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ABSTRACT
In mines planning, the long-term production scheduling problem (LTPSP) 
in open-pit mines is considered as a significant issue. It also specifies the 
distribution of cash flow during the course of the mine-life. Actually, LTPSP 
is a large-scale optimisation problem including large data-sets, multiple 
constraints, and uncertainty in the input factors that, has to be solved in 
a reasonable time. LTPSP, despite the valuable efforts of researchers, has 
not yet been well resolved. In this paper, hybrid models have been offered 
by the Lagrangian relaxation (LR) method with meta-heuristic methods, 
bat algorithm and particle swarm optimisation for solving the LTPSP due 
to the deterministic assumption and concerning the grade uncertainty. To 
bring update the Lagrange multipliers, the meta-heuristic algorithms have 
been applied. In terms of cumulative net present value, average ore grade, 
and computational time in a 12-year production period, the conse
quences achieved from the case studies point out that a solution close 
to optimisation can be presented by the LR-bat algorithm hybrid strategy 
in comparison with other methods. The results analysis has shown that 
the proposed method produces a near-optimal solution with a rational 
time that can be a good suggestion for utilising in the mining industry.
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1. Introduction

Long-term production scheduling in open-pit mines is very essential in the mining industry. The 
common (deterministic) methods and uncertainty-based approaches are the ones practiced to deal 
with this problem. In common methods, the planning process usually begins by making a geological 
block model divided into ore and adjacent ore inside a regular three-dimensional array. The size of 
the blocks is usually the same. Next, a collection of features such as grade, specific gravity is 
determined for each one of these blocks and they are estimated by some of the specific interpolation 
techniques such as kriging, the reverse distance method, etc. Finally, the information of samples 
taken from boreholes is evaluated. For the next step, these estimated features of the block are 
practiced to specify the economic value of these blocks and final mining processes. These geological 
and economic block models are remarked as the base inputs for the next production planning. The 
main drawback of this approach is that it assumes all the input parameters have been certainly 
identified. On the contrary, these parameters have always been accompanied by uncertainties. In 
case they are ignored, unreal and wrong decisions might be made.
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Uncertainties in input parameters may be caused by technical techniques and financial or 
environmental factors that influence the extraction planning of mines. Uncertainties caused by 
geological factors, which are known as geological or grade uncertainty, are considered as the most 
important source of uncertainty for the production planning processes in open-pit mines. The 
grade uncertainty is for the sake of estimating the grade amounts of individual blocks using the 
dispersed data sample of drilling logs. The geo-statistical simulating techniques provide a frame to 
specify the quality amount of the grade uncertainty based on simulating the ore multi-production 
amount. The accessibility to these techniques provides this situation that grade uncertainty has been 
integrated with the planning process for production. In this condition, optimum production and 
the annual net present value (NPV) will reach its maximum operational quantity. Within the last 
recent years, various planning models have been suggested to integrate grade uncertainty and 
planning. In fact, it led to a more comprehensive plan and a more applicable and optimum 
production.

Actually, the long-term production scheduling problem (LTPSP) in open-pit mines is a large- 
scale problem that should be solved in optimal time. Ore reserve might contain millions of blocks 
which usually necessitates more than one planning, whereas the operational and physical con
straints bring about uncertainties in input data. This leads to an integrated optimum problem. 
Notably, solving it is very difficult and costly by the available traditional techniques.

Within the last few years, researchers have heeded less expensive calculating algorithms such as 
meta-heuristic techniques to solve problems, designs, and production scheduling difficulties. 
Although these techniques do not guarantee optimisation as a final solution for production, they 
can present suitable solutions with less expensive operational costs. Table 1 illustrates some of the 
models presented.

This paper focuses on developing an integer planning model in the problem related to the long- 
term production scheduling in open-pit mines and solving it by meta-heuristic methods. In this 
study, an optimum hybrid model has been developed by the Lagrangian relaxation method (LR) 
with bat algorithm (BA) and particle swarm optimisation (PSO) to solve the LTPSP of open-pit 
mines based on the deterministic assumption and regarding the grade uncertainty. The meta- 
heuristic algorithms have been used to update the Lagrange multipliers. The new suggested 
approaches have been compared with the results of the LR-genetic algorithm (GA), the traditional 
LR-sub-gradient (SG) and the conventional method without using the LR approach. The results 
obtained from the LR-meta-heuristic model indicate that this method is able to solve the linear 
optimisation problems faster and it can detect the best solution more carefully.

The following part of this paper is planned as below. Due to the condition of grade uncertainty, 
Section 2 model the objective functions and their related constraints. Section 3 presents a summary 
of the methodology and hybrid models and the suggested models will be advanced. For the next 
step, section 4 provides an assessment of the results. Validation of the established models is 
achieved. In section 5, the results are analysed and discussed. Lastly, section 6 presents the 
conclusion.

2. LTPSP formulation

The long-term production scheduling model is put into practice to estimate production targets and 
ore material current within several years. Totally, it takes an essential image of the production and 
executed it as a linear problem.

2.1. Deterministic approach

The most straightforward method is to illustrate a full space optimisation model, in which each 
period of the scheduling horizon, to consider decision-making fortitudes. Remarkably, the 
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obtainability of restraints is bonded into the model. Hereafter, Equation (1) supplies the LTPSP 
objective function and Equations (2–8) show the constraints of the model. 

In the constructed model, the following indications were accepted: n: is the block identification 
number, n = 1, 2, . . ., N; N is the total number of blocks to be scheduled; t is the scheduling periods 
index, t = 1, 2, . . ., T; T is the total number of scheduling periods; NVt

n is the net value to be 
generated by mining block n in period t; r is the discount rate in each period; Xt

n is the binary 
variable; Gmax and Gmin are targeted maximum and minimum average grade of the ore material to 
be processed in a period; gn is the average grade of block n and On is the ore tonnage in block n; 
PCmax is the processing capacity; MCmax is the mining capacity; Wn is the tonnage of waste material 
within block n; k is the index of a block considered as extraction at certain period.

Equation (2) and Equation (3) show the grade blending constraints. One of the most important 
hitches in production scheduling is the ore grade which has to be set aside steady while leading to 
the processing plant. For this reason, the grade of ore that is being steered to the mill should be well- 
defined between two limits. Equation (2) demonstrates upper bound constraints. It is significant 
that the average grade of the material directed to the mill should be a lesser quantity or equal to the 
certain grade value for each period. Also, Equation (3) demonstrates lower bound constraints. 
Extraordinarily, the average grade of the material conducted to the mill has to be more or alike to 
the definite value for each period.

Equation (4) illustrates reserve constraints. Reserve restrictions made for each block specify that 
all measured blocks in the model should be mined on one occasion. Processing capacity constraints 
and mining capacity constraints are shown in Equation (5) and Equation (6). Processing capacity 
constraint means total tons of the treated ore should not surpass the processing capacity in every 
period. Also, mining capacity constraint assigns the entire quantity of material (waste and ore) to be 
mined cannot be more than the whole accessible mining capacity for each period. Furthermore, 
Equation (7) and Equation (8) define wall slope constraints. These restraints ratify that it is 
indispensable to mine all blocks limited directly through the mining of block k, a target block 
before the extraction of block k is begun. There are two methods to do these constraints: Using one 

INTERNATIONAL JOURNAL OF MINING, RECLAMATION AND ENVIRONMENT 5



constraint for each block per each period (Equation (7)); Using Y- constraints for each block at each 
period (Equation (8)).

2.2. Uncertainty-based approach

Basically, mining space is defined as a possible space based on the uncertainty that leads to this 
space. In mining engineering operations, the uncertainty makes a decision built on uncertain 
results. In 1998, Dimitrakopoulos [32] presented the classification of uncertainties in mining 
projects because of the importance of this subject. Amongst the uncertainties, grade uncertainty 
leads to a large share of probabilities caused by grade uncertainty.

At present, the indicator kriging (IK) is one of the most widely used methods for grade 
estimation in mining projects [33]. This technique was presented by Journel [34] to estimate the 
resources. The nature of the indicator method is binary data encoding depending on the cut-off 
value, Zc. For the Z xð Þ value, ik xð Þ ¼ 1 if xð Þ � ZC, and otherwise, ik xð Þ ¼ 0. In fact, it is 
a nonlinear conversion of data value to binary system. Outcome values between 0 and 1 for each 
estimation point provide a set of indicators-converted quantity using kriging, that can be 
expounded as the proportion of the block overhead the determined cut-off on data support and 
the probability that the grade is overhead the determined indicator [35,36]. In the optimisation 
procedure of this paper, this probability is contemplated as the probability index (PIn) for block n. 
The high probability blocks have less risk than low probability ones.

An integer programming-based model is considered in this section to inspect the grade uncer
tainty. In this method, a probability based on indicator kriging is allotted to each block (PIn) which 
indicates the probability made from n for each block in the block model [37]. It is organised the 
objective function in such a way those earlier production periods are given to mine the blocks with 
higher certainty. When additional information usually becomes obtainable, the uncertain blocks are 
gone for later periods. Subsequently, one more objective function is presented to the objective 
function of the conventional model in the subsequent form of: 

This objective function brings about the constraints (2–8).

3. LTPSP solution methodology

For the time being, the LR method is considered as one of the potential methods for make out the 
projected problem.

3.1. LTPSP reformulation with Lagrangian relaxation (LR)

The Lagrangian relaxation (LR) method is identified as one of the mathematical techniques for 
a mixed-integer programming problem. In the presentation of this method in LTPSP, Lagrangian 
multipliers relax the system constraints and introduce them to the objective function [37–41]. Next, 
the relaxed problem intensified into a more controllable sub-problem for separate units and solved 
through dynamic programming. Based on violations of system restraints, a sub-gradient method is 
applied to promote the multipliers. The convergence standard is satisfied in case convergence 
standard is achieved.

Fundamentally, LR is based on the viewpoint to relax the system restrictions as a result of 
Lagrangian multipliers. Then the relaxed problem is split into some smaller sub-problems [42]. The 
constant Lagrangian function can be made by dint of assigning non-negative Lagrangian multipliers 
λt, μt and ʋt in terms of processing type at period t to the constraints (3), (5) and (6), respectively. 
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The LTPSP is illuminated through the Lagrangian relaxation method by relaxing or momentarily 
ignoring the preventing constraints and solving the problem as if they have never been. While 
maximising due to the control variable Xt

n in LTPSP, this is done over the dual optimisation process 
which strives to effect the constrained optimum by lessening the Lagrangian function L due to the 
Lagrangian multipliers λt, μt and ʋt. 

j* = Min j(λ, µ, ʋ)                                                        
λ, µ, ʋ                                                                
where                                                                

j(λ, µ, ʋ) = Max L(X, λ, µ, ʋ)                                                
X                                                                    

Subjected to the constraint (4) and (7), assume that λ, μ and ʋ are fixed, we maximise the 
Lagrangian function L as follows. From Equation (10), the formulation can be written as: 

According to the Lagrangian multipliers, the modification of Lagrangian multipliers should be 
rationally done to make best use of the Lagrangian function. To regulate Lagrangian multipliers, 
most references practice a combination of sub-gradient method and several heuristics to achieve 
a fast solution [43,44]. In the current study, the BA and PSO are applied to amend the Lagrangian 
multipliers and improve the performance of LR technique.

3.2. Application of meta-heuristic algorithms to multipliers updating

The meta-heuristic algorithms are deliberated as the possible methods for making out the predicted 
problem. In the present study, BA and PSO are used to improve the Lagrangian multipliers.

3.2.1. Bat algorithm (BA)
One of the strongest optimisation procedures is the collective intelligence based on group beha
viour. Yang [45] introduced an algorithm affected by the collective behaviour of bats in a natural 
environment based on the use of sound reflection by bats. Bats are able to navigate the precise trail 
and site of their bait via sending sound waves and receiving their reflections. The bat is able to draw 
a sound image of the obstacles connecting its sites and recognise them well when the sound waves 
turn back to the bat wave transmitter. This system makes it possible for the bats to identify moving 
objects such insects and trees. The micro-bats releases short-duration loud sound beats with 
continuous occurrence in the area of 25 kHz to 150 kHz and listen for the echo bouncing back 
from the nearby objects to find the food or avoid the barriers. Bats naturally issue 10 to 20 such 
sound pulses per second and are able to increase the pulse release rate to about 200 pulses 
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per second as they approach their victim. Yang [45] presented the succeeding directions in order to 
convey these special properties of bats into an optimisation algorithm:

● All bats practice their echolocation abilities so as to detect their distance from a definite object 
and distinguish between food/prey and background obstacle in some way. The fact is that all 
bats use their echolocation skills.

● Since bats are able to change the wavelength λ and loudness A0 of their released sound pulses 
to discover the food, they are capable of flying inadvertently with velocity vi at position xi with 
a frequency fmin. Likewise, bats can modify the rate and wavelength or frequency of their 
emitted pulse according to their distance from the prey.

● The loudness varies from a large positive value A0 to the least persistent value Amin.

Each bat’s current position is regarded as a possible solution to the optimisation problem [46–49].
According to the rules, the position xt

i and the velocity vt
i for each i-th virtual bat in the t repetition 

and also the frequency fi are calculated as follows: 

where, β 2 0; 1½ � is a random vector with uniform distribution and x� is the best current position, 
which is selected in each replication after comparison with the position of the virtual bats. Usually, 
consider the frequency f with fmin = 0 and fmax = 100. In each replication, in the local search, one of 
the answers is selected as the best answer, and the new position of each bat is updated locally with 
the random step as follows: 

where, � 2 � 1; 1½ � is a random number and At is the average loudness of the bats in the t repetition. 
Also, the loudness of the Ai loudness and the pulse rate r sent each time it is updated as follows: 

where α and γ are constant values and for 0 < α < 1 and r > 0, when t !1,we have: rtþ1
i ! r0

i and 
Atþ1

i ! 0. The bat algorithm pseudo-code is shown in Figure 1.

3.2.2. Particle swarm optimisation (PSO)
In 1995, Eberhart and Kennedy [50,51] first introduced the PSO methodology is an optimisation 
method based on probability rules. Researchers have heeded the social behaviour of bird or fish 
groups during food search to direct the population to the promising area for space search. Definite 
rational procedures are applied for the manners of the beings of the ruling body. Birds are merely 
looking for their food through modifying their physical movements by escaping missions. Thus, 
each member of the group theoretically serves past experiences and other discoveries from 
members to catch food. Over a competitive search for food, this type of corporation is a positive 
improvement. The backbone of the PSO is to share information among the group members. In 
PSO, a particle is referred to each answer to a problem is the location of a bird in the search space. 
All particles have a degree of competence optimised by the quality of action. Additionally, every 
particle holds a component called the velocity specifying it in the search range [52–54].
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The PSO begins with a group of accidental responses. For the next step, it seeks for the position 
and velocity of each particle to discover the finest answer in the problem space. According to the 
two most noteworthy values, each particle is reorganised at each stage of the population movement. 
It is demonstrated that the first value is the best answer in terms of suitability ever gained for each 
particle. This is the personal best and is called pbest. The global best, known as gbest, is the other 
best value ever achieved by means of the PSO. Swarm of particles is initialised at random over the 
search space and move through D-dimensional space to search for new solutions.

Authorise xi
k and vi

k respectively be the position and velocity of i-th particle in the search space at 
k-th iteration, then its velocity and position of this particle at (k + 1)-th iteration are updated using 
the following equations [55]: 

where r1 and r2 demonstrate accidental numbers between 0 and 1, c1 and c2 are constants, pi
k 

demonstrate the best position of i-th particle, and pg
k correlates with the global best position in the 

swarm up to k-th iteration. Figure 2 demonstrates the PSO algorithm pseudo-code [55].

3.3. The framework of the proposed hybrid method

Two steps are required for hybrid methods in the current paper. The first one states the Lagrangian 
function which brings update the Lagrange multipliers. The second step is the precise global 
extension of the stated LR function, in which the meta-heuristic algorithms are utilised to find 
out a new hybrid method near to the ideal maximum. Figure 3 illustrates the flowchart of the 
suggested approach.

Figure 1. Pseudo-code of the BA.
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4. Numerical results

In this paper, we have developed, implemented, and tested the proposed model in MATLAB 
R2019a environment. Presented testing has been performed on an Intel Core i7-3770 K, 3.9 GHz 
and 16.0 GB RAM PC and MS Windows 7.

Figure 2. Pseudo-code of the PSO.

Figure 3. Flowchart of the proposed approach.
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4.1. Validation of the model with synthetic data

All the developed formulations are confirmed by the numerical experiments on the synthetic data 
set including 4750 blocks. As shown in Table 2, it is implied that the enactment by LR-BA is actually 
better than other methods from the view of the optimality gap.

4.2. Implementation of the model on the real case study

The iron ore push-back data including 6854 blocks and the gold deposit containing 15,276 blocks 
have selected as case studies to compare the suggested mathematical model for LTPSP. The 
proposed model was implemented on case studies in deterministic and uncertainty-based 
conditions.

4.2.1. The Chadormalu iron ore mine (CIOM)
Chadormalu has been recognised as the main iron ore one in the central part of Iran. Chadormalu is 
located at the epicentre of Persia (Iran) Desert, at the north of grey Chah-Mohammad mountains. 
Figure 4 illustrates the geographical location of the CIOM. Chadormalu deposit embraces some 
400 million tons of resource and 320 million tons of reserves are divided between northern and 
southern ore bodies.

Table 2. Implementation of the proposed model for the 
synthetic data set containing 4750 blocks.

Iteration Method Optimality gap

1 LR-BA 0.094
LR-PSO 0.112
LR-GA 0.247
LR-SG 2.07

2 LR-BA 0.069
LR-PSO 0.098
LR-GA 0.163
LR-SG 1.245

3 LR-BA 0.029
LR-PSO 0.047
LR-GA 0.068
LR-SG 0.621

Figure 4. The geographical location of the CIOM.
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Four push-backs are scheduled for the CIOM that the presented mathematical model in this 
paper is practiced in the second push-back. The 3D view of the second push-back is displayed in 
Figure 5. This push-back includes 6854 blocks of which 2754 are ore blocks and 4100 are waste 
blocks. The tonnage of waste and ore presented in the aforementioned push-back shall be 103.8 and 
110.2 million tons, respectively. The technical parameters and the number of model variables for 
CIOM are demonstrated in Tables 3 and 4.

The proposed framework is applied to the CIOM in both deterministic and uncertainty-based 
conditions. The results of NPV and average ore grade (AOG) in deterministic and uncertainty- 
based conditions for the CIOM using presented models in the twelve production periods are 
illustrated in Figures 6 and 7, respectively.

Figures 8 and 9 are shown the comparison of cumulative NPV and AOG in the total periods 
between deterministic and uncertainty-based approaches in the CIOM. As outcomes are shown, the 
LR–BA method is better than other presented methods. As disclosed in Figures 8 and 9, the 
cumulative NPV and the AOG (Fe) in the 12-year period with assuming deterministic and 
considering grade uncertainty using the LR–BA method are 61.711 M$, 61.413 M$, 57.67 %, and 

Figure 5. A 3D view of the second push-back in the CIOM [37].

Table 3. Technical parameters for CIOM.

Parameters Value Unit

Total block 6854 -
Block dimension 25 × 25 × 15 [m3]
Discount rate 10 [%]
Average grade 52.8 [%]
Mining capacity 25 [Mtone/year]
Processing capacity 8.1 [Mtone/year]
Mining recovery 90 [%]
Processing recovery factor 76 [%]
Mine life 12 [year]

Table 4. Number of model variables for CIOM.

Variables Value

Reserve constraints 6854
Iron ore grade constraints 12
Processing capacity constraints 12
Mining capacity constraints 12
Wall slope constraints 82,248
Binary constraints 6854
Total variables of model 95,992
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57.49 %. These results are 11.98 %, 12.72 %, 0.94 %, and 0.82% higher than the conventional method 
(Conv.), respectively.

Cross-sectional views of the four schedules for 9 periods are shown in Figure 10. The figure 
shows that there are obvious differences in the schedules in terms of the position of each extraction 
period. One of the most important factors in decision-making is the operational feasibility of 
accessing equipment to all blocks that must be mined at any period and satisfying slope constraints. 
In Figures 10(a,b), the cross-sections of the schedules are displayed by the LR approach assuming 
deterministic conditions and concerning grade uncertainty. Also, the cross-sections of the sche
dules are illustrated by the conventional method with the deterministic assumption and with 
considering grade uncertainty in Figure 10(c,d).

In Figure 11, the cross-sectional views of the production schedules for 12-year periods are shown 
using the proposed model (Figure 11(a)) and the conventional method (Figure 11(b)) under grade 
uncertainty. According to Figure 11, it is observed from the generated schedules that while 
satisfying the slope constraint, the size of push-back by the proposed method is relatively bigger 
than the conventional approach and the number of push-back blocks using the proposed model is 
5.57% more than the conventional approach. As well as, given the uncertainty of the grade, the 
upgraded production schedule is closer to the real and has become more operational.

Figure 6. Comparison of NPV in deterministic and uncertainty-based conditions for the CIOM using presented models in the 12- 
year period (a) LR-BA (b) LR-PSO (c) LR-GA (d) LR-SG (e) Conventional method.
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Figure 12 illustrates ore production of the proposed model and the conventional method in the 
deterministic and uncertainty-based conditions. The results show that the proposed method while 
satisfying the constraints of mining capacity and processing capacity is better than the conventional 
method both in the deterministic assumption and with considering grade uncertainty. The total 
ores in the 12-year periods, in the deterministic condition, using the proposed LR-BA model and 
conventional method, are 99.81 Mt and 97.82 Mt, respectively. Also, in the uncertainty-based 
approach, the total ores in the 12-year periods by the proposed LR-BA model and the conventional 
method, are respectively, 98.19 Mt and 96.64 Mt.

4.2.2. The gold deposit (GD)
The proposed integrated mine scheduling optimisation framework has implemented on the real 
gold deposit. The aforementioned gold deposit has 15,276 blocks and is located in Iran. The 3D view 
of the GD is displayed in Figure 13. Tables 5 and 6 demonstrate the technical parameters and the 
number of model variables for GD.

Figures 14 and 15 are shown results of NPV and AOG in deterministic and uncertainty-based 
conditions for the GD using presented models in the twelve production periods. Additionally, the 
comparison of cumulative NPV and AOG in the total periods between deterministic and uncer
tainty-based approaches in GD are demonstrated in Figure 16 and Figure 17, respectively.

Figure 7. Comparison of AOG (Fe) in deterministic and uncertainty-based conditions for the CIOM using presented models in the 
12-year period (a) LR-BA (b) LR-PSO (c) LR-GA (d) LR-SG (e) Conventional method.
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As outcomes are shown, the LR–BA method is better than other presented methods. The 
cumulative NPV and the AOG (Au) in the 12-year period with assuming deterministic assumption 
and concerning grade uncertainty using the LR–BA method are 18.94 M$, 18.64 M$, 1.948 g/t, and 
1.940 g/t, as shown in Figures 16 and 17. These outcomes are 8.41 %, 10.75 %, 3.40 %, and 3.91% 
better than the conventional method (Conv.), respectively.

In Figure 18, The cross-sectional views of the production schedules with considering grade 
uncertainty for 12-year periods using the proposed model (Figure 18(a)) and the conventional 
method (Figure 18(b)) are displayed. Pursuant to Figure 18, it is perceived from the generated 
schedules that while satisfying the slope constraint, the size of push-back by the proposed method is 
relatively bigger than the conventional approach and the number of push-back blocks using the 
proposed model is 4.46% more than the conventional approach.

As well as, ore production of the proposed model and the conventional method in the determi
nistic and uncertainty-based conditions for GD are demonstrated in Figure 19. The results show 

Figure 8. Comparison of cumulative NPV in the total periods between deterministic and uncertainty-based approaches in CIOM.

Figure 9. Comparison of AOG (Fe) in the total periods between deterministic and uncertainty-based approaches in CIOM.
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that the proposed method while satisfying the constraints of mining capacity and processing 
capacity generates a better solution than the conventional method.

The model on CIOM and GD in both scenarios (assuming deterministic and considering grade 
uncertainty) shows that in the early years of mining, grade extractors were obtained and the ore was 
sent to the processing plant. It has a higher value that results in higher net worth in the early years. 
The net value obtained in the scenario with the grade uncertainty indicates that this particular value 
is achievable; in the scenario with assuming deterministic, the net value obtained is only theoreti
cally increased and not achievable. In order to model the vein deposits, the proposed models were 

Figure 10. The cross-sectional views of the proposed schedule (a) uncertainty-based (b) deterministic and the schedule obtained 
by the conventional method (c) uncertainty-based (d) deterministic for CIOM.

Figure 11. The cross-sectional views of uncertainty-based schedule for CIOM obtained by (a) the proposed approach and (b) the 
conventional method.
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Figure 12. Ore production obtained by the proposed model and the conventional method in (a) deterministic and (b) 
uncertainty-based conditions for CIOM.

Figure 13. Three-dimensional view of the study area.
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implemented on the gold case study, and the results showed that the average grade obtained in the 
scenario decreased with the uncertainty of grade in the early years of mining. The life of mine has 
increased dramatically. The results of the scenario with assuming deterministic are quite the 
opposite. The results demonstrate that the decision-maker has obtained near-optimal results with 
respect to the policy drawn in consecutive years of mining. In other words, minimisation of 
deviation from predetermined production targets and minimisation of risk have been important 
results of the proposed models.

5. Discussion

A block model is presented by open-pit mines, which distinguishes the whole ore body. The 
equipment size, geology, data spacing, and the selected blasting pattern govern block sizes. The life- 
of-mine optimisation of open-pit mine long-term production scheduling problem (LTPSP) is 
remarked as one of the computationally-intensive processes. LTPSP is classified into three sub- 
problems: extraction time of a block, the decision on the destination of the extracted block, and the 
amount of material extracted in a given period. Large scale LTPSPs are both combinatorial and hard 
to solve. Heuristic methods are still the only feasible method for large-scale industrial applications. 
Nevertheless, Lagrangian relaxation has been verified to be mainly powerful for integer program
ming problems. Regarding such a problem, the hard coupling constraints are first relaxed over the 
introduction of Lagrangian multipliers. The relaxed problem can be decoupled into separate sub- 
problems. These sub-problems can be solved for a certain set of multipliers if they are not NP-hard. 
Based on the level of a constraint violation, multipliers are iteratively in tune. Simple heuristics are 
practiced to modify the relaxed problem solutions to form a viable result satisfying all the 
constraints at the termination of such updating iterations.

The sub-gradient optimisation method is a mostly used approach to Lagrangian multipliers. 
Indeed, the sub-gradient method can be measured as a well-matched version of the gradient 
method. This method has been tested only for small-scale problems even though it represents 
good convergence features. To specify the multiplier values based on the past calculation outcomes, 
the authors use the sub-gradient method that is usually employed. According to the zigzag 
phenomenon and small steps, the sub-gradient method may join gradually on large problems. 

Table 5. Technical parameters for GD.

Parameters Value Unit

Total block 15,276 -
Block dimension 8 × 8 × 10 [m3]
Discount rate 10 [%]
Average grade 1.7 [g/t]
Mining capacity 4.5 [Mtone/year]
Processing capacity 2.2 [Mtone/year]
Mining recovery 74 [%]
Processing recovery 85 [%]
Mine life 12 [year]

Table 6. Number of model variables for GD.

Variables Value

Reserve constraints 15,276
Gold grade constraints 12
Processing capacity constraints 12
Mining capacity constraints 12
Wall slope constraints 183,312
Binary constraints 15,276
Total variables of model 213,900

18 K. TOLOUEI ET AL.



Clearly, the sub-gradient directions often cause the multipliers to zigzag across sharp ridges. Since 
the direction is found by a weighted combination of the gradients of nearby facets, zigzagging is 
expressively decreased.

Meta-heuristics algorithms are owned by the larger class of evolutionary algorithms, which 
create solutions to optimisation problems by means of techniques stimulated by natural evolution. 
They can be simply applied for the solution of hard optimisation problems and they are responsible 
for great modelling flexibility. Within the framework of an LR solution to the LTPSP, meta- 
heuristics approaches can be practiced for the dual variables. LR–meta-heuristics is grounded on 
the idea that meta-heuristics algorithms are incorporated into the Lagrangian relaxation method to 
update the Lagrangian multipliers. This approach directs to progress the presence of the Lagrangian 
relaxation method in deciphering combinatorial optimisation problems such as the LTPSP. 
Outcomes gained by means of LR with BA, PSO, and GA algorithms specify that the speeding up 
the convergence and highly near-optimal solution to the LTPSP can be completed by the LR–meta- 
heuristics. The numerical results demonstrate the LR-BA method generates a better solution than 
other methods for the LTPSP in terms of NPV and AOG. As well as, the general approach of 
applying the LR and bat algorithm in the light of the open-pit mine scheduling problem using this 

Figure 14. Comparison of NPV in deterministic and uncertainty-based conditions for the GD using presented models in the 12- 
year period (a) LR-BA (b) LR-PSO (c) LR-GA (d) LR-SG (e) Conventional method.
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proposed procedure which was presented in the flowchart in Figure 3, could be used for solving 
long-term production scheduling problems.

Figure 20 demonstrates that the iteration number according to the problem size of BA is the 
minimum. It is worth noting that the iteration number of SG fluctuates widely with the growing 
problem scale. This proposes that BA is more robust than other methods. Besides, the optimality 
gap and computational time of each method for CIOM and GD are shown in Table 7. It is assessed 
that the CPU times by means of the LR-BA hybrid suggested method in the present study, are nearly 
11.24% and 9.33% higher than that of the other methods for CIOM and GD. The computational 
times are considerably less with the presented methods compared to the traditional methods, 
especially when the problem size increases. These results demonstrate that the presented methods 
diminish the computational time significantly while retaining a small optimality gap. The suggested 
method appears to be a feasible option for solving the mine production scheduling problem where 
the number of integer variables is huge. Also, the small optimality gap demonstrates the effectuality 
of the suggested approach.

Figure 15. Comparison of AOG (Au) in deterministic and uncertainty-based conditions for the GD using presented models in the 
12-year period (a) LR-BA (b) LR-PSO (c) LR-GA (d) LR-SG (e) Conventional method.
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6. Conclusions

In the mining industry, long-term production scheduling in open-pit mines is very indispensable. 
The common (deterministic) methods and uncertainty approaches are the ones experienced to cope 
with this problem. The chief shortcoming of the deterministic method is that it supposes all the 
input factors that have been definitely recognised. In contrast, these constraints have always been 
attended by uncertainties. Unreal and wrong decisions might be made if they are ignored. 
Therefore, in this study, the following is analysed:

(1) This paper concentrates on developing an integer planning model in the problem associated 
with the long-term production scheduling in open-pit mines through bearing in mind grade 

Figure 16. Comparison of cumulative NPV in the total periods between deterministic and uncertainty-based approaches in GD.

Figure 17. Comparison of AOG (Au) in the total periods between deterministic and uncertainty-based approaches in GD.
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uncertainty. The enclosure of grade uncertainty in the model creates the outcomes closer to 
reality. The outcomes with the deterministic supposition are compared with the uncertainty- 
based condition.

Figure 18. The cross-sectional views of uncertainty-based schedule for GD obtained by (a) the proposed approach and (b) the 
conventional method.

Figure 19. Ore production obtained by the proposed model and the conventional method in (a) deterministic and (b) 
uncertainty-based conditions for GD.
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(1) This work solves the long-term production scheduling problem through the Lagrangian 
relaxation and meta-heuristic algorithms which combined the meta-heuristic algorithms 
into the Lagrangian relaxation (LR) method to bring up to date the Lagrangian multipliers 
and develop the performance of LR method. The consequences of the case study demon
strate that the LR method can perform an appropriate solution to the main problem. This is 
chiefly striking in large scale problems.

(2) The accessible mixed-integer programming model is practiced in numerical experiments on 
two real case studies. The numerical outcomes display that a better solution of the LTPSP 
can be attained by means of the LR-BA method than other methods in terms of NPV, AOG, 
and computational time.

(3) The applications of other population-based meta-heuristics techniques are proposed to 
study and compare their behaviours by means of the framework projected in this paper.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Figure 20. Comparison of iteration number of proposed models.

Table 7. General information about the solution found by MATLAB for proposed models.

Case study Methods Number of blocks (N) Number of periods (T) Optimality gap Computational time in minutes

CIOM LR-BA 6854 12 0.054 29.08
LR-PSO 6854 12 0.076 32.35
LR-GA 6854 12 0.082 33.42
LR-SG 6854 12 0.219 37.76
Conv. 6854 12 2.451 228.37

GD LR-BA 15,276 12 0.063 44.04
LR-PSO 15,276 12 0.074 48.15
LR-GA 15,276 12 0.081 51.03
LR-SG 15,276 12 0.203 52.57
Conv. 15,276 12 3.419 627.46
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