

TABLE 4-1

Bearing-capacity equations by the several authors indicated

Terzaghi (1943). See Table 4-2 for typical values and for $K_{p\gamma}$ values.

$$q_{\text{ult}} = cN_c s_c + \overline{q}N_q + 0.5\gamma BN_{\gamma} s_{\gamma} \qquad N_q = \frac{a^2}{a\cos^2(45 + \phi/2)}$$

$$a = e^{(0.75\pi - \phi/2)\tan\phi}$$

$$N_c = (N_q - 1)\cot\phi$$

$$N_{\gamma} = \frac{\tan\phi}{2} \left(\frac{K_{p\gamma}}{\cos^2\phi} - 1\right)$$

For: strip round square $s_c = 1.0 1.3 1.3$ $s_{\gamma} = 1.0 0.6 0.8$

Meyerhof (1963).* See Table 4-3 for shape, depth, and inclination factors.

Vertical load:
$$q_{\text{ult}} = cN_c s_c d_c + \overline{q} N_q s_q d_q + 0.5 \gamma B' N_\gamma s_\gamma d_\gamma$$
Inclined load:
$$q_{\text{ult}} = cN_c d_c i_c + \overline{q} N_q d_q i_q + 0.5 \gamma B' N_\gamma d_\gamma i_\gamma$$

$$N_q = e^{\pi \tan \phi} \tan^2 \left(45 + \frac{\phi}{2} \right)$$

$$N_c = (N_q - 1) \cot \phi$$

$$N_\gamma = (N_q - 1) \tan (1.4\phi)$$

Hansen (1970).* See Table 4-5 for shape, depth, and other factors.

General:†
$$q_{\text{ult}} = cN_c s_c d_c i_c g_c b_c + \overline{q} N_q s_q d_q i_q g_q b_q + 0.5 \gamma B' N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$
 when $\phi = 0$ use $q_{\text{ult}} = 5.14 s_u (1 + s'_c + d'_c - i'_c - b'_c - g'_c) + \overline{q}$ $N_q = \text{same as Meyerhof above}$ $N_c = \text{same as Meyerhof above}$ $N_\gamma = 1.5 (N_q - 1) \tan \phi$

Vesić (1973, 1975).* See Table 4-5 for shape, depth, and other factors. Use Hansen's equations above.

$$N_q$$
 = same as Meyerhof above
 N_c = same as Meyerhof above
 N_{γ} = 2(N_q + 1) tan ϕ

^{*}These methods require a trial process to obtain design base dimensions since width B and length L are needed to compute shape, depth, and influence factors.

[†]See Sec. 4-6 when $i_i < 1$.

TABLE 4-2
Bearing-capacity factors for the
Terzaghi equations

Values of N_{γ} for ϕ of 0, 34, and 48° are original Terzaghi values and used to back-compute $K_{p\gamma}$

ϕ , deg	N_c	N_q	N_{γ}	$K_{p\gamma}$
0	5.7*	1.0	0.0	10.8
5	7.3	1.6	0.5	12.2
10	9.6	2.7	1.2	14.7
15	12.9	4.4	2.5	18.6
20	17.7	7.4	5.0	25.0
25	25.1	12.7	9.7	35.0
30	37.2	22.5	19.7	52.0
34	52.6	36.5	36.0	
35	57.8	41.4	42.4	82.0
40	95.7	81.3	100.4	141.0
45	172.3	173.3	297.5	298.0
48	258.3	287.9	780.1	
50	347.5	415.1	1153.2	800.0

 $[*]N_c = 1.5\pi + 1$. [See Terzaghi (1943), p. 127.]

TABLE 4-3
Shape, depth, and inclination factors for the Meyerhof bearing-capacity equations of Table 4-1

Factors	Value	For
Shape:	$s_c = 1 + 0.2K_p \frac{B}{L}$	Any φ
	$s_q = s_{\gamma} = 1 + 0.1 K_p \frac{B}{L}$ $s_q = s_{\gamma} = 1$	$\phi > 10^{\circ}$
	$s_q = s_{\gamma} = 1$	$\phi = 0$
Depth:	$d_c = 1 + 0.2 \sqrt{K_p} \frac{D}{B}$	Any ϕ
	$d_q = d_{\gamma} = 1 + 0.1 \sqrt{K_p} \frac{D}{B}$	$\phi > 10$
	$d_q = d_{\gamma} = 1$	$\phi = 0$
Inclination:	$i_c = i_q = \left(1 - \frac{\theta^{\circ}}{90^{\circ}}\right)^2$	Any ϕ
κ ν Φ Φ	$i_{\gamma} = \left(1 - \frac{\theta^{\circ}}{\phi^{\circ}}\right)^2$	$\phi > 0$
H	$i_{\gamma} = 0$ for $\theta > 0$	$\phi = 0$

Where $K_p = \tan^2(45 + \phi/2)$ as in Fig. 4-2

 θ = angle of resultant R measured from vertical without a sign; if θ = 0 all i_i = 1.0.

B, L, D =previously defined

TABLE 4-4
Bearing-capacity factors for the Meyerhof, Hansen, and Vesić bearing-capacity equations

Note that N_c and N_q are the same for all three methods; subscripts identify author for N_γ

φ	N_c	N_q	$N_{\gamma(H)}$	$N_{\gamma(M)}$	$N_{\gamma(V)}$	N_q/N_c	$2\tan\phi(1-\sin\phi)^2$
0	5.14*	1.0	0.0	0.0	0.0	0.195	0.000
5	6.49	1.6	0.1	0.1	0.4	0.242	0.146
10	8.34	2.5	0.4	0.4	1.2	0.296	0.241
15	10.97	3.9	1.2	1.1	2.6	0.359	0.294
20	14.83	6.4	2.9	2.9	5.4	0.431	0.315
25	20.71	10.7	6.8	6.8	10.9	0.514	0.311
26	22.25	11.8	7.9	8.0	12.5	0.533	0.308
28	25.79	14.7	10.9	11.2	16.7	0.570	0.299
30	30.13	18.4	15.1	15.7	22.4	0.610	0.289
32	35.47	23.2	20.8	22.0	30.2	0.653	0.276
34	42.14	29.4	28.7	31.1	41.0	0.698	0.262
36	50.55	37.7	40.0	44.4	56.2	0.746	0.247
38	61.31	48.9	56.1	64.0	77.9	0.797	0.231
40	75.25	64.1	79.4	93.6	109.3	0.852	0.214
45	133.73	134.7	200.5	262.3	271.3	1.007	0.172
50	266.50	318.5	567.4	871.7	761.3	1.195	0.131

^{* =} π + 2 as limit when $\phi \rightarrow 0^{\circ}$.

Slight differences in above table can be obtained using program BEARING.EXE on diskette depending on computer used and whether or not it has floating point.

TABLE 4-5a Shape and depth factors for use in either the Hansen (1970) or Vesić (1973, 1975b) bearing-capacity equations of Table 4-1. Use s'_c , d'_c when $\phi = 0$ only for Hansen equations. Subscripts H, V for Hansen, Vesić, respectively.

Shape factors	Depth factors	
$s'_{c(H)} = 0.2 \frac{B'}{L'} \qquad (\phi = 0^{\circ})$ $s_{c(H)} = 1.0 + \frac{N_q}{N_c} \cdot \frac{B'}{L'}$ $s_{c(V)} = 1.0 + \frac{N_q}{N_c} \cdot \frac{B}{L}$ $s_c = 1.0 \text{ for strip}$	$d'_c = 0.4k (\phi = 0^\circ)$ $d_c = 1.0 + 0.4k$ $k = D/B for D/B \le 1$ $k = tan^{-1}(D/B) for D/B > 1$ $k in radians$	
$s_{q(H)} = 1.0 + \frac{B'}{L'} \sin \phi$ $s_{q(V)} = 1.0 + \frac{B}{L} \tan \phi$ for all ϕ	$d_q = 1 + 2\tan\phi(1 - \sin\phi)^2 k$ $k \text{ defined above}$	
$s_{\gamma(H)} = 1.0 - 0.4 \frac{B'}{L'} \ge 0.6$ $s_{\gamma(V)} = 1.0 - 0.4 \frac{B}{L} \ge 0.6$	$d_{\gamma} = 1.00$ for all ϕ	

Notes:

- 1. Note use of "effective" base dimensions B', L' by Hansen but not by Vesić.
- 2. The values above are consistent with either a vertical load or a vertical load accompanied by a horizontal load H_B .
- With a vertical load and a load H_L (and either H_B = 0 or H_B > 0) you may have to compute two sets of shape s_i and d_i as s_{i,B}, s_{i,L} and d_{i,B}, d_{i,L}. For i, L subscripts of Eq. (4-2), presented in Sec. 4-6, use ratio L'/B' or D/L'.

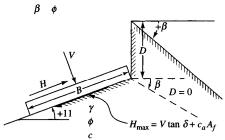
TABLE 4-5b
Table of inclination, ground, and base factors for the Hansen (1970) equations. See Table 4-5c for equivalent Vesić equations.

Inclination factors	Ground factors (base on slope)
$i_c' = 0.5 - \sqrt{1 - \frac{H_i}{A_f C_a}}$	$g_c' = \frac{\beta^{\circ}}{147^{\circ}}$
$i_c = i_q - \frac{1 - i_q}{N_q - 1}$	$g_c = 1.0 - \frac{\beta^{\circ}}{147^{\circ}}$
$i_q = \left[1 - \frac{0.5H_i}{V + A_f c_a \cot \phi}\right]^{\alpha_1}$ $2 \le \alpha_1 \le 5$	$g_q = g_{\gamma} = (1 - 0.5 \tan \beta)^5$
	Base factors (tilted base)
$i_{\gamma} = \left[1 - \frac{0.7H_i}{V + A_f c_a \cot \phi}\right]^{\alpha_2}$	$b_c' = \frac{\eta^{\circ}}{147^{\circ}} \qquad (\phi = 0)$
$i_{\gamma} = \left[1 - \frac{(0.7 - \eta^{\circ}/450^{\circ})H_{i}}{V + A_{f}c_{a}\cot\phi}\right]^{\alpha_{2}}$ $2 \le \alpha_{2} \le 5$	$b_c = 1 - \frac{\eta^{\circ}}{147^{\circ}} \qquad (\phi > 0)$ $b_q = \exp(-2\eta \tan \phi)$ $b_{\gamma} = \exp(-2.7\eta \tan \phi)$
	η in radians

Notes:

- 1. Use H_i as either H_B or H_L , or both if $H_L > 0$.
- 2. Hansen (1970) did not give an i_c for $\phi>0$. The value above is from Hansen (1961) and also used by Vesić.
- 3. Variable c_a = base adhesion, on the order of 0.6 to 1.0 × base cohesion.
- 4. Refer to sketch for identification of angles η and β , footing depth D, location of H_i (parallel and at top of base slab; usually also produces eccentricity). Especially note V = force normal to base and is not the resultant R from combining V and H_i .

Notes: $\beta + \eta$ 90° (Both β and η have signs (+) shown.)



For: $L/B \le 2$ use ϕ_{tr} L/B > 2 use $\phi_{ps} = 1.5 \phi_{tr} - 17^{\circ}$ $\phi_{tr} \le 34^{\circ}$ use $\phi_{tr} = \phi_{ps}$

 δ = friction angle between base and soil $(.5\phi \le \delta \le \phi)$ $A_f = B'L'$ (effective area) c_a = base adhesion (0.6 to 1.0c)

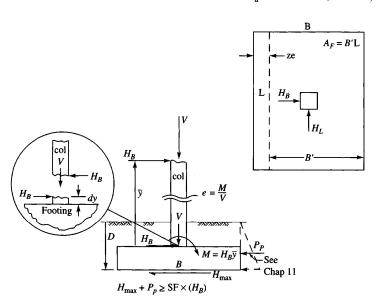


TABLE 4-5c
Table of inclination, ground, and base factors for
the Vesić (1973, 1975b) bearing-capacity equations.
See notes below and refer to sketch for identification
of terms.

Ground factors (base on slope)

Inclination factors

$i_c' = 1 - \frac{mH_i}{A_f c_a N_c} \qquad (\phi = 0)$	$g'_c = \frac{\beta}{5.14}$ β in radians
$i_c = i_q - \frac{1 - i_q}{N_q - 1}$ $(\phi > 0)$	$g_c = i_q - \frac{1 - i_q}{5.14 \tan \phi} \phi > 0$
i_q , and m defined below	i_q defined with i_c
$i_q = \left[1.0 - \frac{H_i}{V + A_f c_a \cot \phi}\right]^m$	$g_q = g_{\gamma} = (1.0 - \tan \beta)^2$
	Base factors (tilted base)

Notes

- 1. When $\phi = 0$ (and $\beta \neq 0$) use $N_{\gamma} = -2\sin(\pm\beta)$ in N_{γ} term.
- 2. Compute $m=m_B$ when $H_i=H_B$ (H parallel to B) and $m=m_L$ when $H_i=H_L$ (H parallel to L). If you have both H_B and H_L use $m=\sqrt{m_B^2+m_L^2}$. Note use of B and L, not B', L'.
- 3. Refer to Table sketch and Tables 4-5a,b for term identification.
- **4.** Terms N_c , N_q , and N_{γ} are identified in Table 4-1.
- 5. Vesić always uses the bearing-capacity equation given in Table 4-1 (uses B' in the N_{γ} term even when $H_i=H_L$).
- **6.** H_i term ≤ 1.0 for computing i_q , i_γ (always).