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Abstract Backbreak is one of the undesirable effects of

blasting operations causing instability in mine walls, falling

down the machinery, improper fragmentation and reduc-

tion in efficiency of drilling. Backbreak can be affected by

various parameters such as the rock mass properties,

blasting geometry and explosive properties. In this study,

the application of the artificial neural network (ANN), an

adaptive neuro-fuzzy inference system (ANFIS) for pre-

diction of backbreak, was described and compared with the

traditional statistical model of multiple regression. The

performance of these models was assessed through the root

mean square error, correlation coefficient (R2) and mean

absolute percentage error. As a result, it was found that the

constructed ANFIS exhibited a higher performance than

the ANN and multiple regression for backbreak prediction.

Keywords Blasting � Backbreak � ANFIS � ANN �
Multiple linear regression

1 Introduction

Although the main purpose of blasting in open-pit mines is

rock breakage and finally facilitating in loading operations,

the other effects of blasting such as ground vibration, fly

rock and backbreak should be considered. Backbreak can

be defined as breakage behind the last row of blast holes

[1]. This phenomenon may cause instability in mine walls,

falling down the machinery, improper fragmentation and

reduction in efficiency of drilling [2]. Several factors

leading to backbreak have been described by various

researchers. Konya and Walter [1] described some of the

causes for backbreak such as excessive burden, and stiff

benches, long stemming depth on stiff benches and

improper timing delay. Gate et al. believed that a combi-

nation of factors in the blasting such as overstemming of

the shot holes and short timing delays in the firing sequence

may lead to severe backbreak. Moreover, the adverse

geological structure appears to have exacerbated the

excessive backbreak [3].

Backbreak can be affected by various parameters such

as the rock mass properties, blasting geometry and explo-

sive properties. Due to multiplicity of effective parameters

and complexity of interactions among them, the application

of new techniques such as artificial intelligence (AI) may

be useful to solve this problem. AI can be defined as

computer emulation of the human thinking process. The

main feature of this concept is the ability of self-learning

and self-predicting some desired outputs. The learning may

be done in a supervised or an unsupervised way. Neural

network and fuzzy logic are the basic areas of artificial

intelligence concept. Neural networks are composed of

simple elements operating in parallel. These elements are

inspired by biological nervous systems. As in nature, the

network function is determined largely by the connections

M. Esmaeili (&) � F. Rashidinejad

Department of Mining Engineering, Science and Research

Branch, Islamic Azad University, Tehran, Iran

e-mail: mohamad.esmaeily@gmail.com

M. Osanloo

Department of Mining and Metallurgical Engineering,

Amirkabir University of Technology, Tehran, Iran

A. Aghajani Bazzazi

Department of Mining Engineering, Savadkooh Branch,

Islamic Azad University, Savadkooh, Iran

M. Taji

Department of Mining Engineering, Shahrood Branch,

Islamic Azad University, Shahrood, Iran

123

Engineering with Computers (2014) 30:549–558

DOI 10.1007/s00366-012-0298-2  

 

 



among elements. This technique has the ability of gener-

alizing a solution from the pattern presented to it during

training. Once the network is trained with a sufficient

number of sample datasets, for a new input of relatively

similar pattern, predictions can be done on the basis of

previous learning [4, 5].

The usage of artificial intelligence has been applied

widely in most of the fields of science and technology by

several researchers [6–18].

The aim of the present work is to predict backbreak

caused by blasting in Sangan iron mine of Iran. The mul-

tiple linear regression, artificial neural network (ANN) and

adaptive neuro-fuzzy inference system (ANFIS) were

applied for backbreak prediction.

2 Methods of modeling

2.1 Multiple linear regression

Multiple regression, a time-honored technique going back

to Pearson’s 1908 use of it, is employed to predict the

variance in an interval dependency, based on linear com-

binations of interval, dichotomous, or dummy independent

variables. The general purpose of multiple regression is to

learn more about the relationship between several inde-

pendent or predictive variables and a dependent or criterion

variable. The multiple regression equation takes the form

y = b1x1 ? b2x2 ? ��� ? bnxn ? c. b1, b2,…, bn is a

regression coefficient representing the amount of the

dependent variable y that changes when the corresponding

independent variables changes by 1 unit. c is constant,

where the regression line intercepts the y-axis, representing

the amount of the dependent variable y when all the

independent variables are 0 [19].

2.2 Artificial neural network

The modern view of artificial neural networks began with

pioneering work of McCulloch and Pitts in the 1940s, who

showed that networks of artificial neurons could, in prin-

ciple, compute any arithmetic or logical function. Their

work is often acknowledged as the origin of the ANN field.

The first practical application of ANN came in the late

1950s, with the invention of the perceptron network and

associated learning rule by Rosenblatt. Rosenblatt et al.

built a perceptron network and demonstrated its ability to

perform pattern recognition. This early success generated a

great deal of interest in neural network research. Unfortu-

nately, it was later shown that the basic perceptron network

could solve only a limited class of problems. Neural net-

works became popular in the late 1980s and, more recently,

in the 1990s [20]. ANNs are information processing

structures which emulate the architecture and operational

mode of the biological nervous tissue. Any ANN is a system

made of several basic entities (named neurons) which are

interconnected and operate in parallel transmitting signals

to one another in order to achieve a certain processing task.

One of the most outstanding features of ANNs is their

capability to simulate the learning process. They are sup-

plied with pairs of input and output signals from which

general rules are automatically derived so that the ANN will

be (in certain conditions) capable of generating the correct

output for a signal that was not previously used [21].

The suggested method in this study is the utilization of

multi-layer perceptron neural network. Multi-layer net-

works have been applied successfully to solve some diffi-

cult and diverse problems by training them in a supervised

manner with a highly popular algorithm known as the error

back-propagation algorithm. This algorithm is based on the

error-correction learning rule. Error back-propagation

learning consists of two passes through the different layers

of the network, i.e., a forward pass and a backward pass. In

the forward pass, an activity pattern (input vector) is

applied to the neurons of the network, and its effect

propagates through the network layer by layer. Finally, a

set of outputs is produced as the actual response of the

network. During the forward pass, the synaptic weights of

the networks are all fixed. During the backward pass, on

the other hand, the synaptic weights are all adjusted in

accordance with an error-correction rule. Specifically, the

actual response of the network is subtracted from a desired

(target) response to produce an error signal. This error

signal is then propagated backward through the network,

against the direction of synaptic connections [22].

2.3 Adaptive neuro-fuzzy inference system

The ANFIS is a fuzzy Sugeno model put in the framework

of adaptive systems to facilitate learning and adaptation

[6]. Such framework makes the ANFIS modeling more

systematic and less reliant on expert knowledge. For sim-

plicity, we assumed that the fuzzy inference system has

two inputs x and y and one output f. For the first-order

Sugeno fuzzy model, a typical rule set with two fuzzy

if–then rules can be expressed as [23]:

Rule 1: If ðx is A1Þ and (y is B1Þ
then: f1 ¼ p1xþ q1yþ r1

ð1Þ

Rule 2: If ðx is A2Þ and (y is B2Þ
then: f2 ¼ p2xþ q2yþ r2

ð2Þ

where p1, q1, r1, p2, q2, r2 are linear and A1, A2, B1 and B2

are non-linear parameters. The corresponding equivalent

ANFIS architecture is shown in Fig. 1. The entire system

architecture consists of five layers, i.e., a fuzzification
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layer, a product layer, a normalized layer, a defuzzification

layer, and a total output layer. The functions of each of

these layers can be described as follows:Layer 1 is the

fuzzification layer. In this layer, every node i in this layer is

an adaptive node with a node function:

O1;i ¼ lAi
ðxÞ; for i ¼ 1; 2 or

O1;i ¼ lBi�2
ðyÞ; for i ¼ 3; 4

ð3Þ

where x (or y) is the input to node i and Ai (Bi-2) is the

linguistic label (small, large, etc.) associated with this node

function. In other words, O1,i is the membership grade of a

fuzzy set A. The most commonly used membership

functions is Gaussian membership function as it is non-

linear and smooth and its derivation is continuous [11, 15,

16, 19]. The Gaussian membership function is given by:

f ðx; r; cÞ ¼ e
�ðx�cÞ2

2r2 ; where 2r2 [ 0 ð4Þ

where c and r are the MF’s centre and width, respectively.

The parameters in this layer are referred to the premise

parameters.

Layer 2 is the product layer. Each node in this layer is a

fixed node whose output is the product of all the incoming

signals. The output of this layer is given by:

O2;i ¼ wi ¼ lAi
ðxÞlBi

ðyÞ; i ¼ 1; 2 ð5Þ

Layer 3 is a normalized layer. Each node in this layer

normalizes the weight functions obtained from the previous

product layer. The normalized output is computed for the

ith node as the ratio of the ith rule firing strength to the sum

of all rule firing strengths is as follows:

O3;i ¼ �wi ¼
wi

w1 þ w2

; i ¼ 1; 2 ð6Þ

Layer 4 is the defuzzification layer. Every node i in this

layer is an adaptive node with a node function:

O4;i ¼ �wifi ¼ �wiðpixþ qiyþ riÞ ð7Þ

where �wi is a normalized firing strength from layer 3 and

{pi, qi, ri} is the parameter set of this node. Parameters in

this layer are referred to consequent parameters.

Layer 5 is the output layer. The single node in this layer

is a fixed node. The overall output, which is the summation

of all incoming signals, is computed by a fixed node.

Overall output is given by:

Overall output ¼ O5;1 ¼
X

i

�wifi ¼
P

i wifiP
i wi

ð8Þ

The hybrid learning algorithm of ANFIS proposed by

Jang is a combination of the steepest descent and least

squares estimate learning. The ANFIS uses a two-pass

learning algorithm, i.e., forward pass and backward pass.

In forward pass, the premise parameters are not modified

and the consequent parameters are computed using the least

squares estimate learning algorithm. In backward pass,

the consequent parameters are not modified and the premise

parameters are computed using the gradient descent

algorithm. Based on these two learning algorithms, ANFIS

adapts the parameters in the adaptive network. From the

architecture, it is clear that the overall output of the ANFIS

can be represented as a linear combination of the consequent

parameters as:

f ¼ w1

w1 þ w2

f1 þ
w2

w1þ w2
f2

¼ �w1f1 þ �w2f2

¼ �w1ðp1xþ q1yþ r1Þ þ �w2ðp2xþ q2yþ r2Þ
¼ ð�w1xÞp1 þ ð�w1yÞq1 þ ð�w1Þr1 þ ð�w2xÞp2

þ ð�w2yÞq2 þ ð�w2Þr2: ð9Þ

In forward pass, the signals move in a forward direction

to layer 4 and the consequent parameters are computed,

Fig. 1 Architecture of ANFIS
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while in the backward pass, the error rates are propagated

backward and the premise parameters are updated by the

gradient descent method [24].

3 Case study

The case study was carried out in Sangan iron mine 16 km

away from north Sangan and 300 km away from southeast

of Mashhad, Iran (Fig. 2). Geographically, it is located at

60�160 longitude and 34�240 latitude. The Sangan iron

deposit is located in Central Iran zone. In this zone, igneous

activity starting in the Eocene period and reaching to its

highest point during the middle Eocene for exposed vol-

canic rocks and Oligo-Miocene for plutonic rocks in many

parts of Iran. The iron host rock is carbonate of the Cre-

taceous. Various rock types which can be recognized in the

Sangan Mine consist of Sarnosar granite, siltstone, sand-

stone and quartzite complex, north skarn unit, shale and

siltstone, south skarn unit and volcanic complex. The iron

ores in Sangan were grouped into the high grade massive

iron zone, low grade dispersive iron zone, oxidized zone

and sulfide zone. The total geological reserve of the Sangan

iron ore mine is approximately estimated 1.2 billion tons.

Sangan iron mine is under developing and the mineral

processing plant is designed to produce 2.6 million tons of

iron pellets per year in the phase 1 of the project [25].

In the blasting operation of the mine, the explosive used

is ANFO. Blasting holes of 3.5 and 4.5 in. diameters

are used in benches with 3–10 m height. The drill-hole

pattern (burden 9 spacing), depending on the rock type, is

2 9 2.5, 2.3 9 2.7, 2.5 9 3 and 3 9 3.5 m. In the present

study, a database including 42 datasets was collected from

blasting operation of the Sangan iron mine, and for mod-

eling backbreak, seven parameters were considered as the

input parameters. Descriptive statistical distribution of the

input and output parameters and their respective symbols

are indicated in Table 1. In Table 1, charge last row (CLR)

is defined as the total charge utilized in the last row.

Table 1 The descriptive statics of the input and output parameters

Parameter Description Symbol Minimum Maximum

Inputs Stiffness ratio H/B 1 3.7

Stemming length (m) ST 0.6 4

Specific charge

(kg/m3)

SC 0.45 1.4

Rock density (t/m3) DN 2.5 4.2

Number of rows NR 2 12

Charge last row (kg) CLR 260 2,800

Spacing to burden

ratio

S/B 1 1.36

Output Backbreak (m) BB 0 9

Fig. 2 Location of Sangan iron

mine
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4 Results and discussion

4.1 Data processing

In order to establish the predictive models among the

parameters obtained in this study, simple regression anal-

ysis was performed at the first stage of the analysis. Fig-

ure 3 shows the correlations among the individual

independent variables and the actual measured backbreak.

The figures also, include the correlation coefficient (R2)

which is an indicator of correlation strength. As shown in

Fig. 3, the R2 value decreases in the order of the CLR

(0.74), NR (0.55), SC (0.45), ST (0.38), H/B (0.024), S/B

(0.028) and DN (0.008). Accordingly, CLR, NR, SC and

ST are the most significant variables, and H/B, S/B and DN

the least correlations with backbreak. It can be concluded

that H/B, S/B and DN have negligible effects on the

backbreak and should be excluded in regression model. As

a result, four input parameters (CLR, NR, SC and ST) were

considered as effective parameters on backbreak and

assumed that backbreak is a function of these important

input parameters.

4.2 Multiple linear regression model

Multiple regression analysis was carried out on backbreak

and specific charge (SC), stemming length (ST), charge last

row (CLR) and number of rows (NR). Multiple regression

model to predict backbreak is given below:

BB ¼ 1:854 SC� 0:273 STþ 0:003 CLRþ 0:076 NR

R2 ¼ 79 % ð10Þ

In this study, root mean square error (RMSE), correlation

coefficient (R2) and mean absolute percentage error (MAPE)

indices were calculated to control the performance of

the prediction capacity of predictive models developed

[19, 26, 27].

Root mean square error (RMSE), a measure of the

goodness-of-fit, best describes an average measure of the

error in predicting the dependent variable. However, it does

not provide any information on phase differences.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðAimeas � AipredÞ2
s

ð11Þ

where Aimeas is the ith measured element, Aipred is the ith

predicted element and n is the number of datasets.

Mean absolute percentage error (MAPE), which is a

measure of accuracy in a fitted series value in statistics,

was also used for comparison of the prediction perfor-

mances of the models. MAPE usually expresses accuracy

as a percentage:

MAPE ¼ 1

n

Xn

i¼1

Aimeas � Aipred

Aimeas

����

����� 100 ð12Þ

The RMSE and MAPE for multiple linear regression are

given in Table 4. Figure 4 shows the relationship between

measured and predicted values obtained from the Eq. (10).

Fig. 3 The relationship

between measured backbreak

and the input parameters:

a stiffness ratio, b stemming

length, c specific charge, d rock

density, e number of rows,

f charge last row, g spacing to

burden ratio
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4.3 ANN model

In this study, multi-layer perceptron neural network was

used for the model as this architecture is reported to be

suitable for problems based on pattern matching and pat-

tern prediction. In designing the model for prediction

backbreak, 30 datasets were used to train and the remaining

12 datasets were used to test the model. To evaluate

networks with different architectures and then to deter-

mine optimum network architecture, RMSE and R2 were

calculated for various models. As shown in Table 2, the

network, which had one hidden layer with the neural net-

work architecture of 4-4-1, was considered as the optimum

model for backbreak prediction. This network is shown in

Fig. 5. A graphic comparison of measured and predicted

backbreak is shown in Fig. 6. As seen in this figure, a good

conformity exists between the measured and predicted

backbreak by the ANN model.

4.4 ANFIS model

In this work, the available datasets were divided into two

subsets randomly, i.e., 30 datasets for training and 12

Fig. 4 Correlation coefficient for multiple linear regression model

Table 2 Networks with different architecture

No. Transfer function Model RMSE R2

1 TANSIG-TANSIG-PURELIN 4-4-1 0.88 0.92

2 TANSIG-TANSIG-PURELIN 4-8-1 1.75 0.81

3 LOGSIG-LOGSIG-LOGSIG-

POSLIN

4-9-6-1 2.81 0.12

4 TANSIG-TANSIG-TANSIG-

PURELIN

4-6-6-1 0.92 0.88

5 TANSIG-TANSIG-TANSIG-

POSLIN

4-12-8-1 1.05 0.89

6 LOGSIG-LOGSIG-LOGSIG-

PURELIN

4-7-5-1 2.27 0.74

Fig. 3 continued
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datasets for testing (the same as ANN model). Subtractive

clustering was used to generate fuzzy inference system

(FIS) structure automatically. Subtractive clustering has an

auto-generation capability to determine the number and

initial location of cluster centers in a set of data. This

method partitions the data into groups called clusters by

specifying a cluster radius, and generates a Sugeno-type

fuzzy inference system (FIS) with the minimum number of

rules according to the fuzzy qualities associated with each

of the clusters. Hybrid learning algorithm, a combination of

Fig. 6 Comparison of

measured and predicted

backbreak by ANN model

Fig. 7 Model structure of the

ANFIS for prediction of

backbreak

Fig. 5 The optimum

architecture of ANN used in this

study
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least squares and back-propagation gradient, was applied to

identify the membership function parameters of single

output, Sugeno-type fuzzy inference systems (FIS). Several

models with four input parameters and one output param-

eter were constructed and trained. To evaluate models with

different structure (FIS division) and then to determine the

best model, RMSE was calculated for these models. Fig-

ure 7 shows the proposed ANFIS model for predicting

backbreak which has four membership functions for each

input parameter and four rules. Other parameter types and

their values used for constructing ANFIS model can be

seen in Table 3. Figure 8 shows the relationship between

measured and predicted values obtained from the ANFIS

model in testing stage. The obtained values of RMSE and

MAPE, given in Table 4, indicate high prediction

performances.

4.5 Comparison between the models

In this section, a prediction performance comparison is

made among the ANFIS model, ANN model and the

multiple regression model. The performance of these

models was evaluated according to statistical criteria such

as correlation coefficient (R2), root mean square error

(RMSE) and mean absolute percentage error (MAPE). The

results of applying these models are compared in Table 4.

The table clearly shows that the predictive performance of

ANFIS model is obviously higher than the ANN and

regression models. Correlation coefficient for measured

and estimated data obtained from ANFIS, ANN and mul-

tiple regression is shown in Fig. 9. ANFIS model has the

maximum value of correlation in comparison with other

models. In addition, the values of estimating error for all

methods have been offered in Table 4. According to this

table, the minimum values of RMSE and MAPE is for

ANFIS. The results of analysis show that ANFIS model has

the best efficiency in comparison with ANN and multiple

regression considering all criteria.

5 Conclusion

In this study, multiple linear regression, ANN and ANFIS

models were utilized to predict the backbreak caused by

blasting; to model backbreak, seven effective parameters

were considered as the input parameters and 42 datasets

were collected from Sangan iron mine of Iran. The fol-

lowing results could be drawn from this investigation:

• As a result of data analysis, the four input parameters

including charge last row (CLR), number of rows (NR),

specific charge (SC), and stemming length (ST) are

significant parameters and stiffness ratio (H/B), spacing

to burden ration (S/B) and rock density (DN) have

insignificant effects on the backbreak and were

excluded in these models.

• The RMSE, R2 and MAPE for multiple regression were

obtained as 1.35, 0.79 and 34 %, respectively. The

result of the model for prediction of the backbreak

showed that the equation obtained from the multiple

linear regression model had an acceptable prediction

performance.

• The optimum ANN architecture has been found to be

four neurons in the input layer, one hidden layer with 4

neurons, and one neuron in the output layer. For the

ANN model, RMSE, R2 and MAPE were calculated as

0.88, 0.92 and 27 %, respectively. The ANN model

Fig. 8 Correlation coefficient for ANFIS model

Table 4 Performance indices of the models

Model R2 RMSE MAPE (%)

ANFIS 0.96 0.6 13

ANN 0.92 0.88 27

Multiple linear regression 0.79 1.35 34

Table 3 The ANFIS information used in this study

ANFIS parameter type Value

MF type Gaussian

Number of MFs 4

Output function Linear

Number of nodes 47

Number of linear parameters 20

Number of nonlinear parameters 32

Total number of parameters 52

Training RMSE 0.74
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revealed a more reliable prediction when compared

with the multiple linear regression model.

• The RMSE, R2 and MAPE indices were calculated as

0.6, 0.96 and 13 % for ANFIS model. It was found that

the constructed ANFIS model exhibits a high perfor-

mance for predicting of backbreak.

• According to the performance indicators, the prediction

performance of ANFIS model was found to be better

than the ANN and multiple linear regression models.

• ANFIS, ANN and multiple regression models that have

been achieved are exclusively related to Sangan iron

mine and in other cases rather than this mine, these

models should be modified.
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