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Small world experiments then

Milgram’s experiment (1960’s):

Given a target individual and a particular property, pass the message to a
person you correspond with who is “closest” to the target.
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Small-world experiment
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One possible path of a message in the “Small World” experiment by Stanley Milgram. &2
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Milgram’s experiment

Instructions:

m Given a target individual (stockbroker in Boston), pass the
message to a person you correspond with who is “closest” to the
target.

m some letters: From Wichita (Kansas) and Omaha (Nebraska) to
Sharon (Mass)

m If you do not know the target person on a personal basis, do not
try to contact him directly. Instead, mail this folder to a personal
acquaintance who is more likely than you to know the target
person.

Outcome:

B 20% of initiated chains reached

®m Target average chain length = 6.5

B “Six degrees of separation

Milgram, Psych Today 2, 60 (1967)
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Milgram’s small world experiment

Target person worked in Boston as a stockbroker.
296 senders from Boston and Omaha.

232 of the 296 letters never reached the destination
64 letters (20%) of senders reached target.

average path length = 6.5. 2T ]
“Six degrees of separation” o HHH fE%E:"’.LS%?I
The Small World concept at!'i HNY\H-HH ‘
in simple terms describes Sompleted REES -
the fact despite their often e o 7
large size, in most networks 2 wl
there is a relatively short path % 2 4 B & 10 2

No. of Intermediaries needed

between any two nodes. to reach Target Person
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Degrees of separation in real networks

In 2001, Watts attempted to recreate Milgram's
experiment on the internet, using an e-mail message as
the "package" that needed to be delivered, with 48,000
senders and 19 targets (in 157 countries). Watts found
that the average (though not maximum) number of
intermediaries was around 6.

A 2007 study by Leskovec and Horvitz examined a data
set of instant messages composed of 30 billion
conversations among 240 million people. They found the
average path length among Microsoft Messenger users
to be 6.6 (some now call the theory, "the seven degrees
of separation” because of this)
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Small world experiments now

Email experiment by Dodds,
Muhamad, Watts, Science
301, (2003)

« 18 targets

+ 13 different countries

* 60,000+ participants

* 24,163 message chains
» 384 reached their targets
» average path length 4.0

image by Stephen G. Eick
http://www.bell-labs.com/user/eick/index.html
(unrelated to small world experiment...)
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Degrees of separation in real networks

Species in food webs appear to be on average 2 links
away from each other.

Molecules in the cell are separated on average by 3
chemical reactions.

Scientists in different fields of science are separated by 4
to 6 co-authorship links.

The neurons in the brain of the C. elegans worm are
separated by 14 synapses.

The Web holds the absolute highest record of 20 to 22

The Internet, a network of hundreds of thousands of
routers, has a separation of 10 to 12
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Interpreting Milgram’s experiment

Is 6 a surprising number?
® In the 1960s? Today? Why?

If social networks were random... ?

®m Pool and Kochen (1978) - ~500-1500
acquaintances/person

®m ~ 1,000 choices 1st link

m ~ 10002 = 1,000,000 potential 2" links

m ~ 10003 = 1,000,000,000 potential 3" links
If networks are completely cliquish?
m all my friends’ friends are my friends

® what would happen?

Is 6 an accurate number?
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High node degrees in real networks

How do networks achieve such a uniformly short path
despite consisting of billions of nodes?

The answer lies in the highly interconnected nature of
these networks.

Why in real networks, nodes have many more links than
one (the threshold for connectivity)?

At the critical point when the average connectivity is
around one per node, the separation between nodes
could be rather large.

But as we add more links, the distance between the
nodes suddenly collapses.

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Small-world networks

Watts and Strogtaz showed that many real-world
networks:

m Have small characteristic path length compared to random
networks

B At the same time, have high clustering coefficient that is much
larger than that of random networks

® There are indeed small-worlds
This discovery had huge impact on the various
developments in Network fields

B Search in complex networks

® Communication in networks

B Synchronization and consensus

Complex Network Theory, S. M. Vahidipour, Spring 2017.




The small world model
High clustering: my friends’ friends tend to be my friends
Watts & Strogatz (1998) - a few random links in an

otherwise clustered graph give an average shortest path
close to that of a random graph

B B

Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442.
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Watts-Strogatz model

The construction algorithm:

m Consider a ring graph where each node is connected to its k
nearest neighbors with undirected edges (k-regular)

B Choose a node and one of the edges that connects it to its
nearest neighbors and then with probability P reconnect this
edge to a node randomly chosen over the graph

provided that the duplication of edges and self-loops are forbidden

B The process is repeated until all nodes and nearest neighbor
connecting edges are met

m Next, the edges that connect the nodes to their second nearest
neighbors are reconnected and the rewiring process is
performed on them with the same conditions as above

B The same procedure is then repeated for the remaining edges
connecting the nodes to their k nearest neighbors
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Watts-Strogatz model (WS model)

The resulting graph is so that
m for the value of P = 0 we will have the original ring graph
m for the value of P = 1 produces a pure random graph

®m For some values of P between these two extremes the resulting
network has small characteristics path length, and at the same
time, high clustering coefficient

The average degree will be <k> =k , edges: nk/2

Regular: Small World: Random:
High L, High C Low L, High C Low L, Low C

Increasingly random connectivity
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Networks in nature (empirical observations)

neural network of C. elegans,
semantic networks of languages,
actor collaboration graph,

food webs.

~ In(N)
 >>C

I network

C

networ randomgraph
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Newman-Watts model

Starting with a k-ring graph

N nodes

Non-connected nodes get connected with probability P
P =1 results in complete graph

for some small values of P
m small-world property
m high transitivity

The networks are always connected
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Newman-Watts model

20 nodes in a 2-regular

(2]

ring with
maP=0
m b)P=0.05
mc)P=0.15
md)P=1
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Two ways of constructing a small world graph

Select a fraction p of edges
Reposition on of their endpoints

(Watts-Strogatz model)

Add a fraction p of additional
edges leaving underlying lattice
intact

addition of links

(Newman-Watts model)

As in many network generating algorithms
m Disallow self-edges
m Disallow multiple edges
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Original model

Each node has K nearest neighbors (local)
Probability p of rewiring to randomly chosen nodes
p small: regular lattice

p large: classical random graph
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p=0 Ordered lattice

Compute the clustering coefficient as follows

m each node is connected to K neighbors, who can have K*(K-1)/2
pairwise connections between them

®m some of the connections between them are present in the lattice

Caution: sometimes the lattice will be specified as
each node connects to K closest neighbors
each node connects to all neighbors within distance k (k = K/2)
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Clustering coefficient for regular lattice

In general, can have any K

a neighbor K/2 hops away from i q

can connect to (K/2 — 1) of i’'s ")

neighbors .

a neighbor K/2-1 hops away can !

connect to (1 + K/2 — 1) neighbors

K/2 — 2 hops away /.\_ .
B (2 + K/2 - 1) neighbors .

1 hop away :
m 2(K/2 - 1) W\

. —
Sum this up i

® multiply by factor of 2 because i
has neighbors on both sides

m divide by a factor of 2 because
edges are undirected
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Clustering coefficient for regular lattice

The number of connections

between neighbors is given by q
([

Ka

2 i
Z(gﬂ—l):gK(K—Z)

. W g W—
The maximum number of i
connections is K*(K-1)/2
. L () —
— clustering coefficient is .
|
_3(K-2)
4(K —1)
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Average shortest path - regular lattice
Average node is N/4 hops away (a quarter of the way

around the ring), and you can hop over K/2 nodes at a
time
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p=1 Random graph

InN

|~ —— small
In K

CzE small
N

There are an average of K links per node.

The probability that any two nodes are connected is p = K/N.

The probability that two nodes which share in a neighbor in common

are connected themselves is the same as any two random nodes: K/N
(actually (K-1)/N because they have already expended one edge on their

common neighbor.
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What happens in between?

Small shortest path means small clustering?
Large shortest path means large clustering?

Through numerical simulation

B As we increase p from0to 1
Fast decrease of mean distance
Slow decrease in clustering
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Change in clustering coefficient and average path length
as a function of the proportion of rewired edges

C(p)/C(0)

ical so|ution

1(p)/1(0)

0 exact analytical solution

I(R)/0). C(PIC(0)

) —1 0
log,, P

1% of links rewired 10% of links rewired

0 ]
— -3

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Clustering coefficient for SW model with rewiring

The probability that a connected triple stays connected
after rewiring
m probability that none of the 3 edges were rewired (1-p)3

m probability that edges were rewired back to each other
very small, can ignore

Clustering coefficient = C(p) = C(p=0)*(1-p)3

C(p)/C(0)

Complex Network Theory, S. M. Vahidi;El))ur, Spring 2017.
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Some examples for real networks

(in averages)

Network size vertex | shortest | Shortest path | Clustering Clustering in
degree | path in fitted (averaged random
random over vertices) | 9raph
graph
Filmactors | 225,226 |61 3.65 2.99 0.79 0.00027
MEDLINE 1,520,251 | 18.1 4.6 4.91 0.56 1.8 x 10+

co-authorship

E.Coli 282 7.35 2.9 3.04 0.32 0.026
substrate

graph

C.Elegans 282 14 2.65 2.25 0.28 0.05
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Kleinberg’s geographical small world model

©O 0O 0o O O O
o O ¢ O O 0O
o o o0
@ o o oXg o
0 0 © ‘o0 0
c o o o % o
nodes are placed on a lattice and
connect to nearest neighbors exponent that will determine navigability

additional links placed with P~ du‘\:

Source: Kleinberg, ‘The Small World Phenomenon, An Algorithmic Perspective’ (Nature 2000)
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Small-worlds: algorithmic view

Imagine everyone lives on an n x n grid

“lattice distance” — number of lattice steps between two
points

Constants p,q

]
]

5
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Small-worlds: algorithmic view

p: range of local contacts

® Nodes are connected to all
other nodes within distance

p

g: number of long-range
contacts
B add directed edges from
node u to g other nodes

using independent random
trials

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Small-worlds: algorithmic view

Watts — Strogatz (1998)

®m Found that injecting a small amount of randomness (i.e. even g =
1) into the world is enough to make it a small world.

Kleinberg (2000)

® Why should arbitrary pairs of strangers, using only locally
available information, be able to find short chains of
acquaintances that link them together?

B Does this occur in all small-world networks, or are there
properties that must exist for this to happen?
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Small-worlds: algorithmic view

Probability [u has v as its long range contact] :
Infinite family of networks:

m r = 0: each node’s long-range contacts are chosen independently
of its position on the grid

B As rincreases, the long range contacts of a node become
clustered in its vicinity on the grid

small'r’

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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The algorithmic side

Input:
m Grid G = (V,E)
® arbitrary nodes s, t
Goal:
B Transmit a message from s to t in as few steps as possible using
only locally available information
Assumptions:
m |n any step, the message holder u knows
The range of local contacts of all nodes
The location on the lattice of the target t

The locations and long-range contacts of all nodes that have
previously touched the message

® u does not know
the long-range contacts of nodes that have not touched the message
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no locality

When r=0, links are randomly distributed, ASP ~ log(n), n size of grid
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Links highly localized links on a lattice
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Links balanced between long and short range
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Other generative models

Assign properties to nodes (e.g. spatial location, group
membership)

Add or rewire links according to some rule
m optimize for a particular property (simulated annealing)
m add links with probability depending on property of existing
nodes, edges (preferential attachment, link copying)

® simulate nodes as agents ‘deciding’ whether to rewire or add
links

Complex Network Theory, S. M. Vahidipour, Spring 2017.

slide by Mark Newman
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Roads Air routes

slide by Mark Newman
Complex Network Theory, S. M. Vahidipour, Spring 2017.

Summary

The world is small!

Watts & Strogatz came up with a simple model to explain
why

Later, more sophisticated models of social structure
were developed

There are many, many more models that can be thought
up and that give useful insights

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Readings

Newman, Mark. Networks: an introduction. Oxford
University Press, 2010. (Chapter 15)

Van Steen, Maarten. "Graph Theory and Complex
Networks An Introduction, 2010. (Chapter 7)

Easley and Kleinberg “Networks, Crowds, and Markets”
(Chapters 20)

Newman, Mark EJ. "Random graphs as models of
networks." Handbook of Graphs and Networks: From the
Genome to the Internet (2006).

Watts DJ, Strogatz SH (1998) Collective dynamics of
‘small-world’ networks. Nature 393:440-442.

Newman MEJ, Watts DJ (1999) Renormalization group
analysis of the small-world network model. Physics
Letters A 263: 341-346
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