Cluster Comput
DOI 10.1007/s10586-015-0504-2

@ CrossMark

SIMPLE: a simplifying-ensembling framework for parallel
community detection from large networks

Zhiang Wu! . Guangliang Gao? - Zhan Bu!

. Jie Cao!

Received: 12 March 2015 / Revised: 24 October 2015 / Accepted: 26 October 2015

© Springer Science+Business Media New York 2015

Abstract Community detection is a classic and very dif-
ficult task in complex network analysis. As the increasingly
explosion of social media, scaling community detection
methods to large networks has attracted considerable recent
interests. In this paper, we propose a novel SIMPLIifying and
Ensembling (SIMPLE) framework for parallel community
detection. It employs the random link sampling to simplify
the network and obtain basic partitionings on every sampled
graphs. Then, the K-means-based Consensus Clustering is
used to ensemble a number of basic partitionings to get high-
quality community structures. All of phases in SIMPLE,
including random sampling, sampled graph partitioning, and
consensus clustering, are encapsulated into MapReduce for
parallel execution. Experiments on six real-world social net-
works analyze key parameters and factors inside SIMPLE,
and demonstrate both effectiveness and efficiency of the SIM-
PLE.

Keywords Complex network - Community detection -
Parallel computing - MapReduce - K-means

1 Introduction

Community detection has become one of the core problems in
the realm of data mining and social network analysis [7]. Itis
concerned with the identification of communities or clusters
within networks that are more densely linked, as compared to

B Zhan Bu
buzhan @nuaa.edu.cn

Jiangsu Provincial Key Laboratory of E-Business, Nanjing
University of Finance and Economics, Nanjing, China

College of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing, China

Published online: 09 November 2015

the rest of the network. There is a lot of evidence that commu-
nity structures are crucial to the understanding of functional
properties of networks and are also very helpful for develop-
ing intelligent services [20,21].

In the past decades, a great deal of solutions have been
designed for both effective and efficient community discov-
ery [2,3,18,21,25,32]. However, much of them are usually
computationally expensive and are not scalable to networks
in colossal sizes. For instance, two famous algorithms, i.e.,
FastNewman [18] and LPA [25], should take O (m log n2)
and O (m+n) time respectively, which actually impedes them
from discovering communities from large-scale networks.
Furthermore, the emergence very-large real-world networks
exerts big pressures to a single machine on both data stor-
age and data computation. Hence, it is desiderative to put
forth a feasible yet compact parallel framework for scaling
the community discovery.

Some tentative exploration has been made towards parallel
community detection. Speciafically, the global optimization
on some criterion and the mining on some local structures are
implemented in parallel or even distributed enviroment [8, 10,
24,37]. Thus, several famous community detection methods,
such as local community detection [6], clique percolation
method (CPM) [21] and modularity optimization [3,18], do
have the corresponding parallel solutions [8,10,12]. To fur-
ther address this important problem, this paper presents the
so-called SIMPLifying-Ensembling (SIMPLE) framework
for scaling the community discovery. Note that SIMPLE is
not the parallel extension of any existing methods, but truly
a novel design. In general, SIMPLE consists of two phases.
Firstly, it employs simple random sampling to simplify the
large network and obtain basic partitions on every sampled
network, i.e., a much smaller graph. Secondly, based on mul-
tiple sampled networks and their derived basic partitionings,
SIMPLE utilizes the K-means-based Consensus Clustering

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-015-0504-2&domain=pdf
http://orcid.org/0000-0002-7582-8203

Cluster Comput

to ensemble all of basic partitionings, in order to get high-
quality global community structures.

MapReduce has long been a widely-used distributed data
processing framework in a cluster, due to many of its con-
sipicuous merits such as flexibility, scalability, efficiency,
and fault tolerance [16]. Various platforms implementing
MapReduce have emerged, among which the open-source
Hadoop [30] gains the particular interests in practice. To par-
allelize SIMPLE, we adopt Hadoop as the basic middleware
of the cluster, and Hadoop Distributed File System (HDFS)
as the basic tool for data sharing. Thus, we encapsulate all of
components of SIMPLE into MapReduce including random
sampling, sampled graph partitioning, and consensus clus-
tering. Experiments on six real-world large-scale networks
validate the SIMPLE can discover high-quality communities
in an efficient and scalable way.

The remainder of this paper is organized as follows.
Section 3 gives some preliminaries and introduces the Sim-
plifying and ensembling system. In Sect. 4, we discuss
technical details in our SIMPLE framework. Experimental
results will be given in Sect. 6. We present the related work
in Sect. 2, and finally conclude this paper in Sect. 7.

2 Related work

In the literature, there have been a large body of studies done
on community detection [7,22]. Most of the existing methods
fall into two categories, in terms of whether or not explicit
optimization objectives are being given [32]. The former
views the community discovery problem as an optimization
problem on a criterion, e.g., modularity optimization [3, 18],
WCC (weighted community clustering) optimization [23],
and so on. The latter detects communities via mining and
merging local structures, e.g., k-clique [21].

As the explosive increase of the scales of real-life net-
works, the scalability of community detection algorithms
draws much attention. Using parallel and/or distributed com-
puting paradigms to scale existing algorithms is the most
intuitive way. Along this line, the modularity optimiza-
tion [12], WCC optimization [24] and k-clique mining [8]
are implemented in parallel or distributed computing frame-
work. Moreover, the MapReduce programming framework
has been employed for solving critical tasks insider commu-
nity discovery, such as edge betweenness computation [17]
and node-pair similarity computation [27].

To meet the computing challenge rising from large-scale
networks, the exploration of elegant parallel and distrib-
uted strategies for scalable community detection keeps on
booming. Our work tries to make a useful attempt towards
this direction, and differs from existing solutions by design-
ing a novel simplifying and ensembling scheme. Hence,
the proposed SIMPLE framework, designed with distributed

@ Springer

computing in mind, can take advantage of the MapReduce
model.

3 Problem definition and system overview

Although being extensively studied [7,22,28], the prelimi-
nary knowledge on community detection is still provided in
this section to make our paper be self-contained. We then
overview the SIMPLE from the system perspective.

3.1 Problem definition

Given an undirected network G = {V, E}, V is a set of
n nodes and E is a set of m edges. The goal of commu-
nity detection is to seek a good K-way crisp partitioning
n = {Cy,...,Ck}, where Cy is the kth community, and
CiU---UCk =V, Cc(Cwv = BV k # k'. A net-
work is commonly represented by a n x n adjacency matrix
A = [A,y], where A,, = 1 (u # v) if there is an edge
between node u and v and O otherwise.

To select an appropriate storage model to fit network
data to HDFS, we do not use the commonly-used adjacency
matrix, since it leads to data redundancy when the network
data is sparse. We also give up the key-value storage model
for its slow response to neighborhood queries. Instead, we
finally employ the transaction model to represent a network.
Formally, G can be formulated equivalently as a transaction
data set 7 = {T,|V u € V}, with T, = {v|A,, = 1} being
a transaction containing all the neighbors of u. Our method
actually works on 7 rather than G for parallel community
detection.

3.2 System overview

Figure 1 describes the system overview of the SIMPLE
framework. SIMPLE holds in store the divide-and-conquer
idea. That s, it first divides the whole large network into mul-
tiple pieces and uses a given community detection algorithm
to obtain basic clusters in every piece. The global community
structures can then be integrated from multiple sources. In
what follows, we shall introduce key steps within SIMPLE.

Sharding This step horizontally splits 7 into a set of small
parts named shards, each of which must keep the complete-
ness of transactions. The split command in Linuxisused
for sharding, which is rather efficient in practice. Each shard
is roughly 64M according to the configurations of the HDFS.
All shards are then stored in HDF'S distributed across multi-
ple machines, and the storage location is transparent to users.
Every computational node can share the shards by accessing
HDFS. The sharding can significantly decrease the I/O cost of
the successive map procedure. We will give the verification
results in the experimental section.

Cluster Comput

Fig. 1 The system overview of
SIMPLE

Large Network
*s

Transaction
Model

Input & Data Model

Map Since a number of community detection algorithms
are heavily dependent on the number of links, it is reasonble
to reduce computational complexity by considering only a
subset of links on an edge-intensive network. A random link
sampling algorithm is thus encapsulated in the map function.
Each map node works on a shard, i.e., a part of the input
network, and repeats random sampling for r times. More
details will be given in Sect. 4.

Reduce The output of map is arranged as “key/value”
pairs, where key[i] corresponds to the ith (1 <i < r) link-
sampling and valueli] records the part of sampled network.
With the help of shu f £1e function, sampled fragments with
the same key are mapped to a node, and thus a complete
sampled graph is formed. Any existing graph partitioning
methods (e.g., METIS and FastNewman) could be invoked
to obtain community structures in the sampled network. Sec-
tion 4.2 will introduce the implementation of the reduce
function in SIMPLE.

Ensembling Based on repetitious random sampling, the
reduce outputs r basic graph partitionings of G, i.e., [T =
{m1, m2, ..., m}. The task in this step aims to find a single
partitioning, i.e., community structures, of G from r basic
graph partitionings in I1. We formulate this task as the con-
sensus clustering (a.k.a. cluster ensemble) problem, and thus
utilize the so-called K-means-based Consensus Clustering
(KCC) [31] to solve it. Similar to K-means, KCC is easily be
parallelized in MapReduce. Two phases of K-means “clas-
sify” and “recenter” are encapsulated into map and reduce
respectively, and an iterative MapReduce process is activated
until centroids do not change. Section 5.1 will describe details
of KCC.

4 SIMPLE: the simplifying phase

In this section, we describe technical details of the “simpli-
fying” phase in our framework. It aims to decompose the
large network into a set of small networks and partition each

0-00)

Sharding

- N ETEETE EPE]
r times
Vs -
2
Random Graph k
Link-Sampling Partitioning i)
ni
i
Krtimes 'K Y K K |
Lin':-asr;‘n:":in Graph KCC: K-means-based
pling Partitioning . Consensus Clustering
— S
: H Map Reduce
\ Y rtimes . Classify Recenter
y 4) S
\ Random Graph
Link . sl
Shuffle Community
_ Map) k Reduce) Structures
SIMPlifying Ensembling

small network into a certain number of communities. This
phase is implemented into MapReduce jobs to facilitate the
distributed processing.

4.1 Map: random sampling

Since the very-large network is hard to be loaded into mem-
ory and be further processed, we hope to find a sampling
technique that is qualified to this simplifying task. Though
graph sampling techniques are extensively studied [9,13], we
argue that the selected sampling technique should satisfy at
least two conditions: (i) the sampling itself must be as sim-
ple as possible, otherwise it will become the bottleneck of
the whole system; (ii) the sampling should only rely on the
partial network rather than the whole network. Both condi-
tions are in fact outlined based on the efficiency issue of large
network processing.

Existing graph sampling algorithms can conceptually be
divided into two groups [13]: randomly selecting nodes/edges
and sampling by exploration. Since the community detection
needs to assign labels for every node and many detection
methods [11,18] are heavily dependent on the number of
edges, we choose random edge sampling, which obviously
satisfies both conditions mentioned above. As for other sam-
pling techniques by exploration, such as random walk [13],
forest fire [14] and metropolis sampling [9], they not only do
drop a few nodes but also take too much time for computing
various decision-making indices. Worse yet is, sampling by
exploration is similar to random walk that needs the global
view of the large network and thus it is difficult to be paral-
lelized.

Once random edge sampling is selected, the arising prob-
lem is can a subgraph better preserve the community structure
of the original graph. In the context of community detec-
tion, as a community can be simply viewed as a group of
nodes with higher similariy, the sampled graph is expected
to reserve node pairs with high-similarity as much as possi-
ble. Motivated by this, we first present a null model as the

@ Springer

Cluster Comput

reference model for the random edge sampling. The null
model provides the expectation for the similarity measure
of a given node in a pure random case. It is based on the fol-
lowing null hypothesis: the similarities between the node v
and its neighbors are produced by a random assignment from
a Bernoulli distribution [26]. Given a similarity threshold
€ € [0, 1], the high-similarity neighbors selection function
fv 1s therefore defined as:

fo= di > I(spu > 6. (1)

v ueT,

where d,, is the degree of node v, sy, (sy., € [0, 1]) is the
similarly between v and u, and / (-) is an indicator function.
The value of f; is the proportion of high-similarity neighbors
of v. When the random link sampling is applied, f,, may be
deteriorated. However, in what follows, we prove that this
deterioration is not significant even when the sample size n,
is small.

Theorem 1 Let s = ny be the sample size for a node v € V
and {(v,u1), ..., (v, us)} be the set of sampled links among
the incident links of v. Let X) = I(SU,,,]. > €) for each
Jj € [1,s]. Then, the estimation of f, using the sampled
incident links of v can be represented as X, = 1/s Z“]v-:l X3}
The errors of this estimation are bounded by Pr(|1X, — f,| >
8fy) < 1/dy if s = 3(Ind, + In2)/f,8%. Here, § € [0, 1] is
the relative error, which is defined as the ratio between the
absolute error and the value of f,.

Proof (Chernoff bound [4]) Let X 11) ..., X} denote a set of
independent variables following the Bernoulli distribution
with the success probability f,. For any § € [0, 1], we can
obtain that Pr(|X, — fo| = 8f,) < 2e~M*/3 < 174, if
s > 3(nd, +1n2)/f,8°. O
Theorem 1 implies that the estimation X, is very likely to
be close to the true value f,, when we set the sampling size
to be larger than 3(Ind, + In2)/f,8>. The probability that
X, is wrongly estimated can be controlled smaller than 1/d,,,
which is typically very small. Since the Chernoff bound [4]
is a bound for the worst case, in practice it is more reasonable
to determine the sample size to be even smaller than 3(Ind, +
In2)/f,8%. So, the value of 1, can be determined by

ny, = min{d,, a(Ind, + In2)}, 2)

where « is a nonnegative constant that is used to control the
sample size. The parameter o can be seen as the sampling
level. We will discuss how to set the value of « in Sect. 6.2.

O

In SIMPLE, each shard stores part of nodes but with
their complete records in 7, i.e., including all of neigh-
bor nodes. The map function invoked on a shard randomly

@ Springer

samples a certain number of neighbors of every node. With
Eq. 2, all of incident links of a low-degree node (e.g.,
dy < a(Ind, + In2)) are sampled, and the larger-degree
of a node is, the lower proportion of links will be extracted.
Note that the sampling is without replacement. Therefore,
the more intensive links of a network is, the more greatly the
network will be simplified.

4.2 Reduce: sampled graph partitioning

After every map node repeats random link sampling on one
shard for r times, a set of “key/value” pairs are produced,
where key[i], 1 <i < rcorresponds to the ith link-sampling
and valueli] records the part of sampled network. For exam-
ple, assume a shard stores [+ 1 nodes taking v as its first
node, i.e., {Ty, Ty+1, --., Ty41}, and let Tv(l) C T, denotes
the result of ith sampling on v. Thus, the ith “key/value” pair
can be represented as

(keylillvaluelil) = (il [T, T, ... TS, }). 3)

All of sampled fragments with the same key are mapped
to the same node, and thus a complete sampled graph can
be assembled. This process is automatically executed by
the shuffle function. Normally, any community detec-
tion method could be used for sampled graph partitioning.
However, in SIMPLE, we encapsulate METIS [11] in the
reduce function.

The reason why we select METIS rather than other tools
in SIMPLE can be summarized as the following aspects.
First, it is commonly that K < n, so the top-down par-
titioning used by METIS is usually much faster than the
bottom-up agglomeration methods (e.g., FastNewman). Sec-
ond, since the sampled network might not be a connected
graph, the bottom-up agglomeration method such as Fast-
Newman cannot combine different connected components
to form a big community. That is, if the sampled graph has
K’ > K connected sub-graphs, FastNewman finally obtains
at most K’ communities while cannot obtain K communi-
ties. But METIS can always obtain K communities even on
a disconnected network. Third, METIS uses some random
strategies during coarsening and computing the initial parti-
tioning, which tends to generate partitionings even on similar
sampled networks with high-diversities.

5 SIMPLE: the ensembling phase

Here, we discuss the ensembling phase of SIMPLE. We
first introduce the basic procedure of a consensus clustering
method called KCC, and then describe the implementation
of distributed KCC (d-KCC) on top of MapReduce.

Cluster Comput

5.1 KCC: the basic procedure

Every sampled network has been partitioned into K commu-
nities in reduce, and their labels can be integrated into a
n x (r K) matrix I1 = {7, my, ..., m,}. Each vector ; € Il
is obtained based on the topological relation among nodes.
So, the ensemble step only needs to find a high-quality
partitioning based on multiple basic partitionings, without
considering the topological relations, which typically is a
consensus clustering problem.

As is well known, K-means is a prototype-based, simple
partitional clustering method. The clustering process of K-
means is a two-phase iterative heuristic, with data assignment
(i.e., classify) and centroid update (i.e., recenter) stagger-
ing successively. The K-means-based Consensus Clustering
(KCC) [31] successfully transforms the consensus clustering
problem into a K-means problem, and could inherit all mer-
its of K-means: accuracy, efficiency and flexibility. From the
algorithmic perspective, KCC still employes the two-phase
iterative heuristic, which is similar to K-means. However,
the distance between the instance and the centroid should
be carefully designed to satisfy the continuously differen-
tiable function for the K-means distance. Here, we select the
cosine distance for KCC, due to sparsity of I1. Formally, let
my. denote the centroid of the kth cluster in I'T, whichis ar K
dimensional vector as follow:

mi=(mp1, ... mi, .. me), “4)
where
My = (Mpit, ... Miij, ..., MEK). (5

The instance in IT can also be represented as a ¥ K dimen-
sional vector denoted as x;. Thus, the cosine distance between
x; and my is

r

Dist(x;, my) = Z w,~(1 — cos(xy,i, mk,i)), 6)
i=1

where wj; is the weight of ith basic partitioning, and it can be
set to 1/r without the prior knowledge or instance-weighting
technique. As a result, the centroid my can be updated by:

w(mei) = llmeilla — 1PD]a, 7

where P = <p$)l e, pﬁi() is a constant vector w.r.t. IT.
Particularly, pg(= n(ﬁc /n, where ni}(denotes the number
of instances labeled & in ith basic partitioning. Meanwhile,

given a d-dimensional real vector y, ||y||, denotes the L,

. [<d
norm of y, i.e., [|yll, = {/ 2 iz, ylp.

With Eqgs. 6 and 7, KCC could be naturally deduced for
ensembling community structures. KCC starts by selecting
K nodes as initial centroids. Based on the cosine distance,
KCC forms K clusters (i.e., communities) by assigning each
node to its closest centroid, and then recomputes the centroid
of each cluster. This iterative process proceeds until centroids
or community labels do not change.

5.2 d-KCC: the MapReduce implementation

If we think of the original network as a n x n matrix, the
dimension of matrix IT has been reduced remarkably, since
r - K < n. Even so, when the network becomes very large,
applying KCC on a single machine is probably to be out of
memery or to cost much time. We therefore discuss the imple-
mentation of KCC in distributed environment. For the sake
of simplicity, we still use MapReduce as the basic framework
for implementing distributed KCC (d-KCC). As the iterative
version of MapReduce is not a standard or not very efficient
formulation, we reserve for future research on reforming d-
KCC to fit the in-memory cluster computing framework [35].

In the literature [38], parallel K-means based on MapRe-
duce is well designed. The map function performs the
“classify” procedure of assigning every instance to the closest
center, while the reduce function performs the “recenter”
procedure of updating the new centroids. As mentioned in
Sect. 5.1, the procedure of KCC is the same as K-means, and
KCC differentiates from K-means only on the distance def-
inition. Therefore, d-KCC could be easily implemented on
MapReduce along the way that K-means on MapReduce. In
practice, we use the open-source codes provided by Apache
Mahout [1] and revise the distance computation according to
Eq. 6.

6 Experimental results

In this section, we demonstrate both the effectiveness and
efficiency of SIMPLE on detecting communities from six
real-life social networks.

6.1 Experimental setup

Data sets Six complex networks are selected as experimen-
tal data sets. Oklahoma [29], UNC [29], Twitter [15],
Gowalla [5] and LiveJournal [33] are five friend-
ship networks derived from different social networking sites.
Skitter [14]is an Internet topology graph collected from
traceroutes run daily. We summarize some key features of
these networks in Table 1, where d, = 2|E|/|V| indicates
the average degree, C is the average cluster coefficient, and
p(dy) indicates the distribution of the degree. It was found
that all the experimental networks display power law shaped

@ Springer

Cluster Comput

Table 1 Experimental data sets

Network 4 |E| d, C p(dy)
Oklahoma 17,420 892,524 102.47 0.23 1.13d;140
UNC 18,158 766,766 84.45 0.20 1.33d; 147
Twitter 81,306 1,342,296 33.00 0.57 2.61d; 83
Gowalla 196,591 950,324 9.67 0.20 0.38d; 174
Skitter 1,696,415 11,095,298 13.08 0.26 0.04d; 141
LiveJournal 3,997,963 34,681,189 17.35 0.28 12.7d;240
degree distribution(p(dy) ~ A - d, "), with exponents vary- ; Oka. NG T Twiter Gowalla Sitier LiveJournal
ing in the range 1 < 1 < 3. Notice that a small value of n
indicates that the given distribution is more heavy-tailed. 08
Competitive tools Five relevant community detection tools
are selected as baselines for comparison: METIS [11], E 06
FastNewman (FN) [18], Parallel K-means (PaKmeans) in ®
Mahout [1], BigClam [34] and SCD [24]. METIS, FN —5‘0_4
and Kmeans are three classical algorithms for community «
detection. BigClam and SCD are two effective yet scalable 02
methods in the state of the art.
Quality measure The modularity (i.e., Q-function) pro- \ \
o 10° 10’ 10°

posed by Newman [19] is chosen to evaluate the quality of
partitions, which is defined as

ST A
¢ ; E \2IE)" ®
where |E| is the number of edges within community Cy
and dy = 2,c¢, dv is the sum of node degrees of Cy. It is
expected that better communities of a given network will be
with bigger Q values.

Hadoop cluster We construct a Hadoop cluster with eight
nodes connected by a Gigabit Ethernet as the basic plat-
form of SIMPLE. Each node comes with four quad-core
ES5-2650v2 processors (2.6 GHZ), 128 GB of RAM, 240 GB
of SSD disk and 600 GB of SAS disk. The Hadoop version
is 1.0.4. One node is used to run NameNode, JobTracker,
DataNode and TaskTracker simultaneously. So, this cluster
totally contains eight nodes for map or reduce tasks.

6.2 Parameters analysis

There are two important parameters in SIMPLE: the sam-
pling level « in Eq. 2 to control the sample size n,, and the
number of random samplings r, i.e., the number of Basic
Partitionings (BPs).

The parameter o One direct way to measure the efficiency
of sampled graph partitioning is to employ a parameter called
sampling rate (denoted as y), which is defined by the ratio
between the number of the sampled links and the total number
of links in the original network (see Eq. 9). Obviously, y
plays acrucial role in SIMPLE for balancing the effectiveness

@ Springer

Fig. 2 Sampling rates with different values of o

and the efficiency. More precisely, given p(d,) and «, the
sampling rate y can be estimated by

E| 2 @)y Xy pdyny
|E| Zdv np(dy)dy Zdu p(dy)dy,

Y &)

where |E’| is the number of edges in the sampled graph.
Figure 2 plots y as a function of « on all networks. As can
be seen, y grows with the increase of «, which indicates
that the value of « indeed has a great and positive impact to
the sampling rate. Specifically, y is lower than 60 % when
o < 10, to balance the effectiveness and efficiency, we set
a € [1,10] and thus less than 60 % links will be main-
tained in the sampled graphs, which leads to the high efficient
graph partitionings in the successive step. From We can also
observe that y increases slower on the more heavy-tailed net-
work. For instance, the curve of Skitter rises faster than
the LiveJournal curve up to @ = 7. This implies that the
proposed sampling strategy might be more effective for the
networks with significantly heavy-tailed.

The parameter r To illustrate the impact of sampling times
r in map, we set « to be a random value in [1, 10], and lin-
early increase r from 20 to 120. For each sampled network,
METIS is employed to partitioned K = 10 communities in
reduce. Finally, those r basic graph partitioning are ensem-
bled by KCC to obtain K = 10 crisp partition. Figure 3
shows the impact of » on Q values. Generally, the quality of

Cluster Comput

Okla. —8— UNC —¥%— Twitter —A— Gowalla —— Skitter —§7— LiveJournal
. T T
D
v v v

o o N N >

0.8 M M i
— ; 5 A X X X
Q[i = =
~ L 1 4
Z08 !
~ 1
3 |
Soaf |]
S 0.
=

B/__B,’_é_—a—e—”ﬂ

o
[

1
1
1
L i i

20 40 60 80 100 120
The Number of Random Samplings (r)

i

Fig. 3 Impact of the number of random samplings

identified communities in terms of Q increases steadily with
the increase of r. We find that the quality of SIMPLE tends to
be satisfactory when r reaches 60, and is even better than Q
values with 100 and 120 samplings on some networks, e.g.,
Skitter and LivedJournal. As a result, in the follow-
ing experiments, unless stated otherwise, we set r = 60 and
a € [1,10].

6.3 Comparison on effectiveness

In this subsection, we shall validate the performance of SIM-
PLE that is comparable to five baseline tools. We vary the
number of communities K from 10 to 60 for SIMPLE,
PaKmeans, METIS and FN. However, the K value is auto-
matically set by SCD and BigClam. So we mark the K values
in Fig. 4 for both methods. As the increase of scales, some
tools run out of memory, which leads to missing lines in
Fig. 4e, f.

As can be seen from Fig. 4 SIMPLE consistently shows
the best performance in terms of the Q function. This well
validates that SIMPLE can identify high quality community

Cumulative Probability

’ = = = All Users

Users in Communities

0 0.5 1 1.5 2

Distance Between Home (km) x10°

Fig. 5 Semantic validation on Gowalla

structures on various networks. Meanwhile, the Q values of
METIS are obviously lower than those of SIMPLE, though
SIMPLE invokes METIS in reduce for sampled graph
partitioning. This implies the ensembling phase is critically
important for the success of SIMPLE in community detec-
tion. Moreover, SCD tends to partition the network into a
mass of small communities, which largely reduces the mod-
ularity. In contrast, though BigClam can limit the number of
identified communities, its Q values are always minimum.
We exploit the users’ check-in trajectory information pro-
vided by Gowal la for the semantic validation of identified
communities. Since online friends tend to have closer home
locations [5], we suppose that users in a same community
also tend to live more closely. We use SIMPLE to partition
the Gowalla network into 10 communities. To infer users’
home locations from their check-in locations, we first dis-
cretize the world map into 0.25 by 0.25 cells (measured by
latitude and longitude) and then defined the home location as
the centroid of a cell with the most check-ins, as suggested
by [5]. The home distance on earth’s surface between any

—e— SIMPLE —#&— PaKmeans —+&— METIS —e—FN ----SCD - BigClam
o8| ———
y. A
0.7t - —e—o—6-
‘k‘_Nﬂ_A
Q 067 E E E%‘ \
£ 05
g K=24526
ST | N O - N A K=201534
E s = = S L e |
S 03p—e—e——o=
K=2098 = | |eecmmmeeao] |- 2 Keasrs L
0.2 K=2060 K=52893 K105
ka9 | | | e e _
k=49 T Ay K=41 K13 T =i e
0.1} s i e S I

K10 20 30 40 50 60 10 20 30 40 50 6010 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

(a) (b) (¢)

(6] (e) ®

Fig. 4 Performance comparison in terms of modularity. a Oklahoma, b UNC, ¢ Twitter,d Gowalla, e Skitter and f LiveJournal

@ Springer

Cluster Comput

two users was computed by using the pos2dist function in
MATLAB. Figure 5 shows the cumulative distributions of all
users and users within the same community. As can be seen,
the home distance between any two users in a same commu-
nity is statistically shorter than the distance between any two
users of the whole network. This indicates that the commu-
nities identified by SIMPLE from Gowal la is semantically
cohesive.

To sum up, compared with five baseline methods, SIMPLE
could discover higher quality communities in terms of Q. As
indicated by a case study on Gowalla, the communities
returned by SIMPLE are semantically meaningful.

10°

- @ -BigClam

—6—SIMPLE LiveJournal
104» -A- SCD Skitte,r')]

Gowalla ’
S~

The Execution Time (seconds in Log)

107 v |
\I
‘l
/,
A:-—-""""A S -X
101 L L L L L
0.75 0.85 0.95 1 10 100
Million Edges

Fig. 6 Comparison on overall efficiency

Map: Reading —5/— Map: Sampling

—A— Map: Writing —8— Reduce: Partitioning

6.4 Efficiency analysis

To analyze the efficiency of SIMPLE, we select BigClam and
SCD for comparison. BigClam is a scalable matrix factor-
ization method on a single machine, while SCD is a parallel
WCC optimization method adopting the in-memory com-
puting technique. As can be seen from Fig. 6, SIMPLE is
generally more scalable than BigClam, yet less scalable than
SCD. When the network becomes larger (e.g., Skitter
and LiveJournal), SIMPLE reaches the same order of
magnitude of SCD in terms of running time. The main rea-
son is that the overhead cost of SIMPLE is much expensive
than SCD, since SIMPLE uses MapReduce for distributed
computing but SCD utilizes parallel computing on sharing
memory. This indeed inspires us to employ the in-memory
computing paradigm (e.g., Spark [36]) to further improve the
scalability of SIMPLE in the future.

We further take a closer look at the efficiency of every
phase in SIMPLE. Note that the sharding phase usually
consumes a thimbleful of time (e.g., about 2's), which is neg-
ligible here. Since the map phase handles large networks
directly, we divide this phase into three sub-phases including
reading, sampling and writing. Figure 7 shows the execution
time of three phases (i.e., map, reduce, and d-KCC) on
two large networks (i.e., Skitter and LiveJournal).
From Fig. 7, we can observe several important facts. First,
the execution time of map is mainly spent on writing the out-

—6— d-KCC: Ensembling

T T T T

Skitter
600 -

500

400

300 -

The Execution Time (in seconds)

200

100
4

T T T

Livejournal

4
4

4

\ A4

70
The Number of Random Samplings (r)

Fig. 7 Efficiency of every phase within SIMPLE

@ Springer

80 30

40 50 60 70 80

Cluster Comput

Table 2 Performance comparison on three sampling techniques

Network SIMPLE-RAN SIMPLE-FF SIMPLE-MS
Oklahoma 0.389 0.365 0.364
UNC 0.400 0.404 0.386
Twitter 0.770 0.674 0.594
Gowalla 0.677 0.534 0.427

put results to HDFS. Second, the efficiency of reduce is
stable and efficient, though the number of random samplings
is increasing. This demonstrates the advantage of selecting
METIS as the graph partitioning tool in this phase. Third,
the execution time of d-KCC fluctuates slightly due to the
random selection of the initial centroids.

In summary, SIMPLE exploits the MapReduce framework
to obtain a satisfactory scalability, though being inferior to
in-memory computing based method (e.g., SCD). However,
SIMPLE can identify higher quality communities than SCD,
as indicated in Sect. 6.3, which is enough to make up the
slight inferiority on efficiency.

6.5 Comparison on sampling

Here, we show in experiments the advantage of random sam-
pling used in SIMPLE. Four networks Oklahoma, UNC,
Twitter and Gowalla are used, and two state-of-the-
art sampling strategies, ForestFire sampling (FF) [14] and
Metropolis sampling (MS) [9] are chosen as baselines. We
run three different sampling strategies to generate 60 sub-
graphs with y = 0.3 each. For each sampled network,
METIS is employed to partition K = 10 communities.
Finally, those 60 basic graph partitioning are ensembled by
KCC to obtain a single K = 10 crisp partition. Note that FF
has two parameters: forward (p y) and backward (p,) burning
probability, both of which can be regulated to meet a given
y. As for MS, we can adjust the degree distribution (p(d,))
to fit the given y.

The overall performance comparison on three sampling
techniques is listed in Table 2, also in terms of Q. Note that
the optimal Q values are in bold. The random sampling per-
forms slightly worse than FF on UNC, a small dense network,
but best on other networks. Especially, the gap on the sparse
network Gowalla becomes much more sensible. To illus-
trate why the random sampling always performs best, we
further showcase in Fig. 8 the boxplots of Q values of 60
BPs generated by different sampling. Note that the Q value
in Fig. 8 is computed on sampled graph with about 30 %
edges. Results in Fig. 8 are consistent with Table 2, that is,
higher quality of BPs leads to final communities with higher
quality. Furthermore, we can also observe that the stability of
random sampling is superior to other sampling techniques.

0.8} -

0.7 =
MS
0.6

|
0.5 @
FF

Modularity (Q)

oF +

Gowalla Oklahoma Twitter UNC

Fig. 8 Stability comparison on sampling techniques

7 Conclusion

This paper presents the SIMPLifying and Ensembling (SIM-
PLE) framework on top of MapReduce for parallel com-
munity detection. SIMPLE is indeed a flexible framework
that is composed of three main phases: link sampling,
sampled graph partitioning, and ensembling. These three
phases are all implemented in MapReduce to ensure SIM-
PLE can handle large networks. Technical details of three
phases are discussed. Particularly, we prove the errors intro-
duced by random sampling can be controlled into a small
range with a high confidence, even as the ramdom rate is
very low. We also illustrate the reason that why we select
METIS for sampled graph partitioning and KCC for ensem-
bling. Experimental results on six real-world social networks
have demonstrated that SIMPLE can successfully discover
higher quality (indicated by Q) and meaningful (indicated by
semantic analysis) communities. From the efficiency valida-
tion, SIMPLE exhibits good scalability and can efficiently
handle large networks with ten millions of nodes and edges.

Acknowledgments This research was partially supported by Natio-
nal Natural Science Foundation of China under Grants 71571093,
71372188 and 61502222, National Center for International Joint
Research on E-Business Information Processing under Grant 2013B01-
035, National Key Technologies R&D Program of China under Grants
2013BAH16F01 and 2013BAH16F04, Industry Projects in Jiangsu
S&T Pillar Program under Grant BE2014141, Natural Science Foun-
dation of Jiangsu Province of China under Grant SBK2015042593, and
Key/Surface Projects of Natural Science Research in Jiangsu Provincial
Colleges and Universities under Grants 12KJA520001, 14KJA520001,
14KJB520015, 15KJB520012 and 15KJB520011.

References

1. Apache Software Foundation: Apache Mahout: Scalable machine-
learning and data-mining library. http://mahout.apache.org

2. Bernard, T., Bui, A., Pilard, L., Sohier, D.: A distributed clustering
algorithm for large-scale dynamic networks. Clust. Comput. 15(4),
335-350 (2012)

@ Springer

http://mahout.apache.org

Cluster Comput

10.

11.

12.

13.

14.

15.

20.

21.

22.

23.

24.

Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.:
Fast unfolding of communities in large networks. J. Stat. Mech.
2008(10), P10008 (2008)

Chernoff, H.: A measure of asymptotic efficiency for tests of a
hypothesis based on the sum of observations. Ann. Math. Stat.
493-507 (1952)

Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user
movement in location-based social networks. In: Proceedings of
KDD, pp. 621-628 (2011)

Clauset, A.: Finding local community structure in networks. Phys.
Rev. E 72, 026132 (2005)

Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3—
5), 75-174 (2010)

Gregori, E., Lenzini, L., Mainardi, S.: Parallel k-clique community
detection on large-scale networks. IEEE Trans. Parallel Distrib.
Syst. 24(8), 1651-1660 (2013)

Hubler, C., Kriegel, H.P., Borgwardt, K., Ghahramani, Z.: Metropo-
lis algorithms for representative subgraph sampling. In: Proceed-
ings of the 2008 IEEE 7th International Conference on Data
Mining, pp. 283-292. IEEE (2008)

Hui, P., Yoneki, E., Chan, S.Y., Crowcroft, J.: Distributed commu-
nity detection in delay tolerant networks. In: Proceedings of 2nd
ACMV/IEEE International Workshop on Mobility in the Evolving
Internet Architecture, p. 7. ACM (2007)

Karypis, G., Kumar, V.: Multilevel k-way hypergraph partitioning.
In: Proceedings of the 36th Conference on Design Automation, pp.
343-348 (1999)

LaSalle, D., Karypis, G.: Multi-threaded modularity based graph
clustering using the multilevel paradigm. J. Parallel Distrib. Com-
put. 76, 66-80 (2015)

Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Pro-
ceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 631-636. ACM (2006)
Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: den-
sification laws, shrinking diameters and possible explanations. In:
Proceedings of the Eleventh ACM SIGKDD International Con-
ference on Knowledge Discovery in Data Mining, KDD 05, pp.
177-187. ACM (2005)

Leskovec, J., Mcauley, J.J.: Learning to discover social circles in
ego networks. In: Advances in Neural Information Processing Sys-
tems, pp. 539-547 (2012)

Li, E, Ooi, B.C., Ozsu, M., Wu, S.: Distributed data management
using mapreduce. ACM Comput. Surv. 46(3), 31 (2013)

Moon, S., Lee, J.G., Kang, M.: Scalable community detection
from networks by computing edge betweenness on mapreduce.
In: International Conference on Big Data and Smart Computing
(BIGCOMP), pp. 145-148. IEEE (2014)

. Newman, M.E.: Fast algorithm for detecting community structure

in networks. Phys. Rev. E 69(6), 66-113 (2004)

Newman, M.E.: Modularity and community structure in networks.
Proc. Natl. Acad. Sci. 103(23), 8577-8582 (2006)

Newman, M.E.J.: The structure of scientific collaboration net-
works. Proc. Natl. Acad. Sci. 98(2), 404—409 (2001)

Palla, G., Derenyi, 1., Farkas, I., Vicsek, T.: Uncovering the over-
lapping community structure of complex networks in nature and
society. Nature 435, 814-818 (2005)

Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.:
Community detection in social media. Data Min. Knowl. Discov.
24(3), 515-554 (2012)

Prat-Pérez, A., Dominguez-Sal, D., Brunat, .M., Larriba-Pey, J.L.:
Shaping communities out of triangles. In: Proceedings of the 21st
ACM International Conference on Information and Knowledge
Management, pp. 1677-1681. ACM (2012)

Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.: High quality,
scalable and parallel community detection for large real graphs.

@ Springer

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

In: 23rd International World Wide Web Conference, WWW ’14,
Seoul, 7-11 April, pp. 225-236 (2014)

Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm
to detect community structures in large-scale networks. Phys. Rev.
E 76(3), 036-106 (2007)

Serrano, M.A‘, Boguid, M., Vespignani, A.: Extracting the multi-
scale backbone of complex weighted networks. Proc. Natl. Acad.
Sci. 106(16), 6483-6488 (2009)

Shi, J., Xue, W., Wang, W., Zhang, Y., Yang, B., Li, J.: Scalable
community detection in massive social networks using mapreduce.
IBM J. Res. Dev. 57(3/4), 12-1 (2013)

Tang, L., Liu, H.: Community Detection and Mining in Social
Media. Morgan & Claypool Publishers, San Rafael (2010)

Traud, A.L., Kelsic, E.D., Mucha, PJ., Porter, M.A.: Comparing
community structure to characteristics in online collegiate social
networks. SIAM Rev. 53(3), 526-543 (2011)

White, T.: Hadoop: The Definitive Guide: The Definitive Guide.
O’Reilly Media (2009)

Wu, J., Liu, H., Xiong, H., Cao, J.: A theoretic framework of k-
means-based consensus clustering. In: Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence, pp.
1799-1805. AAAI Press (2013)

Wu, Z., Cao, J., Wu, J., Wang, Y., Liu, C.: Detecting genuine com-
munities from large-scale social networks: a pattern-based method.
Comput. J. 57(9), 1343-1357 (2014)

Yang, J., Leskovec, J.: Defining and evaluating network communi-
ties based on ground-truth. In: Proceedings of ICDM, pp. 745-754
(2012)

Yang, J., Leskovec, J.: Overlapping community detection at scale:
a nonnegative matrix factorization approach. In: Proceedings of
the sixth ACM international conference on Web search and data
mining, pp. 587-596. ACM (2013)

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,
M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster comput-
ing. In: Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation. NSDI" 12, pp. 2-2. USENIX
Association, Berkeley, CA (2012)

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica,
I.: Spark: cluster computing with working sets. In: Proceedings of
the 2nd USENIX Conference on Hot topics in Cloud Computing,
vol. 10, p. 10 (2010)

Zhang, Y., Wang, J., Wang, Y., Zhou, L.: Parallel community detec-
tion on large networks with propinquity dynamics. In: Proceedings
of the 15th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 997-1006. ACM (2009)
Zhao, W., Ma, H., He, Q.: Parallel k-means clustering based on
mapreduce. In: Proceedings of the 1st International Conference on
Cloud Computing, CloudCom *09, pp. 674—-679. Springer (2009)

Zhiang Wu received his Ph.D.
degree in Computer Science
from Southeast University, Chi-
na, in 2009. He is currently an
associate professor of Jiangsu
Provincial Key Laboratory of
E-Business at Nanjing Univer-
sity of Finance and Economics.
He is the member of the ACM,
IEEE and CCFE. His recent
research interests include distrib-
uted computing, social network
analysis and data mining.

Cluster Comput

Guangliang Gao is currently
pursuing the Ph.D. degree in
Nanjing University of Science
and Technology, Nanjing, China.
His main research interests incl-
ude data mining and social net-
works.

Zhan Bu received his Ph.D.
degree in Computer Science
from Nanjing University of
Aeronautics and Astronautics,
China, in 2014. He is currently
a lecturer of Jiangsu Provincial
Key Laboratory of E-Business
at Nanjing University of Finance
and Economics. He is the mem-
ber of CCFE. His recent research
interests include social network
analysis, complex network and
data mining.

Jie Cao received his Ph.D.
degree from Southeast Univer-
sity, China, in 2002. He is
currently a professor and the
dean of School of Information
Engineering at Nanjing Uni-
versity of Finance and Eco-
nomics. He has been selected
in the Program for New Cen-
tury Excellent Talents in Univer-
sity (NCET) and awarded with
Young and Mid-aged Expert
with Outstanding Contribution
in Jiangsu province. His main
research interests include cloud
computing, business intelligence
and data mining.

@ Springer

	SIMPLE: a simplifying-ensembling framework for parallel community detection from large networks
	Abstract
	1 Introduction
	2 Related work
	3 Problem definition and system overview
	3.1 Problem definition
	3.2 System overview

	4 SIMPLE: the simplifying phase
	4.1 Map: random sampling
	4.2 Reduce: sampled graph partitioning

	5 SIMPLE: the ensembling phase
	5.1 KCC: the basic procedure
	5.2 d-KCC: the MapReduce implementation

	6 Experimental results
	6.1 Experimental setup
	6.2 Parameters analysis
	6.3 Comparison on effectiveness
	6.4 Efficiency analysis
	6.5 Comparison on sampling

	7 Conclusion
	Acknowledgments
	References

