Xu, B. Wang, and X. Pei, “A Parallel Algorithm
for Enumerating all Maximal Cliques in Complex Network,” Proc.
IEEE Sixth Int’l Conf. Data Mining Workshops, pp. 320-324, 2006.

[26] M.C. Schmidt, N.F. Samatova, K. Thomas, and B.-H. Park, “A
Scalable, Parallel Algorithm for Maximal Clique Enumeration,”
J. Parallel Distributed Computing, vol. 69, pp. 417-428, 2009.

[27] Y. Zhang, F.N. Abu-Khzam, N.E. Baldwin, E.J. Chesler, M.A.
Langston, and N.F. Samatova, “Genome-Scale Computational
Approaches to Memory-Intensive Applications in Systems
Biology,” Proc. ACM/IEEE Conf. Supercomputing, 2005.

[28] J.M. Kumpula, M. Kivelä, K. Kaski, and J. Saramäki, “Sequential
Algorithm for Fast Clique Percolation,” Physical Rev. E, vol. 78,
no. 2, p. 026109, 2008.

[29] E. Gregori, L. Lenzini, S. Mainardi, and C. Orsini, “Flip-cpm: A
Parallel Community Detection Method,” Proc. 26th Int’l Symp.
Computer and Information Sciences (ISCIS), pp. 249-255, 2011.

[30] M.G. Everett and S.P. Borgatti, “Analyzing Clique Overlap,”
Connections, vol. 21, no. 1, pp. 49-61, 1998.

[31] J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide,
Z. Bai ed. Soc. for Industrial and Applied Math., 2000.

[32] R.E. Tarjan and J. van Leeuwen, “Worst-Case Analysis of Set
Union Algorithms,” J. ACM, vol. 31, pp. 245-281, 1984.

[33] D. Eppstein, Z. Galil, and G.F. Italiano, “Dynamic Graph
Algorithms,” Algorithms and Theory of Computation Handbook, first
ed., M.J. Atallah and S. Fox, eds., CRC Press, Inc., 1998.

[34] R.E. Tarjan, “Efficiency of a Good but Not Linear Set Union
Algorithm,” J. ACM, vol. 22, pp. 215-225, 1975.

[35] E. Gregori, L. Lenzini, and C. Orsini, “k-Clique Communities in
the Internet AS-Level Topology Graph,” technical report, http://
puma.isti.cnr.it/, 2010.

[36] G. Csardi and T. Nepusz, “The Igraph Software Package for
Complex Network Research,” http://igraph.sf.net, 2013.

[37] E. Gregori, A. Improta, L. Lenzini, and C. Orsini, “The Impact of
Ixps on the As-Level Topology Structure of the Internet,”
Computer Comm., vol. 34, no. 1, pp. 68-82, 2011.

[38] V. Batagelj and A. Mrvar, “Pajek Datasets,” http://vlado.fmf.
uni-lj.si/pub/networks/data/, 2013.

[39] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub, “Exploiting
the Block Structure of the Web for Computing PageRank,”
technical Report, Stanford Univ., 2003.

[40] J.M. Kleinberg, “Authoritative Sources in a Hyperlinked Environ-
ment,” J. ACM, vol. 46, pp. 604-632, 1999.

GREGORI ET AL.: PARALLEL k-CLIQUE COMMUNITY DETECTION ON LARGE-SCALE NETWORKS 1659

[41] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun,
L. Ling, N. Zhang, G. Li, and R. Chen, “Topological Structure
Analysis of the Protein-Protein Interaction Network in Budding
Yeast,” Nucleic Acids Research, vol. 31, no. 9, pp. 2443-2450, 2003.

[42] M.E.J. Newman, “Finding Community Structure in Networks
Using the Eigenvectors of Matrices,” Phys. Rev. E, vol. 74, 2006.

[43] B. Jones, “Computational Geometry Database,” ftp://ftp.cs.
usask.ca/pub/geometry/, 2012.

[44] J. Leskovec, L.A. Adamic, and B.A. Huberman, “The Dynamics of
Viral Marketing,” ACM Trans. Web, vol. 1, article 5, 2007.

[45] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph Evolution:
Densification and Shrinking Diameters,” ACM Trans. Knowledge
Discovery from Data, vol. 1, article 2, 2007.

[46] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over Time:
Densification Laws, Shrinking Diameters and Possible Explana-
tions,” Proc. 11th ACM SIGKDD Int’l Conf. Knowledge Discovery in
Data Mining, pp. 177-187, 2005.

[47] J. Leskovec, “Stanford Large Network Dataset Collection,”
http://snap.stanford.edu/data/, 2013.

Enrico Gregori received the laurea degree in
electronic engineering from the University of
Pisa in 1980. He has contributed to several
national and international projects on computer
networking. He has authored more than 100
papers in the area of computer networks,
published in international journals and confer-
ence proceedings, and is coauthor of the book
Metropolitan Area Networks (Springer, 1997).
His current research interests include Internet

measurements and data analysis, ad hoc networks, sensor networks,
wireless LANs, quality of service in packet-switching networks, and
evolution of TCP/IP protocols. He is the member of the IEEE.

Luciano Lenzini received the degree in physics
from the University of Pisa, Italy. In 1994, he
joined the Department of Information Engineer-
ing, University of Pisa as a full professor. His
current research interests include the design
and performance evaluation of MAC protocols
for wireless networks, architectures and proto-
cols for mesh networks, and the Quality of
Service provision in integrated and differentiated
services networks. He is currently on the

editorial boards of computer networks and the Journal of Communica-
tions and Networks as an area editor for wireless networks. He is a
member of the IEEE.

Simone Mainardi received the BSc and MSc
degrees in computer engineering from the
University of Pisa, in 2009 and 2010, respec-
tively. Currently, he is working toward the PhD
degree at the Department of Information En-
gineering, University of Pisa and a research
associate at the Institute of Informatics and
Telematics of the Italian National Research
Council. His research interests include parallel
and distributed algorithms, Internet measure-

ments and data analysis, complex network analysis, and network
evolutionary models.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1660 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 8, AUGUST 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

