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Shortest path problem in stochastic graphs has been recently studied in the literature and a number of 
algorithms has been provided to find it using varieties of learning automata models. However, all 
these algorithms suffer from two common drawbacks: low speed and lack of a clear termination 
condition. In this paper, we propose a novel learning automata-based algorithm for this problem 
which can speed up the process of finding the shortest path using parallelism. For this parallelism, 
several traverses are initiated, in parallel, from the source node towards the destination node in the 
graph. During each traverse, required times for traversing from the source node up to any visited 
node are estimated. The time estimation at each visited node is then given to the learning automaton 
residing in that node. Using different time estimations provided by different traverses, this learning 
automaton gradually learns which neighbor of the node is on the shortest path. To set a condition for 
the termination of the proposed algorithm, we analyze the algorithm using a recently introduced 
model, Adaptive Stochastic Petri Net (ASPN-LA). The results of this analysis enable us to establish 
a necessary condition for the termination of the algorithm. To evaluate the performance of the 
proposed algorithm in comparison to the existing algorithms, we apply it to find the shortest path in 
six different stochastic graphs. The results of this evaluation indicate that the time required for the 
proposed algorithm to find the shortest path in all graphs is substantially shorter than that required 
by similar existing algorithms. 

Keywords: Stochastic graphs; the shortest path problem; learning automata; adaptive stochastic petri 
net based on learning automata. 
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1. Introduction 

The deterministic shortest path problem in graphs has been studied extensively and many 
algorithms have been reported in the literature to solve it.1 In this problem, one looks for 
a path joining source and destination nodes while minimizing the summation of the 
traversed edges’ lengths. However, there are many applications where the underlying 
graph is a stochastic graph and hence, the lengths of edges are random variables; a graph 
with stochastic edge lengths. If the probability distribution functions of these random 
variables are unknown, then finding the shortest path cannot be possible using the 
algorithms introduced for the deterministic shortest path problem. Recently, some 
algorithms have been proposed to find the shortest path in stochastic graphs with 
unknown characteristics using Distributed Learning Automata (DLA) or extended DLA 
(eDLA), two complex models based on the learning automaton model.2  

Learning automaton (LA) model was introduced in 1960s3 and was popularized by 
Narendra.4 An LA is an adaptive decision-making agent that improves its performance by 
interaction with an environment. Recently, the LA has been applied to a wide range of 
science and engineering applications (e.g. Refs. 1 to 4). In addition, a group of LAs can 
interact with each other in different interconnected structures, such as Cellular Learning 
Automata (CLA),5 Irregular CLA (ICLA)6, Distributed Learning Automata (DLA),1 and 
extended DLA (eDLA),2 to solve complicated problems.  

All of the DLA- or the eDLA-based algorithms introduced to solve the shortest path 
problem in stochastic graphs with unknown characteristics suffer from two common 
drawbacks. The first drawback is the low speed of these algorithms since these 
algorithms try to find the shortest path by sequentially traversing different paths along the 
graph from the source node towards the destination node, sampling the lengths of the 
traversed paths, and finally, identify the shortest path by comparing these sampled values. 
In this paper, we argue that this sequential process can be performed in a parallel manner, 
thus increasing the speed.  

The second drawback is that in these algorithms, no clear condition is given for 
terminating the sequential traversing and sampling process. They use a simple condition 
of maximum number of traversing which indeed is not a suitable condition; the specified 
maximum number could be too low, resulting in inadequate number of samples, or could 
be too high, resulting in the wasting of time, collecting non-necessary samples. In this 
paper, we propose a necessary condition which if it does not hold, the number of samples 
collected so far will still not be enough. Thus, using AND operator between this 
condition and the maximum number of traversing condition can at least prevent the 
algorithm from being stopped before inadequate numbers of samples are collected. 

In the proposed algorithm, each node 𝑖, except for the source node, is equipped with a 
learning automaton (LA). The LA residing in the node 𝑖  is responsible to find the 
neighbor 𝑗 of that node, which is on the shortest path from the source node to the node 𝑖. 
To this end, we let that several tokens, in parallel, start to traverse different paths between 
the source and the destination nodes, hop by hop, in such a way that each token estimates 



Finding the Shortest Path in Stochastic Graphs Using LA and ASPN-LA   429 

the required time for its traverse. Using the times provided by different tokens passed by, 
LA in each node gradually learns which neighbor is on the shortest path.  

To establish a necessary condition for the termination of the proposed algorithm, it is 
required to first analyze the steady-state behavior of the algorithm. A suitable way of 
analyzing the steady-state behavior of an algorithm is to model it using a Petri net and 
then analyze the resulted Petri net. Therefore, in this paper, we first represent the 
proposed algorithm by a recently introduced stochastic Petri net, called Adaptive 
Stochastic Petri net based on LA (ASPN-LA7) and then analyze the steady-state behavior 
of the yielded ASPN-LA. The reason as to why ASPN-LA, among different kinds of 
Petri nets, is selected to represent the proposed algorithm is that in this model, like in the 
algorithm, there exists several decision points at each of which an LA is used for making 
decisions. Therefore, representing the algorithm by the ASPN-LA can be simply 
accomplished by mapping the operation of LAs in the algorithm into the operation of 
LAs in the decision points of ASPN-LA.  

The rest of the paper is organized as follows: Section 2 gives the problem statement. 
Section 3 briefly reviews learning automata based algorithms introduced to solve the 
shortest path problem in the stochastic graphs. Section 4 gives a short review of the 
adaptive stochastic Petri nets. Section 5 describes the proposed algorithm. Section 6 gives 
the simulation results of the proposed algorithm. Section 7 concludes the paper. 

2. Problem Statement 

We first define a stochastic graph and then, explain the shortest path problem in 
stochastic graphs. 

Definition 1. A stochastic graph is defined by a triple  𝐺 = (𝑉,𝐸,ℱ) , where 𝑉 =
{𝑣1, 𝑣2, … , 𝑣𝑛} is set of nodes, 𝐸 ⊂ 𝑉 × 𝑉 specifies set of edges, and 𝑛 × 𝑛 matrix ℱ is the 
probability distribution describing the statistics of edge lengths, where 𝑛 is the number of 
nodes. 

Here, we consider the length of an edge from node 𝑣𝑖  to node 𝑣𝑗 (𝑑𝑖𝑖) to be the time 
required for traversing from 𝑣𝑖  to 𝑣𝑗 . Since the graph is stochastic, 𝑑𝑖𝑖  is a positive 
random variable with 𝑓𝑖𝑖 as its probability density function; each 𝑓𝑖𝑖 is assumed to be an 
exponential distribution with an unknown rate parameter.  

In a stochastic graph 𝐺, a path 𝜏𝑖, consists of 𝜅𝑖 nodes and with expected length of 
𝐿�𝜏𝑖 , from a source node to a destination node is defined as an ordering 
{𝑣𝜏𝑖,1, 𝑣𝜏𝑖,2, … , 𝑣𝜏𝑖,𝜅𝑖} ⊂ 𝑉  of nodes in such a way that 𝑣𝜏𝑖,1  and 𝑣𝜏𝑖,𝜅𝑖  are source and 
destination nodes, respectively, and (𝑣𝜏𝑖,𝑗 , 𝑣𝜏𝑖,𝑗+1) ∈ 𝐸 for 1 ≤ 𝑗 < 𝑘𝑖 , where 𝑣𝜏𝑖,𝑗  is the 
𝑗𝑡ℎ node in path 𝜏𝑖. 

Let 𝑣𝑠 , 𝑣𝑑 ∈ 𝑉 be the source and destination nodes, respectively. In the stochastic 
graph, there are ℳdifferent paths Ω = {𝜏1, 𝜏2, … , 𝜏ℳ} between 𝑣𝑠 and 𝑣𝑑 . Let Ω𝑙 ⊆ Ω be 
the set of loop-free paths between 𝑣𝑠  and 𝑣𝑑 . The shortest path between 𝑣𝑠  and 𝑣𝑑  
denoted by 𝜏∗ ∈ Ω𝑙 , is defined as a path with minimum expected length, that is 𝐿�𝜏∗ =
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𝑚𝑚𝑚𝜏∈Ω𝑙{𝐿�𝜏} . The shortest path problem is thus to find such a path assuming no 
knowledge about the rate parameters of probability density functions ℱ. 

3. Learning Automata and the Shortest Path Problem 

In this section, we will briefly review LA-based algorithms introduced in the literature so 
far to solve the shortest path problem in stochastic graphs with unknown characteristics; 
the edge lengths in this graph are stochastic and come from exponential distributions with 
unknown rates. Before reviewing these algorithms, we briefly describe LA, DLA, and 
eDLA.  

3.1. Learning automata and distributed learning automata 

A learning automaton (LA) is an adaptive decision-making unit that improves its 
performance by learning how to choose the optimal action from a finite set of allowed 
actions through repeated interactions with a random environment8. An action is chosen at 
random as a sample realization of action probability distribution. The chosen action is 
then taken in the environment. The environment responds to the taken action in turn with 
a reinforcement signal. The action probability vector is then updated based on the 
reinforcement feedback from the environment. 

An LA can be divided into two main categories4: fixed structure LA and variable 
structure LA. In what follows, variable structure LA used in this paper will be briefly 
described. 

Definition 2. Learning automaton (LA) with variable structure is represented by 𝐴 =
{𝛼,𝛽, 𝑞, 𝐿}, where α = {α1,α2, … ,αr} is the set of actions, 𝛽 = {𝛽1,𝛽2, … ,𝛽𝑚} is the set 
of inputs, 𝑞 = {𝑞1, 𝑞2, … , 𝑞𝑟} is the action probability set and L is the learning algorithm.4 

The learning algorithm 𝐿 is a recurrence relation which is used to modify the action 
probability vector. Let 𝛼(𝑛) and 𝑞(𝑛) denote the action chosen at instant 𝑛 and the action 
probability vector, respectively. The recurrence equations, shown by Eqs. (1) and (2), are 
linear learning algorithms used to update the action probability vector 𝑞. Let 𝛼(𝑛) be the 
action chosen by the automaton at instant 𝑛 

𝑞𝑗(𝑛 + 1) = �
𝑞𝑗(𝑛) + 𝑎(𝑛)�1 − 𝑞𝑗(𝑛)�, 𝑗 = 𝑖
�1 − 𝑎(𝑛)�𝑞𝑗(𝑛),                    ∀𝑗 ≠ 𝑖

 (1) 

when the taken action is rewarded by the environment (i.e. 𝛽(𝑛) = 0) and 

𝑞𝑗(𝑛 + 1) = �
(1 − 𝑏(𝑛))𝑞𝑗(𝑛),                           𝑗 = 𝑖

�
𝑏(𝑛)
𝑟 − 1

� + (1 − 𝑏(𝑛))𝑞𝑗(𝑛),    ∀𝑗 ≠ 𝑖
 (2) 

when the taken action is penalized by the environment (i.e. 𝛽(𝑛) = 1). In Eqs.  (1) and 
(2)(2), 𝑎(𝑛) ≥ 0 and 𝑏(𝑛) ≥ 0 denote the reward and penalty parameters that determine 
the amount of increases and decreases of the action probabilities, respectively. If 
𝑎(𝑛) = 𝑏(𝑛), the recurrence Eqs. (1) and (2) are called linear reward–penalty (𝐿𝑅−𝑃) 



Finding the Shortest Path in Stochastic Graphs Using LA and ASPN-LA   431 

algorithm; if 𝑎(𝑛) ≫ 𝑏(𝑛) , the given equations are called linear reward- ε  penalty 
(𝐿𝑅−𝜀𝜀); and finally if 𝑏(𝑛) = 0, they are called linear reward–Inaction (𝐿𝑅−𝐼). In 𝐿𝑅−𝐼, 
the action probability vector remains unchanged when the taken action is penalized by 
the environment. 

At the time instant 𝑛, an LA operates as follows: (1) it randomly selects an action 
𝛼(𝑛)  based on the action probability vector 𝑞(𝑛) , (2) it performs 𝛼(𝑛)  on the 
environment and receives the environment's response 𝛽(𝑛), and (3) it updates its action 
probability vector using the learning algorithm. 

The LA is, by design, a simple unit by which simple decision makings can be 
performed. The full potential of the LA will be realized when a cooperative effort is made 
by a set of interconnected LAs to achieve the group synergy. In other words, LAs can be 
used as the building blocks of more complex learning models. These complex models 
include hierarchical system of LA,11 distributed LA (DLA)1, extended DLA2, network   
of LA,12 multi-level game of LA,13,14 cellular LA (CLA)15 CLA-based evolutionary 
computing,16 differential evolution-based CLA,17 CLA-based particle swarm 
optimization,18 and Irregular CLA.6 Among these complex models, DLA and eDLA has 
been used so far for finding the shortest path in stochastic graphs. This is because these 
models are better suited for sampling paths in stochastic graphs. In what follows, we will 
briefly describe these two models.  

DLA is a network of LAs collectively cooperating to solve a particular problem. A 
DLA can be modelled by a directed graph where the set of nodes constitutes the set of 
learning automata and the set of outgoing edges for each node constitutes the set of 
actions for the corresponding LA. When an LA selects one of its actions, another 
automaton on the other end of the edge corresponding to the selected action will be 
activated. At any time only one LA in the network will be activated. A DLA is embedded 
in a graph and can be formally defined as below. 

Definition 3. A Distributed Learning Automata (DLA) can be defined as a 4-tuple 
(𝐴,𝐸, 𝐿,𝐴0), where 𝐴 = {𝐴1,𝐴2, … ,𝐴𝑛} is the set of LAs, 𝐸 ⊆ 𝐴 × 𝐴 is the set of edges 
in the graph where an edge (𝑖, 𝑗) corresponds to action 𝛼𝑗 of 𝐴𝑖. 𝐿 is the set of learning 
schemes with which the LAs update their action probability vectors, and 𝐴0 is the root 
LA of the DLA from which activation is started. 

An extended distributed learning automata (eDLA2) is a new extension of DLA 
which is supervised by a set of rules governing the operation of the LAs. In general in 
eDLA, the ability of a DLA is improved by adding communication rules and changing 
the activity level of each LA. In eDLA, at any time, not only each LA can be in one mode 
of activity level but also each LA with a high activity level can be employed an action 
according to its probabilities on the random environment. 

The process of finding the shortest path in DLA and eDLA, as it will be mentioned in 
the Literature Review section, is a sequential one which results in somehow slow 
algorithms. In this paper, we argue that a simple team of learning automata can be 
utilized to speed up these algorithms. The kind of learning automata which must be used 
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in this team is a learning automaton with a variable set of actions,9,10 where this set can be 
varied at any instant  of time. At each time instant  𝑛, this LA creates the subset of all 
available actions which can be chosen, i.e. 𝒜(𝑛) . For all actions in 𝒜(𝑛) , scaled 
probability vector 𝑞�(𝑛) is defined as  

𝑞𝚤�(𝑛) = 𝑞𝑖(𝑛)/𝐾(𝑛)  (3) 

where 𝑞𝑖(𝑛) = 𝑝𝑝𝑝𝑝[𝛼(𝑛) = 𝛼𝑖]  and 𝐾(𝑛) = ∑ 𝑞𝑖(𝑛)𝛼𝑖𝜖𝜖(𝑛)  is the sum of the 
probabilities of actions in subset 𝒜(𝑛).The LA randomly selects one action from 𝒜(𝑛) 
according to 𝑞�(𝑛). Depending on the response received from the environment, the LA 
updates 𝑞�; that is, only the probabilities of the actions in 𝒜(𝑛) will be updated. Finally, 
the probabilities of the actions in subset 𝒜(𝑛) are rescaled according to Eq. (4). 

𝑞𝑖(𝑛 + 1) = 𝑞𝚤�(𝑛 + 1) ∗ 𝐾(𝑛) 𝑖𝑖 𝑎𝑖 ∈ 𝒜(𝑛) (4) 

3.2. Literature review 

One available approach to solve the shortest path problem in stochastic graphs is to 
construct a DLA from the given stochastic graph.12 The root LA is assigned to 𝑣𝑠  and 
starts an operation of this DLA as follows: 

• One of the outgoing edges of the root (one action of the root LA) is chosen using the 
corresponding action probability vector. 

• The selected edge activates the LA at its other end. This LA also selects an action that 
results the activation of another LA. 

• This process is repeated until the destination node 𝑣𝑑  is reached. 
• The time elapsed for this traverse from 𝑣𝑠 to 𝑣𝑑  is a sample of the time required for 

traversing from 𝑣𝑠 to 𝑣𝑑. 
• The sample time is compared with a quantity called ‘dynamic threshold’ which is an 

estimate of the required time for traversing from 𝑣𝑠 to 𝑣𝑑 . If the sample time is shorter 
than or equal to dynamic threshold, then all activated LAs get reward signal and if the 
sample’s time is longer than the dynamic threshold or the destination node is not 
reached, then all activated LAs get penalty signal. Upon the generation of reward or 
penalty signals, the learning algorithm L updates the action probability vectors of 
activated LAs. 

• The value of the dynamic threshold is updated using the new sample time. 

Beigy and Meybodi1 solved the shortest path problem in a stochastic graph given a 
particular pair of source-destination by introducing different variations of the DLA. For 
example, in one variation, they assumed that the reward parameter, 𝑎(𝑛) in Eq. (1), is 
different in LAs assigned to different nodes of the DLA; the closer the node to the 
destination, the larger the value of 𝑎 will be. 

In Ref. 19, a version of the DLA has been defined by introducing a new definition for 
the dynamic threshold. The dynamic threshold is generally calculated by averaging the 
lengths of the paths traversed so far.20 But in Ref. 19, the authors assumed the dynamic 
threshold as the minimum of the sequences of the averages, each computed at the end of 
one full traverse from the source to the destination node. It is argued that this new 
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definition requires fewer number of samples to be taken from the edges of the graph to 
decide which path from the source to the destination node is the shortest.21 

Mollakhalili and Meybodi2 solved the shortest path problem in stochastic graphs 
using extended DLA (eDLA). To traverse a path, the activation levels of all LAs, except 
for the LA in 𝑣𝑠, are initially set to passive. The activation level of the LA in 𝑣𝑠 is set to 
active. This only active LA upgrades to fire level and selects an action. The selected 
action corresponds to one of the edges of 𝑣𝑠. This edge is added to the list of edges for 
the current traverse. The process of adding edges to the current traverse continues until 
all LAs downgrades to off. At this point, the traverse is completed, that is, a path is 
formed from 𝑣𝑠 to 𝑣𝑑 . Rest of the algorithm is the same as Ref. 1. 

Misra and Oommen22 introduced two different versions of an algorithm based on LA 
to solve the shortest path problem in stochastic graphs. The first version, called LASPA-
RR, uses Ramalingam and Reps’ scheme23 in its iterations. The second, called LASPA-
FMN, is an algorithm which uses the scheme introduced by Frigioni et al.24 Generally, an 
LASPA algorithm consists of two steps: initialization and iteration. To begin the 
initialization step, the algorithm obtains a snapshot of the directed graph with each edge 
having a random weight. Next, Dijkstra’s algorithm25 is run once to determine the 
shortest path edges on the graph snapshot. The algorithm maintains an action probability 
vector for each node of the graph. This vector contains the probability values to choose 
different actions; each possible outgoing edge corresponds to a probable action that can 
be selected for calculating the shortest path tree. Based on the shortest path computed 
using Dijkstra’s algorithm, the action probability vector of each node is updated in that 
the outgoing edge from a node taken as belonging to the shortest path edge, has an 
increased probability than before the update. In an iteration of LASPA, first, a node is 
randomly chosen from the current graph and an action of the associated LA is selected. 
Second, a new sample of weight from the edge related to selected action is determined. 
Based on this new value, the new shortest path’s tree is recalculated using either RR or 
FMN algorithm. Finally, the action probability vector for the node whose edge was just 
selected, is updated in that the edge now potentially belonging to the shortest path’s tree 
has more likelihood of being selected than it before the update. The iteration step of 
LASPA is repeated for many times until the algorithm converges. Another variation of 
LASPA has been introduced,26 in which the principles of the Generalized Pursuit (GP) 
method 4 is used to learn LAs. In Ref. 27, a similar algorithm is presented capable of 
computing shortest paths for all possible pairs of source-destination in the graph. In this 
algorithm, the Floyd Warshall’s all-pairs static algorithm28 has been used rather than 
Dijkstra’s algorithm to find shortest paths in a snapshot of the stochastic graph and the 
Demetrescu and Italiano’s algorithm,29 rather than RR and FMN, has been used to 
recalculate shortest paths. 

LA-based algorithms to solve the shortest problem have been successfully used in 
many real world applications such as finding maximum clique in stochastic graphs,30 grid 
resource discovery,31 link prediction in adaptive web sites,32 and dynamic channel 
assignment.33 
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4. Adaptive Stochastic Petri Net Based on LA 

In this section, we briefly review the LA-based adaptive Stochastic Petri net (ASPN-
LA7) to analyze learning ability of our proposed algorithm. The ASPN-LA is a stochastic 
Petri net in which conflicts among immediate transitions are resolved using learning 
automata. Before a review of ASPN-LA, we give a short review of Petri nets and 
stochastic Petri nets. Note that what follows is standard notation found in the Petri net 
literature. For more information on PNs, see Refs. 34 and 35. 

Definition 4. Petri net (PN) is a triple {𝑃,𝑇,𝑊}, where 𝑃 is a non-empty finite set of 
places, 𝑇  is a non-empty finite set of transitions, and 𝑊: �(𝑃 × 𝑇) ∪ (𝑇 × 𝑃)� → ℕ 
defines the interconnections of both sets of 𝑃 and 𝑇. 

For each element 𝑥 , either a place or a transition, its preset is defined as •𝑥 =
{𝑦 ∈ 𝑃 ∪ 𝑇|𝑊(𝑦, 𝑥) > 0} and its post-set is defined as 𝑥• = {𝑦 ∈ 𝑃 ∪ 𝑇|𝑊(𝑥,𝑦) > 0}. 
A marking 𝑀 is |𝑃|-vector and 𝑀(𝑖)is the non-negative number of tokens in place 𝑃𝑖 . A 
transition 𝑡  is defined as enabled in marking 𝑀  (denoted by  𝑀[𝑡〉), if for any place 
𝑝𝑖 ∈ •𝑡, 𝑀(𝑖) is equal to or greater than 𝑊(𝑝, 𝑡). A transition 𝑡 can fire if  𝑀[𝑡〉. The 
firing operation, denoted as 𝑀[𝑡〉𝑀′, means that [𝑀, 𝑡〉 and that 𝑀′is the next marking in 
the PN evolution.36 A PN along with an initial marking 𝑀0 creates a PN system. The set 
of markings reached from 𝑀0 is called a reachability set and represented by a reachability 
graph. 

Definition 5. Stochastic Petri net (SPN) a  is a PN which is defined by a 6-tuple 
{𝑃,𝑇,𝑊,𝑅,𝜔,𝑀0}, where 

• 𝑃,𝑇,𝑊,𝑀0 are defined as in Definition 4, 
• ∀𝑡𝑡𝑡,𝑅𝑡 ∈ ℝ+ ∪ {∞}  is the rate of exponential distribution for the firing time of 

transition 𝑡 . If  𝑅𝑡 = ∞ , the firing time of 𝑡  is zero; such a transition is called 
immediate. On the other hand, a transition t with 𝑅𝑡 < ∞ is called timed transition. A 
marking 𝑀 is said to be vanishing if there is an enabled immediate transition in this 
marking; otherwise, 𝑀 is said to be tangible,37 

• ∀𝑡𝑡𝑡,𝜔𝑡 ∈ ℝ+  is the weight assigned to the firing of the enabled transition 𝑡 , 
whenever its rate 𝑅𝑡 is equal to ∞. The firing probability of transition 𝑡 enabled in a 
vanishing marking M is computed as 𝜔𝑡 (∑ 𝜔𝑡′).𝑀[𝑡′〉⁄   
 
An ASPN-LA is an SPN where immediate transitions are partitioned in some clusters 

𝑠𝑖 , 𝑖 = 1, … ,𝑛 such that the conflicts among enabled transitions in 𝑠𝑖 are resolved by an 
LA7 When ASPN-LA decides to fire an enabled transition from 𝑠𝑖, the associated LA, 
i.e. 𝐿𝐿𝑖 , selects an enabled transition for firing. To partition the immediate transitions 
into clusters 𝑠𝑖 , 𝑖 = 1, … ,𝑛, maximal potential conflict set is introduced in Ref. 7 as given 
in Definition 6. A maximal potential conflict set is referred as a cluster. 

 
aIt should be noted that the above definition of SPN coincides with the definition of Generalized Stochastic 
Petri Net (GSPN) given in Ref. 36. 
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Definition 6. Maximal Potential Conflict set is a set of immediate transitions 𝑠𝑖 =
{𝑡1, 𝑡2,⋯ , 𝑡𝑛𝑖} with following conditions: 

• {∀𝑡𝑘 ∈ 𝑠𝑖 ,∃𝑡𝑗 ∈ 𝑠𝑖|𝑡𝑘 ≠ 𝑡𝑗&•𝑡𝑘 ∩ •𝑡𝑗 ≠ ∅} 
• {∀𝑡 ∈ 𝑇\𝑠𝑖 ,∀𝑡𝑘 ∈ 𝑠𝑖|•𝑡𝑘 ∩ •t = ∅} 

 
In ASPN-LA, like in SPN, no special mechanism is used for the resolution of the 

conflict among timed transitions; the temporal information provides a metric that allows 
conflict resolution.36 Therefore, it is necessary to put all timed transitions of ASPN-LA 
into a single cluster, 𝑠−1, in which the temporal information is used to select one enabled 
timed transition for firing. Formally, an ASPN-LA is defined as follows: 

 
Definition 7. ASPN-LA is a 7-tuples 𝑁� = �𝑃� ,𝑇� ,𝑊� , 𝑆̂,𝐿,𝑅,ω0�, where 

• 𝑃� is a finite set of places.  
• 𝑇� = 𝑇 ∪ 𝑇𝑈 is a finite set of immediate, timed, and updating transitions. An updating 

transition 𝑡𝑢 ∈ 𝑇𝑢 is an ordinary immediate transition, except that when it fires, the 
action probability vector of an LA, fused with Petri net, is updated. 

• 𝑊� : (�𝑃� × 𝑇�� ∪ �𝑇� × 𝑃��) → ℕ defines the inter connection of 𝑃� and 𝑇� ,  
• 𝐿 = {𝐿𝐿1, … . 𝐿𝐿𝑛} refers to a set of learning automata with varying number of actions.  
• 𝑅 is defined as in Definition 5. 
• 𝑆̂ = {𝑠−1, 𝑠0, 𝑠1, … . 𝑠𝑛} denotes a set of non-overlapping clusters, each consisting of a 

set of transitions: 
o 𝑠−1 contains all timed transitions in ASPN-LA.  
o 𝑠𝑖 , 𝑖 = 1, … ,𝑛 are sets of clusters, each is a maximal potential conflict set. Each 

cluster 𝑠𝑖 is equipped with a learning automaton 𝐿𝐿𝑖. Number of actions of 𝐿𝐿𝑖 is 
equal to the number of transitions in 𝑠𝑖; each action corresponds to one transition. 

o 𝑠0 is the set of remaining transitions in 𝑇� . 
• ∀𝑡𝑡𝑠0,𝜔𝑡

0 ∈ ℝ+ describes the weight assigned to the firing of enabled transition 𝑡 in 
cluster  𝑠0 .  
 
It is noted that the definition of 𝜔𝑡  in SPN changes to 𝜔𝑡

0  in ASPN-LA. In other 
words, in ASPN-LA, weights are only assigned to the immediate transitions in the cluster 
𝑠0 . This is due to the fact that in ASPN-LA, conflict resolutions among immediate 
transitions in 𝑠𝑖 , 𝑖 = 1, … ,𝑛 are performed by learning automata, and hence, no weight is 
required for these set of transitions. 

Definition 8. ASPN-LA system is a triple �𝑁�,𝑀0,𝐹��, where 𝑁� is an APN-LA, 𝑀0 is the 
initial marking, and 𝐹� = {𝑓1,⋯ , 𝑓𝑛} is the set of reinforcement signal generator functions. 
𝑓i:𝑀 → βiis the reinforcement signal generator function related to 𝐿𝐿i. A sequence of 
markings in the APN-LA is the input to 𝑓i and reinforcement signal 𝛽𝑖 is its output. Upon 
the generation of 𝛽𝑖, 𝐿𝐿𝑖 updates its action probability vector using the learning algorithm 
given in Eqs. (1) or (2). For more information on how to construct an ASPN-LA from an 
SPN and its firing rules an interested reader may refer to Ref. 7.  
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5. Proposed Algorithm 

In the proposed algorithm, we keep traversing all available paths from 𝑣𝑠 to 𝑣𝑑  within 𝐺 
repeatedly so as to find the shortest path 𝜏∗ . To traverse different paths, we use the 
concept of token. Tokens traverse the paths between 𝑣𝑠and 𝑣𝑑 , hop by hop, and estimate 
the time required for traversing different paths. A node 𝑣𝑖  within the graph 𝐺, receives 
tokens from all of its neighbors. Assigned to a token received from neighbor 𝑣𝑗 is a time 
which is an estimate of the time required for traversing from 𝑣𝑠 to 𝑣𝑖 through 𝑣𝑗 (𝛤𝑗𝑠~𝑖). 
Two neighbors 𝑣𝑗  and 𝑣𝑘  of 𝑣𝑖  can be ranked among their estimated times,  𝛤𝑗𝑠~𝑖  and 
𝛤𝑘𝑠~𝑖, that is, if 𝛤𝑗𝑠~𝑖 < 𝛤𝑘𝑠~𝑖, it means that the path from 𝑣𝑠 to 𝑣𝑖  which goes through 𝑣𝑗 
is shorter than the path going through 𝑣𝑘 . It is notable since traversing from 𝑣𝑠 to 𝑣𝑑  is 
performed repeatedly, the estimates 𝛤𝑗𝑠~𝑖 can be changed or even improved over time. 
The estimates will become stable to some degree when the shortest path between 𝑣𝑠  and 
𝑣𝑖  is the path going through neighbor 𝑣𝑙  of 𝑣𝑖  for which 𝛤𝑙𝑠~𝑖  is the minimum. The 
question here is that when it is possible to stop traversing different paths and select the 
shortest path using 𝛤 estimates. The proposed algorithm uses learning automata and its 
theory to provide a necessary condition which if not met, we still need more traversing.  

5.1. Detailed description of the algorithm 

The proposed algorithm, referred to as VDLA, seeks the shortest path 𝜏∗ between 𝑣𝑠 and 
𝑣𝑑  within a stochastic graph. Each node 𝑣𝑖, except for the source node, is equipped with 
a learning automaton with a variable set of actions 𝐿𝐿𝑖. The number of actions of 𝐿𝐿𝑖 is 
equal to the number of neighbors of 𝑣𝑖 ; each action is assigned to one neighbor. The 
probability of selecting each action is initially set to 1 𝑚𝑖⁄ , where 𝑚𝑖 is the number of 
neighbors of 𝑣𝑖 . In addition, each 𝑣𝑖  maintains a list 𝛤𝑠~𝑖, in which, each entry 𝛤𝑗𝑠~𝑖 is 
the estimation of the time required for traversing from 𝑣𝑠 to 𝑣𝑖  through neighbor 𝑣𝑗. For 
simplicity in notation, we omit the index 𝑠 and use 𝛤𝑖  rather than 𝛤𝑠~𝑖  hereafter. 𝛤𝑗𝑖  is 
initially set to zero for all 𝑖s and 𝑗s.  

VDLA algorithm consists of two phases: learning phase and selection phase. In what 
follows, we will first describe the learning phase, and then give the detailed description of 
the selection phase. 

 Learning Phase 

Source node 𝑣𝑠 initiates the learning phase by starting to repeatedly send out tokens to all 
of its neighbors according to an exponential distribution with rate 𝜆 . These tokens, 
Learning-Tokens (𝐿𝐿), are used to sample lengths of different paths from 𝑣𝑠 towards 𝑣𝑑 
within the graph. Assigned to each 𝐿𝐿 are an 𝐼𝐼 number and a timer. When 𝑣𝑠 sends out 
a new learning-token, it creates the token with a new 𝐼𝐼 number and sets its timer to 
zero. This newly created 𝐿𝐿 is then sent out to neighbors of 𝑣𝑠.  

Upon the arrival of an 𝐿𝐿, sent out by a node 𝑣𝑗 , at any neighbor node 𝑣𝑖  of 𝑣𝑗 , 
except for 𝑣𝑠, the following steps will be taken: 
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• Number of 𝐿𝐿𝐿 arrived at 𝑣𝑖  denoted by 𝑛𝑖 is increased by one.  
• Number of 𝐿𝐿𝐿  arrived at 𝑣𝑖  from 𝑣𝑗  denoted by 𝑘𝑗𝑖  is increased by one. Note that 
∑ 𝑘𝑗𝑖𝑚𝑖
𝑗=1 = 𝑛𝑖. 

• 𝐿𝐿𝑖 is activated and then, the set of all available actions of 𝐿𝐿𝑖, i.e. 𝒜𝑖(𝑛𝑖), is created. 
This set consists of the actions corresponding to the neighbors, from which tokens are 
arrived to 𝑣𝑖; all of these tokens are waiting to be processed by 𝑣𝑖. 

• For all actions in  𝒜𝑖(𝑛𝑖) , scaled probability vector 𝑞�𝑖(𝑛𝑖)  is defined as  
𝑞�𝑘𝑖 (𝑛𝑖) = q𝑘𝑖 (𝑛𝑖 − 1)/𝐾(𝑛𝑖), where 𝑞𝑘𝑖 (𝑛𝑖 − 1) = 𝑝𝑝𝑝𝑝�𝛼𝑖(𝑛𝑖 − 1) = 𝛼𝑘𝑖 � and 𝐾(𝑛𝑖) 
is the sum of the probabilities of actions in subset 𝒜𝑖(𝑛𝑖).  

• 𝐿𝐿𝑖  randomly selects one action from 𝒜𝑖(𝑛𝑖) according to 𝑞�𝑖(𝑛𝑖). Let the selected 
action be corresponded to the neighbor 𝑣𝑙 . 

• Current estimation of the time required for traversing from 𝑣𝑠 to 𝑣𝑖  through neighbor 
𝑣𝑙 , 𝛤𝑙𝑖 , is updated according to the equation 𝛤𝑙𝑖 = (1 𝑘𝑙𝑖⁄ ) ×  ��𝑘𝑙𝑖 − 1� ∗ 𝛤𝑙𝑖 +
𝐿𝐿. 𝑡𝑡𝑡𝑡𝑡�. 

• The reinforcement signal for𝐿𝐿𝑖, i.e. 𝛽𝑖, is generated using Eq. (5). 
 

                   

⎩
⎪
⎨

⎪
⎧𝛽𝑖 = 1;  𝐿𝐿. 𝑡𝑡𝑡𝑡𝑡 ≥ 1

𝑚𝑖 × �𝛤𝑘𝑖

𝑘

𝛽𝑖 = 0;  𝐿𝐿. 𝑡𝑡𝑡𝑡𝑡 < 1
𝑚𝑖 × �𝛤𝑘𝑖

𝑘

 (5)  

In other words, if the time required for traversing from 𝑣𝑠 to 𝑣𝑖  through neighbor 𝑣𝑙  is 
shorter than the average time required for traversing from 𝑣𝑠 to 𝑣𝑖  through any of the 
neighbors of 𝑣𝑖 , then the selected action of 𝐿𝐿i is rewarded (i.e. 𝛽i = 0). Otherwise, it 
is penalized (i.e. 𝛽i = 1). 

• Upon the generation of 𝛽𝑖 , 𝐿𝐿𝑖  updates 𝑞�i  according to Eq. (6) where the learning 
algorithm 𝐿𝑅−𝐼 is used. 
 

⎩
⎪
⎨

⎪
⎧𝑞�𝑘𝑖 (𝑛𝑖 + 1) = �

𝑞�𝑘𝑖 (𝑛𝑖) + 𝑎�1 − 𝑞�𝑘𝑖 (𝑛𝑖)�, 𝑘 = 𝑙
(1 − 𝑎)𝑞�𝑘𝑖 (𝑛𝑖),                           ∀𝑘 ≠ 𝑙

;  𝛽𝑖 = 0

𝑞�𝑖(𝑛𝑖 + 1) = 𝑞�𝑖(𝑛𝑖);                                                             𝛽𝑖 = 1

 (6) 

 
• The probabilities of the actions in subset 𝒜𝑖(𝑛𝑖)  are rescaled according to  

q𝑘𝑖 (𝑛𝑖) = 𝑞�𝑘𝑖 (𝑛𝑖 + 1) ∗ 𝐾(𝑛𝑖) 𝑖𝑖 𝛼𝑘𝑖 ∈ 𝒜𝑖(𝑛𝑖). 
• If this is the first time that an 𝐿𝐿 with this 𝐼𝐼 number is seen in 𝑣𝑖 , then 𝑣𝑖  will send 

out the 𝐿𝐿  to all its neighbors, except for 𝑣𝑙 . Repetitive 𝐿𝐿  tokens (tokens with 
repetitive 𝐼𝐼 numbers) will be discarded to avoid loops. 

 Selection Phase 

In VDLA, 𝑣d is responsible to start the selection phase by sending a token, Selection-
Token (𝑆𝑆 ), towards 𝑣s . This 𝑆𝑆  token is used to find the shortest path 𝜏∗ . The 𝑆𝑆 
traverses a path 𝜏𝑘 within the graph towards 𝑣s. When it arrives at 𝑣s, 𝑣s stops sending 
out 𝐿𝐿 tokens. At this time, 𝜏∗ is the reverse of the path 𝜏𝑘.  
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Upon the arrival of the 𝑆𝑆 at any node 𝑣i, except for 𝑣s, the following steps will be 
taken by 𝑣𝑖: 
• It sets the neighbor node 𝑣j, from which it receives 𝑆𝑆, as its destination node in the 

shortest path 𝜏∗.  
• It sends out 𝑆𝑆 to the neighbor corresponding to the action with the maximum value of 
𝑞𝑖. 
 
The important question here is that when 𝑣d can stop the learning phase and start 

selection phase. One common answer to this question is to set a maximum number of 
iterations maxIter for the learning phase. But using such a condition to terminate the 
learning phase does not take the learning process into consideration; It is possible that   
(1) learning does not occur at all at the terminating iteration; (2) learning occurs, but is 
not matured enough; or (3) learning is completed far sooner than the maxIter. In VDLA, 
we propose a necessary condition on the values of 𝑞𝑖  which if it does not hold, the 
learning has not occurred yet. Thus, using AND operator between this condition and the 
maxIter condition can at least prevent the learning phase to be stopped before any 
learning occur. This condition can be stated using (7). 

                                  𝑞𝜀𝑑(𝑛𝑑) > 𝐿𝐿𝜀𝑑(𝑛) (7) 

where 

                 𝐿𝐿𝜀𝑖(𝑛) =
∑ �𝑞𝑘𝑖 (𝑛𝑖)𝛤𝑘𝑖(𝑛𝑖)�𝑚𝑖
𝑘=2

𝛤𝜀𝑖(𝑛𝑖)(𝑚𝑖 − 1)
 (8) 

 
In (7), 𝜀 = argmin𝑗 𝛤𝑗𝑖(𝑛𝑖). The above condition is achieved when VDLA is modeled 

by the ASPN-LA to analyze its learning ability (see Sec. 5.2).  
Upon receiving an 𝐿𝐿 token, in addition to the steps explained above, 𝑣d takes the 

following steps: 

• If 𝑛𝑑 > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Then 
• If condition specified by (7) holds then 
• Create an 𝑆𝑆 token and sends it out to the neighbor corresponding to argmax𝑗 𝑞𝑗𝑑(𝑛𝑑). 

5.2. The analysis of the proposed algorithm 

For analysis of learning phase of the proposed algorithm, each node in the graph is 
modeled by an ASPN-LA7 For this modeling, each node 𝑣𝑖, with 𝑚𝑖 > 0 edges, can be 
considered as a queuing system with 𝑚 = 𝑚𝑖 different classes of jobs and one server. A 
learning-token arriving at a node 𝑣𝑖  from a neighboring node 𝑣𝑗 is considered as a job 
from class 𝐶𝑗 which arrives into queue 𝑄𝑗 . The service time of a job (learning-token) is 
assumed to be the required time for that token to traverse from the source node 𝑣𝑠 to the 
node 𝑣𝑖 . Two jobs arrive into a queue 𝑄𝑗  have different service times due to the 
following two reasons: (1) their traversing path from 𝑣𝑠  to 𝑣𝑖  may differ; and (2) the 
underlying graph of the problem is stochastic. As a result, the queuing system has 
unknown parameters, i.e. service times. Since all probability distribution functions 
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describing the statistics of edge lengths of the graph are assumed to be exponential with 
unknown rate parameters, service time in a queue 𝑄𝑗  is also exponentially distributed 
with an unknown rate 𝜇𝑗 .38 The input rates of jobs into queue 𝑄𝑗  is also exponentially 
distributed with rate 𝜆𝑗 = 𝜆, 𝑗 = 1, . . ,𝑚. In other words, the input rates of all queues are 
equal to 𝜆, which is the rate by which the source node 𝑣𝑠 sends out learning-tokens into 
the graph. By this modeling, finding the shortest path in a stochastic graph is mapped into 
finding the shortest total waiting time in a queuing system. 

We have defined the Priority Assignment (PA) problem in the queuing system with 
unknown parameters in Ref. 7 as how to select jobs from the queues so that the total 
waiting time of the system is minimized. The shortest total waiting time of the queuing 
system with 𝑚 queues is obtained when the server assigns the highest selection priority to 
the jobs from the queue with the highest service rate.39,40 But, if the service rates of 
queues are unknown, the total waiting time of the system can be shortened by assigning 
the highest selection probability, rather than priority, to the jobs from the queue with the 
highest service rate. Using selection probability instead of selection priority is called 
Probabilistic Priority (PP) mechanism.7 

The simplest PP mechanism to solve PA problem in a queuing system is to let the 
server select jobs from any of 𝑚  queues with equal probability of  1

𝑚
. A better PP 

mechanism, ASPN-LA-[m]PP, has been introduced in Ref. 7 (Fig. 1). To solve the PA 
problem by the ASPN-LA-[m]PP, if the class 𝑗  of jobs is prioritized with a higher 
probabilistic priority than the class 𝑘, then: (1) the LA of ASPN-LA-[m]PP selects jobs 
from the class 𝑗  with a higher probability than the class 𝑘  and (2) the steady-state 
selection probability of the class 𝑗 will be higher than that of the class 𝑘 of jobs. We give 
a brief description of the ASPN-LA-[m]PP system below.7 

In the ASPN-LA-[m]PP system shown in Fig. 1, the set {𝑡2𝑚+𝑘, 𝑘 = 1, … ,𝑚} is a 
maximal potential conflict and hence, forms a cluster 𝑠1. 𝐿𝐿1 with 𝑚 actions is assigned 
to the cluster 𝑠1 to control the conflict among its transitions; each action corresponds to 
select one transition for firing. The cluster 𝑠−1  contains all timed transitions and the 
cluster 𝑠0  contains one transition 𝑡1𝑢 . To obtain the ASPN-LA-[m]PP system, the 
reinforcement signal generator function set 𝐹� = {𝑓1}  is needed. Upon firing of 𝑡1𝑢 , 
function 𝑓1 is executed which generates the reinforcement signal 𝛽1 for 𝐿𝐿1. To specify 
how  𝑓1  generates  𝛽1 , we first note that when 𝑡1𝑢  fires for the 𝑛𝑡ℎ  time, the following 
parameters are known to the system7 : 

• The queue from which the last job (job 𝑛) was selected for execution; 
• The execution time of job 𝑛, referred to as 𝛿(𝑛); 
• Number of jobs from 𝑄𝑗  given service so far, referred to as 𝑘𝑗(∑ 𝑘j𝑗 = 𝑛); 
• Total service time for the jobs in 𝑄𝑗  given service so far, referred to as Δ𝑗(𝑛); 
• Average service time for jobs in 𝑄𝑗  given service so far, which can be calculated as 
𝛤𝑗(𝑛) = 1

𝑘𝑗
× Δ𝑗(𝑛). 
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Considering parameters above, 𝑓1  can be described using Eq. (9) where 𝛽1 = 1 
denoted a penalty signal and 𝛽1 = 0 is considered as a reward signal. Using 𝛽1, generated 
according to Eq. (9), 𝐿𝐿1 updates its available action probability vector, 𝑞�(𝑛), according 
to the 𝐿R−I learning algorithm described in Eq. (1). Then the probability vector of the 
actions of the chosen subset is rescaled according to Eq. (4). 

                         

⎩
⎪
⎨

⎪
⎧𝛽1 = 1;  𝛿(𝑛) ≥ 1

m
× �𝛤k(𝑛),

k

𝛽1 = 0;  𝛿(𝑛) < 1
m

× �𝛤k(𝑛)
k

,
             (9) 

The Analysis of ASPN-LA-[m]PP 

In this section, we will show that 𝐿𝐿1 associated with cluster 𝑠1 gradually learns to assign 
a higher probabilistic probability to the class 𝑗 of jobs rather than the class 𝑘, if 𝜇j > 𝜇k. 
To better clarify the idea, first, we first breifly review the results of analysis for a simple 
case of an ASPN-LA-[2]PP with two number of queues, i.e. 𝑚 = 2, from Ref. 7. We will 

 

Fig. 1. ASPN-[m]PP model based on ASPN-LA model. 
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then generalize this analysis of the ASPN-LA-[2]PP with two queues to the general form 
of ASPN-LA-[m]PP with 𝑚  queues. Finally, we will show that LA solves the PA 
problem in the ASPN-LA-[m]PP system, if 𝐿𝑅−𝐼  is used as its learning algorithm. 

To analyze the ASPN-LA-[2]PP in Ref. 7, its underlying Continuous-Time Markov 
Chain (CTMC) 42 has been utilized. Having derived this CTMC, its states have been 
portioned into three groups: 𝒮1) a job is selected from 𝑄1 while another job is waiting in 
𝑄2; 𝒮2) a job is selected from 𝑄2 while another job is waiting in 𝑄1; and, 𝒮3) remaining 
states. Let 𝒫𝑖  denote the summation of the steady-state probability of markings in the sets 
𝒮𝑖 , 𝑖 = 1,2,3 . Assuming 𝜇1 > 𝜇2 , a condition has been introduced in Ref. 7 if hold, 
ASPN-LA-[2]PP assigns selection probabilities 𝑞𝑗 , 𝑗 = 1, 2  to the queues such that:        
(1) 𝑞1 > 𝑞2 which indicates that a higher probabilistic priority is given to the first class of 
jobs rather than the second class of jobs and (2)  𝒫1 > 𝒫2  which indicated that the 
accumulated sojourn time of 𝒮1  will be longer than that of 𝒮2  in the steady-state. 
Theorem 1, which has been proven in Ref. 7, provides this condition on 𝑞𝑖(𝑛), 𝑖 = 1,2. 
In Theorem 2, we will generalize Theorem 1 to the ASPN-LA-[m]PP system with 𝑚 
queues. In Theorem 3, we will show that if the 𝐿𝑅−𝐼  algorithm is used to update the 
action probability vector of 𝐿𝐿1, then 𝒫𝑗 > 𝒫𝑘  for 𝑗 < 𝑘;  𝑗 = 1, … ,𝑚 − 1;  𝑘 = 1, … ,𝑚 
when 𝑛 goes to infinity. To follow CTMC analysis by ordinary methods, the stochastic 
information attached to the arcs should be fix values. This is why we have assumed fixed 
values 𝑞1∗, 𝑞2∗, …,𝑞𝑚∗  rather than 𝑞1(𝑛), 𝑞2(𝑛), …,𝑞𝑚(𝑛), respectively. 

Theorem 1. Let 𝑞1∗ and 𝑞2∗ be the selection probabilities of 𝑄1 and 𝑄2 in an ASPN-LA-
[2]PP. If 𝑞1

∗

𝜇1
> 𝑞2

∗

𝜇2
, then the ASPN-LA-[2]PP assigns a higher probabilistic priority to the 

first class rather than the second class of jobs. 

Proof. It has been proven in Ref. 7. 

Corollary 1. Assuming µ1 > µ2 , if selection probability of the first queue passes the 
lower bound 𝜇1×𝑞2

∗

𝜇2
, then the shortest total waiting time in the ASPN-LA-[2]PP is reached. 

That is, when the action probability 𝑞1(𝑛)  is higher than 𝜇1×𝑞2(𝑛)
𝜇2

, the shortest total 
waiting time in the ASPN-LA-[2]PP is reached. 

Proof. The proof is immediately followed by the Theorem 1. 

Theorem 2. Let 𝑞𝑗∗, 𝑗 = 1, … ,𝑚 be the selection probabilities of 𝑄𝑗 , 𝑗 = 1, … ,𝑚  in an 
ASPN-LA-[m]PP. If 𝑞𝑗∗ 𝜇𝑗⁄ > 𝑞𝑘∗ 𝜇𝑘⁄ , 1 ≤ 𝑗, 𝑘 ≤ 𝑚, 𝑗 ≠ 𝑘 , then the ASPN-LA-[m]PP 
assigns a higher probabilistic priority to the 𝑗𝑡ℎ class rather than the 𝑘𝑡ℎ class of jobs, 
i.e. 𝒫𝑗 > 𝒫𝑘 . 

Proof. The proof is given in Appendix A. 

Corollary 2. Suppose that the inequality (10) holds for 𝑗 = 1, … ,𝑚 − 1. Then, the ASPN-
LA-[m]PP assigns a higher probabilistic priority to the 𝑗𝑡ℎ class rather than the 𝑘𝑡ℎ class 
of jobs for 1 ≤ 𝑗, 𝑘 ≤ 𝑚, 𝑗 < 𝑘.  
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                                𝑞𝑗∗ >
𝜇𝑗

(𝑚− 𝑗)
� �

𝑞ℓ∗

𝜇ℓ

𝑚

ℓ=𝑗+1

� (10) 

Proof. By Theorem 2, if there are 𝑚 − 𝑗 inequalities for queue 𝑗 of the form 𝑞𝑗∗ 𝜇𝑗⁄ >,
𝑘 = 𝑗 + 1, … ,𝑚, then the ASPN-LA-[m]PP assigns a higher probabilistic priority to the 
𝑗𝑡ℎ class rather than the 𝑘𝑡ℎ class of jobs for 1 ≤ 𝑗, 𝑘 ≤ 𝑚, 𝑗 < 𝑘. Summing up the two 
sides of these inequalities together we get the inequality (10). 

Corollary 3. Assuming 𝜇1 > 𝜇2 > ⋯ > 𝜇𝑚 , when all inequalities  𝑞𝑗∗ > �𝜇𝑗 (𝑚 − 𝑗)⁄ �  
�∑ 𝑞ℓ∗ 𝜇ℓ⁄𝑚

ℓ=𝑗+1 � for 𝑗 = 1, … ,𝑚 − 1 hold, the shortest total waiting time in the ASPN-LA-
[m]PP is reached. That is, when the action probability 𝑞𝑗(𝑛)  is higher than 
�𝜇𝑗 (𝑚− 𝑗)⁄ ��∑ 𝑞ℓ(𝑛) 𝜇ℓ⁄𝑚

ℓ=𝑗+1 �, the shortest total waiting time in the ASPN-LA-[m]PP 
is reached. 

Proof. The proof is immediately followed by the Theorem 2. 

Theorem 3. Let ASPN-LA-[m]PP be a queuing system with 𝑚 queues such that 𝜇1 >
𝜇2 > ⋯ > 𝜇𝑚. If the learning algorithm 𝐿𝑅−𝐼  is used to update the action probability 
vector 𝑞(𝑛) of 𝐿𝐿1, then the inequality (10) holds for 𝑗 = 1 when n goes to infinity. 

Proof. The proof is given in Appendix B. 

Corollary 4. Let ASPN-LA-[m]PP be a queuing system with 𝑚 queues such that 𝜇1 >
𝜇2 > ⋯ > 𝜇𝑚  in which the learning algorithm 𝐿𝑅−𝐼  is used. The ASPN-LA-[m]PP 
assigns the highest probabilistic priority to the first class of jobs. 

Proof. The proof is immediately followed by Theorem 3. 

The Proposed Necessary Conditions 

In the beginning of this section, we mapped the shortest path problem in stochastic 
graphs into the priority assignment problem in a queuing system with unknown 
parameters. Using this mapping, we are now able to use the results of this section to set a 
necessary condition for termination of the proposed VDLA algorithm. The current 
estimation of the time required for traversing from 𝑣𝑠 to 𝑣𝑖  through neighbor 𝑣𝑗, i.e. 𝛤𝑗𝑖 , 
is an estimation of 𝜇𝑗−1. Without loss of generality, in node 𝑣𝑖, in time instant  𝑛, we can 
suppose that 1 𝛤1𝑖(n)⁄ > 1 𝛤2𝑖(n)⁄ > ⋯ > 1 𝛤𝑚𝑖 (𝑛)⁄ . By Theorem 2, if  

                                      𝑞𝑗𝑖(𝑛) > 𝐿𝐿𝑗𝑖(𝑛), 𝑗 = 1, … ,𝑚 − 1 (11) 

where 𝐿𝐿𝑗𝑖(𝑛) is defined in Eq. (12), then node 𝑣𝑖 significantly prefers the path from 𝑣𝑠 
to 𝑣𝑖  which passes through neighbor 𝑣𝑗  to the paths passing through other neighbors. 
That is, a necessary condition for termination of VDLA algorithm is that in the 
destination node 𝑣𝑑 , the inequalities (11) hold for 𝑖 = 𝑑  whereas the selection phase, 
described in Section 5.1, considers inequalities (11) only for 𝑗 = 𝜀.  
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                               𝐿𝐿𝑗
(𝑖)(𝑛) =

∑ �𝑞ℓ𝑖(𝑛𝑖)𝛤𝑘𝑖(𝑛𝑖)�𝑚
ℓ=𝑗+1

𝛤𝑗
(𝑖)(𝑛𝑖)(𝑚𝑖 − 𝑗)

, 𝑗 = 1, … ,𝑚 − 1 (12) 

6. Simulation Results 

In this section, we conduct a set of computer simulations to study the VDLA performance 
compared to a DLA-based algorithm1 and a Particle Swarm Optimization (PSO) 
approach,43 in terms of the two criteria of simulation time and number of samplings. To 
this end, we consider six different graphs constructed form two directed stochastic 
graphs, Graph A and Graph B, taken from Refs. 1 and 19, shown in Figs. 2 and 3, 
respectively. Graph A is a directed stochastic graph with 10 nodes, 23 arcs, 𝑣s = 1, 
𝑣d = 10, and 𝜏∗ = [1, 4, 9, 10]. Edge cost distribution of Graph A is given in Table . 
Graph B is a stochastic graph with 15 nodes, 42 arcs, 𝑣s = 1 , 𝑣d = 15 , and 𝜏∗ =
[1, 2, 5, 15]. Edge cost distribution of Graph B is given in Table 2. To evaluate our 
proposed necessary conditions, we generate three different stochastic graphs based on 
Graph A, denoted by A(1), A(2), and A(3). These three graphs only differ in the edge 
cost distributions of the edges involved the shortest path of the Graph A (Table 3). In 
other words, the probabilistic lengths of the shortest path in these three graphs differ from 
each other. Similarly, three different stochastic graphs B(1), B(2), and B(3), with 
different lengths of the shortest path, are generated based on Graph B (Table 5). 

In the simulations, LA utilize the 𝐿𝑅−𝐼 learning algorithm, where α, the reward rate, is 
set to .01. The value of maxIter is set to 4000 for graphs A(1), A(2), and A(3) and to 
7000 for graphs B(1), B(2), and B(3). 

We consider three different versions of the proposed VDLA in the simulations. The 
first version, denoted by VDLA(1), is similar one described in Section 5.1. In the second 
version, denoted by VDLA(2), we consider all conditions given by inequalities (11) 
instead of using condition given by inequality (7) as the necessary condition for the 
termination of the algorithm. Therefore, in the learning phase of VDLA(2), 𝑣d takes the 
following steps: 

− If 𝑛𝑑 > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , then 
o Define a temporary vector 𝛤� = 𝑠𝑠𝑠𝑠 (𝛤𝑑(𝑛𝑑))  and construct another 

temporary vector 𝑞� such that the action probability 𝑞�𝑗 is the probability 
of the action corresponding to Γ�𝑗. 

o If  inequality (13) holds for all 𝑗 = 1, … , (𝑚d − 1) then  
 Create an 𝑆𝑆  token and sends it out to the neighbor 

corresponding to the action with the maximum value of 𝑞𝑑. 

𝑞�𝑗 > 𝐿𝐿����𝑗𝑑(𝑛𝑖)                                (13) 

𝐿𝐿����𝑗𝑑(𝑛) =
∑ [𝑞�𝑘Γ�𝑘]𝑚
ℓ=𝑗+1

Γ�𝑗(𝑚𝑑 − 𝑗)
, 𝑗 = 1, … , (𝑚d − 1)  (14) 
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Fig. 2. Graph A. 

 
Fig. 3. Graph B. 

Table 1. Weight distribution of Graph A (Fig. 2). 

Edges Lengths Probabilities Edges Lengths Probabilities 
(1,2) 3.0 5.3 7.4 9.4 .2 .2 .3 .2 (6,3) 6.8 7.7 8.5 9.6 .4 .1 .1 .4 
(1,3) 3.5 6.2 7.9 8.5 .3 .3 .2 .2 (6,5) .6 1.5 3.9 5.8 .2 .2 .3 .3 
(1,4) 4.2 6.1 6.9 8.9 .2 .3 .2 .3 (6,7) 2.1 4.8 6.6 7.5 .2 .4 .2 .2 
(2,5) 2.6 4.1 5.5 9.0 .2 .2 .4 .2 (7,6) 4.1 6.3 8.5 9.7 .2 .3 .4 .1 
(2,6) 5.8 7.0 8.5 9.6 .3 .3 .2 .2 (7,8) 1.6 2.8 5.2 6.0 .2 .3 .3 .2 
(3,2) 1.5 2.3 3.6 4.5 .2 .2 .3 .3 (7,9) 3.5 4.0 5.0 7.7 .1 .2 .4 .3 
(3,7) 6.5 7.2 8.3 9.4 .5 .2 .2 .1 (7,10) 1.6 3.4 8.2 9.3 .2 .3 .3 .2 
(3,8) 5.9 7.8 8.6 9.9 .4 .3 .1 .2 (8,4) 7.0 8.0 8.8 9.4 .2 .2 .2 .4 
(4,3) 2.1 3.2 4.5 6.8 .2 .2 .3 .3 (8,7) 2.1 4.6 8.5 9.6 .4 .2 .2 .2 
(4,9) 1.1 2.2 3.5 4.3 .2 .3 .4 .1 (8,9) 1.7 4.9 6.5 7.8 .2 .2 .2 .4 
(5,7) 3.2 4.8 6.7 8.2 .2 .2 .3 .3 (9,10) 4.6 6.4 7.6 8.9 .4 .1 .2 .3 
(5,10) 6.3 7.8 8.4 9.1 .2 .2 .4 .2    
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Table 2. Weight distribution of Graph B (Fig. 3). 

Edges Lengths Probabilities Edges Lengths Probabilities 
(1,2) 16 25 36  .6 .3 .1  (7,8) 12 15 22 24 .3 .3 .3 .1 
(1,3) 21 24 25 39 .5 .2 .2 .1 (7,10) 19 23 37  .6 .2 .2  
(1,4) 11 13 26  .4 .4 .2  (8,4) 13 23 34  .4 .3 .3  
(2,5) 11 30   .7 .3   (8,7) 14 34 39  .6 .2 .2  
(2,6) 13 37 39  .6 .2 .2  (8,9) 13 31 32  .8 .1 .1  
(2,11) 24 28 31  .5 .3 .2  (8,14) 14 15 27 32 .3 .3 .2 .2 
(3,2) 11 20 24  .6 .3 .1  (9,7) 10 17 20  .6 .3 .1  
(3,7) 23 30 34  .4 .3 .3  (9,10) 16 18 36 39 .3 .3 .2 .2 
(3,8) 14 23 34  .5 .4 .1  (9,14) 19 24 29  .4 .3 .3  
(4,3) 22 30   .7 .3   (9,15) 12 23 25 32 .4 .3 .2 .1 
(4,9) 35 40   .6 .4   (10,13) 14 20 25 32 .3 .3 .2 .2 
(4,12) 16 25 37  .5 .4 .1  (10,14) 23 34   .9 .1   
(5,7) 15 17 19 26 .3 .3 .3 .1 (10,15) 15 19 25  .4 .3 .3  
(5,10) 27 33 40  .4 .3 .3  (11,5) 18 19 20 23 .3 .3 .3 .1 
(5,13) 28 35 37 40 .4 .3 .2 .1 (11,6) 10 19 39  .5 .4 .1  
(5,15) 25 32   .7 .3   (11,13) 13 31 25  .6 .3 .1  
(6,3) 18 24   .7    (12,8) 15 36 39  .5 .3 .2  
(6,5) 18 25 29  .5 .3 .2  (12,9) 16 22   .7 .3   
(6,7) 11 31 37  .5 .4 .1  (12,14) 10 13 18 34 .3 .3 .3 .1 
(6,13) 21 23   .5 .5   (13,15) 12 31   .9 .1   
(7,6) 12 23 31  .5 .3 .2  (14,15) 14 19 32  .5 .3 .2  

Table 3. The edge cost distributions of the edges along 𝜏∗ and the probabilistic length of 𝜏∗for A(1), A(2), and 
A(3). The lengths of edges are shown in Table 1. 

 A(1) A(2) A(3) 
Edges of 𝝉∗ Probabilities Probabilities Probabilities 
(1,4) .2 .3 .2 .3 .5 .3 .1 .1 .7 .1 .1 .1 
(4,9) .2 .3 .4 .1 .5 .3 .1 .1 .7 .1 .1 .1 
(9,10) .4 .1 .2 .3 .5 .3 .1 .1 .7 .1 .1 .1 
prob. length of 𝝉∗ 16.1 13.37 12.41 

Table 4. The edge cost distributions of the edges along 𝜏∗ and the probabilistic length of 𝜏∗for B(1), B(2), and 
B(3). The lengths of edges are shown in Table 5.  

 B(1) B(2) B(3) 
Edges of 𝝉∗ Probabilities Probabilities Probabilities 
(1,2) .6 .3 .1 .8 .1 .1 .9 .1 .0 
(2,5) .7 .3  .8 .2  .9 .1  
(5,15) .7 .3  .8 .2  .9 .1  
prob. length of 𝝉∗ 64.5 60.1 55.5 

 

In the last version, denoted by VDLA(3), not only the destination node 𝑣d, but also 
any node receiving an 𝑆𝑆  token, except for 𝑣s , checks the condition given by the 
inequality (7) and sends the 𝑆𝑆 towards 𝑣s only after this condition holds. In VDLA(3), 
upon the arrival of the 𝑆𝑆 at any node 𝑣i, except for 𝑣s, the following two steps will be 
taken by 𝑣i: 

• First, it sets the neighbor node 𝑣j, from which it receives 𝑆𝑆, as its destination node in 
the shortest path 𝜏∗. 



446   S. M. Vahidipour, M. R. Meybodi & M. Esnaashari 

• Second, it sends out the 𝑆𝑆  to the neighbor corresponding to the action with the 
maximum value of 𝑞𝑖  if Eq. (15)(15) hold where 𝐿𝐿𝜀𝑖(𝑛𝑖) is defined in Eq. (8) for 
= argmin𝑗 𝛤𝑗𝑖(𝑛𝑖) . 

                                     𝑞𝜀𝑖(𝑛𝑖) > 𝐿𝐿𝜀𝑖(𝑛𝑖) (15) 

6.1. Experiment one 

This experiment is conducted to study the ability of the proposed algorithm in finding the 
shortest path in different graphs. We define 𝑛∗  as the iteration number, at which the 
proposed necessary conditions hold for the first time. We also define ℕ as the number of 
iterations, after 𝑛∗, at which the proposed algorithm cannot find the shortest path 𝜏∗. An 
iteration here is defined as the number of unique 𝐿𝐿𝐿 arrived at the destination node 𝑣𝑑 . 

All reported results are averaged over 50 independent runs of simulation. In each run, 
𝑣𝑠 repeatedly sends out learning-tokens to all its neighbors according to an exponential 
distribution with rate 𝜆 = .1. Results for Experiment One are reported in Table 5.  

Table 5. Results of simulations on graphs. 

Alg. 𝑮 𝒏∗ ℕ 𝑳𝑳𝜺
𝒅(𝒏∗), Eq. (8) 

VDLA(1) A(1)   571 0 .3500 
         A(2)   748 0 .3821 
        A(3)   808 0 .3960 

B(1)   488 0 .2051 
      B(2)   494 0 .2089 
      B(3)   499 0 .2076 

Alg. Graph     𝑛∗      ℕ 𝐿𝐿����𝑗𝑑(𝑛∗), 𝑗 = 1, … ,𝑚𝑑, Eq. (14)  
VDLA(2) A(1)   624 0 [.3499, .2894] 

     A(2)   739 0 [.3819, .2554] 
     A(3)   820 0 [.3961, .2487] 

B(1)   489 0 [.2049,.1764,.1459,.0800] 
    B(2)   491 0 [.2088,.1709,.1414,.0763] 
    B(3)   497 0 [.2075,.1580,.1218,.0792] 

Alg. Graph   𝑛∗     ℕ 𝐿𝐿𝜀𝑖(𝑛∗), 𝑣𝑖  𝑎𝑎𝑎𝑎𝑎 𝜏∗, Eq. (8)  
VDLA(3) A(1) 2319 0 .9558, .4837, .3499 

   A(2) 2789 0 .9941, .5882, .3820 
   A(3) 2954 0 .9952, .6060, .3961 

B(1) 4782 0 .6399, .4542, .2050 
   B(2) 4983 0 .6858, .4838, .2089 
   B(3) 4983 0 .6972, .4997, .2074 
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From Table 5, one may conclude the following remarks: 

• The shorter the length of the shortest path, the higher the values of 𝐿𝐿𝑑(𝑛∗) and 𝑛∗ 
will be. To account for this phenomenon, recall that 𝛤𝜀𝑑 is an estimate of the length of 
the shortest path in the graph in Eq. (8). Considering the Eq. (8), a decline in the value 
of 𝛤𝜀𝑑 results in a rise in the value of 𝐿𝐿𝜀𝑑. As a result, when the length of the shortest 
path in the graph decreases, 𝛤𝜀𝑑  decreases and subsequently 𝐿𝐿𝜀𝑑  increases. When 
𝐿𝐿𝜀𝑑 increases, the number of tokens required by 𝐿𝐴𝑑  residing in 𝑣𝑑  to pass that 
𝐿𝐿𝜀𝑑 increases, and hence 𝑛∗ will increase as well. 

• The value of 𝑛∗ in VDLA(3) is higher than that of VDLA(1) and VDLA(2). This is 
due to the fact that in VDLA(3), the algorithm terminates condition given by Eq. (15) 
must hold in all nodes 𝑣𝑖  along the shortest path. 

In all simulations, for time instant  𝑛 > 𝑛∗, the path constructed by the VDLA is equal to 
the shortest path 𝜏∗ . In other words, although the proposed termination condition is 
proved to be a necessary condition, our experiments suggest that it may be possible to 
consider it as a sufficient condition for the termination of the algorithm. 

6.2. Experiment two 

We conduct a set of simulations to compare VDLA(1) and a DLA-based algorithm, 
introduced in Ref. 1, to solve the shortest path problem. To compare the results, three 
performance measures are calculated: (1) the average number of sampling taken from the 
edges of graph, denoted by AS, (2) the average required time for all traversing into graph, 
denoted by AT, and (3) the average required time for taking a sample from the edges of 
graph, which can be calculated by the division of AT to AS denoted by ATS (ATS =
AT AS⁄ ). All reported results are averaged over 50 independent runs of simulations. In 
each run, we calculate the measures until the number of updates in 𝐿𝐿d reaches a specific 
number. In Table 6, this number is reported in a column with “Number of Updating”. For 
example, in A(1), to update 𝐿𝐿𝑑 for 1000 times, the DLA algorithm takes 6351 samples 
from the graph in 37602 milliseconds whereas VDLA(1) takes 23024 samples in 9638 
milliseconds.  

From Table 6, following points can be concluded: 

− The average number of samplings for DLA algorithm is significantly lower than that 
of VDLA(1). 

− The average required time for all traversing into the graph for VDLA(1) is 
substantially shorter than that of DLA algorithm. In other words, VDLA(1) takes more 
samples from the graph in lower time than DLA does. 

− The average required time for taking a sample from edges in the graph for VDLA(1) is 
significantly shorter than that of DLA algorithm. In other words, the speed of taking a 
sample from the graph in VDLA(1) is higher than that of DLA. 



448   S. M. Vahidipour, M. R. Meybodi & M. Esnaashari 

Table 6. Results of simulations on graphs A(1), A(2), and A(3). 

 
𝑮 

 
Number of  Updating 

DLA VDLA(1) 

AS AT(ms) ATS(ms) AS AT(ms) ATS(ms) 

A(1) 

1000   6351   37602   5.92 23024  9638 .42 

2000 12764   75439   5.91 46029 19927 .43 

3000 18786 111035   5.91 69023 30347 .44 

A(2) 
1000   6549   36972   5.65 23024 10083 .44 

2000 12858   72808   5.66 46043 19949 .43 

3000 18752 104465   5.57 69016 29782 .43 

A(3) 
1000   6291   34803   5.53 23003 10188 .44 

2000 12559   69543   5.54 46003 18854 .41 

3000 18646 100647   5.40 69025 29948 .43 

B(1) 

1000   7840 164870 21.03 23519   5518 .23 

2000 15586 328710 21.10 47105 11320 .24 

3000 23261 489229 21.03 70408 16831 .24 

B(2) 
1000   7900 163788 20.73 23551   5451 .23 

2000 15309 315755 20.63 47013 11352 .24 

3000 23512 485602 20.65 70474 17615 .25 

B(3) 
1000   7628 155027 20.32 23565   5621 .24 

2000 15392 312617 20.31 47010 11352 .24 

3000 23136 473529 20.47 70369 16284 .23 

6.3. Experiment three 

We conduct a set of simulations to compare VDLA(1) and a Particle Swarm 
Optimization (PSO) approach, introduced in Ref. 43. To compare the results, the 
percentage of finding the shortest path (referred to as FSP) and the value of ATS, i.e. the 
average required time for taking a sample from edges of the graph (described in 
Experiment Two) are calculated. All reported results are averaged over 50 independent 
runs of simulations. Each simulation is terminated when the iteration number is reached 
to the maximum number of iterations. In Table 7, this maximum number is reported in a 
column titled “Max. Number of Iterations”. At the end of a simulation, a path is 
determined by the algorithm and then, FSP measure is updated using this path. Like 
experiment One, in VDLA(1) algorithm, an iteration is defined as the number of unique 
𝐿𝐿𝐿  arrived at the destination node 𝑣𝑑 . Similarly, for PSO algorithm, an iteration is 
defined as the number of particles arrived at 𝑣𝑑. 
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Table 7. Comparisons of VDLA(1) and PSO approach introduced in Ref. 43. 

 
𝑮 

Max. 
Iterations 

Finding the Shortest Path (FSP) ATS 

PSO-50  PSO-100  VDLA(1) PSO-50  PSO-100  VDLA(1) 

A(1) 1000 97 98 100   5.37   4.82 .42 
2000 99 100 100   5.36   4.81 .43 
3000 100 100 100   5.36   4.82 .44 

A(2) 1000 95 96 100   5.13   4.61 .44 
2000 96 98 100   5.14   4.61 .43 
3000 98 99 100   5.06   4.54 .43 

A(3) 1000 95 96 100   5.02   4.51 .44 
2000 95 98 100   5.03   4.51 .41 
3000 97 99 100   4.90   4.41 .43 

B(1) 1000 68 63 100 18.95 16.87 .23 
2000 78 75 100 19.01 16.93 .24 
3000 84 80 100 18.95 16.87 .24 

B(2) 1000 67 63 100 18.68 16.63 .23 
2000 76 74 100 18.59 16.55 .24 
3000 85 80 100 18.61 16.57 .25 

B(3) 1000 63 60 100 18.31 16.30 .24 
2000 75 69 100 18.30 16.30 .24 
3000 82 76 100 18.45 16.42 .23 

 
From Table 7, following points can be concluded: 

− VDLA(1) always outperforms the PSO algorithm in finding the shortest path. For 
example, in the graph B(3), VDLA(1) finds the shortest path before the 1000th 
iteration, whereas, even in the 3000th iteration, PSO with 50 particles and PSO with 
100 particles are only able to find the shortest path in 82 and 76 percentage of times, 
respectively.  

− Considering the fact that the average required time for taking a sample from edges of 
the graph in VDLA(1) is significantly lower than that of PSO, one may conclude that 
using VDLA(1), speeds up the process of finding the shortest path in stochastic graphs 
to a noticeable extent in comparison to PSO algorithm. 

Since the VDLA takes samples from all edges of the graph, we can extend VDLA 
algorithm to solve the single-source shortest path problem. We propose an extension of 
VDLA to solve this problem in stochastic graphs below. 

6.4. Algorithm extension: the single-source shortest path  

Here, we extend our proposed algorithm to find the shortest paths from the source node 
𝑣s to all other nodes known as the single-source shortest path problem.44 In the extended 
algorithm, denoted by eVDLA, each node 𝑣i, except for 𝑣s, is responsible for starting the 
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selection phase by sending a selection-token, denoted by 𝑆𝑆i, to 𝑣s. 𝑆𝑆i is used to find 
the shortest path from the 𝑣s to 𝑣i denoted by 𝜏∗i. 𝑆𝑆i traverses this path within the graph 
towards 𝑣s. When 𝑣s gets all 𝑆𝑆i, 𝑣s stops sending out 𝐿𝐿 tokens. 

Upon the arrival of 𝑆𝑆j at any node 𝑣i , except for 𝑣s , the following steps will be 
taken by 𝑣i: 

• It sets the neighbor node 𝑣k , from which it receives 𝑆𝑆𝑗 , as its next node in the 
shortest path 𝜏∗𝑗.  

• It sends out 𝑆𝑆𝑗 to the neighbor corresponding to the action with the maximum value 
of 𝑞𝑖. 

Table 8. Results of different simulation by eVDLA on graphs A(1) and B(1). 

Graph 
Destination 

A(1) B(1) 
𝑛∗ 𝑛∗ 

𝒗𝟐 1417 4782 
𝒗𝟑 2493 6417 
𝒗𝟒 2319 5982 
𝒗𝟓 1163 1872 
𝒗𝟔   889 2124 
𝒗𝟕 1172 1723 
𝒗𝟖   769 2086 
𝒗𝟗 1185 1850 
𝒗𝟏𝟏   571   936 
𝒗𝟏𝟏 − 3982 
𝒗𝟏𝟏 − 3879 
𝒗𝟏𝟏 − 1018 
𝒗𝟏𝟏 −   975 
𝒗𝟏𝟏 −   488 

 
A set of computer simulations is conducted to study the proposed necessary condition 
over all nodes of graphs. To do this, we consider the inequality (15) as the necessary 
condition in eVDLA and report the average value of 𝑛∗ for graphs A(1) and B(1) in 
Table 8, which summarizes the results for 50 different simulations. 

In all simulations, for time instant 𝑛 > 𝑛∗, the path constructed by the VDLA for  
𝑣𝑖  is equal to the shortest path 𝜏∗𝑖. In other words, although the proposed termination 
condition is proved to be a necessary condition, our experiments suggest that it may be 
possible to consider it as a sufficient condition for the termination of the algorithm. 

6.5. Algorithm improvement: using discrete learning automata 

There is always a need to improve the speed of the operation of a learning automaton.45 
One of the way in which such an improvement can be fulfilled is discretizing the action 
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probability space of the LA.45 In discretized automata models we restrict the action 
probabilities to a finite number of values in the interval [0,1]. The number of such values 
denotes the level of discretization and is a design parameter. The values are generally 
spaced equally in [0,1]. Every linear learning algorithm considered by a variable structure 
LA, can be discretized in this manner.45 

In this experiment, we use a discretized 𝐿𝑅𝑅  algorithm to update the action probability 
vectors of LAs in VDLA.  In the improved version of VDLA, denoted by dVDLA, the 
following learning algorithm is used instead of the ordinary 𝐿𝑅𝑅  algorithm. Let 𝒩 be the 
resolution parameter indicating the level of discretization. The smallest change in any 
action probability is then chosen as ∆= 1

𝑟𝒩
  where r is the number of actions. Let 

𝛼(𝑛) = αi be the action chosen by the learning automaton at instant 𝑛 
 

𝑞𝑗(𝑛 + 1) = �
max�𝑞𝑗(𝑛) − ∆,0� ,∀𝑗 ≠ 𝑖

1 −�𝑞𝑗(𝑛)
𝑗≠𝑖

             , 𝑗 = 𝑖 (16) 

 
when the taken action is rewarded by the environment (i.e. 𝛽(𝑛) = 0) and 

 
𝑞𝑗(𝑛 + 1) = 𝑞𝑗(𝑛),∀𝑗 (17) 

when the taken action is penalized by the environment (i.e. 𝛽(𝑛) = 1). 
Utilizing discretized LAs, instead of ordinary LAs, the newly versions of VDLA(1), 

VDLA(2), and VDLA(3) are denoted by dVDLA(1), dVDLA(2), and dVDLA(3) 
respectively. Simulation settings of this experiment are completely identical to that used 
in Experiment one. The resolution parameter 𝒩  is set to 100. The results for this 
experiment are reported in Table 9. As it was anticipated, using discretized learning 
automata increases the speed of the algorithm by a factor of 31% on average. 

 

Table 9. Results of simulations on graphs. 

 
𝑮 

𝒏∗ 
VDLA(1) dVDLA(1) VDLA(2) dVDLA(2) VDLA(3) dVDLA(3) 

A(1) 571 377 624 424 2319 1531 
A(2) 748 524 739 488 2789 1952 
A(3) 808 566 820 549 2954 2038 
B(1) 488 317 489 333 4782 3491 
B(2) 494 341 491 354 4983 3438 
B(3) 499 344 497 353 4983 3239 
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7. Conclusion 

In this paper, different versions of algorithm VDLA is proposed based on the learning 
automata to solve the shortest path problem in stochastic graphs. In the proposed 
algorithm, an LA, assigned to a node, selects a neighbor on the shortest path from the 
source node to that node. To learn the LAs in VDLA, a number of tokens traverse into 
the graph and estimate the required time for traversing from different paths. Using these 
estimations, in the learning phase of VDLA, the LA in each node gradually learns to 
assign the higher probability to the action related to neighbor along the shortest path. The 
destination node terminates the learning phase of VDLA by sending a special token, 
selection-token, toward the source node. To determine when this token is sent, we 
proposed a number of necessary conditions, if hold, the destination node can send this 
token to a neighbor along the shortest path. We used a recently introduced model, 
Adaptive Stochastic Petri Net (ASPN-LA) to find these conditions. We argued that 
VDLA can assign the highest steady-state probability to select the shortest path if the 
proposed necessary conditions hold. Computer simulations reported in the paper did in 
fact verify the theoretical results and compared the experimental results with a DLA-
based algorithm. Finally, we proposed eVDLA algorithm to solve the single-source 
shortest path problem in stochastic graphs. 
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Appendix A.  Proof of Theorem 2 

We prove this property by contradiction. Suppose that �𝑞𝑗∗ 𝜇𝑗⁄ � ≤ (𝑞𝑘∗ 𝜇𝑘⁄ ).  Since 
�𝜇𝑘 𝜇𝑗⁄ � < 1 and 𝑞𝑗∗ × �𝜇𝑘 𝜇𝑗⁄ � < 𝑞𝑘∗ , the relation 𝑞𝑗∗ < 𝑞𝑘∗  must hold true, which is a 
contradiction. Due to selection of the class 𝑗 of jobs with a higher probabilistic priority 
than the class 𝑘, 𝑞𝑗∗  must be absolutely greater than 𝑞𝑘∗ . Therefore, the Theorem 2 is 
proved. 

Appendix B.  Proof of Theorem 3 

The shortest total waiting time is achieved, when the highest probabilistic priority is 
assigned to class of jobs with the shortest average service time.39,40 From learning 
procedure 𝐿𝑅−𝐼  shown in Eq. (1), if action 1 is attempted at instant n, the probability 
𝑞1(𝑛) is increased at instant n+1 by an amount proportional to 1 − 𝑞1(𝑛) for a favorable 
response and fixed for an unfavorable response. By this, it follows that {𝑞(𝑛)}𝑛>0 can be 
described by a Markov-process whose state space is the unit interval [0, 1], when 
automaton operates in an environment with penalty probabilities  {𝑐1, 𝑐2, … , 𝑐𝑚} . The 
schema 𝐿𝑅−𝐼  consists of 𝑚  absorbing states: {𝑒𝑖(𝑗) = 0 𝑎𝑎𝑎 𝑒𝑖(𝑖) = 1}, 𝑖, 𝑗 = 1, … ,𝑚 . 
Since the probability 𝑞𝑖(𝑛) can be decreased only when 𝛼𝑖  is chosen and results in a 
favorable response, the probability 𝑞(𝑘) = 𝑒𝑖  holds if 𝑞(𝑛) = 𝑒𝑖, 𝑖 = 1, … ,𝑚  for all 
𝑘 ≥ 𝑛. Thus, 𝑉 ≜ {𝑒1, 𝑒2, … , 𝑒𝑚} represents the set of all absorbing states and the Markov 
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process {𝑞(𝑛)}𝑛>0  generated by the schema 𝐿𝑅−𝐼 converges to the set 𝑉 with probability 
one.  

To study the asymptotic behavior of the process {𝑞(𝑛)}𝑛>0, a common method is to 
compute the conditional expectation of 𝑞1(𝑛 + 1) given 𝑞1(𝑛). For the schema 𝐿𝑅−𝐼, this 
computation shows that the expected value of 𝑞𝑖(𝑛) increases or decreases monotonically 
with 𝑛  depending on the values of 𝑐𝑖 , 𝑖 = 1, … ,𝑚 . Study on the asymptotic behavior 
shows that 𝑞𝑖(𝑛) converges to 0 with a higher probability when the value of 𝑐𝑖  is the 
largest value among 𝑐𝑗 , 𝑗 = 1, … ,𝑚, 𝑗 ≠ 𝑖 and to 1 with a higher probability when the 
value of 𝑐𝑖  is the lowest value among 𝑐𝑗 , 𝑗 = 1, … ,𝑚, 𝑗 ≠ 𝑖  if the initial probability is 
𝑞𝑖(0) = 1 𝑚⁄  (Ref. 22). 

To prove Theorem 3, it is enough to show that penalty signal generated by ASPN-
LA-[m]PP system for the first class of jobs, is the lowest. In our queuing system, each 
class of job has a service time distribution with the exponential density function as        
Eq. (18).  

𝑓𝑖(𝑡) = 𝜇𝑖𝑒−𝜇𝑖𝑡 (18) 

The reinforcement signal generator function produces the penalty signal 𝛽𝑖(𝑛) = 1 
for class 𝑖  in time instant 𝑛  by probability value 𝑐𝑖(𝑛), 𝑖 = 1, … ,𝑚 . Let 𝛤(𝑛) = 1

𝑚 ×
∑ 𝛤𝑖(𝑛)𝑚
𝑖=1  is the average of system waiting time to the instant 𝑛 . Therefore, 𝑐𝑖(𝑛)  is 

defined as the probability of the service time of 𝑛𝑡ℎ job will exceed 𝛤(𝑛) and is defined 
by Eq. (19).39 

𝑐𝑖(𝑛) = 𝑝𝑝𝑝𝑝[𝛿𝑖(𝑛) > 𝛤(𝑛)] = 𝑒−𝜇𝑖𝛤(𝑛), 𝑖 = 1, … ,𝑚 (19) 

In Eq. (19),  δi(n) is the execution time of job 𝑛 which is selected from 𝑖𝑡ℎ class for 
service. Based on our assumption 𝜇1 > 𝜇2 > ⋯ > 𝜇m, it is clear that 𝑐1(𝑛) < 𝑐2(𝑛) <
⋯ < 𝑐m(𝑛)  with probability one for all 𝑛. 39 Therefore, in ASPN-LA-[m]PP system, 
𝑞1(𝑛)  converges to 1  with probability one when 𝑛  goes to infinity. Therefore, the 
Theorem 3 is proved. 
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