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Abstract Fragmentation has direct effects not only on the
drilling and blasting costs but also on the economy of
subsequent operations. In the present study, two soft
computing-based models, so called “support vector ma-
chines (SVM)” and “adaptive neuro-fuzzy inference sys-
tem (ANFIS)” were used and compared with Kuz-Ram
method. In this regard, six effective parameters including
specific charge, stemming length, total delays per number
of rows ratio, hole diameter, spacing to burden ratio, and
blastability index were considered as input parameters
containing a database of 80 variables from the blasting
operation of the Chadormalu iron mine of Iran. Principal
component analysis (PCA) was performed to clarify the
effective parameters on the fragmentation. As statistical
indices, root mean square error (RMSE), correlation coef-
ficient (R2), bias, variance account for (VAF), and mean
absolute percentage error (MAPE) were used to evaluate
the efficiency of the addressed models between measured
and predicted values of rock fragmentation. The results

confirmed the ANFIS and SVM as accurate predictive
tools for rock fragmentation in open-pit mines. Correlation
coefficient, bias, VAF, and MAPE generated by the
ANFIS model (respectively 0.89, 0.257, 88.19, and
10.37) were higher than referred values for the SVM
model (0.83, 1.87, 75.24, and 16.25, respectively) as well
as Kuz-Ram inference.
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Introduction

Rock fragmentation, the fragment size distribution of blasted
rock, is considered as one of the most significant indices of
production blasting due to its direct effects on the costs of
drilling and blasting in addition to the economy of the subse-
quent operations of loading, hauling, and crushing (Jimeno
et al. 1995; Aler et al. 1996; Hamdi et al. 2001; Singh et al.
2013a, b; Pradhan et al. 2011). The key objects of production
blasting are to achieve optimum rock fragmentation and con-
trol the particle size distribution of a muckpile after blasting.
Over the past decades, empirical models have been developed
for the estimation of size distribution of rock fragments (Rosin
and Rammler 1933; Kuznetsov 1973; Cunningham 1983;
Lilly 1986; Monjezi et al. 2012). Rock fragmentation depends
on many variables such as rock mass properties, site geology,
in situ fracturing, and blasting parameters. There is no com-
plete theoretical solution for its prediction. In such situations,
a wide range of statistical and machine learning models have
been developed and applied to measure the fragmentation
distribution (Aler et al. 1996; Mario and Francesco 2006;
Monjezi et al. 2009, 2014; Gheibie et al. 2009; Shi et al.
2012; Salimi et al. 2012; Badroddin et al. 2013; Bakhtavar
et al. 2014; Enayatollahi et al. 2014). Also, several studies

M. Esmaeili
Department of Mining Engineering, Science and Research Branch,
Islamic Azad University, Tehran, Iran

A. Salimi (*)
Institute of Geotechnical Engineering, University of Stuttgart,
Stuttgart, Germany
e-mail: salimi.tunneling@gmail.com

C. Drebenstedt
Institute of mining and special civil engineering, Technische
Universität Bergakademie Freiberg, Freiberg, Germany

M. Abbaszadeh
Department of Mining Engineering, University of Kashan, Kashan,
Iran

A. Aghajani Bazzazi
Department of Mining Engineering, Savadkooh Branch, Islamic
Azad University, Savadkooh, Iran

Arab J Geosci
DOI 10.1007/s12517-014-1677-3



have been conducted to improve blast design considering the
prediction of fragmentation after blasting (Sontamino and
Drebenstedt 2012).

Neuro-fuzzy systems based on artificial neural network
(ANN) theory are widely used to determine the properties
of fuzzy sets and fuzzy rules by processing data samples.
Neuro-fuzzy systems harness two paradigm power: fuzzy
logic and ANNs by utilizing the mathematical properties
of ANNs in tuning rule-based fuzzy systems that approx-
imate the way man processes information. A specific
approach in neuro-fuzzy development is the adaptive
neuro-fuzzy inference system (ANFIS), which has shown
significant results in modeling nonlinear functions. In
ANFIS, the membership function parameters are extracted
from a data set that describes the system behavior. The
ANFIS learns features in the data set and adjusts the
system parameters according to a given error criterion
(Jang 1993; Ubeyli and Guler 2005). ANFIS has been
purposed by different studies (Nauck and Kruse 1999;
Gokceoglu et al. 2004; Cakmakci 2007; Wang and Elhag
2008; Taylan and Karagozoglu 2009; Radulovic and
Rankovic 2010; Ata and Kocyigit 2010; Yilmaz and
Kaynar 2011; Tayebi Khorami et al. 2011; Alipour and
Ashtiani 2011; Iphar 2012; Vafakhah 2013; TienBui et al.
2012; Bazzazi and Esmaeili 2012 ; Sezer et al. 2011;
Mohammadi et al. 2011; Oh and Pradhan 2011; Pradhan
et al. 2010; Singh et al. 2005, 2012, 2013a, b; Liu et al.
2014). Support vector regression (SVR) is a novel neural
network algorithm based on a statistical learning theory
and lead to great potential and superior performance in
practical applications. This is largely due to the structure
risk minimization principles in SVR, which has greater
generalization ability and is superior to the empirical risk
minimization principle adopted by traditional neural net-
works. Due to the advantages of the generalization capa-
bility in obtaining a unique solution, the SVMs have
drawn the attention of researchers and have been applied
in many applications (Liu et al. 2004; Yu et al. 2006;
Zhao 2010; Khandelwal 2010; Shi et al. 2012;
Mohamadnejad et al. 2012; Khandelwal and Kankar
2011; Abbaszadeh et al. 2013 ;Pradhan 2013).

The main novelty of the present study is to apply the
principal component analysis (PCA) in order to find the
effective parameters on the rock fragmentation in the
Chadormalu iron mine of Iran. In this regard, the Kuz-Ram
model, support vector regression (SVR), and adaptive neuro-
fuzzy inference system (ANFIS) were applied to predict the
rock fragmentation. Finally, as statistical indices, root mean
square error (RMSE), correlation coefficient (R2), bias, vari-
ance account for (VAF), and mean absolute percentage error
(MAPE) were used to evaluate the efficiency of the addressed
models between measured and predicted values of rock
fragmentation.

Data processing

Case study

Chadormalu iron ore mine is located at the center of Iran
Desert, at 180 km of the north eastern of Yazd province and
300 km of the south of Tabas city (Fig. 1). Chadormalu
deposit has some 400 million tons of resource and 320 million
tons of reserves split between the northern and southern ore
bodies with average Fe and P content of 55.2 and 0.9 %,
respectively. Measurement of fragment size of blasted rock
is considerably important in order to evaluate the efficiency of
the production blasting operation. There are several methods
of size distribution measurement and sub-categorized into
direct and indirect methods. Although, the sieve analysis is a
direct and the most accurate method of measuring size distri-
bution, the high expenses and time-consuming features refuse
the practical use of this method in a large scale; hence, indirect
tools have been more developed as observational, empirical,
and digital methods. With the advances in technology, digital
image processing and analysis systems are becoming increas-
ingly popular in fragmentation measurement due to their
advantages over photographic methods.

Split system is one of the digital image processing software
which has been developed to compute the size distribution of
fragmented rock from digital images. In this study, size distri-
butions were analyzed by using Split-Desktop software. This
software has five progressive steps for analyzing each image:
the first step determines the scale for each image taken in the
field, the second step performs the automatic delineation of
the fragments in each of the processed image, the third one
edits the delineated fragments to ensure accurate results, the
fourth step involves the calculation of the size distribution
based on the delineated fragments, and finally, the last step
graphs various outputs to display the size distribution results.
Figure 2 shows the sample of figures that have been used for
analyses in the Split-Desktop software.

ANFO has been used as explosive in the blasting opera-
tion of the mine. Blasting holes of 165- and 251-mm diam-
eters were used in benches with a 15-m height. The drill-hole
pattern (burden×spacing) is 6×7 and 7×8 m based on rock
types. The size of outfall entrance gyratory crusher and
outfall exit is 90 and 30 cm, respectively. In this study, a
database including 80 data sets was collected from blasting
operation of the Chadormalu iron mine and six parameters
were considered as input parameters for modeling rock frag-
mentation. Descriptive statistical distribution of input and
output parameters and their respective symbols are indicated
in Table 1. Furthermore, BI and the dependent parameters
are summarized in Table 2. Note that blastability index (BI)
is calculated by Eq. 1 (Lilly 1986):

BI ¼ 0:5 RMDþ JPSþ JPOþ SGIþ Hð Þ ð1Þ
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where RMD is rock mass description, JPS is joint plane
spacing, JPO is joint plane orientation, SGI is specific gravity
influence, and H is hardness. The ratings and evaluation basis
of the parameters are summarized in Table 3. In the Table 3,
the spacing and orientation of joints can be specified by
borehole logging or outcrop survey. Specific gravity and
strength can be estimated on site using the point load test
and also in the laboratory. Block size can be estimated by
various methods summarized by Palmstrom (2001).

Principal component analysis

In order to establish the predictive models among the param-
eters obtained in this study, principal component analysis
(PCA) was performed in the first stage of the analysis. PCA
is a classical method that provides a sequence of the best linear
approximations to a given high-dimensional observation, and

it has received much more attentions in many literatures
(Cadima and Jolliffe 1995; Croux and Haesbroeck 2000;
Higuchi and Eguchi 2004; Shawe-Taylor and Cristianini
2005; Tao et al. 2007; Zhang et al. 2010). PCA is used
abundantly in all forms of analysis (from neuroscience to
computer graphics) because it is a simple, nonparametric
method of extracting relevant information from confusing
data sets. With minimal additional effort, PCA provides a
roadmap on how to reduce a complex data set to a lower
dimension.

For instance, Fig. 3 represents a two-variable data set
which has been measured in the X-Y coordinate system. The
principal direction in which the data varies is shown by the U
axis and the second most important direction is the V axis
orthogonal to it. If we transform each (X, Y) coordinate into its
corresponding (U, V) value, the data is de-correlated, meaning
that the co-variance between theU and V variables is zero. For

Fig. 1 Geographical location of the Chadormalu iron mine
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a given set of data, principal component analysis finds the axis
system defined by the principal directions of variance (i.e., the
U-V axis system in Fig. 4). The directions U and V are called
the principal components. In this new reference frame, note
that variance is greater along axis U than it is on axis V. PCA
computes new variables which are obtained as linear combi-
nations of the original variables. These variables are found by
calculating the covariance (or correlation) matrix of the data
patterns (Jolliffe 1986; Engelbrecht 2007).

In this paper, PCAwere performed on a set of output and
features (input parameters), and the ratio of variance of first
component to total variance (variance ratio) were calculated.
According to the above paragraph, this ratio can be deter-
mined by the similarity among the output and a set of features.

Several analyses with two, three, and four features were
performed to obtain the effective parameters on the fragmen-
tation (Fig. 5). As can be seen in Fig. 5, the feature containing
three inputs (S/B, BI, and SC) were shown to be effective
factors, and fragmentation has been considered as a function

of these important inputs; hence, these parameters were se-
lected as input parameters for the predictive models.

Modeling

The Kuz-Ram model

Kuznetsov’s investigation in 1973 correlated the mean frag-
mentation size with the powder factor of TNT as well as
geological structure (Kuznetsov 1973). He also proved the
relationship between average fragmentation size and the
amount of explosive used in a particular rock type. The
original Kuznetsov equation is given as

X ¼ A
V 0

Q

����
����
0:8

Q0:167 ð2Þ

where X is the mean fragment size (cm), A is rock factor (7
for medium rocks, 10 for hard and highly fissured rocks, and
13 for hard and weakly fissured rocks), V0 is the rock volume

Fig. 2 Sample of image prepared for Split-Desktop software

Table 1 Descriptive statistical of input and output parameters for this study

Variables Symbol Minimum Maximum Mean Standard deviation

Ratio of total delays per number of rows DR 21.7 62.5 48.816 9.94

Specific charge (kg/m3) SC 0.38 1.2 0.772 0.211

Stemming length (m) ST 3.4 7.5 5.811 1.313

Hole diameter (mm) HD 165 251 204.77 43.149

Blastability index BI 42 73.25 59.226 8.809

Spacing to burden ratio S/B 1.123 1.42 1.215 0.062

Fragmentation (cm) F 8 42.5 21.709 7.897

Table 2 BI and the dependent parameters in the Chadormalu mine

Block no. RMD JPS JPO SGI H BI

1 16 20 20 65 3 62

2 12.6 20 40 17.5 4 47.05

3 12.5 10 30 65 5 61.25

4 14.5 20 30 50 5 59.75

5 12.2 20 30 40 5 53.6

6 12.8 20 30 65 6 66.9

7 12.9 20 40 25 4 50.95

8 14.4 20 30 65 6 67.7

9 19.7 50 30 40 5 72.35

10 13.8 20 40 65 5 71.9

RMD rock mass description, JPS joint plane spacing, JPO joint plane
orientation, SGI specific gravity influence, H hardness, BI blastability
index
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broken per blasthole (m3) (burden×spacing×bench height),
andQ is the mass of TNTwhich is equivalent in energy to that
of the explosive charge in each blasthole (kg). Cunningham,
in South Africa, realized that the Rosin-Rammler curve
had been generally recognized as a reasonable description
of the fragmentation for both crushed and blasted rock
(Cunningham 1983). The Rosin-Rammler equation is used
to characterize the partial-sized distribution of a material
in a variety of applications (Rosin and Rammler 1933).
The equation is

R ¼ e
− X

XC

��� ��� n

ð3Þ

where R is the proportion of the material retained on screen, X
is screen size, Xc is empirical constant, and n is index of
uniformity. What was needed to properly define the Rosin-
Rammler curve was the exponent “n” in the Eq. 3. To obtain
this value, Cunningham used field data and regression analy-
sis of the field parameters that were previously studied. The
combination of the algorithms thus developed along with the

Kuznetsov equation became known as the “Kuz-Rammodel.”
The present form of the algorithm used is

n ¼ 2:2−1:4
B

D

����
���� : 1−W

B

����
���� : 1þ S

�
B

2

�����
�����
0:5

:
L

H

����
���� ð4Þ

where B is the burden (m), S is the spacing (m), D is the hole
diameter (mm), W is the standard deviation of drilling accu-
racy (m), L is the total charge length (m), and H is the bench
height (m). A further development which enabled the use of
different explosives other than TNTwas incorporated into the
Kuznetsov equation (Kuznetsov 1973) by Cunningham. The
final equation to determine average fragmentation size is
shown below:

X ¼ A
V 0

Q

����
����
0:8

Q0:17 E

115

����
����
−0:63

ð5Þ

E is a relative weight strength term of the actual explosive
(where ANFO=100), while the relative weight strength of
TNT is 115 (Konya and Walter 1991).

Table 3 Parameters of the blastability index (Shim et al. 2009)

Parameter Ratings Formula

RMD=(rock mass description) – RMD=10+10Xi

Xi=block size of in situ rock mass

JPS=(joint plan spacing) 10=Joint spacing <0.1 m –
20=0.1 m<Joint spacing<oversize (m)

50=Oversize (m)<joint spacing

JPO=(joint plan orientation) 10=Joint dip<100 –
20=│Joint dip direction-dip direction of bench│<300

30=600<│joint dip direction-dip direction of bench│
40=300<│joint dip direction-dip direction of bench│<600

SGI=(specific gravity influence) – SGI=25(SG−2)
H=(hardness) – H=UCS/5 if Y<50 Gpa

H=E/3 if Y>50 GPa

SG Specific gravity of rock, UCS uniaxial compressive strength (MPa), E elastic modulus (GPa)

Fig. 3 Principal components for data representation Fig. 4 Principal components for dimension reduction
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A graphic comparison between measured fragmentation
using Split-Desktop software and predicted fragmentation by
Kuz-Ram equation is shown in Fig. 6. As it is depicted in
Fig. 6, a weak conformity exists between these two sorts of
fragmentation.

Support vector regression

Support vector regression (SVR) estimates a continuous-
valued function that encodes the fundamental interrelation
between a given input and its corresponding output in the
training data. This function then can be used to predict outputs
for given inputs that were not included in the training set. This

is similar to a neural network. However, a neural network’s
solution is based on empirical risk minimization. In contrast,
SVR introduces structural risk minimization into the regres-
sion and thereby achieves a global optimization, while a
neural network achieves only a local minimum (Eubank
1988). There are many papers and books which provide a
detailed description of the theory of SVM technique (Vapnik
1998; Cristianini and Shawe-Taylor 2000; Yu et al. 2006);
hence, only a brief description of a SVR which has been
considered in the paper is given here. A generic cost estima-
tion model can be written as

y ¼ f Xð Þ ¼ WTX þ b ð6Þ

Fig. 5 Principal components
analysis for some features in this
study

Fig. 6 Comparison of measured
and predicted fragmentation by
Kuz-Ram equation
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where W is the weight vector corresponding to X and b is
the bias. The generalization performance of such linear
function f(X) is fairly limited and unable to reflect the
true regression procedure. In order to overcome such
weakness, a standard mathematical solution is the intro-
duction of kernel function φ(X), which is a nonlinear
mapping function from the input space to a higher di-
mensional feature space. By using φ(X), we can reach
infinite dimensions for a more expressive f. Commonly
used kernel functions are listed in Table 4. With the help
of φ(X), linear regression function Eq. 6 is extended to
nonlinear function Eq. 7:

y ¼ f Xð Þ ¼ WTφ Xð Þ þ b ð7Þ

whereW is the weight vector corresponding to φ(X). Our goal
is to estimate the coefficients (W and b) following two rules at
the same time. First, to achieve the best performance, f(Xi)
should be as close as possible to the truth yi for all training
samples. Second, to prevent over-fitting, f(X) should be as flat
as possible. These are equivalent to the following program-
ming problem, namely primal problem of SVR:

min
1

2
WTW þ C

1

l

X
i¼1

l

ζ i þ ζ*i
� �

s:t:
WTφ X ið Þ þ b

�
−yi≤εþ ζi;

yi− WTφ X ið Þ þ b
� �

≤εþ ζ*i
ζi; ζ

*
i ≥0; i ¼ 1; ::::; l:

8><
>:

ð8Þ

In the above formulation, slack variables of ζi and ζi
∗ are

included to cope with otherwise infeasible constraint of the
optimization problem, and constant C>0 determines the
tradeoff between the parameter norm (used to measure the

“flatness”: smaller norm means smoother function) and devi-
ations from target greater than ε (Fig. 7). This problem is
usually solved by introducing using Lagrange multipliers,
leading to the minimization of

LP ¼ 1

2
Wk k−

X
i¼1

n

αi εþ ξi−yi þWTϕ X ið Þ þ b
� �

−
X
i¼1

n

μiξi−
X
i¼1

n

α*
i
εþ ξ*

i
þ yi−W

Tϕ X ið Þ−b
� �

−
X
i¼1

n

μ*
i
ξ*
i
þ C

X
i¼1

n

ξi þ ξ*i

ð9Þ
consideringW, b, ξi, and ξi

* and its maximization with respect
to the Lagrange multipliers, αi, αi

*, μi, and μi
*. In order to

solve this problems, one needs to compute the Karush-Kunh-
Tucker conditions (Fletcher 1987) that state some conditions
over the variables in Eq. 9, and

∂LP
∂W

¼ W−
X
i¼1

n

αi−α*
i

� �
yiϕ X ið Þ ¼ 0 ð10Þ

∂LP
∂b

¼
X
i¼1

n

αi−α*
i ¼ 0 ð11Þ

∂LP
∂ξi

¼ C−αi−μi ¼ 0 ð12Þ

∂LP
∂ξ*

i

¼ C−α*
i
−μ*

i
¼ 0 ð13Þ

αi ;α
*
i ;μi ;μ

*
i ≥0 ð14Þ

αi εþ ξ
i
−yi þWTϕ X ið Þ þ b

� 	 ¼ 0 ð15Þ

α*
i εþ ξ*

i
−WTϕ X ið Þ−bþ yi

n o
¼ 0 ð16Þ

Table 4 Admissible kernel functions

Name Definition Parameter

Linear K(Xi,Xj)=(Xi)
TXj –

Polynomial K(Xi,Xj)=[(Xi)
TXj+1]

d d

Radial basis function (RBF) K X i;X j

� � ¼ e−γ xi−x jk k 2 γ

Sigmoida K(Xi,Xj)=tanh[(Xi)
TXj+r] r

a For some r values, the kernel function is invalid

Fig. 7 Prespecified accuracy ε
and slack variable ζ in SVR
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μiξi ¼ 0 and μ*
i ξ

*
i ¼ 0 ð17Þ

The usual procedure to solve the SVR is introducing
Eqs. 10–13 into Eq. 8, leading to the maximization of

Ld ¼ ε
X
i¼1

n

αi þ α*
i

� �
−

X
i¼1

n X
j¼1

n

αi−α*
i

� �
α j−α*

j

� �
ϕΤ X ið Þϕ X j

� �
ð18Þ

subject to Eq. 11 and 0≤αi, αi
*≤C. This procedure can be

solved using QP and iterative re-weighted least squares
(IRWLS) procedures. Support vector regression was trained
by using the input variables selected by the PCA model and
the fragmentation as the output of the model. The available
data sets were divided into two subsets randomly, i.e., 80 %
data sets for training and 20% data sets for testing. The details
of the topology selected for the SVR model are listed in
Table 5. In order to obtain the parameters of the topology that

are listed in Table 5, several configurations were tested with
different kernel types (radial basis function, polynomial, and
hyperbolic tangent) and parameter values. These tests were
performed in the same way as the methodology proposed by
Sánchez Lasheras et al. (2010). The problem was solved by
using the popular suite of machine learning software written in
Java called Weka and developed at the University of Waikato
(Witten et al. 2011). The correlation coefficient between mea-
sured and predicted fragmentation by SVR is shown in Fig. 8.
According to Fig. 8, correlation coefficient between measured
and predicted fragmentation is 0. 83. This R2 showed a good
correlation between these two sorts of fragmentation.

Adaptive neuro-fuzzy inference system

The ANFIS is a fuzzy Sugeno model put in the framework of
adaptive systems to facilitate learning and adaptation (Jang
1993). Such framework makes the ANFIS modeling more
systematic and less reliant on expert knowledge. Subsequent-
ly, we briefly explain an ANFIS system by using a model with
two inputs as an example (Fig. 9). To construct the ANFIS
model, five layers were used, as demonstrated in Fig. 9. Each
layer has some nodes described by a node function. The
circles in the network represent nodes with no variable param-
eters, while the squares indicate nodes with adaptive parame-
ters determined by network during training. The nodes in the
first layer represent the fuzzy sets in the fuzzy rules. It has
parameters that control the shape and the location of the center
of each fuzzy set which are called premise parameters. In the
second layer, every node computes the product of its inputs. In
layer 3, normalization of the firing strength of the rules occurs

Table 5 Parameters of the SVR model

Parameter Value

Type ε-SVR

Kernel Radial basis function

Degree 2

Γ 1

Tolerance of stopping criterion 0.001

ε 0.1

Fig. 8 Correlation coefficient for
SVR model
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by calculating the ratio of the ith rule’s firing strength to the
sum of all rules’ firing strengths. Nodes in the forth layer are
adaptive, where each node function represents the first-order
model with consequent parameters. Layer 5 is called the
output layer where each node is fixed. It computes the overall
output as the summation of all the inputs from the previous
layer. Optimizing the values of the adaptive parameters is the
most important step for the performance of the adaptive sys-
tem. Specially, the supposed parameters in layer 1 and the
consequent parameters in layer 4 need to be determined. Jang
proposed a hybrid learning algorithm to determine the param-
eters of an ANFIS model. A hybrid learning algorithm uses
the gradient descent and least square techniques to optimize
the network parameters. The least squares estimation can be
used to determine consequent parameters assuming that the
layer 1 parameters are fixed. Then, the layer 4 parameters can
be fixed, and a back propagation approach is used to fit the
premise parameters in layer 1. By iterating between the layer 1
parameters and the layer 4 parameter optimization, the optimal
values for all free parameters are computed (Jang et al. 1997;
Sumathi and Surekha 2010).

In this study, the available data sets were divided into two
subsets randomly, i.e., 80 % data sets for training and 20 %
data sets for testing (the same as SVR model). Subtractive
clustering has an auto-generation capability to determine the
number and initial location of the cluster centers in a set of
data. This method partitions the data into groups called clus-
ters by specifying a cluster radius and generates a Sugeno-type
fuzzy inference system (FIS) with the minimum number of
rules according to the fuzzy qualities associated with each of
the clusters. Hybrid learning algorithm, a combination of least
squares and back propagation gradient, was applied to identify
the membership function parameters of a single output,
Sugeno-type fuzzy inference systems (FIS). Several models

with three input parameters and one output parameter were
constructed and trained. To evaluate models with different
structures (FIS division) and then to determine the best model,
RMSE was calculated for these models. The proposed ANFIS
model for predicting fragmentation has three membership
functions for each input parameter and three rules. Other
parameter types and their values used for the constructed
ANFIS model can be seen in Table 6. Figure 10 shows the
relationship between measured and predicted values obtained
from the ANFIS model in the testing stage.

Discussion

It is absolutely clear that the results of both ANFIS and SVM
models in predicting fragmentations are not significantly dif-
ferent to those in reality. Here, the performances of these
models were evaluated according to statistical criteria such
as correlation coefficient (R2), root mean square error

Fig. 9 Architecture of ANFIS

Table 6 The ANFIS information used in this study

ANFIS parameter type Value

MF type Gaussian

Number of MFs 3

Output function Linear

Number of nodes 30

Number of linear parameters 12

Number of nonlinear parameters 18

Total number of parameters 30

Training RMSE 3.12

MF membership function, RMSE root mean square error
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(RMSE), mean absolute percentage error (MAPE), bias, and
variance account for (VAF) (Alvarez Grima and Babuska
1999; Kazeminezhad et al. 2005; Tzamos and Sofianos
2006; Yilmaz and Kaynar 2011; Esmaeili et al. 2014). Root
mean square error (RMSE), a measure of the goodness-of-fit,
best describes an average measure of the error in predicting
the dependent variable. However, it does not provide any
information on phase differences.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i¼1

n

Aimeas−Aipred

� �2s
ð19Þ

Mean absolute percentage error (MAPE), which is a mea-
sure of accuracy in a fitted series value in statistics, was also
used for comparison of the prediction performances of the
models. MAPE usually expresses accuracy as a percentage:

MAPE ¼ 1

n

X
i¼1

n Aimeas−Aipred

Aimeas

����
����� 100 ð20Þ

Bias, the bias or average value of residuals (nonexplained
difference) between the measured and predicted values of the
dependent variable, represents the mean of all the individual
errors and indicates whether the model overestimates or un-
derestimates the dependent variable. It is calculated as

Bias ¼ 1

n

X
i¼1

N

Aipred−Aimeas

� � ð21Þ

Variance account for (VAF) performance index is used to
investigate as to what degree the model can explain the
variance in data.

VAF ¼ 1−
var Aimeas−Aipred

� �
var Aimeasð Þ

� �
� 100 ð22Þ

where var denotes the variance, Aimeas is the ith measured
element,Aipred is the ith predicted element, and n is the number
of datasets.

The results of applying these models were compared in
Table 7. Also, a graphic comparison between measured and
estimated data obtained from ANFIS, SVR, and Kuz-Ram
models was shown in Fig. 11.

The results confirmed that there is a great congruence in the
prediction of rock fragmentation between ANFIS and SVM
models to the estimated fragmentation, meanwhile predictions
by Kuz-Ram model detected some errors. In contrast to
ANFIS and SVM models, Kuz-Ram model was not able to
predict the rock fragmentation because of the elimination of
some important factors.

Fig. 10 Correlation coefficient
for the ANFIS model

Table 7 Performance indices of the models

Models R2 RMSE MAPE Bias VAF

ANFIS 0.89 2.48 10.37 0.257 88.19

SVR 0.83 4.04 16.25 1.87 75.24

Kuz-Ram 0.38 6.82 32.4 3.95 38.32
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Consequently, the validity of ANFIS model to predict rock
fragmentation, which is one of the most important processes
in a mining operation, is further supported in this study.

Compared to other analysis techniques, the ANFIS results
possess a great degree of accuracy, robustness, and more
tolerance against errors. Finally, the results of this investiga-
tion clearly proved the higher validity of the ANFIS model in
order to predict rock fragmentation compared to SVR and
Kuz-Ram models.

Conclusions

In this study, Kuz-Ram, SVR, and ANFIS models were con-
ducted to predict the fragmentation caused by blasting. In this
regard, six parameters were considered as input parameters,
and 80 data sets were collected from the Chadormalu iron
mine of Iran.

Principal components analysis (PCA) method concluded
that out of six addressed parameters, the spacing to burden
ratio, blastability index, and specific charge were the most
effective factors on the rock fragmentation in the Chadormalu
iron mine. According to the results obtained from this re-
search, the ANFIS is known to be a useful tool to predict rock
fragmentation which is one of the most important processes in
a mining operation. ANFIS can learn new patterns which had
not been previously available in the training datasets, and
when the knowledge is updated, the more training datasets
can be presented and processed. In this investigation,
Gaussian-type membership function with 30 nodes, 12 num-
bers of linear parameters, and 18 numbers of nonlinear pa-
rameters were developed.

Besides that, predictability by support vector regression
can be considered as an important tool to solve most scientific
problems. Also, the common effects of several parameters on

blasting results can be studied by performance of support
vector regression. ANFIS has been evaluated and compared
with simulation results of the support vector regression.
Achieved ANFIS and SVR models are exclusively related to
the Chadormalu iron mine, and in other cases, rather than this
mine, these results should be modified.
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