
 

 

 
J. Cent. South Univ. (2020) 27: 2479−2493 
DOI: https://doi.org/10.1007/s11771-020-4474-z 
 

 

Improving performance of open-pit mine production scheduling 
problem under grade uncertainty by hybrid algorithms 

 

Kamyar TOLOUEI1, Ehsan MOOSAVI1, Amir Hossein BANGIAN TABRIZI1, 
Peyman AFZAL1, Abbas AGHAJANI BAZZAZI2 

 
1. Department of Petroleum and Mining Engineering, South Tehran Branch, Islamic Azad University, 

Tehran, Iran; 
2. Department of Mining Engineering, University of Kashan, Kashan, Iran 

 
© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 

                                                                                                  
 

Abstract: One of the surface mining methods is open-pit mining, by which a pit is dug to extract ore or waste 
downwards from the earth’s surface. In the mining industry, one of the most significant difficulties is long-term 
production scheduling (LTPS) of the open-pit mines. Deterministic and uncertainty-based approaches are identified as 
the main strategies, which have been widely used to cope with this problem. Within the last few years, many researchers 
have highly considered a new computational type, which is less costly, i.e., meta-heuristic methods, so as to solve the 
mine design and production scheduling problem. Although the optimality of the final solution cannot be guaranteed, 
they are able to produce sufficiently good solutions with relatively less computational costs. In the present paper, two 
hybrid models between augmented Lagrangian relaxation (ALR) and a particle swarm optimization (PSO) and ALR and 
bat algorithm (BA) are suggested so that the LTPS problem is solved under the condition of grade uncertainty. It is 
suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the 
convergence. Moreover, the Lagrangian coefficients are updated by using PSO and BA. The presented models have 
been compared with the outcomes of the ALR-genetic algorithm, the ALR-traditional sub-gradient method, and the 
conventional method without using the Lagrangian approach. The results indicated that the ALR is considered a more 
efficient approach which can solve a large-scale problem and make a valid solution. Hence, it is more effectual than the 
conventional method. Furthermore, the time and cost of computation are diminished by the proposed hybrid strategies. 
The CPU time using the ALR-BA method is about 7.4% higher than the ALR-PSO approach. 
 
Key words: open-pit mine; long-term production scheduling; grade uncertainty; augmented Lagrangian relaxation; 
particle swarm optimization algorithm; bat algorithm 
 
Cite this article as: Kamyar TOLOUEI, Ehsan MOOSAVI, Amir Hossein BANGIAN TABRIZI, Peyman AFZAL, 
Abbas AGHAJANI BAZZAZI. Improving performance of open-pit mine production scheduling problem under grade 
uncertainty by hybrid algorithms [J]. Journal of Central South University, 2020, 27(9): 2479−2493. DOI: 
https://doi.org/10.1007/s11771-020-4474-z. 
                                                                                                             

 

 

1 Introduction 
 

The open pit mine is actually a superficial 
mining starting with the extraction of ore or waste 
from the surface by dint of digging the cavity. The 
mining operation is ended when the process 

develops with deeper and deeper caverns. Another 
foremost step in mining planning is long-term 
production scheduling (LTPS) optimization process. 
LTPS is especially important in mining projects, 
because in addition to determining the actual value 
of the project, medium-term and short-term 
schedules are planned based on it. Therefore, in the 
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last decade, special attention has been paid to LTPS, 
providing optimal algorithms to obtain the best 
schedules by mining engineers. So far, two 
categories of deterministic algorithms and 
uncertainty-based algorithms for long-term 
schedules have been developed. In deterministic 
algorithms, all input data to the mathematical model 
of production scheduling are assumed to be definite, 
and uncertainty is not considered in these 
parameters. Thus, the operational constraints and 
different expectations of the mine cannot be met 
when operating in the mine. 
    The main reason for this inefficiency is the 
uncertainty of the tonnage and grade of the mineral. 
In uncertainty-based algorithms, the uncertainty of 
the input parameters is considered in the production 
scheduling model. LTPS is planned to extract and 

process the mineral for a period of more than 10 
years. The main purpose of LTPS is to prepare 
annual and multi-year development schedules for 
all blocks in the mine-life. In fact, the goals of 
LTPS are to maximize the project’s net present 
value (NPV), minimize the risk of achieving 
production targets, and maximize mining life. 
    The LTPS problem is regarded as a hard 
integer programming problem and non- 
deterministic polynomial-time (NP) classes. It is 
difficult to achieve a suitable solution for the LTPS 
problem for the sake of its size and NP-hardness. 
Hence, several research efforts emphasize the 
efficient LTPS algorithms in order to proliferate 
profitability and diminish computational time.  
Table 1 illustrates a number of models presented in 
recent years. 

 
Table 1 Review of presented models since 1969 

Year Authors Model D1 U2 HMM3 Ref. 

1969 JOHNSON Linear programming *   [1] 

1974 WILLIAMS 
Dynamic programming, integer programming, 

network flow, parametric programming 
*   [2] 

1983 GERSHON Linear programming, mixed integer programming *   [3] 

1986 DAGDELEN and JOHNSON Lagrangian relaxation method *   [4] 

1992 RAVENSCROFT Conditional simulation  *  [5] 

1994 DOWD Geostatistical simulation  *  [6] 

1995 ELEVLI Operation research, artificial intelligence *   [7] 

1995 DENBY and SCHOFIELD Genetic algorithm  * * [8] 

1994 TOLWINSKI Dynamic programming *   [9] 

1999 AKAIKE and DAGDELEN 4D network relaxation *   [10] 

2000 WHITTLE Milawa *   [11] 

2002 JOHNSON et al Mixed integer programming *  * [12] 

2002 DIMITRAKOPOULOS et al 
Generalized sequential Gaussian simulation, 

direct block simulation 
 *  [13] 

2003 GODOY and DIMITRAKOPOULOS Simulated annealing algorithm  * * [14] 

2004 DIMITRAKOPOULOS and RAMAZAN Linear programming *   [15] 

2004 RAMAZAN and DIMITRAKOPOULOS Mixed integer programming *   [16] 

2004 RAMAZAN and DIMITRAKOPOULOS Mixed integer programming  *  [17] 

2006 GHOLAMNEJAD et al Chance constrained programming  *  [18] 

2007 GHOLAMNEJAD and OSANLOO Chance constrained integer programming  *  [19] 

2007 RAMAZAN and DIMITRAKOPOULOS Stochastic integer programming *   [20] 

2009 BOLAND et al Mixed integer programming *   [21] 

2010 BLEY et al Integer programming *   [22] 

2010 KUMRAL Robust stochastic optimization  *  [23] 

2012 LAMGHARI and DIMITRAKOPOULOS Tabu search  * * [24] 

2012 GHOLAMNEJAD and MOOSAVI Binary integer programming  *  [25] 

to be continued 
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Continued 

Year Authors Model D1 U2 HMM3 Ref. 

2013 NANJARI and GOLOSINSKI Dynamic programming, mining heuristic *  * [26] 

2013 SATTARVAND and NIEMANN-DELIUS Ant colony optimization *  * [27] 

2013 
GOODFELLOW and 

DIMITRAKOPOULOS 
Simulated annealing algorithm  * * [28] 

2013 DIMITRAKOPOULOS and JEWBALI Stochastic integer programming *   [29] 

2014 LEITE and DIMITRAKOPOULOS Stochastic integer programming  *  [30] 

2014 MOOSAVI et al Lagrangian relaxation method, genetic algorithm *  * [31] 

2014 MOOSAVI et al 
Augmented Lagrangian relaxation method, 

genetic algorithm 
*  * [32] 

2014 KOUSHAVAND et al Mixed integer linear programming  *  [33] 

2014 ASAD et al 
Stochastic network flow, 

Lagrangian relaxation method 
 * * [34] 

2014 LAMGHARI et al Variable neighbourhood descent algorithm  * * [35] 

2015 SHISHVAN and SATTARVAND Ant colony optimization *  * [36] 

2016 MOKHTARIAN and SATTARVAND Imperialist competitive algorithm *  * [37] 

2016 MOKHTARIAN and SATTARVAND 
Commodity price distribution function, 

median latin hypercube sampling method, 
integer programming 

*   [38] 

2016 
GOODFELLOW and 

DIMITRAKOPOULOS 
Simulated annealing algorithm, particle swarm 

optimization, differential evolution 
 * * [39] 

2016 
LAMGHARI and 

DIMITRAKOPOULOS 
Rockafellar and wets progressive 

Hedging algorithm 
 *  [40] 

2016 
LAMGHARI and 

DIMITRAKOPOULOS 

Tabu search heuristic incorporating a diversification 
strategy, variable neighborhood descent heuristic, 

very large neighborhood search heuristic, 
network flow techniques, diversified local search 

 * * [41] 

2017 BAKHTAVAR et al Stochastic chance-constrained programming  *  [42] 

2018 KHAN Particle swarm optimization, bat algorithm  * * [43] 

2018 RAHIMI et al Logical mathematical algorithm *  * [44] 

2018 TAHERNEJAD et al Information gap decision theory  *  [45] 

2018 JELVEZ et al Expected time incremental heuristic algorithm *  * [46] 

2018 KHAN and ASAD Mixed integer linear programming *   [47] 

2018 ALIPOUR et al 
Robust counterpart linear optimization, 

genetic algorithm 
 * * [48] 

2019 
CHATTERJEE and 

DIMITRAKOPOULOS 
Lagrangian relaxation method, sub-gradient method, 

branch and cut algorithm 
 * * [49] 

2019 DIMITRAKOPOULOS and SENÉCAL Multi-neighborhood tabu search  * * [50] 
1 Deterministic, 2 Uncertainty, 3 Heuristic and Meta-Heuristic method. 

 

    Despite researchers’ efforts, the LTPS problem 
has not been a well-solved problem. Most of the 
proposed models have disadvantages such as not 
considering the sources of uncertainty, not meeting 
operational constraints, generating non-optimal 
solutions in high computational time. With 
methodological and technological advances, 
researchers have the chance to challenge traditional 
approaches for computational reasons. This will 
lead to the development of new models with 
significant features that can enhance the capabilities 

of current solutions. The augmented Lagrangian 
relaxation method is efficiently used to solve 
constrained optimization problems [51−53]. It 
mostly exploits the specific decomposable structure 
of the initial problem to deal with large-scale hard 
problems in different fields, such as production 
scheduling optimization problems. To determine the 
multiplier values relying on the previous 
computation consequences, the authors apply the 
sub-gradient (SG) method that is generally utilized. 
According to the zigzag phenomenon and small 
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steps, the sub-gradient procedure may join 
gradually on large problems. The use of this method 
has been increased in recent years by incorporating 
meta-heuristic algorithms. They can be simply used 
for the solution of hard optimization problems and 
they are responsible for great modeling flexibility. 
The results in different industries demonstrate the 
high efficiency of this model. Particle swarm 
optimization (PSO) and bat algorithm (BA) are 
among the most widely used meta-heuristic 
algorithms that have features such as rapid 
convergence and the production of optimal 
solutions in a logical time for solving various 
optimization problems [54−56]. 
    The present paper scrutinizes the use of 
meta-heuristic methods in solving the long-term 
production scheduling optimization problem in 
deterministic and uncertainty conditions. To solve 
the LTPS problem under grade uncertainty 
condition, we introduce two hybrid models between 
the augmented Lagrangian relaxation (ALR) 
method and the particle swarm optimization (PSO) 
algorithm and similarly between ALR and bat 
algorithm (BA). In this research, it is suggested to 
enhance the convergence rate by the ALR method 
on the LTPS problem. Furthermore, also the PSO 
and BA are practiced to bring up to date Lagrange 
coefficients. The presented models have been 
compared with the outcomes of combining ALR 
with genetic algorithm (GA), traditional sub- 
gradient method (SG), and the conventional method 
without using the Lagrangian approach (Conv.). In 
terms of average net present value, average ore 
grade, and CPU time, results illustrate that ALR-BA 
generates the best outcomes while satisfying 
constraints. The results indicate that the advanced 
versions have significantly improved in comparison 
with the conventional method. 
    The next part of this paper is provided as 
below. According to the condition of grade 
uncertainty, the objective functions and their 
associated restrictions are modeled in Sections 2 
and 3. A summary of the methodology and hybrid 
models is divulged in Sections 4 to 7 and the 
proposed models will be also advanced. Next, an 
assessment of the results is displayed in Section 8. 
Moreover, this section includes data collection and 
preparation. Authentication of the recognized 
models is realized. Finally, Section 9 carries out the 
conclusion. 

 
2 Traditional formulation of LTPS 

problem 
 
    Long-term production scheduling model has 
been practiced to project production aims and ore 
material current over several years. Holistically, it 
takes a basic image of the production and expressed 
as a linear problem. 
 
2.1 Objective function 
    To reflect decision-making determinations, the 
simplest way is to signify a complete space 
optimization model for each period of the 
scheduling horizon. Since the obtainability of 
restrains is intermingled into the model, the LTPS 
problem is contributed: 
 

1
Maximize = 

(1+ )

tN T
tn
nt

n t

NV
Z X

r=
´å å              (1) 

 
    In the constructed model, the following 
indications were recognized: n is the block 
identification number, n=1, 2, …, N; N is the total 
number of blocks to be scheduled; t is the 
scheduling periods index, t=1, 2, …, T; T is the 
total number of scheduling periods; t

nNV  is the net 
value to be generated by mining block n in period t; 
r is the discount rate in each period; t

nX  is the 
binary variable as follows: 
 

1, if  is mined during period 
=

0, otherwise
t
n

n t
X

ìï
í
ïî

 

 
2.2 Constraints 
    Constraints are based on Ref. [16] as follows. 
2.2.1 Grade blending constraints 
    In the production scheduling, one of the most 
substantial complications is the ore grade which has 
to be put to one side steady while directing to the 
processing plant. Henceforth, the grade of ore that 
is being directed to the mill has to definite between 
two limits. 
    1) Upper bound constraints: It is worth 
mentioning that the average grade of the material 
led to the mill should be a slighter quantity or 
equivalent to the certain grade value, Gmax, for each 
period, t:  

max
1

( ) 0
N

t
n n n

n
g G O X

=
- ´ ´ £å               (2) 
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where gn is the average grade of block n and On is 
the ore tonnage in block n. 
    2) Lower bound constraints: Notably, the 
average grade of the material directed to the mill 
should be more or the same as the fixed value, Gmax, 
for each period, t: 
 

min
1

( ) 0
N

t
n n n

n
g G O X

=
- ´ ´ ³å               (3) 

 
2.2.2 Reserve constraints 
    Basically, restrictions are affected for each 
block so as to specify that all measured blocks in 
the model cannot be mined more than once. 
 

1
1, =1, 2, 3, , 

T
t
n

t
X n N

=
£å                 (4) 

 
2.2.3 Processing capacity constraint 
    Total tons of the treated ore should be less than 
the processing capacity, PCmax, in every period, t: 
 

max
1

( )
N

t
n n

n
O X PC

=
´ £å                      (5) 

 
2.2.4 Mining capacity constraint 
    The whole available mining capacity, MCmax, 
should be more than the whole quantity of material 
(waste and ore) to be mined for each period, t: 
 

max
1

( + )
N

t
n n n

n
O W X MC

=
´ £å                  (6) 

 
where Wn is the tonnage of waste material within 
block n. 
2.2.5 Slope constraints 
    These constraints verify that before mining a 
specified block, all of the overlying blocks should 
be mined. The following two methods are applied 
to implement these constraints: 
    1) Using one constraint for each block per 
period: 
 

1 1
0,  =1, 2, , , 

l t
t r
k y

y r
YX X y l

= =
- £å å   

    =1, 2, , , =1, 2, , k N t T             (7) 
 
where k is the index of a block considered 
extraction at period t; Y is the total number of 
blocks overlying block k; y is the counter for the 
Y-overlying blocks. 
    2) Using Y-constraints for each block at each 
period: 

1
0,  =1, 2, , , 

t
t r
k y

r
X X k N

=
- £å   

    =1, 2, , t T                        (8) 

 
3 LTPS model considering grade 

uncertainty 
 
3.1 Importance of uncertainty in LTPS 
    In engineering projects, various sources of 
uncertainty complicate decisions. Principally, the 
risks associated with a project arise from the 
uncertainties in that project, which can affect goals. 
Due to the importance of this subject, the 
classification of uncertainty sources in mining 
projects was provided by DIMITRAKOPOULOS 
[57]: 
    1) The uncertainty of the grade and the 
uncertainty of tonnage bring about the uncertainty 
of the ore deposit model. 
    2) Technical uncertainty, such as extraction, 
reveals slope constraints, drilling capacity, etc. 
Economic uncertainties include capital costs, 
operating costs, and product prices. 
    3) Among the uncertainties, grade uncertainty 
directs into a large share of probabilities. 
 
3.2 LTPS model via grade uncertainty 
    The indicator kriging (IK) is one of the applied 
procedure methods for grade estimation in mining 
projects. This method was proposed by JOURNEL 
[58] to estimate the resources. The indicator method 
is binary data encoding related to the cut-off value, 
Zc. For the Z(x), ik(x)=1, if Z(x)≥Zc, and otherwise, 
ik(x)=0. In fact, it is a nonlinear conversion of data 
to the binary systems. Values between 0 and 1 for 
each estimation point provide a set of indicators- 
converted quantity using kriging that can be 
expounded as the proportion of the block overhead 
the determined cut-off on data support and the 
probability that the grade is overhead the 
determined indicator [25]. In the optimization 
process of this study, this probability is 
contemplated as the probability index (PIn) for 
block n. The high probability blocks have less risk 
than low probability ones. 
    Actually, in the current section, an integer 
programming-based model with considering grade 
uncertainty has been developed. In this method, a 
weight based on indicator kriging is assigned to 
each block (PIn), which indicates the probability 
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made from n for each block in the block model. 
This approach establishes the objective function in 
such a way that the initial production periods are 
allocated to the higher-certainty mineral blocks. 
Subsequently, the other objective function is 
presented to the objective function of the traditional 
model as follows:  

2
1

Maximize = 
(1+ )

tN T
tn

n nt
n t

NV
Z PI X

r=
´ ´åå        (9) 

 
    This objective function is subject to the 
constraints (2) to (8). 
 
4 ALR function for LTPS problem 
 
    Now, the ALR method is measured as one of 
the possible methods for making out the projected 
problem. 
 
4.1 LR scheme 
    The Lagrangian relaxation (LR) method is 
recognized as one of mathematical means for a 
mixed-integer programming problem. In the 
presentation [59−63] of this technique in LTPS, 
system limitations are relaxed by Lagrangian 
multipliers and presented to the objective function. 
Next, the relaxed problem is rankled into a more 
practicable sub-problem for distinct units and 
solved via dynamic programming. Due to the 
violations of system restraints, the coefficients are 
promoted by dint of a sub-gradient method. The 
convergence standard is achieved if the duality gap 
is within a certain limit. 
    LR relaxes the system constraints as a result of 
Lagrangian multipliers. Then the relaxed problem is 
split into some smaller sub-problems. The constant 
Lagrangian function can be made by dint of 
assigning non-negative Lagrangian multipliers λt, μt 
and ʋt in terms of processing type at period t to the 
constraints. The LTPS problem is illuminated 
through the Lagrangian relaxation method by 
relaxing or momentarily ignoring the preventing 
constraints and solving the problem as if they have 
never been. While maximizing due to the control 
variable t

nX  in the LTPS problem, this is done 
over the dual optimization process, which strives to 
affect the constrained optimum by lessening the 
Lagrangian function L due to the Lagrangian 
multipliers λt, μt and ʋt: 

j*=Min j(λ, µ, ʋ), where j(λ, µ, ʋ)=Max L(X, λ, µ, ʋ). 
  λ, µ, ʋ                       X 
 
4.2 ALR scheme 
    For the time being, the ALR method is 
identified as one of the possible methods for 
solving the proposed problem. Considering the 
augmented Lagrangian function proposed by 
ANDREANI et al [64], an ALR technique is 
practiced, which can efficiently produce viable 
solution for the main problem. For the following 
constrained optimization problem, assume f, g, h to 
admit continuous first derivatives as follows:  
      Minf(x) 
     s.t. h(x)=0, g(x)≤0, xÎΩ={x|H(x)=0, G(x)≤0}.  
    Consider the following augmented Lagrangian 
function as:  

2

( , , , )= ( )+ ( )+ +
2

i
i iL x f x h x

  


æ ö
ç ÷´ ç ÷
è ø

å  

    

2

( )+
2

j
jj g x




æ ö
ç ÷´ ç ÷ç ÷
è ø

å                 (10) 

 
4.3 ALR for LTPS problem reformulation 
    When the coupling constraints (4)−(6) are 
relaxed, the above reformulation contributes to 
decomposing the resulted model (9) into a number 
of sub-problems. To solve the open pit mines LTPS 
problem, the augmented Lagrangian relaxation 
method is employed in the present paper. 
    The novel maximization objective is alike to 
the minimization of a reviewed objective function. 
At this point, the objective is specified as:  

2Min ( )
N T

n t
Z X-åå                         (11) 

 
    Explicitly, equality and inequality constraints 
(4)−(6) are relaxed and the subsequent augmented 
Lagrangian relaxation problem is acquired:  
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2
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    According to the objective function, we have: 
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    The adjustment of Lagrangian multipliers 
should be carefully completed so as to curtail the 
Lagrangian function based on the Lagrangian 
multipliers. To reach a quick solution, a 
combination of sub-gradient method and various 
meta-heuristics are needed to be used by most 
references to adjust Lagrangian multipliers to alter 
Lagrangian multipliers. In this research, the 
Lagrangian multipliers are adjusted and the 
performance of augmented Lagrangian relaxation 
method is improved through using the particle 
swarm optimization (PSO) algorithm and bat 
algorithm (BA). 
 
5 PSO methodology 
 
    In 1995, the PSO methodology was first 
introduced by EBERHART et al [65] and 
KENNEDY et al [66]. This was an optimization 
method based on probability rules. Researchers 
have pondered the social behavior of bird or fish 
groups while searching for food so that the 
population can be guided to a promising area for 
space search. Certain sensible processes are 
practiced for the manners of the creatures of the 
ruling body. Birds modify their physical movements 
by escaping missions to search for food. Hence, 
every one of the group member supposedly uses the 
previous experiences and other detections from 
members in order to find food. This kind of 
corporation is considered a positive movement 
within a competitive search for food. The PSO is 
grounded on the idea of sharing information among 
the group members. In PSO, a particle is denoted to 
each answer to a problem which is the situation of a 
bird in the search space. All particles include a 
degree of ability that the quality of action optimizes 
it. Furthermore, each particle embraces a factor 
called velocity which identifies it in the search 
range [67−69]. 

    The PSO starts with a group of inadvertent 
replies. Next, it searches for the location and 
velocity of each particle so as to determine the best 
answer in the problem space. The two most 
remarkable values indicate that each particle is 
identified at each step of population movement. 
    As a result, the first step is recognized as the 
finest answer in terms of suitability ever obtained 
for each particle. This is actually the personal best 
and is termed pbest. The global best, identified as 
gbest, is another best value ever attained by means 
of the PSO. To search for new solutions, swarm of 
particles is randomly initialized over the searching 
space and moves through D-dimensional space. 
Authorize i

kx  and i
k  respectively to be the 

position and velocity of the i-th particle in the 
searching space at the k-th iteration, then its 
velocity and position of this particle at the (k+1)th 
iteration are updated using the following equations:  

1 1 1 2 2= + ( )+ ( )- -i i i i g i
k k k k k kw c r p x c r p x +         (14) 

 

1 1= +i i i
k k kx x + +                            (15) 

 
where r1 and r2 demonstrate accidental numbers 
between 0 and 1, respectively; c1 and c2 are 
constants; i

kp  demonstrates the best position of the 
i-th particle, and g

kp  correlates with the global 
best position in the swarm up to the kth iteration. 
The PSO algorithm pseudocode is shown in  
Figure 1. 
 

  Objective function: f(x), x=(x1, x2, …, xD) 

  Initialize particle position and velocity for each particle 

and set k−l. 
  Initialize the particle’s best known position to its initial 

position i. e. = .i i
k kp x  

  do 

  Update the best known position ( )i
kp  of each particle 

and swarm’s best known position ( ).g
kp   

  Calculate particle velocity according to the velocity Eq. 

(14) 

  Update particle position according to the position Eq. (15) 

 
  While maximum iterations or minimum error criterial 
is not attained   

Figure 1 Pseudocode of PSO algorithm 
 
6 Bat algorithm 
 
    Group-behavior-based collective intelligence 
is one of the most robust optimization techniques. 
YANG [70] proposed an algorithm inspired by the 
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collective behavior of bats within a natural 
environment predicated on the reception of 
reflected sound by bats. They can track the exact 
direction and location of their prey by the 
pulse-echo technique (sending soundwaves and 
receiving their reflection). They can also draw a 
sound image of barriers that connect their loci and 
identify them well when soundwaves return to the 
bat wave sender. This system enables bats to detect 
mobile objects like trees and insects. Microbats are 
constantly sending short-lived loud beats of sound 
in the range of 25−150 kHz and listening to the 
echo that rebounds from nearby objects to catch 
prey or evade obstacles. They naturally emit 10−20 
pulses per second (PPS) and can increase it to 
approximately 200 PPS as they get closer to their 
target. YANG [70] provided the following paths for 
transferring these specific characteristics of bats to 
an optimization algorithm: 
    1) All bats rehearse their echolocation 
capability in determining how distant they are from 
a particular object and somehow they differentiate 
between food (prey) and the background barrier. 
They all really benefit from echolocation abilities. 
    2) Bats can modify loudness A0 and 
wavelengths λ of emitted sound pulses to find food; 
therefore, they can fly unwittingly at velocity ʋi in 
position xi at frequency fmin. They can also change 
wavelengths and rate or frequency of their issued 
pulse as per the distance that they have with their 
prey. 
    3) Loudness fluctuates between a big positive 
value A0 and the lowest constant value Amin. 
    The current position of each bat is considered 
to be a feasible solution to the optimization problem 
[71−73]. 
    Pursuant to regulation, velocity t

i  and 
position t

ix  for each i-th virtual bat in the t-th 
iteration and frequency fi can be measured as 
follows: 
 

min max min= +( )-if f f f                      (16) 
 

1= +( )*
t t t
i i ix x  - -                        (17) 

 
1= +t t t

i i ix x -                              (18) 
 
    In the equation above, [0, 1] Î  represents a 
uniformly distributed random vector and x* is the 
current optimal position, chosen in each iteration 
after being compared with the position of the virtual 
bats. Frequency f is typically considered to be fmin= 

0 and fmax=100. In each iteration, a solution in local 
search is selected as the optimal solution, and the 
new position of each bat is locally updated with 
random steps:  

xnew=xold+Î tA                (19)  
    In the equation above, ÎÎ [−1, 1] denotes a 

random number and tA  denotes the mean loudness 
of the bats in the t-th iteration. Furthermore, 
loudness Ai and pulse rate r that is transmitted every 
time are updated as follows:  

+1t t
i iA A=                              (20) 

 
+1t

ir =r0
i[1−exp(−γt)]                      (21) 

 
    In the above equation, α and γ are constants 
and r>0 and 0<α<1. When t→∞, we have 

+1 0t
i ir r®  and +1 0.t

iA ® Figure 2 depicts the 
pseudocode of the bat algorithm. 
 

Objective function f(x), x=(x1, …, xd)T 

Initialize the bat population xi (i=1, 2, …, n) and vi 

Define pulse frequence fi at xi 

Initialize pulse rates ri and the loudness Ai 

while (t<Max munber of iterations) 

Generate new solutions by adjusting frequency, 

and updating velocities and locations/solutions [Eqs. (16) to 

(18)] 

   If (rand>ri) 

   Select a solution among the best solutions 

   Generate a local solution around the selected best 

solution 

   end if 

   Generate a new solution by flying randomly 

   if (rand<Ai & f(xi)<f(x*)) 

   Accept the new solutions 

   Increase ri and reduce Ai 

   end if 

Rank the bats and find the current best x* 

end while 

Postprocess results and visualization 

Figure 2 Pseudocode of bat algorithm 

 
7 Framework of proposed models 
 
    In the present research, two steps are required 
for the hybrid methods. The first one states the 
Lagrangian function which brings up-to-date the 
Lagrange multipliers. The second step is the precise 
global extension of the stated ALR function, in 
which the PSO, BA and GA are utilized to find out 
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a new stochastic method near to the ideal maximum. 
Figure 3 shows the flowchart of the suggested 
approach. 
 

 
Figure 3 Flowchart of proposed models 

 
8 Numerical results 
 
    The presented model was expanded, executed, 
and assessed in MATLAB R2019a environment. 
The proposed experiment has been executed on an 
Intel Quad-Core, 3.5 GHz, and 32 GB RAM PC 
and MS Windows 7. All the developed formulations 
are tested on the numerical experiments on the 
artificial data set including 2150 blocks. In 
conclusion, the enactment by ALR-BA is actually 
better than other methods from the view of the 
duality gap (Table 2). 
    The duality gap will be applied to evaluate the 
modality of the solutions generated by the 
meta-heuristic algorithms. The duality gap among 
the best solutions produced by the various kinds of 
the meta-heuristic algorithms, i.e., Zapprox and the 
optimal solution found by MATLAB, i.e., ZMATLAB 
is computed using the following equation: 
 

MATLAB approx

approx

Gap 100%
Z Z

Z

-
= ´           (22) 

 
    To compare the suggested mathematical model 
for LTPS, the push-back data of an iron ore of 
central Iranian iron ore body are selected as a case 
study. The presented model was implemented in the 
CHADORMALU mine. Also, its deposit has been  

Table 2 Numerical results for synthetic data set 

containing 2150 blocks 
Iteration Method Duality gap 

1 
 

BA 0.172 

PSO 0.196 

GA 0.238 

SG 2.75 

ALR–BA 0.076 

ALR-PSO 0.089 

ALR-GA 0.091 

ALR-SG 1.65 

2 

BA 0.082 

PSO 0.095 

GA 0.101 

SG 1.23 

ALR–BA 0.054 

ALR-PSO 0.067 

ALR-GA 0.085 

ALR-SG 0.755 

3 

BA 0.038 

PSO 0.043 

GA 0.052 

SG 0.763 

ALR–BA 0.017 

ALR-PSO 0.029 

ALR-GA 0.038 

ALR-SG 0.301 

 
recogniszed as the major iron ore one in the central 
part of Iran. CHADORMALU is located at the 
center of PERSIA (IRAN) Desert, at the north of 
grey CHAH-MOHAMMAD Mountains. 400 
million tons of resource and 320 million tons of 
reserves are divided between northern and southern 
ore bodies by averaged Fe- and P-content of 55.2%, 
0.9%, respectively. 
    Four push-backs are scheduled for the 
CHADORMALU mine. The mathematical model 
presented in this paper is practiced in the second 
push-back. The 3D view of the second push-back is 
illustrated in Figure 4. This push-back includes 
6854 blocks of which 2754 are ore blocks and 4100 
are waste blocks. The tonnage of waste and ore 
presented in the aforementioned push-back shall be 
103.8 and 110.2 million tons, respectively (with a 
waste ratio of 0.94). The technical and economic 
parameters and also, the number of model variables 
for the second push-back of CHADORMALU mine 
are illustrated in Tables 3 and 4. 
    Figures 5 and 6 show the numerical results of 
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Figure 4 A 3D view of second push-back in 

CHADORMALU mine [25] 

 

Table 3 Technical and economic parameters 

Parameter Value 

Iron ore price/(USD∙t−1) 61 

Ore mining cost/(USD∙m−3) 6.2 

Waste mining cost/(USD∙m−3) 5.9 

Processing cost/(USD∙m−3) 28.65 

Discount rate/% 10 

Cut-off grade/% 52.8 

Mining capacity/(Mt∙year−1) 25 

Processing capacity/(Mt∙year−1) 8.1 

Mining recovery/% 90 

Processing recovery factor/% 76 

Overall slope/(°) 52 

Life of second push-back of 
CHADORMALU mine/year 

12 

 
Table 4 Number of model variables for second 

push-back of CHADORMALU mine 

Variable Value 

Reserve constraints 6854 

Iron ore grade constraints 12 

Processing capacity constraints 12 

Mining capacity constraints 12 

Wall slope constraints 82248 

Binary constraints 6854 

Total 95992 

 
the proposed model for the CHADORMALU 
push-back data set including 12 planning periods 
with deterministic assumption and considering 
grade uncertainty. The comparison of the average 
net present value of the total of 12 years for all 
presented models in deterministic and uncertainty- 
based conditions is shown in Figure 7. As disclosed 

 

 
Figure 5 Comparison of NPV for CHADORMALU 

mine obtained by presented models in deterministic 

condition 
 

 
Figure 6 Comparison of NPV for CHADORMALU 

mine obtained by presented models with considering 

grade uncertainty 
 

  
Figure 7 Comparison of average NPV in total 12 years 

obtained by presented models in deterministic and 

uncertainty-based conditions 

 
in Figure 7, with considering grade uncertainty, the 
average net present value using the ALR–BA 
method is 4.056 M$ and the average net present 
values through the ALR-PSO, ALR-GA, ALR-SG, 
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BA, PSO, GA, SG, and conventional methods are 
3.996, 3.787, 3.741, 3.947, 3.914, 3.681, 3.589 and 
3.527 M$, respectively. 
    Additionally, the average grades of the ore for 
the case study in deterministic and uncertainty- 
based conditions are displayed in Figures 8 and 9. 
Also, the comparison of the average ore grade of 
the total of 12 years for all presented models with 
assumed deterministic condition and concerning 
with grade uncertainty is demonstrated in Figure 10. 
In uncertainty-based condition, the average grade of 
ore in the total of 12 years by the ALR–BA method 
is 54.84% and for the ALR-PSO, ALR-GA, 
ALR-SG, BA, PSO, GA, SG, and conventional 
methods are 54.71%, 54.03%, 53.90%, 54.56%, 
54.45%, 53.75%, 53.58% and 53.49%, respectively. 
The ore productions from the assessed methods, in 
conditions of deterministic and uncertainty, are 
shown in Figures 11 and 12. According to the  
 

 
Figure 8 Comparison of average grade of ore for 

CHADORMALU mine obtained by presented models in 

deterministic condition 

 

  
Figure 9 Comparison of average grade of ore for 

CHADORMALU mine obtained by presented models 

with considering grade uncertainty 

 

 
Figure 10 Comparison of average grade of ore in total 

12 years obtained by presented models in deterministic 

and uncertainty-based conditions 

 

 
Figure 11 Ore production obtained by presented models 

in deterministic condition 

 

 
Figure 12 Ore production obtained by presented models 

in uncertainty-based condition 

 
obtained results, the suggested method (ALR-BA), 
while satisfying the constraints of mining capacity 
and processing capacity, generates the best 
outcomes in comparison with other methods. 
    Furthermore, Table 5 shows the CPU time and 
the duality gap of each method. The results show 
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Table 5 General information about solution found by 

MATLAB for proposed models 

Method 
Number of 
blocks, N 

Number of 
periods, T 

Duality 
gap 

CPU 
time/min 

ALR-BA 6854 12 0.049 29.41 

BA 6854 12 0.127 81.08 

ALR-PSO 6854 12 0.053 31.59 

PSO 6854 12 0.193 89.22 

ALR-GA 6854 12 0.077 35.26 

GA 6854 12 0.214 91.36 

ALR-SG 6854 12 0.121 38.11 

SG 6854 12 0.351 112.52 

Conv. 6854 12 2.463 231.14 

 

that the suggested method (ALR-BA) has the 
lowest CPU time and duality gap compared to other 
methods, and its CPU time is about 7.4% better 
than ALR-PSO. The difference in the results 
indicates the capability of the proposed method and 
the weakness of the previous methods. 
 

9 Conclusions 
 
    The aim of this research is to present a 
mathematical model for long-term production 
planning and achieve the highest revenue in the 
grade uncertainty situation. To make the long-term 
production planning, grade uncertainty was applied 
as an input feature to the mathematical model of 
production planning. A long-term production 
development optimization model grade uncertainty 
is employed as the binary integer programming. 
    Principally, the possibility index for each block 
of ore was determined to point out the grade 
uncertainty. For the next step, getting the best out of 
the net present value with physical and operational 
constraints was practiced to model the objective 
function. Blocks with higher probabilities have less 
risk than the blocks with lower probability. The 
proposed model has considered grade uncertainty in 
the mining sequence. The present paper suggested 
the hybrid method of the augmented Lagrangian 
relaxation-bat algorithm in order to solve the 
long-term production problem in open-pit mines as 
it is hard to solve the production planning models in 
the open-pit mines. This research also presented a 
new approach due to the optimization of Lagrange 
coefficients and comparing its performance with the 
traditional SG method in the Lagrangian relaxation 

method. 
    The results of the case study prove that the 
augmented Lagrangian relaxation method can carry 
out a suitable solution to the main problem. The 
hybrid strategy can produce a more effective 
solution to the near-optimal solution in comparison 
with the conventional method. Moreover, it was 
specified that the stable convergence property and 
prevention of early convergence are identified as 
the main advantages of the method suggested in this 
research. In terms of average net present value, 
average ore grade and CPU time, results illustrate 
that ALR-BA generates the best outcomes while 
satisfying constraints. The CPU time by the 
ALR-BA hybrid method was 201.73 min less than 
the conventional method and also was 2.18, 5.85, 
8.70, 51.67, 59.81, 61.95 and 83.11 min less than 
the ALR-PSO, ALR-GA, ALR-SG, BA, PSO, GA, 
and SG procedures, respectively. 
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中文导读 
 

混合算法改善品位不确定露天矿生产调度问题的性能  
 
摘要：露天采矿工艺是地表采矿的一种方法，通过开挖坑洞从地表向下开采矿石或废物。工业生产过

程中，露天矿的长期生产调度(LTPS)问题是最大的生产难题之一，而基于确定性方法和不确定性的方

法被认为是解决此类问题的主要策略。在过去几年中，许多研究人员充分探究了一种成本较低的新型

计算法，即元启发式方法，用以解决矿山设计和生产调度问题。该方法尽管无法保证最终方案的最优

性，但能够以相对较低的计算成本推算出足够优秀的解决方案。本文提出了增强拉格朗日松弛(ALR)
与粒子群优化(PSO)，以及 ALR 和蝙蝠算法(BA)的两种混合算法模型，以解决不确定品位条件下的露

天矿生产调度问题。该混合模型采用 ALR 方法解决露天矿生产调度问题，以提高其计算性能并加快

收敛速度，并通过 PSO 或 BA 更新拉格朗日系数。所提出的计算模型与 ALR 遗传算法、ALR 传统次

梯度法和常规方法(未使用拉格朗日方法)的计算结果进行了比较，结果表明：相比于常规方法，ALR
法可以更加有效地解决大规模问题，并提出合理的解决方案。此外，混合算法可以降低计算时间和成

本，ALR-BA 方法的 CPU 运算时间比 ALR-PSO 方法大约高 7.4%。 
 
关键词：露天矿；长期生产调度；品位不确定性；拉格朗日松弛；粒子群算法 


