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Abstract Community detection is a classic and very dif-
ficult task in complex network analysis. As the increasingly
explosion of social media, scaling community detection
methods to large networks has attracted considerable recent
interests. In this paper, we propose a novel SIMPLifying and
Ensembling (SIMPLE) framework for parallel community
detection. It employs the random link sampling to simplify
the network and obtain basic partitionings on every sampled
graphs. Then, the K-means-based Consensus Clustering is
used to ensemble a number of basic partitionings to get high-
quality community structures. All of phases in SIMPLE,
including random sampling, sampled graph partitioning, and
consensus clustering, are encapsulated into MapReduce for
parallel execution. Experiments on six real-world social net-
works analyze key parameters and factors inside SIMPLE,
anddemonstrate both effectiveness and efficiencyof theSIM-
PLE.

Keywords Complex network · Community detection ·
Parallel computing · MapReduce · K-means

1 Introduction

Community detection has becomeoneof the core problems in
the realm of data mining and social network analysis [7]. It is
concerned with the identification of communities or clusters
within networks that aremore densely linked, as compared to
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the rest of the network. There is a lot of evidence that commu-
nity structures are crucial to the understanding of functional
properties of networks and are also very helpful for develop-
ing intelligent services [20,21].

In the past decades, a great deal of solutions have been
designed for both effective and efficient community discov-
ery [2,3,18,21,25,32]. However, much of them are usually
computationally expensive and are not scalable to networks
in colossal sizes. For instance, two famous algorithms, i.e.,
FastNewman [18] and LPA [25], should take O(m log n2)
andO(m+n) time respectively,which actually impedes them
from discovering communities from large-scale networks.
Furthermore, the emergence very-large real-world networks
exerts big pressures to a single machine on both data stor-
age and data computation. Hence, it is desiderative to put
forth a feasible yet compact parallel framework for scaling
the community discovery.

Some tentative exploration has beenmade towards parallel
community detection. Speciafically, the global optimization
on some criterion and themining on some local structures are
implemented in parallel or even distributed enviroment [8,10,
24,37]. Thus, several famous community detection methods,
such as local community detection [6], clique percolation
method (CPM) [21] and modularity optimization [3,18], do
have the corresponding parallel solutions [8,10,12]. To fur-
ther address this important problem, this paper presents the
so-called SIMPLifying-Ensembling (SIMPLE) framework
for scaling the community discovery. Note that SIMPLE is
not the parallel extension of any existing methods, but truly
a novel design. In general, SIMPLE consists of two phases.
Firstly, it employs simple random sampling to simplify the
large network and obtain basic partitions on every sampled
network, i.e., a much smaller graph. Secondly, based onmul-
tiple sampled networks and their derived basic partitionings,
SIMPLE utilizes the K-means-based Consensus Clustering
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to ensemble all of basic partitionings, in order to get high-
quality global community structures.

MapReduce has long been a widely-used distributed data
processing framework in a cluster, due to many of its con-
sipicuous merits such as flexibility, scalability, efficiency,
and fault tolerance [16]. Various platforms implementing
MapReduce have emerged, among which the open-source
Hadoop [30] gains the particular interests in practice. To par-
allelize SIMPLE, we adopt Hadoop as the basic middleware
of the cluster, and Hadoop Distributed File System (HDFS)
as the basic tool for data sharing. Thus, we encapsulate all of
components of SIMPLE into MapReduce including random
sampling, sampled graph partitioning, and consensus clus-
tering. Experiments on six real-world large-scale networks
validate the SIMPLE can discover high-quality communities
in an efficient and scalable way.

The remainder of this paper is organized as follows.
Section 3 gives some preliminaries and introduces the Sim-
plifying and ensembling system. In Sect. 4, we discuss
technical details in our SIMPLE framework. Experimental
results will be given in Sect. 6. We present the related work
in Sect. 2, and finally conclude this paper in Sect. 7.

2 Related work

In the literature, there have been a large body of studies done
on community detection [7,22].Most of the existingmethods
fall into two categories, in terms of whether or not explicit
optimization objectives are being given [32]. The former
views the community discovery problem as an optimization
problem on a criterion, e.g., modularity optimization [3,18],
WCC (weighted community clustering) optimization [23],
and so on. The latter detects communities via mining and
merging local structures, e.g., k-clique [21].

As the explosive increase of the scales of real-life net-
works, the scalability of community detection algorithms
drawsmuch attention. Using parallel and/or distributed com-
puting paradigms to scale existing algorithms is the most
intuitive way. Along this line, the modularity optimiza-
tion [12], WCC optimization [24] and k-clique mining [8]
are implemented in parallel or distributed computing frame-
work. Moreover, the MapReduce programming framework
has been employed for solving critical tasks insider commu-
nity discovery, such as edge betweenness computation [17]
and node-pair similarity computation [27].

To meet the computing challenge rising from large-scale
networks, the exploration of elegant parallel and distrib-
uted strategies for scalable community detection keeps on
booming. Our work tries to make a useful attempt towards
this direction, and differs from existing solutions by design-
ing a novel simplifying and ensembling scheme. Hence,
the proposed SIMPLE framework, designed with distributed

computing in mind, can take advantage of the MapReduce
model.

3 Problem definition and system overview

Although being extensively studied [7,22,28], the prelimi-
nary knowledge on community detection is still provided in
this section to make our paper be self-contained. We then
overview the SIMPLE from the system perspective.

3.1 Problem definition

Given an undirected network G = {V, E}, V is a set of
n nodes and E is a set of m edges. The goal of commu-
nity detection is to seek a good K -way crisp partitioning
π = {C1, . . . ,CK }, where Ck is the kth community, and
C1

⋃ · · · ⋃CK = V , Ck
⋂

Ck′ = ∅ ∀ k �= k′. A net-
work is commonly represented by a n × n adjacency matrix
A = [Auv], where Auv = 1 (u �= v) if there is an edge
between node u and v and 0 otherwise.

To select an appropriate storage model to fit network
data to HDFS, we do not use the commonly-used adjacency
matrix, since it leads to data redundancy when the network
data is sparse. We also give up the key-value storage model
for its slow response to neighborhood queries. Instead, we
finally employ the transaction model to represent a network.
Formally, G can be formulated equivalently as a transaction
data set T = {Tu |∀ u ∈ V }, with Tu = {v|Auv = 1} being
a transaction containing all the neighbors of u. Our method
actually works on T rather than G for parallel community
detection.

3.2 System overview

Figure 1 describes the system overview of the SIMPLE
framework. SIMPLE holds in store the divide-and-conquer
idea. That is, it first divides thewhole large network intomul-
tiple pieces and uses a given community detection algorithm
to obtain basic clusters in every piece. The global community
structures can then be integrated from multiple sources. In
what follows, we shall introduce key steps within SIMPLE.

Sharding This step horizontally splits T into a set of small
parts named shards, each of which must keep the complete-
ness of transactions. Thesplit command in Linux is used
for sharding, which is rather efficient in practice. Each shard
is roughly 64M according to the configurations of the HDFS.
All shards are then stored in HDFS distributed across multi-
ple machines, and the storage location is transparent to users.
Every computational node can share the shards by accessing
HDFS. The sharding can significantly decrease the I/O cost of
the successive map procedure. We will give the verification
results in the experimental section.
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Fig. 1 The system overview of
SIMPLE

Map Since a number of community detection algorithms
are heavily dependent on the number of links, it is reasonble
to reduce computational complexity by considering only a
subset of links on an edge-intensive network. A random link
sampling algorithm is thus encapsulated in the map function.
Each map node works on a shard, i.e., a part of the input
network, and repeats random sampling for r times. More
details will be given in Sect. 4.

Reduce The output of map is arranged as “key/value”
pairs, where key[i] corresponds to the i th (1 ≤ i ≤ r ) link-
sampling and value[i] records the part of sampled network.
With the help of shuffle function, sampled fragmentswith
the same key are mapped to a node, and thus a complete
sampled graph is formed. Any existing graph partitioning
methods (e.g., METIS and FastNewman) could be invoked
to obtain community structures in the sampled network. Sec-
tion 4.2 will introduce the implementation of the reduce
function in SIMPLE.

Ensembling Based on repetitious random sampling, the
reduce outputs r basic graph partitionings of G, i.e., � =
{π1, π2, . . . , πr }. The task in this step aims to find a single
partitioning, i.e., community structures, of G from r basic
graph partitionings in �. We formulate this task as the con-
sensus clustering (a.k.a. cluster ensemble) problem, and thus
utilize the so-called K-means-based Consensus Clustering
(KCC) [31] to solve it. Similar to K-means, KCC is easily be
parallelized in MapReduce. Two phases of K-means “clas-
sify” and “recenter” are encapsulated into map and reduce
respectively, and an iterativeMapReduce process is activated
until centroids donot change. Section5.1will describe details
of KCC.

4 SIMPLE: the simplifying phase

In this section, we describe technical details of the “simpli-
fying” phase in our framework. It aims to decompose the
large network into a set of small networks and partition each

small network into a certain number of communities. This
phase is implemented into MapReduce jobs to facilitate the
distributed processing.

4.1 Map: random sampling

Since the very-large network is hard to be loaded into mem-
ory and be further processed, we hope to find a sampling
technique that is qualified to this simplifying task. Though
graph sampling techniques are extensively studied [9,13], we
argue that the selected sampling technique should satisfy at
least two conditions: (i) the sampling itself must be as sim-
ple as possible, otherwise it will become the bottleneck of
the whole system; (ii) the sampling should only rely on the
partial network rather than the whole network. Both condi-
tions are in fact outlined based on the efficiency issue of large
network processing.

Existing graph sampling algorithms can conceptually be
divided into twogroups [13]: randomly selectingnodes/edges
and sampling by exploration. Since the community detection
needs to assign labels for every node and many detection
methods [11,18] are heavily dependent on the number of
edges, we choose random edge sampling, which obviously
satisfies both conditions mentioned above. As for other sam-
pling techniques by exploration, such as random walk [13],
forest fire [14] and metropolis sampling [9], they not only do
drop a few nodes but also take too much time for computing
various decision-making indices. Worse yet is, sampling by
exploration is similar to random walk that needs the global
view of the large network and thus it is difficult to be paral-
lelized.

Once random edge sampling is selected, the arising prob-
lem is can a subgraphbetter preserve the community structure
of the original graph. In the context of community detec-
tion, as a community can be simply viewed as a group of
nodes with higher similariy, the sampled graph is expected
to reserve node pairs with high-similarity as much as possi-
ble. Motivated by this, we first present a null model as the
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reference model for the random edge sampling. The null
model provides the expectation for the similarity measure
of a given node in a pure random case. It is based on the fol-
lowing null hypothesis: the similarities between the node v

and its neighbors are produced by a random assignment from
a Bernoulli distribution [26]. Given a similarity threshold
ε ∈ [0, 1], the high-similarity neighbors selection function
fv is therefore defined as:

fv = 1

dv

∑

u∈Tv

I (sv,u > ε), (1)

where dv is the degree of node v, sv,u (sv,u ∈ [0, 1]) is the
similarly between v and u, and I (·) is an indicator function.
The value of fv is the proportion of high-similarity neighbors
of v. When the random link sampling is applied, fv may be
deteriorated. However, in what follows, we prove that this
deterioration is not significant even when the sample size nv

is small.

Theorem 1 Let s = nv be the sample size for a node v ∈ V
and {(v, u1), . . . , (v, us)} be the set of sampled links among
the incident links of v. Let X j

v = I (sv,u j > ε) for each
j ∈ [1, s]. Then, the estimation of fv using the sampled
incident links of v can be represented as X̄v = 1/s

∑s
j=1 X

j
v .

The errors of this estimation are bounded by Pr(|X̄v − fv| ≥
δ fv) ≤ 1/dv if s ≥ 3(ln dv + ln 2)/ fvδ2. Here, δ ∈ [0, 1] is
the relative error, which is defined as the ratio between the
absolute error and the value of fv .

Proof (Chernoff bound [4]) Let X1
v, . . . , X

s
v denote a set of

independent variables following the Bernoulli distribution
with the success probability fv . For any δ ∈ [0, 1], we can
obtain that Pr(|X̄v − fv| ≥ δ fv) ≤ 2e−s fvδ2/3 ≤ 1/dv if
s ≥ 3(ln dv + ln 2)/ fvδ2. 	


Theorem 1 implies that the estimation X̄v is very likely to
be close to the true value fv , when we set the sampling size
to be larger than 3(ln dv + ln 2)/ fvδ2. The probability that
X̄v is wrongly estimated can be controlled smaller than 1/dv ,
which is typically very small. Since the Chernoff bound [4]
is a bound for the worst case, in practice it is more reasonable
to determine the sample size to be even smaller than 3(lndv +
ln2)/ fvδ2. So, the value of nv can be determined by

nv = min{dv, α(ln dv + ln 2)}, (2)

where α is a nonnegative constant that is used to control the
sample size. The parameter α can be seen as the sampling
level. We will discuss how to set the value of α in Sect. 6.2.

	

In SIMPLE, each shard stores part of nodes but with

their complete records in T , i.e., including all of neigh-
bor nodes. The map function invoked on a shard randomly

samples a certain number of neighbors of every node. With
Eq. 2, all of incident links of a low-degree node (e.g.,
dv ≤ α(ln dv + ln 2)) are sampled, and the larger-degree
of a node is, the lower proportion of links will be extracted.
Note that the sampling is without replacement. Therefore,
the more intensive links of a network is, the more greatly the
network will be simplified.

4.2 Reduce: sampled graph partitioning

After every map node repeats random link sampling on one
shard for r times, a set of “key/value” pairs are produced,
where key[i], 1 ≤ i ≤ r corresponds to the i th link-sampling
and value[i] records the part of sampled network. For exam-
ple, assume a shard stores l + 1 nodes taking v as its first
node, i.e., {Tv, Tv+1, . . . , Tv+l}, and let T (i)

v ⊆ Tv denotes
the result of i th sampling on v. Thus, the i th “key/value” pair
can be represented as

〈
key[i]|value[i]〉 .= 〈

i |{T (i)
v , T (i)

v+1, . . . , T
(i)
v+l

}〉
. (3)

All of sampled fragments with the same key are mapped
to the same node, and thus a complete sampled graph can
be assembled. This process is automatically executed by
the shuffle function. Normally, any community detec-
tion method could be used for sampled graph partitioning.
However, in SIMPLE, we encapsulate METIS [11] in the
reduce function.

The reason why we select METIS rather than other tools
in SIMPLE can be summarized as the following aspects.
First, it is commonly that K � n, so the top-down par-
titioning used by METIS is usually much faster than the
bottom-up agglomeration methods (e.g., FastNewman). Sec-
ond, since the sampled network might not be a connected
graph, the bottom-up agglomeration method such as Fast-
Newman cannot combine different connected components
to form a big community. That is, if the sampled graph has
K ′ > K connected sub-graphs, FastNewman finally obtains
at most K ′ communities while cannot obtain K communi-
ties. But METIS can always obtain K communities even on
a disconnected network. Third, METIS uses some random
strategies during coarsening and computing the initial parti-
tioning, which tends to generate partitionings even on similar
sampled networks with high-diversities.

5 SIMPLE: the ensembling phase

Here, we discuss the ensembling phase of SIMPLE. We
first introduce the basic procedure of a consensus clustering
method called KCC, and then describe the implementation
of distributed KCC (d-KCC) on top of MapReduce.
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5.1 KCC: the basic procedure

Every sampled network has been partitioned into K commu-
nities in reduce, and their labels can be integrated into a
n× (r K ) matrix � = {π1, π2, . . . , πr }. Each vector πi ∈ �

is obtained based on the topological relation among nodes.
So, the ensemble step only needs to find a high-quality
partitioning based on multiple basic partitionings, without
considering the topological relations, which typically is a
consensus clustering problem.

As is well known, K-means is a prototype-based, simple
partitional clustering method. The clustering process of K-
means is a two-phase iterative heuristic, with data assignment
(i.e., classify) and centroid update (i.e., recenter) stagger-
ing successively. The K-means-based Consensus Clustering
(KCC) [31] successfully transforms the consensus clustering
problem into a K-means problem, and could inherit all mer-
its of K-means: accuracy, efficiency and flexibility. From the
algorithmic perspective, KCC still employes the two-phase
iterative heuristic, which is similar to K-means. However,
the distance between the instance and the centroid should
be carefully designed to satisfy the continuously differen-
tiable function for the K-means distance. Here, we select the
cosine distance for KCC, due to sparsity of �. Formally, let
mk denote the centroid of the kth cluster in �, which is a r K
dimensional vector as follow:

mk = 〈
mk,1, . . . ,mk,i , . . . ,mk,r

〉
, (4)

where

mk,i = 〈
mk,i1, . . . ,mk,i j , . . . ,mk,i K

〉
. (5)

The instance in � can also be represented as a r K dimen-
sional vector denoted as xl . Thus, the cosine distance between
xl and mk is

Dist (xl ,mk) =
r∑

i=1

wi
(
1 − cos(xl,i ,mk,i )

)
, (6)

where wi is the weight of i th basic partitioning, and it can be
set to 1/r without the prior knowledge or instance-weighting
technique. As a result, the centroid mk can be updated by:

μ(mk,i ) = ||mk,i ||2 − ||P(i)||2, (7)

where P(i) = 〈
p(i)
+1, . . . , p

(i)
+K

〉
is a constant vector w.r.t. �.

Particularly, p(i)
+k = n(i)

+k/n, where n
(i)
+k denotes the number

of instances labeled k in i th basic partitioning. Meanwhile,
given a d-dimensional real vector y, ||y||p denotes the L p

norm of y, i.e., ||y||p = p
√∑d

i=1 y
p
i .

With Eqs. 6 and 7, KCC could be naturally deduced for
ensembling community structures. KCC starts by selecting
K nodes as initial centroids. Based on the cosine distance,
KCC forms K clusters (i.e., communities) by assigning each
node to its closest centroid, and then recomputes the centroid
of each cluster. This iterative process proceeds until centroids
or community labels do not change.

5.2 d-KCC: the MapReduce implementation

If we think of the original network as a n × n matrix, the
dimension of matrix � has been reduced remarkably, since
r · K � n. Even so, when the network becomes very large,
applying KCC on a single machine is probably to be out of
memery or to costmuch time.We therefore discuss the imple-
mentation of KCC in distributed environment. For the sake
of simplicity, we still useMapReduce as the basic framework
for implementing distributed KCC (d-KCC). As the iterative
version of MapReduce is not a standard or not very efficient
formulation, we reserve for future research on reforming d-
KCC to fit the in-memory cluster computing framework [35].

In the literature [38], parallel K-means based on MapRe-
duce is well designed. The map function performs the
“classify” procedure of assigning every instance to the closest
center, while the reduce function performs the “recenter”
procedure of updating the new centroids. As mentioned in
Sect. 5.1, the procedure of KCC is the same as K-means, and
KCC differentiates from K-means only on the distance def-
inition. Therefore, d-KCC could be easily implemented on
MapReduce along the way that K-means on MapReduce. In
practice, we use the open-source codes provided by Apache
Mahout [1] and revise the distance computation according to
Eq. 6.

6 Experimental results

In this section, we demonstrate both the effectiveness and
efficiency of SIMPLE on detecting communities from six
real-life social networks.

6.1 Experimental setup

Data sets Six complex networks are selected as experimen-
tal data sets. Oklahoma [29], UNC [29], Twitter [15],
Gowalla [5] and LiveJournal [33] are five friend-
ship networks derived from different social networking sites.
Skitter [14] is an Internet topology graph collected from
traceroutes run daily. We summarize some key features of
these networks in Table 1, where dv = 2|E |/|V | indicates
the average degree, C is the average cluster coefficient, and
p(dv) indicates the distribution of the degree. It was found
that all the experimental networks display power law shaped
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Table 1 Experimental data sets
Network |V | |E | dv C p(dv)

Oklahoma 17,420 892,524 102.47 0.23 1.13d−1.40
v

UNC 18,158 766,766 84.45 0.20 1.33d−1.47
v

Twitter 81,306 1,342,296 33.00 0.57 2.61d−1.83
v

Gowalla 196,591 950,324 9.67 0.20 0.38d−1.74
v

Skitter 1,696,415 11,095,298 13.08 0.26 0.04d−1.41
v

LiveJournal 3,997,963 34,681,189 17.35 0.28 12.7d−2.40
v

degree distribution(p(dv) ∼ A · d−η
v ), with exponents vary-

ing in the range 1 < η < 3. Notice that a small value of η

indicates that the given distribution is more heavy-tailed.
Competitive toolsFive relevant community detection tools

are selected as baselines for comparison: METIS [11],
FastNewman (FN) [18], Parallel K-means (PaKmeans) in
Mahout [1], BigClam [34] and SCD [24]. METIS, FN
and Kmeans are three classical algorithms for community
detection. BigClam and SCD are two effective yet scalable
methods in the state of the art.

Quality measure The modularity (i.e., Q-function) pro-
posed by Newman [19] is chosen to evaluate the quality of
partitions, which is defined as

Q =
K∑

k=1

|Ek |
|E | −

(
dCk
2|E |

)2

, (8)

where |Ek | is the number of edges within community Ck

and dk = ∑
v∈Ck

dv is the sum of node degrees of Ck . It is
expected that better communities of a given network will be
with bigger Q values.

Hadoop cluster We construct a Hadoop cluster with eight
nodes connected by a Gigabit Ethernet as the basic plat-
form of SIMPLE. Each node comes with four quad-core
E5-2650v2 processors (2.6 GHZ), 128GB of RAM, 240GB
of SSD disk and 600GB of SAS disk. The Hadoop version
is 1.0.4. One node is used to run NameNode, JobTracker,
DataNode and TaskTracker simultaneously. So, this cluster
totally contains eight nodes for map or reduce tasks.

6.2 Parameters analysis

There are two important parameters in SIMPLE: the sam-
pling level α in Eq. 2 to control the sample size nv , and the
number of random samplings r , i.e., the number of Basic
Partitionings (BPs).

The parameter α One direct way tomeasure the efficiency
of sampled graph partitioning is to employ a parameter called
sampling rate (denoted as γ ), which is defined by the ratio
between the number of the sampled links and the total number
of links in the original network (see Eq. 9). Obviously, γ

plays a crucial role inSIMPLE for balancing the effectiveness
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Fig. 2 Sampling rates with different values of α

and the efficiency. More precisely, given p(dv) and α, the
sampling rate γ can be estimated by

γ = |E ′|
|E | ≈

∑
dv
np(dv)nv

∑
dv
np(dv)dv

=
∑

dv
p(dv)nv

∑
dv

p(dv)dv

. (9)

where |E ′| is the number of edges in the sampled graph.
Figure 2 plots γ as a function of α on all networks. As can
be seen, γ grows with the increase of α, which indicates
that the value of α indeed has a great and positive impact to
the sampling rate. Specifically, γ is lower than 60% when
α < 10, to balance the effectiveness and efficiency, we set
α ∈ [1, 10] and thus less than 60% links will be main-
tained in the sampled graphs, which leads to the high efficient
graph partitionings in the successive step. FromWe can also
observe that γ increases slower on themore heavy-tailed net-
work. For instance, the curve of Skitter rises faster than
the LiveJournal curve up to α = 7. This implies that the
proposed sampling strategy might be more effective for the
networks with significantly heavy-tailed.

The parameter r To illustrate the impact of sampling times
r in map, we set α to be a random value in [1, 10], and lin-
early increase r from 20 to 120. For each sampled network,
METIS is employed to partitioned K = 10 communities in
reduce. Finally, those r basic graph partitioning are ensem-
bled by KCC to obtain K = 10 crisp partition. Figure 3
shows the impact of r on Q values. Generally, the quality of
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identified communities in terms of Q increases steadily with
the increase of r . We find that the quality of SIMPLE tends to
be satisfactory when r reaches 60, and is even better than Q
values with 100 and 120 samplings on some networks, e.g.,
Skitter and LiveJournal. As a result, in the follow-
ing experiments, unless stated otherwise, we set r = 60 and
α ∈ [1, 10].

6.3 Comparison on effectiveness

In this subsection, we shall validate the performance of SIM-
PLE that is comparable to five baseline tools. We vary the
number of communities K from 10 to 60 for SIMPLE,
PaKmeans, METIS and FN. However, the K value is auto-
matically set by SCD andBigClam. Sowemark the K values
in Fig. 4 for both methods. As the increase of scales, some
tools run out of memory, which leads to missing lines in
Fig. 4e, f.

As can be seen from Fig. 4 SIMPLE consistently shows
the best performance in terms of the Q function. This well
validates that SIMPLE can identify high quality community
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structures on various networks. Meanwhile, the Q values of
METIS are obviously lower than those of SIMPLE, though
SIMPLE invokes METIS in reduce for sampled graph
partitioning. This implies the ensembling phase is critically
important for the success of SIMPLE in community detec-
tion. Moreover, SCD tends to partition the network into a
mass of small communities, which largely reduces the mod-
ularity. In contrast, though BigClam can limit the number of
identified communities, its Q values are always minimum.

We exploit the users’ check-in trajectory information pro-
vided by Gowalla for the semantic validation of identified
communities. Since online friends tend to have closer home
locations [5], we suppose that users in a same community
also tend to live more closely. We use SIMPLE to partition
the Gowalla network into 10 communities. To infer users’
home locations from their check-in locations, we first dis-
cretize the world map into 0.25 by 0.25 cells (measured by
latitude and longitude) and then defined the home location as
the centroid of a cell with the most check-ins, as suggested
by [5]. The home distance on earth’s surface between any
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two users was computed by using the pos2dist function in
MATLAB. Figure 5 shows the cumulative distributions of all
users and users within the same community. As can be seen,
the home distance between any two users in a same commu-
nity is statistically shorter than the distance between any two
users of the whole network. This indicates that the commu-
nities identified by SIMPLE from Gowalla is semantically
cohesive.

To sumup, comparedwithfivebaselinemethods, SIMPLE
could discover higher quality communities in terms of Q. As
indicated by a case study on Gowalla, the communities
returned by SIMPLE are semantically meaningful.
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Fig. 6 Comparison on overall efficiency

6.4 Efficiency analysis

To analyze the efficiency of SIMPLE, we select BigClam and
SCD for comparison. BigClam is a scalable matrix factor-
ization method on a single machine, while SCD is a parallel
WCC optimization method adopting the in-memory com-
puting technique. As can be seen from Fig. 6, SIMPLE is
generally more scalable than BigClam, yet less scalable than
SCD. When the network becomes larger (e.g., Skitter
and LiveJournal), SIMPLE reaches the same order of
magnitude of SCD in terms of running time. The main rea-
son is that the overhead cost of SIMPLE is much expensive
than SCD, since SIMPLE uses MapReduce for distributed
computing but SCD utilizes parallel computing on sharing
memory. This indeed inspires us to employ the in-memory
computing paradigm (e.g., Spark [36]) to further improve the
scalability of SIMPLE in the future.

We further take a closer look at the efficiency of every
phase in SIMPLE. Note that the sharding phase usually
consumes a thimbleful of time (e.g., about 2 s), which is neg-
ligible here. Since the map phase handles large networks
directly, we divide this phase into three sub-phases including
reading, sampling and writing. Figure 7 shows the execution
time of three phases (i.e., map, reduce, and d-KCC) on
two large networks (i.e., Skitter and LiveJournal).
From Fig. 7, we can observe several important facts. First,
the execution time of map is mainly spent on writing the out-
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Table 2 Performance comparison on three sampling techniques

Network SIMPLE-RAN SIMPLE-FF SIMPLE-MS

Oklahoma 0.389 0.365 0.364

UNC 0.400 0.404 0.386

Twitter 0.770 0.674 0.594

Gowalla 0.677 0.534 0.427

put results to HDFS. Second, the efficiency of reduce is
stable and efficient, though the number of random samplings
is increasing. This demonstrates the advantage of selecting
METIS as the graph partitioning tool in this phase. Third,
the execution time of d-KCC fluctuates slightly due to the
random selection of the initial centroids.

In summary, SIMPLEexploits theMapReduce framework
to obtain a satisfactory scalability, though being inferior to
in-memory computing based method (e.g., SCD). However,
SIMPLE can identify higher quality communities than SCD,
as indicated in Sect. 6.3, which is enough to make up the
slight inferiority on efficiency.

6.5 Comparison on sampling

Here, we show in experiments the advantage of random sam-
pling used in SIMPLE. Four networks Oklahoma, UNC,
Twitter and Gowalla are used, and two state-of-the-
art sampling strategies, ForestFire sampling (FF) [14] and
Metropolis sampling (MS) [9] are chosen as baselines. We
run three different sampling strategies to generate 60 sub-
graphs with γ = 0.3 each. For each sampled network,
METIS is employed to partition K = 10 communities.
Finally, those 60 basic graph partitioning are ensembled by
KCC to obtain a single K = 10 crisp partition. Note that FF
has two parameters: forward (p f ) and backward (pb) burning
probability, both of which can be regulated to meet a given
γ . As for MS, we can adjust the degree distribution (p(dv))
to fit the given γ .

The overall performance comparison on three sampling
techniques is listed in Table 2, also in terms of Q. Note that
the optimal Q values are in bold. The random sampling per-
forms slightly worse than FF on UNC, a small dense network,
but best on other networks. Especially, the gap on the sparse
network Gowalla becomes much more sensible. To illus-
trate why the random sampling always performs best, we
further showcase in Fig. 8 the boxplots of Q values of 60
BPs generated by different sampling. Note that the Q value
in Fig. 8 is computed on sampled graph with about 30%
edges. Results in Fig. 8 are consistent with Table 2, that is,
higher quality of BPs leads to final communities with higher
quality. Furthermore, we can also observe that the stability of
random sampling is superior to other sampling techniques.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
od

ul
ar

it
y 

(Q
)

Gowalla Oklahoma UNCTwitter

FF

FF

FF

FF

MS

MS

MS

MS

RAN

RAN

RAN

RAN

Fig. 8 Stability comparison on sampling techniques

7 Conclusion

This paper presents the SIMPLifying and Ensembling (SIM-
PLE) framework on top of MapReduce for parallel com-
munity detection. SIMPLE is indeed a flexible framework
that is composed of three main phases: link sampling,
sampled graph partitioning, and ensembling. These three
phases are all implemented in MapReduce to ensure SIM-
PLE can handle large networks. Technical details of three
phases are discussed. Particularly, we prove the errors intro-
duced by random sampling can be controlled into a small
range with a high confidence, even as the ramdom rate is
very low. We also illustrate the reason that why we select
METIS for sampled graph partitioning and KCC for ensem-
bling. Experimental results on six real-world social networks
have demonstrated that SIMPLE can successfully discover
higher quality (indicated by Q) andmeaningful (indicated by
semantic analysis) communities. From the efficiency valida-
tion, SIMPLE exhibits good scalability and can efficiently
handle large networks with ten millions of nodes and edges.
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