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A B S T R A C T   

Since excessive use of synthetic dyes has negative effects on human health, their determination in foodstuff is 
necessary. A sensitive sensor was developed based on copper BTC metal–organic framework (Cu-BTC MOF) and 
1-ethyl-3-methylimidazolium chloride as an ionic liquid (IL) in an attempt to modify the carbon paste electrode 
and to improve the active surface area and electric conductivity so that electron transfer is faster for electro 
analysis. For the first time, high sensitivity, excellent conductivity, and appropriate selectivity of the electro
chemical sensor have been evaluated as a new study for simultaneous determination of tartrazine, patent blue V, 
acid violet 7 and ponceau 4R. Excellent sensing performance of the proposed electrode was confirmed for patent 
blue V as an outstanding sensor, according to the low limit of detection of 0.07 µM, with a wide linear con
centration range of 0.08 to 900 µM and reasonable recovery. In order to characterize the electrochemical 
behavior of electrode, cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance 
spectroscopy are used. Various techniques such as scanning electron microscopy (SEM) with energy dispersive X- 
Ray analysis (EDX), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) are employed to 
verify the structure of copper BTC metal–organic framework. The results revealed close packing of hierarchically 
porous nanoparticles and crystal structure of Cu-BTC MOF, with the edge of each particle around 20–37 nm. The 
analytical performance of the suggested electrochemical sensor is acceptable in foodstuffs such as jellies, con
diments, soft drinks, and candies.   

1. Introduction 

Excessive consumption of synthetic dyes in foodstuffs like drinks, 
sweets and syrups is one of the most harmful threats to human health 
due to the presence of the azo compound (Bijad et al., 2017). This 
compound can cause adverse effects with the possibility of inducing 
cytotoxicity, toxicity, childhood hyperactivity, genotoxicity and even 
cancer (Zhang et al., 2015; Villasen, 1999; Akbarian et al., 2018; Bijad 
et al., 2017; Darabi & Shabani-nooshabadi, 2021; Ntrallou et al., 2020; 
Tahernejad-Javazmi et al., 2018, 2019; Villasen, 1999; Zhang et al., 
2014). The determination of synthetic dyes in food and drug products 
has become an analytical challenge due to their excessive consumption. 
Patent blue V is a triarylmethane dye generally used in food (drinks, ice- 
creams, sweets, yogurts, beverages, etc.) and cosmetics industries 

(Duman et al., 2020). The two inner salt forms (calcium and sodium), 
exist in the structure of patent blue V (Opinion, 2013) which can cause 
considerable problems and human sensitivity such as headache, asthma 
and allergic reactions. Up to now, many analytical methods such as gas 
chromatography, liquid chromatography, capillary electrophoresis, 
ultraviolet–visible spectroscopy, capillary electrophoresis, voltammetry 
and mass spectroscopy have been studied in order to analyze patent blue 
V in foodstuff and cosmetic products quantitatively (Beltran, 2000; 
Duman et al., 2020a; Özdemir & Akkan, 1999; Unsal et al., 2015; Vil
lasen, 1999; Yoshioka & Ichihashi, 2008). Apart from that, various 
combinations of other dyes such as tartrazine, acid violet 7, and ponceau 
4R, simultaneously used with patent blue V, are also common in food 
and cosmetic products. So far, various methods have been employed to 
determine these synthetic dyes with regard to the importance of 
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measuring and monitoring their uses together (Baytak et al., 2019; 
Krishnakumar & Swaminathan, 2011; Ma et al., 2018; Manjunatha, 
2018; Yoshioka & Ichihashi, 2008; Zhang et al., 2014; Zhang et al., 
2010; Qiu et al., 2016). 

Metal-organic frameworks (MOF) are a group of porous materials 
that possess crystalline infinitive networks obtained from the bonding of 
metal ions, which serve as coordination centers, with poly functional 
organic molecules (Doménech et al., 2007). With regard to their related 
unique characteristics (e.g. controllability, large specific surface area, 
high-porosity, high thermal stability, host–guest interaction and tunable 
functionalities) (Tu, Gao, et al., 2020; Tu, Xie, et al., 2020), they are 
vastly used in different applications such as gas storage/separation (Xue 
et al., 2019), drug delivery (Horcajada et al., 2010), catalysis (Cui et al., 
2015; Jiao et al., 2018), and sensing (Cao et al., 2019a; Li et al., 2018; 
Senthil Kumar et al., 2012). 

One of the most cited MOFs is Copper-1,3,5-benzenetricarboxylate 
(Cu-BTC), and each of its atoms is connected to 4 oxygen atoms from 
the BTC linker with great ability and high-porosity, which meaningfully 
increases the effective surface area of the electrode that is widely used in 
electrochemical studies (Cao et al., 2019a; Chong et al., 2016; Hu et al., 
2020; Shen et al., 2015; Song et al., 2018). 

Recently, room temperature ionic liquids (RTILs) have attracted a lot 
of attention in the many fields of analytical chemistry. Because of their 
unique properties like negligible vapor pressure, high chemical and 
thermal stability, good conductivity, and low toxicity, the ability of 
RTILs combined with carbon materials to form conductive composites 
makes it applicable in different electrochemical sensors electrodes. 
Here, as an ionic liquid, 1-ethyl-3-methylimidazolium chloride showed 
some advantages such as great electric conductivity and sensitivity, fast 
electron transfer and good antifouling capability for electroanalysis 
(Abo-Hamad et al., 2016; Liu et al., 2019; Ping et al., 2010; Ping, Wang, 
et al., 2011; Ping, Wu, et al., 2011). 

For the first time, the present study shows the synthesis and utili
zation of the hierarchically porous Cu-BTC MOF in order to make a 
unique and sensitive electrode and ionic liquid for carbon paste elec
trode modification (CPE) (Li et al., 2018). As an effective sensor, this 
new electrode showed high performance for simultaneous determina
tion of patent blue V, tartrazine, acid violet 7 and ponceau 4R, as four 
commonly employed dyes in foodstuffs such as drinks, jellies, candies 
and condiments with low detection limits, reasonable linear ranges, 
good reproducibility and favorable selectivity using voltammetry tech
nique for the first time. 

2. Experiments 

2.1. Materials and reagents 

Patent blue V, tartrazine, acid violet 7 and ponceau 4R were pur
chased from Sigma-Aldrich with 99% Purity. Phosphate buffer solutions 
(PBS) (0.1 M) using different amounts of 0.1 M sodium hydroxide 
aqueous solution were prepared for pH value adjusted. Doubly distilled 
water was applied for the preparation of all aqueous solutions. All other 
sample solutions and reagents were prepared of analytical grade. 
Chemical pure graphite powder and high viscous paraffin oil from Merck 
was employed for the fabrication of the working electrode. 

2.2. Apparatus 

All electrochemical investigations were assayed using a galvanostat/ 
potentiostat instrument (Autolab PGSTAT 302N) run with FRA 4.9 and 
GPES software. The autolab along with a 3-electrode cell assembly, 
including an Ag/AgCl/KClsat electrode, a platinum wire and a modified 
carbon paste electrode were applied as the reference electrode, the 
auxiliary electrode and the working electrode, respectively. X-ray 
powder diffraction studies were employed using a diffractometer with 
Cu–Ka radiation to characterize the Cu-BTC Metal-Organic frameworks 

and scanning electron microscope (SEM) images carried out on the 
Mira3Tescan SEM. 

2.3. Synthesis of Cu-BTC MOF 

The synthesis of Cu-BTC MOF was performed by dissolved 0.25 g of 
Cu(NO3)2⋅6H2O in approximately 7 mL of deionized water (A) and 0.25 
g of H3BTC in 7.1 mL of ethanol solution (B). The prepared solution A 
and B were mixed and take place at 423 K in the Teflon autoclave for one 
day. The blue powder obtained product was achieved by centrifugation 
and washed with water and DMF several times. Then for further use, the 
product was dried under vacuum at 353 K for one day (Li et al., 2018). 

2.4. Fabrication of modified electrodes 

The carbon paste electrode modified by 1-ethyl-3-methylimidazo
lium chloride and Cu-BTC MOF (IL/Cu-BTC MOF/CPE) as a proposed 
modified sensor was fabricated by a combination of graphite-powder 
(0.9 gr) and Cu-BTC MOF (0.1 gr), along with an appropriate value of 
paraffin-oil (~75:25 %w/w). Afterwards, the ionic liquid (0.1 gr) was 
added, and mixed well and then it was packed into a glass tube. A copper 
wire selected to electrical contact with the mixture and polished it on a 
paper for make a new surface of modified electrode. 

2.5. Analytical method 

Soft drink, jellies, candies and condiments were obtained from local 
shops and employed as actual-samples. Their obtained solutions were 
diluted in 10 mL phosphate buffer (pH 7.0). The achieved solutions were 
employed to analyze the patent blue V, tartrazine, acid violet 7 and 
ponceau 4R. The real-sample solutions were analyzed and determined 
by differential pulse voltammetry (DPV) under the optimum settings. 

3. Results and discussion 

3.1. Cu-BTC MOF characterization 

The SEM analysis, XRD, EDAX, and FTIR spectroscopy was explored 
to assess the composition and the structure of the prepared Cu-BTC MOF. 
Fig. 1A and B illustrated the SEM images of Cu-BTC MOF with uniform 
decoration and the close packing of high- dispersive, hierarchically 
porous nanoparticles and crystal structure (Cao et al., 2019a; Cao 
et al.,2019b; Duan et al., 2019; Shen et al., 2015; Song et al., 2018). The 
length of each octahedral edge was found around 20–37 nm. The XRD 
pattern which is presented in Fig. 1C, confirmed the pure morphology of 
Cu-BTC MOF phase with the crystal structure along with characteristic 
peaks, which were referred to (200), (220), (222), (400), (331), 
(333), (420), and (442) of the Cu-BTC MOF structure and verified the 
Cu-BTC MOF has been successfully synthesized and rendered a good 
crystalline phase. The observed peak at 11.76◦ (highest intensity peak) 
was related to the high degree of crystallinity of the product. The 
attained results from EDAX Fig. 1D, shown peaks related to the elements 
presence of carbon, oxygen, and copper, accordingly confirming the 
synthesis of Cu-BTC MOF. According to FT-IR results (Fig. 1E), we could 
clearly detect the functional groups and the molecular structure. The 
band at about 484, 727 cm− 1, the minor peaks between 660 and 760 
cm− 1, the bands from 800–1100, 1375, 1442 and 1645, and 3426 cm− 1 

ascribed to the Cu–O, the bending vibration of the aromatic ring, 
stretching vibrations of C–O and O–C––O, the vibrations of carbox
ylate group of Cu-BTC, water coordinated within the Cu-MOF frame
work, the adsorbed-H2O and OH group in the Cu-BTC MOF, respectively 
and the observed peak at 1720 cm− 1, it was because of the presence of 
benzenetricarboxylic acid in the the Cu-BTC framework (Nivetha et al., 
2020). 
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Fig. 1. A, B) SEM image of Cu-BTC MOF, C) XRD, D) EDX patterns, and E) FT-IR spectra patterns of Cu-BTC MOF synthesized in this work.  
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3.2. Electrochemical analyses 

The cyclic voltammetry of patent blue V (500 μM) at the surfaces of 
different electrodes was performed in pH 7 (PBS 0.1 M) with a scan rate 
of 50 mV s− 1. Fig. 2 describes the cyclic voltammetry curves of the CPE 
(Curve a), Cu-BTC MOF/CPE (Curve b), IL/CPE (Curve c) and IL/ Cu- 
BTC MOF /CPE (Curve d) as an irreversible signal. After modifying 
the electrode with Cu-BTC MOF, the peak current increased because of 
excellent conductivity and high-porosity of nanoparticles, increase in 
the effective surface area of the electrode and ionic liquid due to great 
electric conductivity and ability to transfer electron fast. However, in the 
case of IL/ Cu-BTC MOF /CPE (Curve d), the peak current was larger 
than that for the bare carbon paste electrode. According to the results, 
the presence of both Cu-BTC MOF and ionic liquid cause a significant 
increase in the oxidation peak current of modified electrode IL/ Cu-BTC 
MOF /CPE around 0.88 mV with a peak current of 140 μA. The oxidation 
currents of IL/CPE, Cu-BTC MOF/CPE, and CPE are about 116, 85, 51 
μA, respectively, in the same condition. The results demonstrated that 
the attendance of Cu-BTC MOF along with IL had a significant 
improvement in the current response because of the outstanding char
acteristics used to modify the electrode compared to CPE. 

In order to investigate the pH influence, the phosphate buffer solu
tions were used in different pH values (3.0–9.0). Fig. S1 indicates the pH 

value of the supporting electrolyte with a considerable effect on the peak 
potential of the oxidation of patent blue V. With an increase in the pH, 
the peak potential (Ep) was shifted to more negative potentials. By 
considering the results, pH 7.0 was chosen for all the experiments. As a 
result, there was a linear relationship between the oxidation peak po
tential and the pH of the solution with a slope of − 26.1 mV and R2 =

0.991; therefore, it can be concluded that the mechanism of oxidation 
was performed by two electrons and one proton. 

The impact of the scan rate on the peak potential (Ep) and peak 
current (ip) of 500 μM of patent blue V was investigated in the range of 
10–150 mVs− 1 at the IL/ Cu-BTC MOF /CPE electrode surface (Fig. S2). 
The results confirmed that there was a linear relationship between the 
peak current electro-oxidation of patent blue V and the square root of 
scan rate (ν1/2) (R2 = 0.9927) (Fig. S2-A). Therefore, oxidation of patent 
blue V was accrued under a diffusion-controlled process. As can be seen, 
there was a negative peak potential shift with an increase in the scan 
rate, which confirmed the irreversibility of the electrochemical reaction 
(Fig. S2-B). Furthermore, by considering the Tafel plot (Fig. S2-C) with 
the slope equal to 2.3RT/n (1-α) F, the electron transfer coefficient (α) 
was calculated approximately 0.86. 

Chronoamperometric signals (Fig. S3) were performed using IL/ Cu- 
BTC MOF /CPE by setting the working electrode potential at about 0.8 V 
vs. Ag/AgCl/KClsat for various concentrations of patent blue V in the 
buffer solutions, pH 7.0. According to the Cottrell equation (I =

nFAD1/2Cbπ− 1/2t− 1/2), the value of diffusion coefficient (D) was found to 
be 0.56 × 10-8 (A = 0.40 cm2, n = 2, and F = 96485C mol− 1). The 
electrooxidation was under diffusion control with a linear relation be
tween current response of 100, 200, 300, and 400 μM of patent blue V 
and t− 1/2 in pH 7.0. 

For electrochemical impedance spectroscopy (EIS), investigation of 
Nyquist-diagrams (the imaginary impedance (Zim) vs. real impedance 
(Zre)) was shown in Fig. 3A. They were obtained at different electrodes 
of CPE (a); Cu-BTC MOF /CPE (b); IL/CPE (curve c), and IL/ Cu-BTC 
MOF /CPE (d) in the presence of 0.5 mM [Fe(CN)6]3− /4− in 0.1 M 
KCl, pH 7.0, respectively. By comparing different electrodes, the values 
of the charge transfer resistance (Rct) were calculated to be 617, 471, 
261, 116 ohm for CPE, Cu-BTC MOF /CPE, IL/CPE and IL/ Cu-BTC MOF 
/CPE, respectively (Fig. 3B). All these results confirmed that the syner
gistic effect of Cu-BTC MOF and the employed ionic liquid in the 
modified electrode were important due to their properties such as in
crease in the conductivity of the electrode and the improved electron 
transfer. 

The differential pulse voltammetry (DPV) was employed to explore 
the sensitivity of IL/ Cu-BTC MOF /CPE for analysis of patent blue V 
(Fig. 4). The obtained plot of peak current vs. different concentrations 
included two distinct linear ranges with different slopes of 1.19 and 
0.016 μM in the concentration ranges of 0.08–10 and 10–900 μM, 
respectively. The limit of detection (LOD) was calculated to be 0.07 μM 
by using equation 3σ/m, where σ was the standard deviation of the 
blank and m illustrated the slope of the calibration curve. According to 
the results, the linear range, RSD and limit of detection for patent blue V 
obtained in this work are comparable to those of pervious works 
(Table S2) (Beltran, 2000; Desimoni et al., 2006; Duman et al., 2020b; 
Unsal et al., 2015; Yoshioka & Ichihashi, 2008). 

As the main object of this work, in order to investigate the ability of 
IL/ Cu-BTC MOF /CPE as a newly proposed sensor, simultaneous 
determination of some other dyes including tartrazine, acid violet 7 and 
ponceau 4R was performed by altering the concentration of these food 
dyes on-pot (Fig. 5). The obtained results indicated well-defined current 
peaks at potentials of 0.53, 0.62, 0.80 and 0.96, referring to the oxida
tion of tartrazine, acid violet 7, patent blue V and ponceau 4R, respec
tively, and demonstrating the possibility of one-pot oxidation processes. 
According to the obtained results, it can be claimed that the proposed 
sensor for simultaneous determination of these four food dyes was 
conceivable. 
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Fig. 2. A) Cyclic voltammograms of a) CPE, b) Cu-BTC MOF, c) IL/CPE, and d) 
IL/Cu-BTC MOF/CPE in the presence of 500 μM patent blue V at pH 7.0, 
respectively. B) The current density derived from cyclic voltammogram re
sponses of 500 μM patent blue V at pH 7.0 at the surface of different electrodes. 
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3.3. Interference study 

The effect of different foreign species was investigated under opti
mum condition along with 50 μM of patent blue V at pH 7.0. For this 
purpose, the common substances found with patent blue V, tartrazine, 
acid violet 7 and ponceau 4R in foodstuff such as Na+, K+, Zn2+, Cu2+, 
Ca2+, NO2

− , Cl− , SO4
2− , CO3

2− and glucose were investigated. Ac
cording to the obtained results (Table S1), the concentration of at least 
500 times of these interfering compounds has no critical influence on 
determination of these dyes. The results confirming the selectivity of the 
proposed sensor in the current work. 

3.4. Stability and reproducibility 

In order to investigate the stability and reproducibility of IL/Cu-BTC 
MOF /CPE, cyclic voltammetry was applied for the determination of 
patent blue V. The relative standard deviation (RSD%) for ten successive 
assays was 0.97%, and the value of RSD% was calculated 1.13 by using 

seven different electrodes. The results confirm that IL/Cu-BTC MOF/ 
CPE has high stability and good reproducibility for determining of pat
ent blue V. 

3.5. Real sample analysis 

The proposed method was used to analytical applicability of IL/Cu- 
BTC MOF/CPE in real samples such as soft drinks, condiments, jellies 
and candies. The real samples containing mentioned food dyes, were 
prepared separately. The attained results were compared to the actual 
values described by manufacturer and expressed good agreement with 
the actual values of the four colorants. After spike the specific amount of 
dyes according to Table 1, the results repeated four times and then the 
standard-addition method was applied for determination of these dyes 
in foodstuff ((Âx ± ts̅̅̅

N
√ ) which, ‾x is the average concentration of ana

lytes, t, is confidence level, s, is standard deviation and N, is the number 
of results replication). The analysis of the oxidation peak current for four 
dyes has been shown the recovery was between 85% and 98% for soft 
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drinks, 82% to 108% for condiments, 94% to 110% for jellies and 94% to 
110% for candies. The outstanding recovery values and sensitivity of the 
selected samples affirmed that the IL/ Cu-BTC MOF /CPE sensor can be 
effectively employed in the analysis of these dyes in foodstuff (Table 1). 

4. Conclusion 

In this work, a novel and high sensitive electrochemical sensor based 

on Cu-BTC MOF and 1-ethyl-3-methylimidazolium chloride as an ionic 
liquid (IL) in an attempt to modify the carbon paste electrode have been 
investigated for simultaneous determination of four common food dyes, 
patent blue V, acid violet 7, tartrazine and ponceue 4R for the first time. 
The modified electrode exhibits high selectivity and sensitivity with a 
low detection limit for simultaneous determination of these dyes. Under 
the optimized conditions, a low detection limit of 0.07 µM, with a wide 
linear concentration range 0.08 to 900 µM was obtained compared to 
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other electrochemical methods. On the other hand, some kinetic and 
thermodynamic parameters were investigated by electrochemical 
methods (α = 0.86 and D = 0.56 × 10-8). This work reveals that IL/Cu- 
BTC MOF/CPE could be a favorable and promising sensor, which may 
have wide potential applications in some selected food products with 
satisfactory recovery. The reproducibility and stability of the electrode 
was investigated, affirming the successfully proposed sensor. According 
to our knowledge, it was the first time simultaneous determination of 
four food dyes that using Cu-BTC MOF and ionic liquid to fabricate the 
electrode with high ability in the developed method. 
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Baytak, A. K., Akbaş, E., & Aslanoglu, M. (2019). A novel voltammetric platform based 
on dysprosium oxide for the sensitive determination of sunset yellow in the presence 
of tartrazine. Analytica Chimica Acta, 1087, 93–103. https://doi.org/10.1016/j. 
aca.2019.08.055. 

Beltran, J. L. (2000). Determination of dyes in foodstuffs by capillary zone 
electrophoresis. 898, 271–275. 

Bijad, M., Karimi, H., Mohammad, M., Seyed, F., & Shahidi, A. (2017). An 
electrochemical-amplified-platform based on the nanostructure voltammetric sensor 
for the determination of carmoisine in the presence of tartrazine in dried fruit and 
soft drink samples. 0123456789. doi:10.1007/s11694-017-9676-1. 

Cao, Y., Wang, L., Shen, C., Wang, C., Hu, X., & Wang, G. (2019a). An electrochemical 
sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate 
determination. Sensors and Actuators, B: Chemical, 283(November 2018), 487–494. 
https://doi.org/10.1016/j.snb.2018.12.064. 

Cao, Y., Wang, L., Shen, C., Wang, C., Hu, X., & Wang, G. (2019b). An electrochemical 
sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate 
determination. Sensors and Actuators, B: Chemical, 283(March 2018), 487–494. 
https://doi.org/10.1016/j.snb.2018.12.064. 

Chong, X., Kim, K.-J., Li, E., Zhang, Y., Ohodnicki, P. R., Chang, C.-H., et al. (2016). Near- 
infrared absorption gas sensing with metal-organic framework on optical fibers. 

Sensors and Actuators, B: Chemical, 232, 43–51. https://doi.org/10.1016/j. 
snb.2016.03.135. 

Cui, L., Wu, J., Li, J., & Ju, H. (2015). Electrochemical sensor for lead cation sensitized 
with a DNA functionalized porphyrinic metal-organic framework. Analytical 
Chemistry, 87(20), 10635–10641. https://doi.org/10.1021/acs.analchem.5b03287. 

Darabi, R., & Shabani-nooshabadi, M. (2021). NiFe 2 O 4 -rGO/ionic liquid modified 
carbon paste electrode : An amplified electrochemical sensitive sensor for 
determination of Sunset Yellow in the presence of Tartrazine and Allura Red. Food 
Chemistry, 339(April 2020), 127841. https://doi.org/10.1016/j. 
foodchem.2020.127841. 

Desimoni, E., Brunetti, B., & Cosio, M. S. (2006). (Beltran, 2000; Duman et al., 2020b; 
Unsal et al., 2015). the. Electroanalysis, 18(3), 231–235. doi:10.1002/ 
elan.200503388. 
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