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Complex Network Theory

Lecture 7

Scale free networks
Instructor: S. Mehdi Vahidipour

(Vahidipour@kashanu.ac.ir)

Spring 2017

Thanks A. Rezvanian

A. Barabasi, L.Adamic, 

Outline

 Heavy Tail distributions

 Power law distributions

 Scale free networks

 20/80 rule

 What kinds of processes generate power laws?

 Next class:

 Community structure
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What is a heavy tailed-distribution?

 Right skew

 Normal distribution (not heavy tailed)

 e.g. heights of human males: centered around 180cm 

 Zipf’s or power-law distribution (heavy tailed)

 e.g. city population sizes: Tehran 12 million, but many, many small 

towns

 High ratio of max to min

 human heights

 tallest man: 272cm, shortest man: 56 cm ratio: 4.8

from the Guinness Book of world records

 city sizes

 Tehran: pop. 12 million, a village pop. 78, ratio: 150,000

Complex Network Theory, S. M. Vahidipour, Spring 2017.

The Heavy Tail

 The power law distribution implies an “infinite variance”

 The “area” of “big ks” in an exponential distribution tend to zero 

with k  ∞

 This is not true for the power law distribution, implying an infinite 

variance

 In other words, the power law implies that

 The probability to have elements very far from the average is not 

negligible

 Using an exponential distribution

 The probability for a Web page to have more than 100 incoming 

links, considering the average number of links for page, would be 

less in the order of 1-20

 which contradicts the fact that we know a lot of “well linked” sites

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Normal (also called Gaussian) distribution

of human heights

average value close to

most typical

distribution close to 

symmetric around

average value 

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Power-law distribution

 linear scale  log-log scale

 high skew (asymmetry)

 straight line on a log-log plot
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Power-law vs. Exponential distribution

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Power laws are seemingly everywhere

note: these are cumulative distributions, more about this in a bit…

Moby Dick scientific papers 1981-1997 AOL users visiting sites ‘97

bestsellers 1895-1965 AT&T customers on 1 day California 1910-1992
Source: MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law’, Contemporary Physics 46, 323–351 (2005)

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Yet more power laws

Moon Solar flares wars (1816-1980)

richest individuals 2003 US family names 1990 US cities 2003
Source: MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law’, Contemporary Physics 46, 323–351 (2005)

Complex Network Theory, S. M. Vahidipour, Spring 2017.

The Power-law in real networks

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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The Ubiquity of the Power Law

 The previous table includes not only technological networks
 Most real systems and events have a probability distribution that

 Does not follow the “normal” distribution

 and obeys to a power law distribution

 Examples, in addition to technological and social networks
 The distribution of size of files in file systems

 The distribution of network latency in the Internet

 The networks of protein interactions (a few protein exists that interact with a 

large number of other proteins)

 The power of earthquakes: statistical data tell us that the power of 

earthquakes follow a power-law distribution

 The size of rivers: the size of rivers in the world is power law

 The size of industries, i.e., their overall income

 The richness of people

 In these examples, the exponent of the power law distribution is always 

around 2.5

 The power law distribution is the “normal” distribution for complex 

systems (i.e., systems of interacting autonomous components)
 We see later how it can be derived…

Complex Network Theory, S. M. Vahidipour, Spring 2017.

The 20-80 Rule

 It’s a common “way of saying”
 But it has scientific foundations

 For all those systems that follow a power law distribution

 Examples
 The 20% of the Web sites gests the 80% of the visits (actual data: 15%-

85%)

 The 20% of the Internet routers handles the 80% of the total Internet 

traffic

 The 20% of world industries hold the 80% of the world’s income

 The 20% of the world population consumes the 80% of the world’s 

resources

 The 20% of the Italian population holds the 80% of the lands (that was 

true before the Mussolini fascist regime, when lands redistribution 

occurred)

 The 20% of the earthquakes caused the 80% of the victims

 The 20% of the rivers in the world carry the 80% of the total sweet water

 The of the proteins handles the of the most critical metabolic processes

 Does this derive from the power law distribution? YES!

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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80/20 rule

 The fraction W of the wealth in the hands of the richest P 

of the population is given by

W = P(a-2)/(a-1)

 Example: US wealth: a = 2.1

 richest 20% of the population holds 86% of the wealth

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Hubs and Connectors

 Scale free networks exhibit the presence of 

nodes that

 Act as hubs, i.e., as point to which most of the other 

nodes connects to

 Act as connectors, i.e., nodes that make a great 

contributions in getting great portion of the network 

together

 “smaller nodes” exists that act as hubs or connectors 

for local portion of the network

 This may have notable implications, as detailed 

below

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Why “Scale-Free” Networks

 Why networks following a 

power law distribution for links 

are called “scale free”?

 Whatever the scale at which we 

observe the network

 The network looks the same, i.e., it 

looks similar to itself

 The overall properties of the 

network are preserved 

independently of the scale

Complex Network Theory, S. M. Vahidipour, Spring 2017.

 In particular

 If we cut off the details of a network – skipping all nodes with a 

number of links the limited – network will preserve its power-law 

structure

 If we consider a sub-portion of any network it have the network, will 

same overall structure of the whole network

How do they look like?

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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How do they look like?

Complex Network Theory, S. M. Vahidipour, Spring 2017.

How do they look like?

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Fractals and Scale Free Networks

 The nature is made up of mostly “fractal objects”

 The fractal term derives from the fact that they have a non-

integer dimension

 2-d objects have a “size” (i.e., a surface) that scales with the 

square of the linear size A=kL2

 3-d objects have a “size” (i.e., a volume) that scales with the 

cube of the linear size V=kL3

 Fractal objects have a “size” that scales with some fractions of 

the linear size S=kLa/b

 Fractal objects have the property of being “self-similar” 

or “scale-free”

 Their “appearance” is independent from the scale of observation

 They are similar to itself independently of whether you look at 

the from near and from far

 That is, they are scale-free

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Examples of Fractals

 The Koch snowflake

 Coastal Regions & River 

systems

 Lymphatic systems

 The distribution of masses 

in the universe

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Scale Free Networks are Fractals?

 Yes, in fact:

 They are the same at whatever dimension we observe them

 Also, the fact that they grow according to a power law can be 

considered as a sort of fractal dimension of the network…

 Having a look at the figures clarifies the analogy

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Power law distribution

 Straight line on a log-log plot

 Exponentiate both sides to get that p(x), the

probability of observing an item of size ‘x’ is given by

 powers of a number will be uniformly spaced (Logarithmic axes)

a-Cxxp )(

)ln())(ln( xcxp a-

Normalization constant (probabilities over all x must sum to 1)

power law exponent a

Complex Network Theory, S. M. Vahidipour, Spring 2017.

1 2 3 10 20 30 100 200

 20=1, 21=2, 22=4, 23=8, 24=16, 25=32, 26=64,….
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Fitting power-law distributions

 Most common and not very accurate method:

 Bin the different values of x and create a frequency histogram

ln(x)

ln(# of times

x occurred)

x can represent various quantities, the indegree of a node, the magnitude of 

an earthquake, the frequency of a word in text

ln(x) is the natural

logarithm of x,

but any other base of 

the logarithm will give 

the same exponent 

of a because

log10(x) = ln(x)/ln(10)

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Example on an artificially generated data set

 Take 1 million random numbers from a distribution with a

= 2.5

 Can be generated using the so-called

‘transformation method’

 Generate random numbers r on the unit interval

0≤ r <1

 then x = (1-r)-1/(a-1) is a random power law distributed real 

number in the range 1 ≤ x < 

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Linear scale plot of straight bin of the data
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Where to start fitting?

 some data exhibit a power law only in the tail

 after binning or taking the cumulative distribution you can 

fit to the tail

 so need to select an xmin the value of x where you think 

the power-law starts

 certainly xmin needs to be greater than 0, because x-a is 

infinite at x = 0

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Example: Distribution of citations to papers 

where power law is evident only in the tail (xmin > 

100 citations)

Source: MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law’, Contemporary 

Physics 46, 323–351 (2005)

xmin
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Some exponents for real world data

xmin exponent a

frequency of use of words 1 2.20

number of citations to papers 100 3.04

number of hits on web sites 1 2.40

copies of books sold in the US 2 000 000 3.51

telephone calls received 10 2.22

magnitude of earthquakes 3.8 3.04

diameter of moon craters 0.01 3.14

intensity of solar flares 200 1.83

intensity of wars 3 1.80

net worth of Americans $600m 2.09

frequency of family names 10 000 1.94

population of US cities 40 000 2.30

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Many real world networks are power law

exponent a

(in/out degree)

film actors 2.3

telephone call graph 2.1

email networks 1.5/2.0

sexual contacts 3.2

WWW 2.3/2.7

internet 2.5

peer-to-peer 2.1

metabolic network 2.2

protein interactions 2.4

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Preferential Attachment in Networks

 First considered by [Price 65] as a model for 

citation networks

 each new paper is generated with m citations (mean)

 new papers cite previous papers with probability 

proportional to their indegree (citations)

 what about papers without any citations?

 each paper is considered to have a “default” citation

 Power law with exponent

Complex Network Theory, S. M. Vahidipour, Spring 2017.

generating power-law networks

 Nodes appear over time (growth)

 Nodes prefer to attach to nodes with many connections 

(preferential attachment, cumulative advantage)

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Barabási-Albert model (BA model)

 Undirected model: each node connects to other 

nodes with probability proportional to their degree

 the process starts with some initial subgraph (m0 all-all 

connected node)

 each node comes with m edges

 the probability of tipping the new nodes to the old ones 

is proportional to the degrees of old nodes is a kind of 

preferential attachment algorithm

 After t time steps, the network will have n=t+m0 nodes 

and M=m0+mt edges

 It can be shown that this leads to a power law 

network!

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Basic BA-model

 Very simple algorithm to implement

 start with an initial set of m0 fully connected nodes

 e.g. m0 = 3

 now add new vertices one by one, each one with exactly m 

edges

 each new edge connects to an existing vertex in proportion to 

the number of edges that vertex already has → preferential 
attachment

 easiest if you keep track of edge endpoints in one large array 

and select an element from this array at random

 the probability of selecting any one vertex will be proportional to the 

number of times it appears in the array – which corresponds to its 

degree

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Generating BA graphs

 To start, each vertex has an equal 

number of edges (2)

 the probability of choosing any vertex 

is 1/3

 We add a new vertex, and it will 

have m edges, here take m=2

 draw 2 random elements from the 

array – suppose they are 2 and 3

 Now the probabilities of selecting 

1,2,3,or 4 are 

1/5, 3/10, 3/10, 1/5

 Add a new vertex, draw a vertex 

for it to connect from the array 

 etc.

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Proof of the scale-freeness

 Assume for simplicity that the degree ki for any node i is 

a continuous variable 

 The probability of the tipping a node to node i is

 Because of the assumptions, ki is expected to grow 

proportionally to Π(ki), that is to its probability of having a 

new edge

 Consequently, and because m edges are attached at 

each time, ki should obey the differential equation aside

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Proof of the scale-freeness

 The sum

 Goes over all nodes except the new ones 

 This it results in

 Remember that the total number of edges is almost mt

and that here is edge is twice

 Substituting in the differential equation

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Proof of the scale-freeness

 We have now to solve this equation

 That is, we have find a ki(t) function such as its derivative is 

equal to itself, divided by 2t

 We now show this is:

 In fact:

 where we also consider the initial condition ki(ti)=m, 

where ti is the time at which node i has arrived

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Proof of the scale-freeness

 The ki(t) function that we have not calculated shows that 

the degree of each node grown with a power law with 

time

 Now, let’s calculate the probability that a node has a 

degree ki(t) smaller than k

 We have

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Proof of the scale-freeness

 Now let’s remember that we add nodes at each time 

interval

 Therefore, the probability tj for a node, that is the 

probability for a node to have arrived at time ti is a 

constant and is:

 Substituting this into the previous probability distribution

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Proof of the scale-freeness

 Now given the probability distribution

 Which represents the probability that a node i has less 

than k link

 The probability that a node has exactly k link can be 

derived by the derivative of the probability distribution

Complex Network Theory, S. M. Vahidipour, Spring 2017.

Conclusion of the Proof

 Given P(k):

 After a while, that is for t∞

 we have obtained a power law probability density, 

with an exponent which is independent of any parameter 

(being the only initial parameter m)

Complex Network Theory, S. M. Vahidipour, Spring 2017.



21

Generality of the BA Model

 In its simplicity, the BA model captures the essential characteristics of 

a number of phenomena
 In which events determining “size” of the individuals in a network

 Are not independent from each other

 Leading to a power law distribution

 So, it can somewhat explain why the power law distribution is as 

ubiquitous as the normal Gaussian distribution

 Examples
 Gnutella (the first decentralized P2P network): a peer which has been 

there for a long time, has already collected a strong list of acquaintances, 

so that any new node has higher probability of getting aware of it

 Rivers: the eldest and biggest a river, the more it has probability to break 

the path of a new river and get its water, thus becoming even bigger

 Industries: the biggest an industry, the more its capability to attract clients 

and thus become even bigger

 Richness: the rich I am, the more I can exploit my money to make new 

money  “RICH GET RICHER”

Complex Network Theory, S. M. Vahidipour, Spring 2017.

random non-preferential and preferential growth

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Additional Properties of the BA Model

 Characteristic Path Length

 It can be shown (but it is difficult) that the 

BA model has a length proportional to 

log(n)/log(log(n))

 Which is even shorter than in random 

networks

 And which is often in accord with – but 

sometimes underestimates –

experimental data

 Clustering

 There are no analytical results available

 Simulations shows that in scale-free 

networks the clustering decreases with 

the increases of the network order

 As in random graph, although a bit less

 This is not in accord with experimental 

data!
Complex Network Theory, S. M. Vahidipour, Spring 2017.

Problems of the BA Model

 The BA model is a nice one, but is not fully 

satisfactory!

 The BA model does not give satisfactory 

answers with regard to clustering

 While the small world model of Watts and Strogatz 

does!

 So, there must be something wrong with the model..

 The BA model predicts a fixed exponent of 3 for 

the power law

 However, real networks shows exponents between 1 

and 3

 So, there most be something wrong with the model

Complex Network Theory, S. M. Vahidipour, Spring 2017.
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Reading

 M. E. J. Newman, Power laws, Pareto distributions and 
Zipf's law, Contemporary Physics 46, 323-351 (2005) 

 Newman, Mark. Networks: an introduction. Oxford 
University Press, 2010. (Chapter 14)

 Van Steen, Maarten. "Graph Theory and Complex 
Networks An Introduction, 2010. (Chapter 7)

 Barabasi A-L, Albert R (1999) Emergence of scaling in

 random networks. Science 286: 5009-5012

 Easley, Kleinberg, Networks, Crowds, and Markets”, 2010, 

(Chapter 18)

 Lada Adamic, Zipf, Power-laws, and Pareto - a ranking 
tutorial, 
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
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