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Complex Network Theory

Lecture 7

Scale free networks
Instructor: S. Mehdi Vahidipour

(Vahidipour@kashanu.ac.ir)

Spring 2017

Thanks A. Rezvanian

A. Barabasi, L.Adamic, 

Outline

 Heavy Tail distributions

 Power law distributions

 Scale free networks

 20/80 rule

 What kinds of processes generate power laws?

 Next class:

 Community structure

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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What is a heavy tailed-distribution?

 Right skew

 Normal distribution (not heavy tailed)

 e.g. heights of human males: centered around 180cm 

 Zipf’s or power-law distribution (heavy tailed)

 e.g. city population sizes: Tehran 12 million, but many, many small 

towns

 High ratio of max to min

 human heights

 tallest man: 272cm, shortest man: 56 cm ratio: 4.8

from the Guinness Book of world records

 city sizes

 Tehran: pop. 12 million, a village pop. 78, ratio: 150,000

Complex Network Theory, S. M. Vahidipour, Spring 2017.

The Heavy Tail

 The power law distribution implies an “infinite variance”

 The “area” of “big ks” in an exponential distribution tend to zero 

with k  ∞

 This is not true for the power law distribution, implying an infinite 

variance

 In other words, the power law implies that

 The probability to have elements very far from the average is not 

negligible

 Using an exponential distribution

 The probability for a Web page to have more than 100 incoming 

links, considering the average number of links for page, would be 

less in the order of 1-20

 which contradicts the fact that we know a lot of “well linked” sites

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Normal (also called Gaussian) distribution

of human heights

average value close to

most typical

distribution close to 

symmetric around

average value 

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Power-law distribution

 linear scale  log-log scale

 high skew (asymmetry)

 straight line on a log-log plot

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Power-law vs. Exponential distribution

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Power laws are seemingly everywhere

note: these are cumulative distributions, more about this in a bit…

Moby Dick scientific papers 1981-1997 AOL users visiting sites ‘97

bestsellers 1895-1965 AT&T customers on 1 day California 1910-1992
Source: MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law’, Contemporary Physics 46, 323–351 (2005)

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Yet more power laws

Moon Solar flares wars (1816-1980)

richest individuals 2003 US family names 1990 US cities 2003
Source: MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law’, Contemporary Physics 46, 323–351 (2005)

Complex Network Theory, S. M. Vahidipour, Spring 2017.

The Power-law in real networks

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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The Ubiquity of the Power Law

 The previous table includes not only technological networks
 Most real systems and events have a probability distribution that

 Does not follow the “normal” distribution

 and obeys to a power law distribution

 Examples, in addition to technological and social networks
 The distribution of size of files in file systems

 The distribution of network latency in the Internet

 The networks of protein interactions (a few protein exists that interact with a 

large number of other proteins)

 The power of earthquakes: statistical data tell us that the power of 

earthquakes follow a power-law distribution

 The size of rivers: the size of rivers in the world is power law

 The size of industries, i.e., their overall income

 The richness of people

 In these examples, the exponent of the power law distribution is always 

around 2.5

 The power law distribution is the “normal” distribution for complex 

systems (i.e., systems of interacting autonomous components)
 We see later how it can be derived…

Complex Network Theory, S. M. Vahidipour, Spring 2017.

The 20-80 Rule

 It’s a common “way of saying”
 But it has scientific foundations

 For all those systems that follow a power law distribution

 Examples
 The 20% of the Web sites gests the 80% of the visits (actual data: 15%-

85%)

 The 20% of the Internet routers handles the 80% of the total Internet 

traffic

 The 20% of world industries hold the 80% of the world’s income

 The 20% of the world population consumes the 80% of the world’s 

resources

 The 20% of the Italian population holds the 80% of the lands (that was 

true before the Mussolini fascist regime, when lands redistribution 

occurred)

 The 20% of the earthquakes caused the 80% of the victims

 The 20% of the rivers in the world carry the 80% of the total sweet water

 The of the proteins handles the of the most critical metabolic processes

 Does this derive from the power law distribution? YES!

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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80/20 rule

 The fraction W of the wealth in the hands of the richest P 

of the population is given by

W = P(a-2)/(a-1)

 Example: US wealth: a = 2.1

 richest 20% of the population holds 86% of the wealth

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Hubs and Connectors

 Scale free networks exhibit the presence of 

nodes that

 Act as hubs, i.e., as point to which most of the other 

nodes connects to

 Act as connectors, i.e., nodes that make a great 

contributions in getting great portion of the network 

together

 “smaller nodes” exists that act as hubs or connectors 

for local portion of the network

 This may have notable implications, as detailed 

below

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Why “Scale-Free” Networks

 Why networks following a 

power law distribution for links 

are called “scale free”?

 Whatever the scale at which we 

observe the network

 The network looks the same, i.e., it 

looks similar to itself

 The overall properties of the 

network are preserved 

independently of the scale

Complex Network Theory, S. M. Vahidipour, Spring 2017.

 In particular

 If we cut off the details of a network – skipping all nodes with a 

number of links the limited – network will preserve its power-law 

structure

 If we consider a sub-portion of any network it have the network, will 

same overall structure of the whole network

How do they look like?

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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How do they look like?

Complex Network Theory, S. M. Vahidipour, Spring 2017.

How do they look like?

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Fractals and Scale Free Networks

 The nature is made up of mostly “fractal objects”

 The fractal term derives from the fact that they have a non-

integer dimension

 2-d objects have a “size” (i.e., a surface) that scales with the 

square of the linear size A=kL2

 3-d objects have a “size” (i.e., a volume) that scales with the 

cube of the linear size V=kL3

 Fractal objects have a “size” that scales with some fractions of 

the linear size S=kLa/b

 Fractal objects have the property of being “self-similar” 

or “scale-free”

 Their “appearance” is independent from the scale of observation

 They are similar to itself independently of whether you look at 

the from near and from far

 That is, they are scale-free

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Examples of Fractals

 The Koch snowflake

 Coastal Regions & River 

systems

 Lymphatic systems

 The distribution of masses 

in the universe

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Scale Free Networks are Fractals?

 Yes, in fact:

 They are the same at whatever dimension we observe them

 Also, the fact that they grow according to a power law can be 

considered as a sort of fractal dimension of the network…

 Having a look at the figures clarifies the analogy

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Power law distribution

 Straight line on a log-log plot

 Exponentiate both sides to get that p(x), the

probability of observing an item of size ‘x’ is given by

 powers of a number will be uniformly spaced (Logarithmic axes)

a-Cxxp )(

)ln())(ln( xcxp a-

Normalization constant (probabilities over all x must sum to 1)

power law exponent a

Complex Network Theory, S. M. Vahidipour, Spring 2017.

1 2 3 10 20 30 100 200

 20=1, 21=2, 22=4, 23=8, 24=16, 25=32, 26=64,….
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Fitting power-law distributions

 Most common and not very accurate method:

 Bin the different values of x and create a frequency histogram

ln(x)

ln(# of times

x occurred)

x can represent various quantities, the indegree of a node, the magnitude of 

an earthquake, the frequency of a word in text

ln(x) is the natural

logarithm of x,

but any other base of 

the logarithm will give 

the same exponent 

of a because

log10(x) = ln(x)/ln(10)

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Example on an artificially generated data set

 Take 1 million random numbers from a distribution with a

= 2.5

 Can be generated using the so-called

‘transformation method’

 Generate random numbers r on the unit interval

0≤ r <1

 then x = (1-r)-1/(a-1) is a random power law distributed real 

number in the range 1 ≤ x < 

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Linear scale plot of straight bin of the data
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 How many times did the number 1 or 3843 or 99723 occur

 Power-law relationship not as apparent

 Only makes sense to look at smallest bins
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Complex Network Theory, S. M. Vahidipour, Spring 2017.

Where to start fitting?

 some data exhibit a power law only in the tail

 after binning or taking the cumulative distribution you can 

fit to the tail

 so need to select an xmin the value of x where you think 

the power-law starts

 certainly xmin needs to be greater than 0, because x-a is 

infinite at x = 0

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Example: Distribution of citations to papers 

where power law is evident only in the tail (xmin > 

100 citations)

Source: MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law’, Contemporary 

Physics 46, 323–351 (2005)

xmin
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Some exponents for real world data

xmin exponent a

frequency of use of words 1 2.20

number of citations to papers 100 3.04

number of hits on web sites 1 2.40

copies of books sold in the US 2 000 000 3.51

telephone calls received 10 2.22

magnitude of earthquakes 3.8 3.04

diameter of moon craters 0.01 3.14

intensity of solar flares 200 1.83

intensity of wars 3 1.80

net worth of Americans $600m 2.09

frequency of family names 10 000 1.94

population of US cities 40 000 2.30

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Many real world networks are power law

exponent a

(in/out degree)

film actors 2.3

telephone call graph 2.1

email networks 1.5/2.0

sexual contacts 3.2

WWW 2.3/2.7

internet 2.5

peer-to-peer 2.1

metabolic network 2.2

protein interactions 2.4

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Preferential Attachment in Networks

 First considered by [Price 65] as a model for 

citation networks

 each new paper is generated with m citations (mean)

 new papers cite previous papers with probability 

proportional to their indegree (citations)

 what about papers without any citations?

 each paper is considered to have a “default” citation

 Power law with exponent

Complex Network Theory, S. M. Vahidipour, Spring 2017.

generating power-law networks

 Nodes appear over time (growth)

 Nodes prefer to attach to nodes with many connections 

(preferential attachment, cumulative advantage)

Complex Network Theory, S. M. Vahidipour, Spring 2017.



16

Barabási-Albert model (BA model)

 Undirected model: each node connects to other 

nodes with probability proportional to their degree

 the process starts with some initial subgraph (m0 all-all 

connected node)

 each node comes with m edges

 the probability of tipping the new nodes to the old ones 

is proportional to the degrees of old nodes is a kind of 

preferential attachment algorithm

 After t time steps, the network will have n=t+m0 nodes 

and M=m0+mt edges

 It can be shown that this leads to a power law 

network!

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Basic BA-model

 Very simple algorithm to implement

 start with an initial set of m0 fully connected nodes

 e.g. m0 = 3

 now add new vertices one by one, each one with exactly m 

edges

 each new edge connects to an existing vertex in proportion to 

the number of edges that vertex already has → preferential 
attachment

 easiest if you keep track of edge endpoints in one large array 

and select an element from this array at random

 the probability of selecting any one vertex will be proportional to the 

number of times it appears in the array – which corresponds to its 

degree

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Generating BA graphs

 To start, each vertex has an equal 

number of edges (2)

 the probability of choosing any vertex 

is 1/3

 We add a new vertex, and it will 

have m edges, here take m=2

 draw 2 random elements from the 

array – suppose they are 2 and 3

 Now the probabilities of selecting 

1,2,3,or 4 are 

1/5, 3/10, 3/10, 1/5

 Add a new vertex, draw a vertex 

for it to connect from the array 

 etc.

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Proof of the scale-freeness

 Assume for simplicity that the degree ki for any node i is 

a continuous variable 

 The probability of the tipping a node to node i is

 Because of the assumptions, ki is expected to grow 

proportionally to Π(ki), that is to its probability of having a 

new edge

 Consequently, and because m edges are attached at 

each time, ki should obey the differential equation aside

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Proof of the scale-freeness

 The sum

 Goes over all nodes except the new ones 

 This it results in

 Remember that the total number of edges is almost mt

and that here is edge is twice

 Substituting in the differential equation

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Proof of the scale-freeness

 We have now to solve this equation

 That is, we have find a ki(t) function such as its derivative is 

equal to itself, divided by 2t

 We now show this is:

 In fact:

 where we also consider the initial condition ki(ti)=m, 

where ti is the time at which node i has arrived

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Proof of the scale-freeness

 The ki(t) function that we have not calculated shows that 

the degree of each node grown with a power law with 

time

 Now, let’s calculate the probability that a node has a 

degree ki(t) smaller than k

 We have

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Proof of the scale-freeness

 Now let’s remember that we add nodes at each time 

interval

 Therefore, the probability tj for a node, that is the 

probability for a node to have arrived at time ti is a 

constant and is:

 Substituting this into the previous probability distribution

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Proof of the scale-freeness

 Now given the probability distribution

 Which represents the probability that a node i has less 

than k link

 The probability that a node has exactly k link can be 

derived by the derivative of the probability distribution

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Conclusion of the Proof

 Given P(k):

 After a while, that is for t∞

 we have obtained a power law probability density, 

with an exponent which is independent of any parameter 

(being the only initial parameter m)

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Generality of the BA Model

 In its simplicity, the BA model captures the essential characteristics of 

a number of phenomena
 In which events determining “size” of the individuals in a network

 Are not independent from each other

 Leading to a power law distribution

 So, it can somewhat explain why the power law distribution is as 

ubiquitous as the normal Gaussian distribution

 Examples
 Gnutella (the first decentralized P2P network): a peer which has been 

there for a long time, has already collected a strong list of acquaintances, 

so that any new node has higher probability of getting aware of it

 Rivers: the eldest and biggest a river, the more it has probability to break 

the path of a new river and get its water, thus becoming even bigger

 Industries: the biggest an industry, the more its capability to attract clients 

and thus become even bigger

 Richness: the rich I am, the more I can exploit my money to make new 

money  “RICH GET RICHER”

Complex Network Theory, S. M. Vahidipour, Spring 2017.

random non-preferential and preferential growth

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Additional Properties of the BA Model

 Characteristic Path Length

 It can be shown (but it is difficult) that the 

BA model has a length proportional to 

log(n)/log(log(n))

 Which is even shorter than in random 

networks

 And which is often in accord with – but 

sometimes underestimates –

experimental data

 Clustering

 There are no analytical results available

 Simulations shows that in scale-free 

networks the clustering decreases with 

the increases of the network order

 As in random graph, although a bit less

 This is not in accord with experimental 

data!
Complex Network Theory, S. M. Vahidipour, Spring 2017.

Problems of the BA Model

 The BA model is a nice one, but is not fully 

satisfactory!

 The BA model does not give satisfactory 

answers with regard to clustering

 While the small world model of Watts and Strogatz 

does!

 So, there must be something wrong with the model..

 The BA model predicts a fixed exponent of 3 for 

the power law

 However, real networks shows exponents between 1 

and 3

 So, there most be something wrong with the model

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Reading

 M. E. J. Newman, Power laws, Pareto distributions and 
Zipf's law, Contemporary Physics 46, 323-351 (2005) 

 Newman, Mark. Networks: an introduction. Oxford 
University Press, 2010. (Chapter 14)

 Van Steen, Maarten. "Graph Theory and Complex 
Networks An Introduction, 2010. (Chapter 7)

 Barabasi A-L, Albert R (1999) Emergence of scaling in

 random networks. Science 286: 5009-5012

 Easley, Kleinberg, Networks, Crowds, and Markets”, 2010, 

(Chapter 18)

 Lada Adamic, Zipf, Power-laws, and Pareto - a ranking 
tutorial, 
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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