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A B S T R A C T

To have a sound production planning one of the main factors that should be considered is the cutoff grade. The
cutoff grade is used as a criterion to identify waste of minerals in a mining reserve. The cutoff grade is one of the
most sensitive parameters that can have a significant impact on net present value (NPV) and cash flow of
projects. Since the cutoff grade has a significant impact on the operation, the choice of the correct level of this
grade is of considerable importance. Choosing the optimal cutoff grade maximizes the NPV and the total profit of
the mining operation and the project. The optimization of the cutoff grades considering the maximum achievable
NPV over the life of the mine is one of the key issues in the mining of open pits. In this paper, two different meta-
heuristic optimization algorithms are employed to determine the optimal cutoff grade. For this purpose, taking
into account the precision of 0.001%, the optimum cutoff grades, the production amount of each unit and the
NPV are calculated. Accordingly, the optimum cutoff grades of iron mine No. 1 Golgohar was obtained using the
PSO algorithm is 49.11–40.6%, and using the imperialist competitive algorithm, the optimum cutoff grades of
iron mine No. 1 Golgohar was obtained from 48.56% to 40.5%. The results show that the determination of the
cutoff grade by using these two methods has high accuracy and speed. According to the results, the ICA algo-
rithm has a higher accuracy than the PSO algorithm.

1. Introduction

The cutoff grade is used to detect minerals of a deposit from waste.
(The higher the amount of minerals, the mine more economical). The
cutoff grade is determined by various factors such as geological char-
acteristics, practical restrictions of processes, and various economic
parameters (Asad and Dimitrakopoulos, 2013; Azimi and Osanloo,
2011). Considering the effect of several practical and economic factors
on the cutoff grade, determining it in different periods of mine life is a
key issue in the planning of mining production and the most difficult
and sensitive issues facing mining engineers (Gholinejad and Moosavi,
2016; Muttaqin et al., 2017; Rahimi and Ghasemzadeh, 2015). The
cutoff grade calculated on the basis of the break-even analysis is called
the break-even cutoff grade. This grade is evident in which the mining,
processing, and refining costs of each of the minerals with the proceeds
are equal. In other words, the income proceeds from each ton of mi-
nerals cover mining costs, processing, and refining of each ton of mi-
nerals without taking into account the cost of the waste. The break-even
cutoff grade is employed to figure out the initial range of the mine; this
value is useful for finding the mine floor and mine wall (Minnitt, 2004;
Osanloo and Ataei, 2003; Osanloo et al., 2008). In the computation of

the break-even cutoff grade, the time value of money, the distribution
of ore deposits and mining capacities, processing plant, refining plant,
and market are not considered, therefore extraction according to the
break-even cutoff grade will not result in optimization of operations.
There are several theories in determining the optimum cut-off grade;
however, according to the recent works, calculation of cut-off grade
based on maximizing net present value (NPV) gives more reliable re-
sults compared to other approaches (Ahmadi, 2018; Bascetin and Nieto,
2007; Wang et al., 2010). Therefore, during the first years of the mine's
life, minerals will be extracted with high-grade minerals and the NPV is
increased (Baird and Satchwell, 2001; Tatiya, 1996). There are nu-
merous works have been done to figure out the optimum value of cut-
off using different approaches, for instance, use of knockout methods to
optimization the cutoff grade (Ataei and Osanloo, 2003), Determining
the cutoff grade for optimizing the NPV based on the optimization
factor and using the GRG algorithm (Bascetin and Nieto, 2007), Crea-
tion of a model with environmental considerations to optimization the
cutoff grade with consideration of environmental impact (Rashidinejad
et al., 2008), Taking into account the cost of tailings disposal in Lane's
algorithm (Gholamnejad, 2008), Use of the neurological method - PSO
to optimization the cutoff grade (He et al., 2009), Taking into account
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the combined mineral deposit stock, economic parameters and adjust-
ments in the optimization of the cutoff grade (Asad and Topal, 2011),
Dynamic Randomized cutoff grade Optimization (Barr, 2012), The ef-
fect of mineral price changes on the optimal cutoff grade (Jafarnejad,
2012), Optimization of the cutoff grade using multi-stage random
planning (Li and Yang, 2012), Correcting the lane method by con-
sidering the variable capacities of units over time (Abdollahisharif
et al., 2012), Optimization of the cutoff grade under uncertain prices
using the Multi-criteria Decision Scoring System (Azimi et al., 2012). To
optimize the cutoff grade, the Lane modeled the operational process of
a mine, which is the only refined product to be sold, and accordingly,
defines the objective function; As a result, his model in the mines of a
metal that has the ability to produce and sell several types of products
can not be used (Mohammadi et al., 2017). Therefore, in this research,
the operational route of the mine is modeled and using it, the cost,
income, and profit relationships are obtained and based on that, the
objective function of the problem is determined for maximizing the
NPV. To optimize this objective function, we use the metamorphic al-
gorithms for particle swarm optimization (PSO) and imperialist com-
petitive, including ultra-intelligent methods. The important point is
that, in intelligent methods, it is not necessary to derive an objective
function. Given this point, the answer to the problem is easily and
quickly achieved with this method. So to get the answer, in the MA-
TLAB R2016a software environment, for PSO algorithms and im-
perialist competitive, coding takes place. Using it, optimal cutoff grades
values, the production of different mine units, the operating profit and
the NPV of the hypothetical deposit are calculated. In this paper, the
following sections present how to find the optimum value of the cut-off
grade considering the limitations of mining, processing, and refining
using PSO and ICA algorithms.

2. Cutoff grade optimization based on Lane's method

In order to determine the optimum cutoff grade, the mineralization
operation consists of three steps of extraction, processing, melting, and
refining based on the lane Theory. Each of these steps has a cost and a
limited capacity. In addition, fixed costs are also included. With regard
to costs and incomes in this operation, operating profit can be de-
termined using below expression (Hustrulid et al., 2013):

=P s r Q mQ cQ fT( ) r m c (1)

In the above equation, T stands for the period of the production, Qm
denotes the amount of the required ore,Qc represents the amount of the
delivered mineral to the processing plant, Qr stands for the value of the
final product, f denotes the fixed costs per unit time, S represents the
sale price of the final product, m is the cost of mining per ton ore, c
stands for the cost of processing per ton of minerals and r denotes the
cost of melting and refining each unit of the final product. The change
of NPV of the reserves at =t 0 and =t T after the mining operation is
calculated from the following equation (Hustrulid et al., 2013):

= +V s r Q mQ cQ f Vd T( ) ( )r m c (2)

In this relation, d stands for the discount rate, V represents the
present value of NPV, which is calculated using the repeat process. The
amount of refined ore (Qr) depends on the amount of mineral delivered
to the processing plant (Qc). The amount of refined ore (Qr) can be
written in the following form:

=Q g y Q. .r c (3)

= +V s r g y c Q mQ f Vd T[( ) ] ( )c m (4)

In order to maximize NPV, the value of V must be maximized. If the
capacity of the mine (M) is a decisive limitation, T is equal to Qm/M,
and if the capacity of the processing plant (C) is a decisive limitation, T
is equal toQc/C, and if the refining capacity (R) is a decisive limitation,
T is equal to Qr/R will be. Then for each of these limitations, a value V

is obtained (Hustrulid et al., 2013):

= + +V s r g y c Q m f Vd M Q[( ) ] [ ( )/ ]m c m (5)

= + +V s r gy c f Vd C Q mQ[( ) ( ( )/ )]c c m (6)

= +V s r f Vd R gy c Q mQ[( ( )/ ) ]r c m (7)

In the top three cases, Vm, Vc, Vr can be plotted as a function of the
grade. Convex is all upward. This is shown in Fig. 1. As stated, the goal
of obtaining the optimal cutoff grade is to be maximized for V . The
main goal is to obtain a grade that fulfilled the following equation.

=maxV max min V V V[ ( , , )]e m c r (8)

3. Maximization of the objective function

As explained in the previous sections, three objective functions are
employed to find the optimal cutoff grade of an ore deposit. For such an
optimization problem with different objective functions, there are
several options including numerical methods, mathematical techniques,
and artificial intelligence based algorithms. For the mathematical
techniques, we should take a derivative from the objective functions
and then solve a system of ordinary differential equations. The main
drawback of such methods is trapping in a local optimum, time con-
sumption and limited to a linear system of equations. For numerical
methods, there are two main approaches such as elimination and in-
terpolation techniques. The main drawback of those methods is a
simplification of the nonlinear system into linear ones; however, in
some cases, it might be work. Simplifying the nonlinear systems into
linear ones can mislead into the wrong solution. Metaheuristic or in-
telligent approaches inspired from the different aspects of nature and
using those concepts occur in nature. The main advantages of those
methods are derivative-free and easy-to-use.(Fan et al., 2008).

3.1. Particle Swarm Optimization (PSO) Algorithm

The PSO optimization method was introduced in 1995 by James
Kennedy and Russell Eberhart. They initially intended to create a kind
of computational intelligence using social models and existing social
relationships that did not require individual abilities. Their work led to
the creation of a robust algorithm for optimization, called the Particle
Swarm Optimization or PSO algorithm. This method has been adapted
from the collective function of animal groups, such as birds and fish
(Shi and Eberhart, 1998). PSO particle swarm optimization algorithm
has memory, so that knowledge of good solutions is maintained by all
particles. In other words, in the particle swarm optimization algorithm,
each particle benefits from its past information, while such behavior
and features do not exist in other evolutionary algorithms. In the PSO
particle swarm optimization algorithm, each member of the community
changes its position according to personal experiences and the

Fig. 1. Curves, Vm, Vc, Vr , Ve (Ahmadi and Shahabi, 2018).
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experiences of the entire community. In the particle swarm optimiza-
tion algorithm, members of the population are interconnected and
through the exchange of information, they are able to solve the problem
and have a high convergence rate. The collective motion of the particle
is an optimization technique, in which each particle tries to move to-
wards the best of personal and collective experience in those parts. The
PSO algorithm is easy to implement and is used to solve many discrete
and nonlinear continuous optimization problems. This algorithm uses
only basic mathematical operators and provides good results. Due to
the benefits of a simple concept, easy implementation and rapid con-
vergence compared to other optimization algorithms, today particle
swarm optimization algorithm has many applications in different fields.
According to these features, the PSO algorithm is used to optimize the
cutoff grade for this research. In the PSO algorithm, there are a number
of organisms that call them particles and are spun in the search space.
Each particle calculates the value of the objective function in a position
of space in which it is located. Then, using the combination of its
current location data and the best place previously provided, as well as
the information of one or more particles of the best particles in the
aggregate, select a direction to move. After a collective move, one step
of the algorithm is completed. These steps are repeated several times
until the desired answer is obtained (Shi, 2001). The steps to implement
the PSO algorithm are as follows (Shi, 2001):

1. Creating a Primary Population and Assessing It
2. Determine the best personal experiences and best collective ex-

perience
3. Update speed and position and evaluate new responses
4. If the conditions are not fulfilled, the stop will go to step 2.
5. End

The flowchart structure of the PSO algorithm is shown in Fig. 2:

3.1.1. PSO algorithm strategy
In the PSO algorithm, the particle speed in each step consists of two

parts, the first part of which is the current particle size, and the second
part is to follow the best personal experience and best band experience.
Without the second part of the algorithm, the global search mode will
be blind, and without the first part, the algorithm will become a local
search near the best particle, which will be incapable of reaching large
parts of the search space. By combining these two parts, the PSO al-
gorithm tries to create a balance between global and local searches.

Eq. (9) is used to update the speed as following as (Shi, 2001; Zhang
et al., 2004):

+ = + +
+

Velocity t W Velocity t c rand pbest t Position t
c rand gbest Position t

[ 1] [ ] 1* (0, 1)*( [ ] [ ])
2* (0, 1)*( [ ]) (9)

W : Inertia weight. Velocity t[ ]: The velocity of the particle is at the in-
stant t. Position t[ ]: The current position of the particle is at the instant t.
c andc2 1: Learning factors. rand (0,1): A random number is in the range
(0,1). pbest : The amount is allocated to the best position of each particle
during the preceding steps with attention to a target function to that
particle. gbest : The best value is for the position of all population par-
ticles during the previous steps.

Inertia Weight (W ): The inertia weight W in the above relationship
is used to ensure convergence in the PSO. Inertia weight is used to
control the effect of previous speed records on current speeds. The
proper value of W creates a balance between the ability of the algo-
rithm to search for the general and the local. An appropriate amount of
inertia weight usually creates the equilibrium between the inclusive
and local exploration capabilities of the group. By choosing the right
amount of inertial weight, the amount of repetition decreases to find
the optimal response. The constant weight of the inertia is larger than
one, although it causes the search algorithm to be faster, but the al-
gorithm becomes unstable because it increases the speed of the previous
one.

The c1 and c2 parameters are not very critical for the PSO con-
vergence. The appropriate amount c1 and c2 may converge the answer
sooner and prevent the possibility of being placed in the local com-
mittee. At first, the value of c1= c2 =2 was suggested, but various
experiments showed that c1= c2 =1 could be more useful in achieving
the better answer. In the general case, c1 and c2 can be selected dif-
ferently depending on the case and with trial and error, but for the
better and more precise search space of the answer, the condition

+c c1 2 4 must always be observed.
The rand parameter is used to preserve the variety and diversity of

the group; the appropriate value of the rand parameter is randomly
selected in the interval between zero and one. These values allow
particles to move in ranges between gbest and pbest in random steps
(Shi, 2001; Zhang et al., 2004).

Eq. (10) is used to update the particle position (present particle
position):

+ +Position t Velocity t Position t( ) ( ) ( 1)i i i (10)

In the upper equation, Position t( )i is the position of the particle at
time t , and Velocity t( )i is the velocity of the particle i in time t . The
particle update in the two-dimensional space is shown in Fig. 3(Shi,
2001; Zhang et al., 2004).

Fig. 2. Flowchart of the PSO algorithm (Shi, 2001).
Fig. 3. Updating particles in a two-dimensional space (Shi, 2001; Zhu et al.,
2011).
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3.2. Imperialist Competitive Algorithm (ICA)

The ICA was developed by Atashpaz and Lucas in 2007. This algo-
rithm, in the first place, with a completely new perspective on opti-
mization, establishes a new link between the humanities and the social
sciences on the one hand and the technical and mathematical sciences
on the other. This algorithm looks at the optimization problems in the
form of countries and tries to improve these responses during the re-
petitive process and ultimately to the optimal solution to the problem.
Shortly after introducing this algorithm, it has been used to solve many
issues in the area of optimization. In order to evaluate the efficiency of
this algorithm, the problems that have been solved with other evolu-
tionary algorithms have also been solved with this algorithm, with
better results both in terms of time and in terms of optimal response
(Atashpaz Gargari et al., 2008). The speed of finding the optimal an-
swer to this algorithm has been used to optimize the extent of this re-
search. The elements inside the ICA are country and imperialist. Im-
perialist defined as the best countries and in our case the imperialists
are the cu-off grade values. To have a better understanding how ICA
works in optimization problems, the general scheme of this algorithm is
shown in Fig. 4 (Atashpaz Gargari et al., 2008).

As shown in Fig. 4. The developed algorithm, like other evolu-
tionary optimization methods, starts with a number of initial popula-
tion (Part 1 of Fig. 4). Solutions gained from ICA are split into coloni-
zers and colonies. Each colonizer, depending on its power, controls a
number of colonial countries. Here, the stronger colonial country, re-
presented by the larger star, has the largest number of colonial coun-
tries with colored circles. And the colonial country of all the weaker
that appears with the smaller star has the fewest influential countries.
The next stage is the colonial capture and competition policy that forms

the core of this algorithm (Part 2 of Fig. 4). In the next stage, the costs
are calculated, and if the cost of the colony falls less than that of the
colonizer, the function of the revolutionary function changes the colo-
nial and colonial position (Part 3 of Fig. 4). This action will make the
colonial country move in line with the colonial country. In other words,
each colonial country approaches the colonial country using a certain
procedure, respectively. At this stage, according to the natural routine,
some colonial states may revolutionize and capture the power of the
empire (the operator of the revolution). After the absorption and re-
volutionary functions are performed, in the next step, the objective
function is calculated for the total cost of the empires (Part 4 of Fig. 4).
Now, for each of the empires, if the best function of the colonial
countries of the colonial country was better than the objective function,
then the two countries would change together. Meanwhile, after doing
this for all the empires, the best answer and the amount of all colonial
countries are stored as the best answer and the current amount in this
algorithm's repetition. In the next stage, the colonies are separated from
the weak empires and become stronger empires (Part 5 of Fig. 4). Fi-
nally, the weak empires are eliminated, and with the continuation of
the algorithm, only one empire remains, which is the "optimal answer"
(part 6 of Fig. 4).

3.2.1. Strategy of the imperialist competitive algorithm (ICA)
In optimization, the goal is to find an optimal answer based on the

variables of the problem. Here it is called a country (cutoff grade). In
the next optimization problem Nvar , a country is an array of 1× Nvar .
This array is defined as follows.

= …P P P PCountrry [ , , , , ]N1 2 3 var (11)

The values of variables in a country are represented as decimal

Fig. 4. The general idea of the ICA (Atashpaz Gargari et al., 2008).
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numbers. In fact, in solving an optimization problem by the proposed
algorithm, it is looking for the best country with social-political features
(Which is looking for the best cutoff grade in this research). Finding this
country (cut off grade) is, in fact, equivalent to finding the best para-
meters of the problem that produces the highest amount of the net
present value function. To start the algorithm, there must be a number
of these countries (the number of countries in the initial algorithm).
Therefore, the matrix of all countries is formed randomly.

=

country
country
country

country

COUNTRY .
..

N

1

2

3

country (12)

The NPV of a country is found by evaluating the function f in
variables (P1, P2, P3, …, PNvar) so:

= = …NPV f country f P P P P( ) ( , , , , )i i N1 2 3 var (13)

The algorithm presented in this paper, by producing a basic set of
answers and categorizing them in the form of empires (the countries
with the highest NPV), and applying the policy of absorbing colonialists
to the colonies, as well as creating a colonial competition between the
empires, searches for the best country (cutoff grade).

To start the algorithm, we create the Ncountry as the number of the
primary country (primary cutoff grade). Nimp selects the best members
of this population (the solutions with the highest amount of the NPV
function) as an imperialist. The remainder of Ncol is composed of
countries (cutoff grades), colonies (solutions with the lowest amount of
the NPV function),each of which belongs to an empire. For the division
of the initial colonies between the imperialists, each imperialist gives a
number of colonies, which are in proportion to their strength. To do
this, with the NPV of all imperialists, they consider their normalized
NPV as follows (Atashpaz-Gargari and Lucas, 2007).

=C c min c{ }n n i (14)

WhereCn, is the NPV of the imperialist n,min c{ }i the lowest NPV among
imperialists, and cn is the normalized NPV of this imperialist. Any im-
perialist who has NPV is less (imperialist weaker) will have less nor-
malized NPV. With the normalization NPV, the normalized normal
power of each imperialist is calculated as follows and based on that
colonial countries are divided between imperialists.

=
=

P c
c

n
n

i
N

i1
imp

(15)

From another point of view, the normalized power of an imperialist
is the colonial proportions that the imperialist administration is
managing. Therefore, the initial number of imperialist colonies will be
equal to:

=N C round p N. { .( )}n n col (16)

Where N C. n is the initial number of colonies in an empire and Ncol is
also the total number of colonial states in the population of the primary
countries. Round is also a function that assigns the nearest integer to a
decimal number. Given N C. n for each empire, it selects this number of
colonial countries randomly and gives it to the imperialist n. With the
initial state of all empires, the colonial competition algorithm begins.
The evolutionary process is in a loop that continues until a condition for
a moratorium is fulfilled. Considering the country's way of solving the
optimization problem, in fact, the central government sought to bring
the colonial country closer to different social-political dimensions
through its policy of attraction. This part of the colonial process is
modeled in the optimization algorithm, as the colonies move towards
the imperialist state. Fig. 5 shows the general schema of this move
(Atashpaz-Gargari and Lucas, 2007).

As shown in this figure, the colonial country moves to a colonial
position as large as x in the direction of the colonial colony's line,
leading to a new position. In this figure, the distance between the co-
lonizer and the colony is indicated by d. x is also a random number with
uniform distribution(or any other suitable distribution). That means for
x (Atashpaz-Gargari and Lucas, 2007).

×x U d~ (0, ) (17)

Where is a number greater than one and close to 2. A suitable choice
can be = 2. The presence of the coefficient > 1 makes the colonial
country closer to the colonial country as it moves in different directions
(Atashpaz-Gargari and Lucas, 2007).

With the historical analysis of the phenomenon of assimilation, one
obvious fact is that, despite the fact that colonial countries were con-
sistently pursuing a policy of attraction, the events were not fully in line
with their policies, and there were deviations as a result of work. In the
proposed algorithm, this probable deviation is done by adding a
random angle to the colonial absorption path. To this end, moving the
colonies towards colonialism adds a bit of a random angle to the co-
lonial movement. Fig. 6 shows this state. For this purpose, instead of
moving x to the colonial country, this movement continues to move in
the direction of the vector of the colony's colony to the same extent but
with a deviation of on the path. is considered randomly and dis-
tributed uniformly (but any other suitable distribution may also be
used). So:

U~ ( , ) (18)

In this regard, is a desirable parameter, which increases its search
for imperialist surroundings and reduces it to allow the colonies to
move as far as possible to colonial colonialism. Considering the radian
unit for , the number is nearly

4
, in most implementations, it was a

good choice.

Fig. 5. The general concept of movement of the colonies towards the im-
perialist (Atashpaz Gargari et al., 2008).

Fig. 6. Real movement of the colonies to the imperialist (Atashpaz Gargari
et al., 2008).
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In the modeling of this historical event, in the above-mentioned
algorithm, it has been shown that during the movement of the colonies
to the colonial country, it is possible that some of these colonies reach a
better position than the imperialist (To points in the NPV function that
produces more NPV than the amount of the NPV function in the im-
perial position). In this case, the colonial country and the colonial
country have replaced each other and the algorithm with the colonial
country has continued in a new position, and this time it is a new im-
perialist country that begins to apply a policy of assimilation on its
colonies. The power of an empire equals the power of the colonial
country, plus a percentage of the total power of its colonies, thus, for
the total NPV of an empire (Atashpaz-Gargari and Lucas, 2007):

= +T C NPV imperalist mean NPV colonies of empire. ( ) { ( )}n n n (19)

Where T C. n is the total NPV of the empire n and is a positive number,
which is usually considered between zero and one and close to zero.
The small consideration of causes the total NPV of an empire to be

approximately equal to the NPV of its central government (the imperial
country), and the increase in also increases the effect of the NPV of the
empire's colonies in determining its total NPV. In a typical case, = 0.05
has led to satisfactory answers in most implementations. As previously
stated, any empire that can not increase its strength and lose its com-
petitive power will be eliminated during imperialist rivalries. This de-
letion is made gradually. It means that, in the meantime, the weak
empires of our colonies will be lost, and they will seize the stronger
empires of these colonies and add to their power. To model this fact,
they assume that the empire is removing the weakest empire. In this
way, in repeating the algorithm, one or more of the weakest colonies of
the weakest empire is taken and, in order to seize these colonies, create
a competition among all the empires. The colonies will not necessarily
be seized by the strongest empire, but stronger empires will be more
likely to be seized. For this purpose, the total NPV of the empire is
determined by its the NPV of the normalized total (Atashpaz-Gargari
and Lucas, 2007):

Fig. 7. : The trend of the ICA (Atashpaz-Gargari and Lucas, 2007).
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=N T C T C min T C. . . { . }n n i i (20)

In this regard, T C. n is the total NPV of the empire n and N T C. . n, as
well, the total normalized NPV of that empire. Each Empire with less
T C. n will have less N T C. . n. In fact,T C. n is equivalent to the total NPV of
an empire, and N T C. . n is equivalent to its total power. Empire with the
highest NPV has the highest power. With the normalized NPV, the
probability (power) of colonial conquest is calculated by each empire as
follows:

=
=

P N T C
N T C

. .
. .

P
n

i
N

i1
n imp

(21)

With the possibility of seizing each empire so that the colonies are
randomly divided, with the probability that each empire is properly
seized, between empires, the vector P is formed from the above prob-
ability values as follows:

= …P P P P P[ , , , , ]P P P PNimp1 2 3 (22)

The P vector has a size of 1× Nimp and is composed of probabilities
for the capture of empires. Then the random vector R is the same size as
the vector P . Arrays of this vector are random numbers with uniform
distribution in the interval [0,1].

= …R r r r r[ , , , , ]N1 2 3 imp (23)

…r r r r U, , , , ~ (0, 1)N1 2 3 imp (24)

Then the vector D is formed as follows.

= = … =

…
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r P r P r

, , , , ,

, , ,
N P P

P P N

1 2 3 1

2 3

imp
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1 2

3 (25)

With the vector D, they give the colonies an empire whose index of
the vector D is larger than the rest. The empire that has the most
probability of taking possession is likely to have the highest index in D
in its index. With the colonial takeover by one of the empires, the op-
eration of this phase of the algorithm ends (Atashpaz-Gargari and
Lucas, 2007). In Fig. 7, the trend of the representation of this algorithm
is shown.

3.3. Implementing meta-heuristic algorithms for determining the optimal
cutoff grade

In order to investigate the meta-heuristic methods, the optimum
cutoff grade of the hypothetical deposit is calculated (Lane, 1964,
1988). In the final range of 100 million tons of minerals with the dis-
tribution of grade listed in Table 1. Mining capacity (ore extraction and
waste disposal) is 20 million tons per year, the capacity of the proces-
sing plant is 10 million tons per year and the refining unit capacity is 90
thousand tons per year, the mining cost is $ 0.5 per ton, the processing
cost is $ 0.6 per ton, the melting and refining cost is $ 50 per ton, the
fixed cost of $ 4 million per year, the sales price of the mineral is $ 550
per ton, recovery of 0.9% and a discount rate of 15%.

3.3.1. Implementing the PSO algorithm
In solving this problem, it is intended to find a combination of cutoff

grade, mining capacity, processing plant and refining unit that will
bring the most profit and NPV. To accomplish this, the PSO algorithm is
coded in the MATLAB R2016a software environment. The advantage of
this program is that it is able to find the cutoff grade, which is at the
same time optimized and based on maximizing the NPV. The first step
in implementing the PSO algorithm and objective function and opti-
mizing the cutoff grade of the mine is that all the required parameters
are defined. In PSO, the number of parameters needed to solve the
problem is 28 intervals. The number of these parameters is equal to the
sum of the number of the cutoff grade, the amount of minerals, the
amount of the processing plant and the amount of the refining per year.
Determining the number of particles of a problem is one of the para-
meters whose correct adjustment is important in reaching the optimal
answer at the right time. To solve this problem, at first, the 300 pri-
mitive particles used for optimization has been selected randomly. The
inertia weight is also considered 0.9. Also, to generate new answers
with several times the implementation of the program and review the
results, the C1 and C2 parameters that are not critical for the PSO
convergence, but their appropriate size converges the answer earlier,
which showed several times with the implementation of the program
that C1 =C2 =1 It can be more helpful to get a better answer. In this
research, the condition for executing the program in the PSO algorithm
is determined based on the maximum number of repetitions, and the
maximum repetition for the completion condition is 300 repetitions.
Now, implementation of the objective function in MATLAB software is
addressed in a way that is consistent with the PSO algorithm and the
correct result is achieved at this stage, which took place in two steps. In
the first step, the operational limitations that include the mining lim-
itation, the processing plant limitation, and the refining unit limitation,
and should not be higher than the limit, apply to the implementation of
the PSO algorithm in optimizing the cutoff grade. If any of these re-
strictions are violated, the value of the objective function for this field
of specific solutions is a very low value, so the probability that this
solution will be chosen is very low, and we are guaranteed to be using
the penalty function when it comes to a final answer. In the second step,
the constraints are applied to the main function, at which point the
objective function achieved by the equation is implemented using the
fining method, and each of the constraints is added separately to the
main function. The values ( 1), ( 2), ( 3) are the factors of the penalty
function. The amount of fines for each limitation is derived from the
multiplication of the factors of the fine imposed on the amount of the
violation. Relationships 26–28 are the penalty functions of the PSO
algorithm.

= ×X n Q n
M

Q n
C

( ) ( ) ( )m c
1 1 (26)

= ×X n Q n
M

Q n
R

( ) ( ) ( )m r
2 2 (27)

= ×X n Q n
C

Q n
R

( ) ( ) ( )c r
3 3 (28)

Where, X n( )1 stands for the annual value of fines related to the re-
striction between the capacity of mining and the processing plant, X n( )2
represents the annual value of fines related to the restriction between
the capacity of mining and the refining section, X n( )3 denotes the an-
nual value of fines related to the constraints between the processing
plant and the refining section, Q n( )m stands for the annual value of
mining minerals Q n, ( )c represents the annual amount of the mineral
sent to processing plant, Q n( )r denotes the annual value of refined
matter, M is the capacity of Mining, C is the capacity of the processing
plant, and R stands for the refining unit capacity.

PSO algorithm employs the Eq. 29 as an objective function to figure
out the optimum cu-off grade value.

Table 1
Distribution of grade deposit.

Grade classes Quantity (tons) Grade classes Quantity (tons)

From Until From Until

0.0 0.15 14,400,000 0.45 0.5 3,800,000
0.15 0.2 4,600,000 0.5 0.55 3,700,000
0.2 0.25 4,400,000 0.55 0.6 3,600,000
0.25 0.3 4,300,000 0.6 0.65 3,400,000
0.3 0.35 4,200,000 0.65 0.7 3,300,000
0.35 0.4 4,100,000 0.7 1.5 42,300,000
0.4 0.45 3,900,000 Total tonnage 100,000,000
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Where, NPV n( ) stands for the annual NPV, I n( ) represents the annual
profit, and d denotes the rate of discount. Fig. 8 shows the steps to
implement the PSO algorithm.

By running more than 30 times the PSO algorithm, only the error
rates of the cutoff grade and the NPV were reached zero, but there was
no significant reduction in the objective function, the amount of mining
capacity, the processing plant and the refining unit and the grade.
Therefore, it can be concluded that the NPV of the hypothetical deposit
after the optimization has been increased to 369,248,759 dollars, which
is shown in Fig. 8 for the increase of the objective function. Therefore, it
can be concluded that the NPV of the hypothetical deposit after the
optimization has been increased to 369,248,759 dollars, which is
shown in Fig. 9 for the increase of the objective function. Given that the
objective of this research is the cutoff grade optimization based on
maximizing the NPV, Fig. 8 shows the increase of the NPV for different
repetitions. In this figure, the horizontal axis (Iter) represents the
number of repetitions, and the vertical axis represents the NPV for each
repetition. In this problem, the repeat rate for the PSO algorithm was
tested with a try and error of 300 repetitions, and the condition for the
completion of the program is applied.

3.3.2. Implementation of the ICA
At first, the 40 primary countries (cutoff grade) used for optimiza-

tion were selected randomly. Six countries (cutoff grades) have been
selected as imperialists (the cutoff grade with more NPV) and con-
trolled by the rest of the 34 primary empires is formed. In the next
stage, the policy of assimilation and absorption is achieved, and the
colonies (the cutoff grades with less NPV) are attracted to empires ac-
cording to the power of each empire (all calculations are done in
MATLAB software). By continuing the algorithm of removing the
weaker empires, and their colonies are divided among other empires.

During the rotation process, after the 5th generation, 2 empires have
been removed and the colonies are divided according to the relation-
ship 15 between the four remaining empires. As the algorithm con-
tinues, the process continues and the weak empires have lost their co-
lonies and eliminated from the competition cycle. After 10 generations,
only two empires have survived, and rivalry between these two empires
continues to occupy more colonies. One of these two empires will be an
optimal answer. With the continuation of the algorithm in the fifteen
generation, all empires, with the exception of one, collapsed and be-
come a monopolar world; the whole of which forms a single empire,
and all the colonies and even the imperialists themselves have the same
status. This Empire is the optimal answer to the problem. Using the
imperialist competitive algorithm method, calculations determine the
optimal cutoff grade for the desired deposit, the results are shown in
Table 6. Therefore, the NPV of the hypothetical deposit after optimi-
zation has increased to 375,868,228 dollars, which is shown in Fig. 10
for the graph the increase of the objective function. Given that the aim
is to optimize the cutoff grade maximization of the NPV, Fig. 10 shows
the increase of the NPV for various repetitions. In this form, the hor-
izontal axis (maxdecades) represents the number of repetitions, and the
vertical axis represents the NPV for each repetition. In this problem, the
repeat rate for the ICA was tested with a try and error of 200 repeti-
tions.

4. Validation of models

To verify the validity of the proposed models, the optimum cutoff
grade value of the hypothetical deposit was calculated using a method
based on the Lane theory. In the proposed method, the optimal cutoff
grade starts at 0.503% and at the end of the project lifetime to 0.22%.
as well as the NPV obtained from the proposed method is $ 94,408,000.
In the PSO algorithm, optimum cutoff grade at the start of the project of
0.512% and at the end of life reaching 0.225% and the NPV is $
94,867,884. Also, in the imperialist competitive algorithm, the optimal
cutoff grade at the start of the life of the mine of 0.507% and at the end
of the life of the mine to 0.225%, and the NPV is $ 95,427,114.
According to Figs. 11 and 12, respectively, the optimal cutoff grade and
the NPV are close in each of the three methods. In Tables 2 and 3, the
percentage of errors of the optimal cutoff grade is shown by the
methods of the PSO and the imperialist competitive. The average error
with the PSO algorithm model for an optimal cutoff grade is 2.73% and
the average error with the ICA algorithm model for an optimal cutoff
grade of 0.54%. As can be seen, the results of the proposed algorithms
are in good agreement with the method based on the lane's theory.
Among the two PSO and ICA algorithms, the imperialist competitive
algorithm has less error.

Fig. 8. PSO Algorithm Implementation Steps.

Fig. 9. Optimization of NPV using the PSO algorithm.

Fig. 10. Optimization NPV using the ICA.
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5. Case study

Now, the optimization of the cutoff grade of iron mine Golgohar No.
1 using PSO and ICA algorithms is discussed. Mining capacity of 40

million tons per year, capacity of processing plant 12 million tons per
year, refining capacity 42004,200,000 t per year, fixed cost $ 2 million
per year, mining cost $ 0.2 per tonne, condensation cost $ 1.3 Per ton,
the cost of melting and refining $ 28.1 per tonne, the sale price of the
mineral $ 300 per tonne, recovery of 0.67 and the discount rate of 21%
plan (Ahmadi, 2018). The distribution of the grade of Golgohar mineral
deposit is shown in Table 4.

The optimum cutoff grade of the iron mine No. 1 of Golgohar was
calculated using a method based on Lane's theory. The results obtained
from this method are shown in Table 7. In the proposed method, the
optimal cutoff grade starts at 48.72% and reaches 40.3% at the end of
the project life. also, The NPV obtained from the proposed method is
equal to 92,660 thousand dollars. In Table 5 presents the results of the
PSO model, which at the beginning of the mine's lifetime in this 5-year
plan, the mine is not in equilibrium and does not work at full capacity,
but the processing plant and the refinery are in balance. Also, the op-
timal cutoff grade at the beginning of the life of the mine with 48/71%
and at the end of the life of the mine reaches 40.6% and the NPV is
92,955,483 dollars. The results of the ICA model are also shown in
Table 6. In the ICA model, the mine does not work at full capacity, but
the processing plant and the refinery plant do work at full capacity. The
optimum cutoff grade obtained from the ICA model initially starts with
48.56%, and at the end of its lifetime it will reach 40.5% and the NPV is
93,060,514 dollars. Also, in Figs. 13 and 14, accordingly,optimal cutoff
grade variations, and the changes in the NPV of all three methods were
graphically compared in years of mine life.

Also, by determining the amount of annual waste dump and mineral
extraction amount, the value of the annual stripping ratio is de-
termined. In Table 8, the total extraction, mineral content, waste and
stripping ratios in the PSO algorithm are shown. Also, in Tables 9 and
10, the total extraction, mineral content, waste, and the stripping ratio
were shown in ICA and lane's theory, respectively.

6. Conclusions

The optimum cutoff grade and the NPV help us to have an appro-
priate plan of production from an open pit mine. The present study has
been used to determine the optimum cut-off grade of PSO metaheuristic
algorithms and ICA, which is part of intelligent algorithms. The per-
formance of the PSO algorithm and the ICA and Lane's theory in opti-
mizing the cutoff grade on the basis of maximizing the NPV are com-
pared. For this purpose, the hypothetical deposit was considered with
different grades. In the PSO algorithm, the correct setting of the para-
meters is effective in achieving the optimal response, and the values of
the parameters of the PSO algorithm are important in achieving the
speed and accuracy of the results. Then, the ICA was implemented and
considering the precision of 0.001%, the optimal cutoff grades, the
amount of production of each unit and the NPV were calculated. In the
ICA method to calculate the probability of seizing each empire, a new
mechanism for implementing this process has been used which has
much less computational cost than the roulette cycle in the genetic
algorithm. In this mechanism, the relatively large operation associated

Fig. 11. Comparison of the optimal cutoff grades obtained from all three
models.

Fig. 12. Comparison of the NPV obtained each year in all three models.

Table 2
The error rate of the optimum cut-off grade of the PSO model.

Year Lane Method (%) PSO Algorithm (%) Relative Error (%)

1 0.503 0.512 1.7
2 0.493 0.491 0.4
3 0.460 0.473 2.82
4 0.412 0.434 5.33
5 0.361 0.375 3.87
6 0.294 0.294 0.00
7 0.220 0.225 2.27
Average Error 2.73

Table 3
The error rate of the optimum cut-off grade of the ICA model.

Year Lane Method (%) ICA Algorithm (%) Relative Error (%)

1 0.503 0.507 0.80
2 0.493 0.494 0.20
3 0.460 0.460 0.00
4 0.412 0.412 0.00
5 0.361 0.363 0.55
6 0.294 0.294 0.00
7 0.220 0.225 2.27
Average Error 0.54

Table 4
Distribution of the grade of Golgohar mineral deposits in the 5-
year plan (Ahmadi, 2018).

Grade(%) Tonnage (ton)

40.5–45 61376,137,335,335
45–49.5 27,346,643
49.5–54 33,254,956
54–58.5 11,258,398
58.5–63 438,098
Total ore (ton) 78,435,430
Total waste (ton) 109,305,000
Total material (ton) 187,740,430
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with calculating the probability cumulative distribution function (CDF)
required in the roulette cycle is eliminated and only requires having a
probability density function (PDF). Comparison of the economic results
of the three methods shows that the NPV and the optimal cutoff grades
obtained from PSO and ICA algorithms with the NPV and the optimal
cutoff grades calculated by the Lane method have a reasonable agree-
ment. Also, a real case study is used to determine the performance of
those meta-heuristic optimization methods. In a real case, the economic
results obtained from the PSO algorithm show that the optimal cutoff
grade of the mine in the year of the start of this 5-year plan is 49.11%
and in the final years reaches 40.6%, as well as the NPV in the initial
year of the mine's life of 93955239 dollars. Also, the economic results of
the ICA algorithm show that the NPV in the initial year of the mine's life
is $ 95,264,519 and the optimum cutoff grade of the mine in the year of

the start of this five year plan, 48.56%, and in the final years of the life
of the mine reaches 40.5%. As a result, these meta-heuristic algorithms
converge faster to the optimal answer.

Table 5
Optimum cutoff grade, production of various units, profit and NPV in the different years of the mine life using PSO algorithm.

Year Optimum cutoff grade (%) Ore mined (ton) Ore sent to processing (ton) Refining rate (ton) Profit ($) NPV ($)

1 49.11 39,998,245 12,000,000 42004,200,000,000 25,882,985 93,955,239
2 48.26 39,983,627 12,000,000 42004,200,000,000 22,894,602 74,865,349
3 47.09 39,992,538 12,000,000 42004,200,000,000 18,134,955 54,635,619
4 45.82 39,990,764 12,000,000 42004,200,000,000 15,066,058 35,905,237
5 40.6 28,694,821 11,783,659 35383,538,124,124 2,328,131 2,188,443

Table 6
Optimum cutoff grade, production of various units, profit and NPV in the different years of the mine life using ICA algorithm.

Year Optimum cutoff grade (%) Ore mined (ton) Ore sent to processing (ton) Refining rate (ton) Profit ($) NPV ($)

1 48.56 39,992,025 12,000,000 42004,200,000,000 26,462,367 95,264,519
2 47.78 39,975,547 12,000,000 42004,200,000,000 23,137,999 75,892,637
3 46.81 39,991,158 12,000,000 42004,200,000,000 18,460,633 55,197,294
4 45.47 39,985,381 12,000,000 42004,200,000,000 15,639,627 37,065,916
5 40.5 27,795,319 11,904,539 34963,496,218,218 2,671,404 2,448,406

Table 7
Optimum cutoff grade, production of various units, profit and NPV in the different years of the mine life using lane method.

Year Optimum cutoff grade (%) Ore mined (ton) Ore sent to processing (ton) Refining rate (ton) Profit ($) NPV ($)

1 47.72 39,997,215 12,000,000 42004,200,000,000 25,596,000 92,660,000
2 47.14 39,970,427 12,000,000 42004,200,000,000 23,239,000 74,135,000
3 46.23 39,991,378 12,000,000 42004,200,000,000 17,836,000 53,840,000
4 45.28 39,987,153 12,000,000 42004,200,000,000 14,855,000 34,705,000
5 40.3 27,7943,257 11,426,729 37533,753,126,126 2,475,000 569,000

Fig. 13. Comparison of the optimum cutoff grades obtained from all three
models for iron mine No. 1 Golgohar.

Fig. 14. Comparison of the NPV obtained each year in each three models for
iron mine No. 1 Golgohar.

Table 8
Waste extraction and mineral extraction values and stripping ratio in the PSO
algorithm.

Year Total material (ton) Waste (ton) Ore (ton) Stripping ratio

1 39,991,245 22,299,886 17,691,359 1.26
2 39,973,627 22,869,043 17,104,584 1.33
3 39,989,973 23,765,374 16,324,599 1.45
4 39,989,764 23,839,329 16,150,435 1.47
5 27,794,821 16,530,368 11,164,453 1.48
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