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a b s t r a c t

The main objective of rock blasting design is to achieve a balance among optimum powder factor,

proper fragmentation, throws, ground vibration, etc. The in-situ rock mass properties are among the

most important contributory factors in fragmentation. The term blastability is used to indicate the

susceptibility of the rock mass to blasting and its characterization has become a pressing task for

blasting operations. Several approaches have been used for estimating blastability. Despite their

widespread use in practice, they have some common deficiencies leading to uncertainties in their

practical applications through sharp transitions between two adjacent rating classes and the subjective

uncertainties on data, which are close to the range boundaries of rock classes. In this study, the fuzzy set

theory was applied to blastability designation (BD) classification systems. Furthermore, a new

methodology in terms of ’’Effective Rules’’ is developed in construction of rule base part of the Mamdani

fuzzy inference system structure, to efficiently solve fuzzy inference systems with a large number of

fuzzy rules (e.g. nearly 400,000 rules). In comparison with the conventional methods, it was seen that

the fuzzy model operated more consistently. Moreover, it was shown that the fuzzy set theory could

effectively overcome the uncertainties encountered in the practical applications of conventional

classification systems.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Blasting is the most common method used for quarrying,
mining and civil constructions and rock excavation. In all these
activities the quality of rock mass fragmentation (degree and size
distribution), because of its direct impact on efficiency of rock
loading and crushing operations, is the major concern of any
blasting operation. A blasting operation can be comprehensively
described by intact rock and rock mass properties (the concern of
this paper), explosive properties, blasting geometry or pattern and
initiation sequences, etc.

The influence of in-situ rock mass property on blasting
operations has long been studied by different researches [1–8],
and it has been pointed out that it is one of the most important
parameters influencing rock fragmentation. This influence is
referred to as the blastability of a rock mass and its characteriza-
tion is a pressing task for blasting operation. Blastability is a
composite intrinsic property of a rock mass that represents the
ease with which a rock mass can be fragmented by blasting [1].
ll rights reserved.

.

Due to the complexity of the blasting process and the large
number of involved parameters, approaches made for the
determination of blastability are essentially empirical.

Fraenkel [9] proposed an empirical relationship for blastability
based on blasthole and design parameters (height and diameter of
the charge, hole depth and maximum burden). According to his
equation, blastability is related to amount of charge. Hino [10]
found that the number of slabs produced by tensile slabbing is
related to tensile and compressive strength of rock and amplitude
of the compressive stress wave. He named the ratio of compres-
sive strength of rock to its tensile strength as blasting coefficient.
Sassa and Ito [11] suggested the Rock Breakage Field Index (RBFI)
and the Rock Breakage Laboratory Index (RBLI), by regression
analysis of mechanical properties of rock measured in the
laboratory and crack frequency studies at blast site. Heinen and
Dimock [12] proposed a graphical method for assessment of
blastability index according to seismic propagation velocity in
rock mass. Based on the Pierce equation for burden calculation,
Borquez [13] developed a blastability factor (KV) using Rock
Quality Designation (RQD) and an alteration factor (indicating
joint tightness and type of filling). Leighton et al. [14] and Lopez
Jimeno [15] developed similar equations for determination of
powder factor considering the information obtained from rock
mass drillability quality and drilling parameters. Rakishev [16]
devised five blastability classes according to the value of an index
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named critical fracture velocity. The critical fracture velocity can be
obtained as a function of six geotechnical characteristics (density,
longitudinal wave velocity, Poisson’s ratio, elastic modulus, com-
pressive and tensile strength of rock mass), and two structural
parameters (dimension of a natural structure unit and the properties
of fractures fillings and opening). Lilly [17] developed a blastability
index based on rock mass description, joint density and orientation,
specific gravity and hardness. This index relates to powder factor by
a site-specific equation. Ghose [7] proposed a ‘‘blastability rating
chart’’ similar to Bieniawski’s geomechanics classification system of
rock mass. It is categorized in five blastability classes and each class
correlated with the powder factor in case of coal mine. Julius
Kruttschnitt Mineral Research Center (JKMRC) approaches to classify
the blastability of coal measure strata according to intact rock,
structural feature of rock mass, blast design and environment
parameters [8]. Latham and Lu [1] proposed a blastability designa-
tion (BD), as a part of their developed Energy-Block Transition (EBT)
model, for prediction of Blasted Block Size Distribution (BBSD). This
model is developed based on rock engineering systems (RES)
approach and consideration of a comprehensive range of intact
rock properties and discontinuity structures [1]. A feed forward back
propagation neural network was developed by Han et al. [18] to
classify rock mass blastability. The input vector consists of six
parameters characterizing the structure of rock mass, strength of
rock and fragmentation degree of blasting. The applied neural
network output is a single vector denoting the rank of rock mass
blastability.

Despite the usefulness and widespread use of rock classifica-
tion systems (the concern of this paper) in the field of rock
engineering and rock blasting, the existing conventional classifi-
cation systems have some common practical deficiencies. As
mentioned by Aydin [19], certain subjective uncertainties are
encountered in rock classification systems. They are resulting
from: (i) use of linguistic terms as input value of some
parameters; (ii) predetermined and sharp class boundaries,
whereas the rock mass quality is gradational in nature; (iii)
prescribed rating scales representing contribution of each criter-
ion to the overall quality; and (iv) reliability of input value of each
parameter. Similar uncertainties are encountered when these
systems are employed for determination of blastability classes,
which will be discussed in detail later in the paper.
Table 1
Suggested quantitative indications for the classification of the blastability of a rock ma

Pi Description of ease of blasting Blastab

Factors affecting blastability Depicting parameter VE*

1

P1 Strength UCS(a) (MPa) o25

Is(50)(b) (MPa) o1

P2 Resistance to fracturing UTS(c), (MPa) o1.5

P3 Sturdiness of rock r(d) (t/m3) o2.0

P4 Elasticity of rock E(e) (GPa) o25

P5 Resistance to dynamic loading Vp
(f) (km/s) o1.5

P6 Hardness of rock SHV(g) o15

P7 Deformability u(h) 0.35–>4
P8 Resistance to breaking kIc

(i) (MPa m1/2) o0.5

P9 In-situ block sizes Mean IBSD (m) o0.25

Mean spacing (m) o0.1

P10 Fragility of rock mass D(j) (MPa m0.5) o1.50

P11 Integrity of rock mass Rv
(k) o0.35

RQD (%) o40

P12 Discontinuity plane’s strength C(l)(MPa) o0.05

j(m) (deg.) o7.5

(*) very easy; (**) easy; (***) moderate; (****) difficult; (*****) very difficult; (a) uniaxial

(d) density; (e) elastic modulus; (f) P-wave velocity; (g) Schmidt hardness value; (h) Pois

(k) ratio of P-wave in field to that in laboratory; (l) cohesion; (m) friction angle.
As the fuzzy models can cope with the complexity of
complicated and ill-defined systems in a flexible and consistent
way, in the last two decades an increase in their applications to
solve various problems in the field of mining geomechanics has
been observed [3,4,19–32].

Nguyen [3]and Nguyen and Ashworth [4] proposed the first
fuzzy rock mass classification approach. Ghose and Dutta [20]
outlined a new classification model of roof strata cavability using
fuzzy set methodology and linguistic variables. Den Hartog et al.
[21] and Grima and Verhoef [22] used the fuzzy logic approach to
predict the performance and bit consumption of rock cutting
trenchers. Cebesoy [23] and Bascetin [24] used a fuzzy system for
the selection of optimum equipment combination in surface
mines. Recently many researchers employed the Mamdani fuzzy
inference system on various problems in the field of mining and
geomechanics. For instance for prediction of uniaxial compressive
strength of Ankara agglomerates, Geological Strength Index (GSI),
the possibility of sinkhole occurrences over abandoned mines,
deformation modulus of rock masses, rock mass diggability,
rippability and excavability and the fragmentation of bench
blasting in an iron open pit mine [25–32]. These theoretical
aspects together with practical field studies [1] have been used to
develop a blastability classification system that is believed to hold
significant advantages of the mentioned uncertainties over
existing systems.
2. The blastability index rating method

Latham and Lu [1] developed the EBT model for BBSD
prediction based on relating the area between the two curves of
in-situ block size distribution (IBSD) and BBSD to the energy
consumed in transforming bigger blocks to smaller ones. In
addition, through this model, a blastability designation (BD) was
designed and employed, which reflects the intrinsic resistance of
the rock mass to blasting. In this study ‘‘Blastability Designation’’
rating method, proposed by Latham and Lu [1], was adopted as
the reference blastability classification system of rock [1].

The considered parameters in the system fall into two groups.
The first group is the intact rock properties, which includes
strength, hardness, elasticity, deformability and density of rock,
ss associated with individual factor [1].

ility class

E** M*** D**** VD*****

2 3 4 5

25–60 60–100 100–180 180–>4180

1–2.5 2.5–4 4–9 9–>49

1.5–3 3–6 6–12 12–>412

2.0–2.4 2.4–2.75 2.75–3.0 3.0–>43.0

25–50 50–100 100–150 150–>4150

1.5–2.5 2.5–3.0 3.0–4.0 4.0

15–30 30–40 40–50 50–>450

0.35 0.3–0.35 0.25–0.30 0.25–0.20 o0.20

0.5–1.5 1.5–2.5 2.5–3.5 3.5–>43.5

0.25–0.75 0.75–1.5 1.5–2.5 2.50–>42.50

0.1–0.5 0.5–1.5 1.5–2.5 2.50–>42.50

1.50–2.00 2.00–2.50 2.50–2.75 2.75–>42.75

0.35–0.55 0.55–0.75 0.75–0.9 0.90–>40.90

40–60 60–75 75–90 90–>490

0.05–0.15 0.15–0.25 0.25–0.50 0.50–>40.50

7.5–15 15–20 20–30 30–>430

compressive strength; (b) point-load strength index; (c) uniaxial tensile strength;

son’s ratio; (i) fracture toughness of rock; (j) fractal dimension of in-situ rock mass;
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etc. They are dependent on rock texture, internal bonds,
composition and distribution of minerals forming the rock. The
second group is the discontinuity structure consisting of orienta-
tion, spacing and extent of discontinuities, and IBSD, which are
created by long-term geological processes [1]. So the assessment
of blastability of the rock mass could be made according to the
following equation, which forms the basis for the proposed
blastability classification chart (Table 1) [1]:

BD¼
Xn

j ¼ 1

WjRj ð1Þ

where BD¼the blastability designation that collectively quantifies
the resistance to fragmentation by blasting of a rock mass;
j¼ index; Rj¼the rating value of the jth factor obtained from
Table 1 (a value between 0 and 1 according to jth factor class);
Wj¼the weighting coefficient of jth factor can be determined
from rock engineering systems and interaction matrix approach.
It is obvious that the value of BD is in the range 0–1 (Table 2)
and that the greater the BD, the more the difficulty in blasting the
rock [1].

As mentioned before, there are some common deficiencies
existing in practical applications of conventional classification
systems. A precise examination of Table 1 reveals that there are
some uncertainties on data close to the range boundaries of rock
classes. For instance, it is not clear whether a rock having a
Table 2
Blastability classification according to the E-B-T coefficient Bi and BD [1].

Description of

ease of blasting

VE (a) E (b) M (c) D (d) VD (e)

Blastability class 1 2 3 4 5

BD o0.25 0.25–0.50 0.50–0.70 0.70–0.85 40.85

(a) very easy; (b) easy; (c) moderate; (d) difficult; (e) very difficult.

Table 3
Comparison between the two different rock masses in terms of blastability.

Classification parameter Weight, Wi Rock mass proper

Rock mass 1

UCS (MPa) 0.1475 110

UTS (MPa) 0.1344 7

E (GPa) 0.1273 25

r (t/m3) 0.1249 2.76

SHV 0.1225 41

Vp (m/s) 0.1208 3100

D 0.1131 2.10

MIBS (m) 0.1095 0.8

BD – –

Ease of BD – –

Table 4
Design parameters and engineering properties of rock mass [33].

Properties of rock mass Rock mass rating (rock class)

100–81 (I) 80–61 (II)

Classification of rock mass Very good Good

Average stand-up time 10 years for 15-m span 6 months for 8-m

Cohesion of rock mass (MPa) 40.4 0.3–0.4

Angle of internal friction of rock mass 4451 35–451
uniaxial compressive strength of 100 MPa should be included in
class 3 or 4, leading to subjective decision-making. The other
parameters in Table 1 are also related to this type of uncertainty.

Sometimes, uncertainty arises from the fixed numerical score
rating on each input parameter for a given rock class interval. In
other words, the same numerical scores were applied in the
regions of both the lower and upper boundaries of class intervals.
This may result in similar situations. Consider two hypothetical
rock masses in Table 3. Let us suppose the parameters of rock
masses 1 and 2 to be close to the lower and upper boundaries of
rock class interval (Table 1). Rating each input parameter based
on average class value method (described in Section 4.2), a
situation is reached where the same blastability is attributed for
both rock masses. However, from the point of view of an
experienced field engineer, it is expected that the quality of
rock mass 2 is much more than that of rock mass 1. This type of
uncertainty can be evaluated by using continuous rating charts to
some extent.

Another deficiency, which is common in the conventional
classification schemes, is the existence of sharp transition
between two adjacent classes (Tables 1 and 2), because transition
between rock classes is not so sharp but gradational in the field.
This type of uncertainty is significantly important in the
conventional classification systems such as RMR, Q, diggability,
rippability and so on, in which according to the corresponding
class of each index, some design parameters and construction
facilities will be prescribed. For example, in Table 4 the
determining RMR values between Rock mass class I and Rock
mass class II are 81 and 80, respectively. Consequently, just for the
rating difference of only 1 (i.e. 81–80), the average stand-up time
of an 8 (m) span for a tunnel roof extends from 6 months to 10
years with possibility of widening the span from 8 to 15 (m) [33].
As the value of BD would not be used in obtaining design
parameters or selection of construction facilities, this type of
uncertainty is not an important concern here. When dealing with
input parameters in Table 1 for BD calculation, we will be faced
with this type of uncertainty.
ties Ratings

Rock mass 2 Rock mass 1 Rock mass 2

170 0.75 0.75

11 0.75 0.75

45 0.5 0.5

2.95 0.75 0.75

49 0.75 0.75

3900 0.75 0.75

2.45 0.5 0.5

1.4 0.5 0.5

– 0.66 0.66

– M M

60–41 (V) 40–21 (IV) o20 (V)

Fair Poor Very poor

span 1 week for 5-m span 10 h for 2.5-m span 30 min for 1-m span

0.2–0.3 0.1–0.2 o0.1

25–351 15–251 151
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Finally, the above mentioned uncertainties encountered in the
practical application of conventional rock blastability classifica-
tion systems can be processed by using the fuzzy set theory,
which enables a soft approach to handle such uncertainties
[22,29].
3. Fuzzy set theory

The fuzzy set theory was introduced in 1965 by Zadeh [34] as a
mathematical way to represent linguistical vagueness. In the
classical set theory, a given element either belongs or does not
belong to a set. The membership of an element is crisp (0,1) and
an ‘A’ crisp set of real objects is described by a unique member-
ship function such as XA in Fig. 1. On the other hand, in fuzzy set
theory a membership function that can vary from 0 to 1 is
specified in Fig. 1. That is, the transition from ‘belong to a set’ to
‘not belong to a set’ is gradual and this is characterized by a
membership function. This particular characteristic of fuzzy
membership functions provides a robust mathematical tool to
handle nonlinear and complex problems smoothly, imitating the
human brain when managing inexact information. In addition,
fuzzy set theory can be used for developing rule-based models,
which combine physical insights, expert knowledge and
numerical data in a transparent way that closely resembles the
real world.

Fuzzy set theory provides a systematic calculus to deal with
linguistic information, and it performs numerical computation by
using linguistic labels stipulated by membership functions [35].
Moreover, fuzzy ‘‘if–then’’ rules form the key component of a
Fuzzy Inference System (FIS), that can effectively model human
expertise in a specific application.

3.1. Fuzzy if–then rules

To infer in a rule based fuzzy model, the fuzzy proposition
needs to be represented by an implication function. The implica-
tion function is called fuzzy ‘‘if–then’’ rule. A fuzzy if–then rule,
Fig. 1. Crisp and fuzzy sets [30].
also known as the fuzzy rule, assumes the form ‘‘if x is A then y is
B’’ where A and B, are linguistic values defined by fuzzy sets on
universes of discourse X and Y, respectively. Often ‘‘x is A’’ is called
the antecedent or premise, while ‘‘y is B’’ is called the
consequence or conclusion. Examples of fuzzy if–then rule are
widespread in daily linguistic expressions such as ‘‘If pressure is
high, then volume is small’’ [35].

Each rule in a fuzzy model is a relation such as Ri¼(X�Y-

[0,1]), which is calculated using the following equation [36]:

mRiðx,yÞ ¼ IðmAiðxÞ,mBiðyÞÞ ð2Þ

where mRiðx,yÞ is the R relation’s membership degree of rule ‘‘i’’
according to ‘‘x’’ and ‘‘y’’ inputs; mAiðxÞ and mBiðxÞ are the
membership degrees of ‘‘x’’ and ‘‘y’’ inputs, respectively; and ‘‘I’’
denotes the ‘‘and’’ or ‘‘or’’ operator [29]. Most rule-based systems
involve more than one rule. The process of obtaining the overall
consequent from the individual consequents contributed by each
rule in the rule base is known as aggregation of rules. There are
two aggregation strategies, namely conjunctive system of rules
and disjunctive system of rules [37]. In the case of conjunctive
system of rules that must be jointly satisfied, the rules are
connected by ‘‘and’’ connectives. In this case aggregated output, y,
membership function is

myðyÞ ¼minðm1
y ðyÞ,m

2
y ðyÞ,. . .,m

r
yðyÞÞ for yAY ð3Þ

Furthermore, in the case of disjunctive system of rules where
the satisfaction of at least one rule is required, the rules are
connected by ‘‘or’’ connectives. In this case aggregated output, y,
membership function is

myðyÞ ¼maxðm1
y ðyÞ,m

2
y ðyÞ,. . .,m

r
yðyÞÞ for yAY ð4Þ

3.2. Fuzzy inference system

The FIS is a popular computing framework based on the
concepts of fuzzy set theory, fuzzy if–then rules and fuzzy
reasoning. FISs have been successfully applied in fields such as
automatic control, data classification, decision analyses, expert
systems and computer vision [35,37].

The basic structure of an FIS consists of three conceptual
components: a rule (knowledge) base, which contains the
selection of rules; a database, which defines the membership
functions used in the fuzzy rules; and a reasoning mechanism,
which performs the inference procedure upon the rules and given
facts to derive a reasonable output or conclusion (Fig. 2). Basic FIS
can take either fuzzy inputs or crisp inputs, but the outputs it
produces are almost always fuzzy sets. In cases where a crisp
value is needed, defuzzification method should be carried out.
There are several FISs that have been employed in various
applications. The most commonly used include: the Mamdani
fuzzy model; the Takagi–Sugeno–Kang fuzzy (TSK) model; the
Fig. 2. A typical architecture of a fuzzy model [39].
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Tsukamoto fuzzy model; and the Singleton fuzzy model [22,25–32,
36,38].

The differences between these FISs lie in the consequents of
their fuzzy rules, and thus their aggregation and defuzzification
procedures differ accordingly. In this paper, the Mamdani fuzzy
model is widely used since this model is easier to interpret and
analyze when compared with the others [22,25–32,36].

In this study, the Mamdani fuzzy algorithm was selected to
express the blastability system by fuzzy sets. As mentioned by
Grima [36], the Mamdani algorithm is perhaps the most appealing
fuzzy method to employ in engineering geological problems.
Fig. 3 depicts a two-rule Mamdani FIS which derives the overall
output ‘‘z’’ when subjected to two crisp inputs ‘‘x’’ and ‘‘y’’ [40].

The general ‘‘if–then’’ rule structure of the Mamdani algorithm
is given in the following equation:

Ri : if xi is Ail and . . .

then y is Bi ðfor i¼ 1,2,. . .,kÞ, ð5Þ

where k is the number of rules, xi is the input variable (antecedent
variable) and y is the output variable (consequent variable).
Although many methods of composition of fuzzy relations (e.g.
min–max, max–max, min–min, max–mean, etc.) exist in the
literature, max–min and max–product methods are the two most
commonly used techniques [37]. The basic form of a fuzzy
composition process is given by the following expression:

B
~
¼ A

~
oR
~

ð6Þ

where A
~

is the input or antecedent, defined on universe X; B
~

is the
output or consequent defined on universe Y; and R

~
is the fuzzy

relation characterizing the relationship between specific inputs
(x) and specific outputs (y). The following stages are the
components of the Mamdani inference algorithm [36]:
1.
 Compute the degree of fulfillment, ai (weight of each rule), of
the input for each rule i by considering the degree of
membership (m), where ‘4’ is the minimum operator:

ai ¼ mA
~

i1ðx1Þ4mA
~

i2ðx1Þ4mA
~

i3ðx1Þ4 � � �4mA
~

inðx1Þ, 1r irk ð7Þ
2.
 For each rule derive output fuzzy set using the minimum normt-
norm:

mB
~

iðyÞ ¼ ai4 mB
~

iðyÞ ð8Þ
Fig. 3. The Mamdani FIS [40].
Aggregate the output fuzzy sets by taking the maximum:
3.
mB
~

i ¼ max
i ¼ 1,2,...,k

ðmB
~

iðyÞÞ ð9Þ

Taking into consideration the stages given above, a Mamdani
algorithm was constructed for the blastability system.

3.3. Defuzzification methods

Defuzzification refers to the way a crisp value is extracted from
a fuzzy set as a representative value. Although there are a number
of defuzzification methods in the literature such as centroid of
area (COA) or center of gravity, mean of maximum, smallest of
maximum, etc., the most widely adopted defuzzification method
is the COA method [36]. In this study, the crisp value adopting the
COA defuzzification method was obtained by

z*
COA ¼

R
ZmAðzÞz dzR
ZmAðzÞ dz

ð10Þ

where z*
COA is the crisp value for the ‘‘z’’ output and mA is the

aggregated output membership function.
4. Construction and application of fuzzy sets to the
Blastability Index Rating Method

4.1. Construction of input–output sets and rule consequents

This section presents the application of the Mamdani fuzzy
identification framework described in Section 3 for construction
of a fuzzy rule-based model to assess the blastability. The
principal components of the fuzzy model were fuzzy inference,
fuzzy sets for input/output variables and fuzzy if–then rules. The
architecture of the fuzzy modeling presented in Fig. 4 has fuzzy
rules representing a nonlinear mapping between input and
outputs.

In this study, the input variables of the fuzzy model were the
uniaxial compression and tensile strength, density, P-wave
velocity, hardness, elasticity, deformability, fracture toughness,
in-situ block sizes, fractal dimension of in-situ rock, integrity of
rock mass and discontinuity plane’s strength parameters of the
blastability designation rating method (Table 1). In the next
section, it will be shown that according to RES and interaction
matrix analysis of geological field data of G cutting site [1], these
twelve input variables will be decreased to eight. The output of
the fuzzy model is a final index rating, indicating the ease of
blastability of rock mass. The mentioned parameters were then
represented by fuzzy sets as the input/output variables of the
fuzzy model.

In the present fuzzy model, triangular and trapezoidal
membership functions were developed as they are the most
common type of membership functions used in rule-based fuzzy
modeling [22,29,36]. These fuzzy sets represent the ‘VE’ (very
easy), ‘E’ (easy), ‘M’ (moderate), ‘D’ (difficult) and ‘VD’ (very
difficult) classes that are given in Tables 1 and 2. Fig. 5 depicts
input and output variables. Fuzzy Inference System (FIS) Editor in
Matlab environment was used to establish input and output
variables. Each input and output variable was fuzzified with
membership function (MF) graphically designed with the toolbox.
These fuzzy sets represent the ‘VE’ (very easy), ‘E’ (easy), ‘M’
(moderate), ‘D’ (difficult) and ‘VD’ (very difficult) classes that are
given in Tables 1 and 2.

The final stage of defining model is the construction of the
if–then rules. The if–then rules were introduced to the fuzzy
model by considering the rating probabilities, which could be
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obtained from the adopted BD rating method. For the construction
of the if–then rules, mainly field data and experience were
utilized. As the rating system has eight main parameters and each
parameter has five subclasses, theoretically the number of if–then
rules is 58

¼390,625. However, because of the nature of rock mass
and based on expert opinion, some impossible rules must be
ignored when extracting if–then rules. For example, if the class of
rock compressive strength is easy, it should not be expected the
tensile strength to be medium, difficult, or very difficult and so on
[29,36].

Nearly 400,000 number of rules is significantly bigger than the
number of employed rules in previous studies (for example 20, 19,
126, 400, 625 and 9450 fuzzy rules were used in references
[26–31], respectively).

Furthermore, construction of nearly 400,000 rules with eight
input parameters and one output does not seem logical, practical
and manageable. Moreover, there is high potential of making
mistakes in controlling validity of combinations of input para-
meters, which do not conflict with the nature of rock mass among
nearly 400,000 possible combinations. In addition, an extremely
high processing time is required to solve the fuzzy inference
system with such a large number of rules. For example a Mamdani
FIS with 8 input and 1 output variables consisting of 3000 rules
needs 8 h CPU time to predict the output in a computer with a P4
Intel processor.

To reduce the complexity of defining and controlling the
possibility of a large number of rules (nearly 400,000 rules) and
processing time, a new strategy was developed in construction of
rule (knowledge) base part of Mamdani FIS structure. In this
method contrary to the usual Mamdani FIS, the applied fuzzy
rules in the rule base part of fuzzy system structure are not fixed
and predefined, and relevant to each crisp input set fuzzy rules
are defined and used in extracting the final output value.
Therefore, an equivalent fuzzy system adoptable to each input
parameters set, resulting in a small number of rules, was used
instead of the system with a large number of unmanageable rules.

In essence, this type of strategy in employing rule base part in
Mamdani FIS was developed based on the fuzzy mechanism
(’’Min–Max’’ fuzzy relation) employed in Mamdani FIS. When a
Mamdani fuzzy inference system with all its possible rules
subjects to a crisp input parameters is set, it is seen that only
some of the rules have non-zero degree of fulfillment ’’ai’’. Let us
name these rules as ’’Effective Rules’’. Therefore, for a specific
crisp input set elimination of rules with zero degree of fulfillment
from the system will not change the final output value. This is
illustrated schematically in Fig. 6. In Fig. 6, an example of
Mamdani FIS is shown with two input and one output sets. The
input and output variables were represented by fuzzy sets with a
combination of triangular and trapezoidal membership functions
(Fig. 6a–c). These fuzzy sets represent the ‘‘E’’ (easy), ‘‘M’’
(moderate) and ‘‘D’’ (difficult) classes, so that the maximum
number of possible rules that can be constructed is 32

¼9 (Fig. 6d).
The nine-rule Mamdani FIS mechanism, when subjected to two

crisp inputs of ‘‘X¼55’’ and ‘‘Y¼50’’, is illustrated in Fig. 6e. It can
be seen that only four of nine rules (effective rules: 4, 5, 7 and 8)
have non-zero consequences and the rest of the rules are



Fig. 5. Input and output membership functions for: (a) point load strength; (b) UCS; (c) UTS; (d) fractal dimension of in-situ rock mass; (e) density; (f) mean in-situ block

size distribution; (g) P-wave velocity; (h) Schmidt hardness; (i) Young modulus; (j) final rating index. VE: very easy; E: easy; M: medium; D: difficult; VH: very

difficult [43].
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effectless (neutral) and can be omitted from the knowledge base
of the system, without affecting the final value.

The point is that, effective rules could be determined before
defining all rules and running the whole system. Considering all
possible combinations of classes of input variables, which
intersected by relevant crisp input parameters, it is possible to
determine all the effective rules in a systematic way. For instance
according to Fig. 6a and b the classes of input variables intersected
by input values of ‘‘X¼55’’ and ‘‘Y¼50’’ are (M, D) and (E, M),
respectively. Therefore, as depicted in Fig. 6f all effective rules
for the mentioned example were determined by constructing
all combinations of input variables X¼{M, D} and Y¼{E, M}.
Generally for a system with n fuzzy inputs represented
by a combination of triangular and trapezoidal membership
functions, the number of effective rules will be in the range of 2n

and 1n
¼1. Therefore, in this method for each input set, the



Fig. 6. An hypothetical example to explain the effective rules implementation in Mamdani FIS. (a), (b) fuzzy input variables, (c) fuzzy output variable, (d) all possible rules,

(e) graphical indication of fuzzy reasoning mechanism with all its possible rules when subjected to a crisp input set, (f) graphical indication of fuzzy reasoning mechanism

with relevant effective all its possible rules of the crisp input set and (g) effective rules of given input set.
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corresponding effective rules would be determined and applied
before running the system, to obtain the relevant final output
value.
In practice, using this method is valuable when the numbers of
possible if–then rules are so considerably more that controlling
validity of each individual fuzzy rule according to the nature of
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the problem, and processing time of solving the system is
unreliable and time consuming, respectively.
4.2. Practical implementation of the constructed fuzzy model

To demonstrate the implementation of the constructed fuzzy
model for the blastability assessment system, geotechnical field
data of the rock mass at a highway improvement cutting site in
North Wales obtained by Latham and Lu [1] were considered. In G

cutting site, for the highway improvement, a new route nearly
600 m long was to be created in a deep cutting (which was
divided to berms of 4–6 (m) depth) to be excavated by blasting.
The rock types at the site were seen to include siltstones,
sandstones, tuffites, tuffs and limestones. Due to the inadequacy
of previous geological data, possibly acquired at the limited
exposure condition, Latham and Lu undertook additional data
acquisition. These data include mapping discontinuities on
various rock cuttings, taking photos of blasting results immedi-
ately after blasting, performing on-site point load tests and
Schmidt Hammer tests and collecting other associated geological
Fig. 7. A sketch plan for the geological investigation at the G cutting site

Fig. 8. Illustration of the interaction matrix in RES: (a) interaction matrix of two factors

cause and effect coordinates [1].
and blast design data. A sketch plan for the investigation, together
with the positions of the scanline mapping, the point load tests
and the Schmidt Hammer tests is illustrated in Fig. 7 [1]. Latham
and Lu determined the blastability of this site by incorporating
their own developed blastability classification system, continuous
rating charts and the RES approach. The RES approach is a very
useful procedure for devising a rock mass classification scheme
for any rock engineering project, which can be represented by a
function of the leading diagonal parameter values of an
interaction matrix. In the interaction matrix, all parameters
influencing the system are arranged along the leading diagonal
of the matrix, and the off-diagonal positions are assigned with
values, which describe the degree of the influence of one
parameter on the other parameter (Fig. 8). The selection of the
parameters and the definition of each parameter weight in a
classification system can be made through obtaining the C–E plot
in cause and effect space. The sum of each row in interaction
matrix is termed the ‘‘cause’’ and denoted by C. It represents the
way in which a parameter affects the rest of the system. The sum
of each column in interaction matrix is termed the ‘‘effect’’ and
denoted by E. It represents effect of the rest of the system has on
showing locations of scanline mapping and intact rock samples [1].

and (b) general illustration of the coding of interaction matrix and the set-up of the
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that parameter. And the ordered histogram of C+E can be
constructed for all parameters. So those factors that contribute
to most of the system, say larger than 70% of the

P
(C+E) total in

the ordered histogram, can be selected as the factors to be used in
assessing the blastability of the rock mass. Referring to rock
engineering system and interaction matrix analysis performed by
Latham and Lu [1] (Fig. 9), only the eight parameters P1, P2, P3, P4,
P5, P6, P9 and P10 have been chosen as the main contributory
parameters of the blastability of the rock masses at the site. For
more details on selection of main contributory parameters, see
Latham and Lu [1] and Hudson [41].

In this paper the 12 input variables of the original fuzzy model
were reduced to 8 variables. As continuous rating charts,
corresponding to each single factor, were not declared in the
paper by Latham and Lu (except for P9), the average class value of
the rating chart for each factor was used in constructing fuzzy
rules. So, bearing in mind the non-linearity of classification
system rating, to realistically classifying of poor rock masses [42]
value of 1 has been nominated for the worst mode (very difficult
blasting), and rates of difficult, moderate, easy and very easy are,
respectively, 0.70, 0.50, 0.25 and 0.10. Then the if–then rules were
introduced to the fuzzy model. The antecedent parts of rules were
build by possible combination of contributory parameters
according to Table 1, and the relevant consequence of each rule
was determined using Eq. (1), corresponding weights and rating
of input variables.

As stated in the previous section, by increasing the number of
input parameters and fuzzy rules, in a system, the reliability of
controlling fuzzy rules validity decreases and the processing time
increases. Therefore, the new methodology of implementing
Fig. 9. Illustration of the interaction matrix coding results: (a) cod
effective rules in Mamdani FIS, which was described in the
previous section, was adopted to assess the blastability index.

As a hypothetical example of the followed procedure, sche-
matic representation of the fuzzy reasoning mechanism with 16
effective rules relevant to the input parameters set of
{(UCS¼120), (UTS¼6.72), (r¼2.7), (SHV¼41.2), (Vp¼4787),
(E¼37.5), (MISB¼2.5), (D¼1.4)}, is shown in Fig. 10. Initially,
the numerical value of each input variable is intersected with the
corresponding fuzzy set in the antecedent part of each rule. Then
the minimum operator for each rule is applied and the
consequent fuzzy set is truncated considering the minimum of
the antecedent fuzzy set. The output fuzzy set is derived for each
rule. All of the consequent fuzzy sets are combined into a single
fuzzy set by means of a fuzzy operator. Finally, using the COA
defuzzification method, the fuzzy output is translated into a
single numerical value. The obtained final rating for this example
is 0.581 in this case. The blastability class can be evaluated as easy
or moderate. At this point, fuzzy set theory enables engineers to
cope with such uncertainties. Following the determination of the
Final Index Rating, its membership degree is obtainable by using
the output variable fuzzy set (Fig. 5). The membership degree is
an indication of certainty with which a rock mass belongs to a
certain blastability class. As can be followed from Fig. 11 for a final
index rating of 0.581, the ease of blasting is determined as
‘‘Moderate’’ with a membership degree of 0.92. To verify the
developed model, the blastability conditions for the rock masses
of G cutting site were considered. The introduced fuzzy based
blastability classification system was applied to estimate the
blastability classes of the site. Therefore, the relevant effective
rules for each input data set of the site (six positions) were
ing values, (b) the C–E plot and (c) the ordered histogram [1].



Fig. 10. An example calculation of fuzzy inference model: (a) graphical indication of fuzzy reasoning mechanism and (b) effective ‘‘if–then’’ rules of the fuzzy inference

system relevant to {(UCS¼120), (UTS¼6.72), (r¼2.7), (SHV¼41.2), (Vp¼4787), (E¼37.5), (MISB¼2.5), (D¼1.4)}.

Fig. 11. A typical architecture of a fuzzy model.

Table 5
Number of fuzzy effective rules of each rock masses from G cutting site.

Site description S1 S2 S3 S4 S5 S6

Number of effective rules 64 32 64 128 64 64
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constructed and implemented in calculating their final value of
blastability index. Maximum and minimum numbers of effective
rules for a crisp input set of 8 parameters are 28 and 18

¼1,
respectively. The numbers of effective rules used for assessment
of six input data sets of the G cutting site are shown in Table 5.

The blastability rating values and corresponding descriptions
of the rock masses at the site are represented in Table 6. Based on
the previously developed blastability designation rating system,
the blastability rating values by considering the average class
values of the rating chart and the values obtained by Latham and
Lu [1] (continuous rating charts) are also included in Table 6.
The graphical illustration given in Fig. 12 indicates that on
average there is an acceptable agreement between ratings
obtained from the conventional method and the fuzzy model.

As it is impossible to directly measure, the actual value of the
BD of a rock mass in the field so that performance evaluation of
the fuzzy models relative to conventional methods were eval-
uated by employing correlation coefficient R, and performance
indices namely the Variance Account For (VAF) and Root Mean
Square Error (RMSE) are given below as

VAF ¼ 1�
varðy�ŷÞ

varðyÞ

� �
� 100% ð11Þ

RMES¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1

ðyi�ŷiÞ
2

vuut ð12Þ

where var¼the variance, yi ¼the measured value, ŷi¼the
predicted value and N¼the number of samples.



Table 6
The outputs of the Blastability Index Rating Method and fuzzy model.

No. Pi Parameter Weight, Wi Blastability assessment

Description Unit S1 S2

Value Rating WinRi Value Rating WinRi

1 Is(50) MPa 0.1475 4.42 0.75 0.111

UCS MPa 120 0.75 0.111

2 UTS MPa 0.1344 6.82 0.75 0.101 5.53 0.5 0.067

4 E GPa 0.1273 48.8 0.5 0.064 45.13 0.25 0.032

3 r t/m3 0.1249 2.71 0.5 0.062 2.704 0.5 0.062

6 SHV 0.1225 43.6 0.75 0.092 41.2 0.75 0.092

5 Vp m/s 0.1208 4901 1 0.121 4784 1 0.121

10 D 0.1131 1.486 0.5 0.057 1.397 0.1 0.011

9 MIBS m 0.1095 2.18 0.75 0.082 3.1 1 0.11

Blastability designation 0.689 0.606

Ease of blastability M M

Blastability designation by Latham and Lu 0.664 0.647

Ease of blastability by Latham and Lu M M

Fuzzy model 0.612 0.602

Ease of blastability and membership degree M (%98) M (%100)

No. Pi Parameter Weight, Wi Blastability assessment

Description Unit S3 S4

Value Rating WinRi Value Rating WinRi

1 Is(50) MPa 0.1475 6.51 0.75 0.111 4.45 0.75 0.111

UCS MPa

2 UTS MPa 0.1344 8.14 0.75 0.101 5.563 0.50 0.067

4 E GPa 0.1273 52.39 0.25 0.032 50.07 0.50 0.064

3 r t/m3 0.1249 2.715 0.5 0.062 2.7 0.50 0.062

6 SHV 0.1225 46 0.75 0.092 44.85 0.75 0.092

5 Vp m/s 0.1208 4996 1 0.121 4785 1.00 0.121

10 D 0.1131 1.848 0.1 0.011 2.113 0.50 0.057

9 MIBS m 0.1095 2.8 1 0.11 1.31 0.50 0.055

Blastability designation 0.639 0.628

Ease of blastability M M

Blastability designation by Latham and Lu 0.725 0.662

Ease of blastability by Latham and Lu D M

Fuzzy model 0.619 0.605

Ease of blasting and membership degree M (%96) M (%99)

No. Pi Parameter Weight, Wi Blastability assessment

Description Unit S5 S6

Value Rating WinRi Value Rating WinRi

1 Is(50) MPa 0.1475 5.05 0.75 0.111

UCS MPa 135 0.75 0.111

2 UTS MPa 0.1344 7.67 0.75 0.101 6.31 0.75 0.101

4 E GPa 0.1273 48.47 0.25 0.032 42.9 0.25 0.032

3 r t/m3 0.1249 2.63 0.50 0.062 2.7 0.50 0.062

6 SHV 0.1225 46.07 0.75 0.092 39.7 0.50 0.061

5 Vp m/s 0.1208 4908 1.00 0.121 4852 1.00 0.121

10 D 0.1131 1.499 0.10 0.011 1.194 0.10 0.011

9 MIBS m 0.1095 1.78 0.75 0.082 2.22 0.75 0.082

Blastability designation 0.612 0.581

Ease of blastability M M

Blastability designation by Latham and Lu 0.669 0.631

Ease of blastability by Latham and Lu M M

Fuzzy model 0.599 0.596

Ease of blastability and membership degree M (%100) M (%99)
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These performance indices are interpreted as follows: the
higher the VAF, the better the model performs. The lower the
RMSE, the better the model performs. Contrary to VAF, RMSE also
accounts for a bias in the model, i.e. an offset between the
measured and predicted data [22].

As can be seen from Fig. 13c despite the two conventional
methods being intrinsically the same except for their rating
methods, they show very weak correlation with each other.
Nevertheless, the proposed fuzzy model is correlated reasonably
well with both conventional methods (Fig. 13a and b).
Considering the R values and the fact that all three models are
trying to describe the rock mass Blastability index, it seems that
the fuzzy model behaves more properly and consistently in
prediction. In Table 7, the performance indices of fuzzy inference



Fig. 12. Comparison of the blastability designation estimated by Mamdani FIS and

conventional methods.

Fig. 13. Relations between ratings obtained from fuzzy based and p
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model relative to the two conventional methods are shown. The
VAF index for both cases is positive but not high, and the RMSE

index for each of the two cases are in expectable ranges (not very
small nor high).

In general, according to these results despite the acceptable
agreement among the three models, the constructed fuzzy model
underestimates the blastability of studied rock masses in
comparison with the conventional blastability classification
systems. These differences can be produced as a result of the
aforementioned sharp rating boundaries or the differences of
rating methods.
reviously developed practical blastability classification systems.

Table 7
Performance indexes of the fuzzy system relative to the conventional methods.

Prediction models VFA (%) RMSE (%)

Fuzzy and BD 29.3 7.43

Fuzzy and BD by Latham and Lu 34.3 17.75
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5. Conclusion

The rock engineering classification system is a very useful
procedure for devising a rock mass classification scheme for a
given engineering project that is to take place within the rock
mass.

As emphasized in this paper, these classification systems may
possess some uncertainties or fuzziness in their practical
applications. These limitations especially related to sharp transi-
tions between two adjacent blastability classes and the subjective
uncertainties on data, which are close to the range boundaries of
rock classes. It is well known from previous studies in the
literature that such uncertainties can be best dealt by using the
fuzzy set theory.

In this paper a fuzzy logic based blastability designation
predictor model is developed. The suggested approach takes into
account the important intact rock and rock mass uncertainty in
estimation of the Blastability Designation value, which is an input
parameter of the EBT model developed by Latham and Lu for
Blasted Bock Size Distribution prediction.

Employing the regular Mamdani FIS for evaluating rock mass
blastability was needed to construct nearly 400,000 and control
their possibility, which does not seem to be practical and easily
manageable. So an equivalent fuzzy system adoptable to each
input parameters set, resulting in a small number of rules, was
developed to efficiently solve the big Mamdani FIS. This method
provides the possibility of overcoming the difficulties encoun-
tered in dealing with a large number of fuzzy rules.

It is shown that blastability values obtained from both the
blastability designation fuzzy inference system and the quantita-
tive blastability chart are in acceptable agreement with each
other. However, the fuzzy model underestimates the blastability
of the studied rock masses (G cutting site) in comparison with the
conventional methods. This difference could be due to the
aforementioned uncertainties existing in conventional methods.
It can be said that fuzzy set based classification eliminates the
biased evaluation assignment of the rating values, which is
common in conventional blastability classification systems and
may lead the engineers to a wrong decision.

The fuzzy set theory helps the blast engineers to judge the
obtained final ratings by means of constructed membership
degree functions (indicate the degree with which a rock mass
belongs to a certain blastability class), as an advantage to the
conventional classification systems. It seems that fuzzy set theory
could be used as an effective tool in decision-making processes
where limited data with some uncertainties are available.
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