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ON SPECTRUM OF I-GRAPHS AND ITS ORDERING WITH
RESPECT TO SPECTRAL MOMENTS

FATEMEH TAGHVAEE - ALI REZA ASHRAFI

Suppose G is a graph, A(G) its adjacency matrix, and µ1(G)≤ µ2(G)

≤ ·· · ≤ µn(G) are eigenvalues of A(G). The numbers Sk(G) =
n

∑
i=1

µ
k
i (G),

0 ≤ k ≤ n− 1 are said to be the k−th spectral moment of G and the
sequence S(G) = (S0(G),S1(G), · · · ,Sn−1(G)) is called the spectral mo-
ments sequence of G. For two graphs G1 and G2, we define G1 ≺S G2, if
there exists an integer k, 1≤ k≤ n−1, such that for each i, 0≤ i≤ k−1,
Si(G1) = Si(G2) and Sk(G1)< Sk(G2).

The I−graph I(n, j,k) is a graph of order 2n with the vertex and edge
sets

V (I(n, j,k)) = {u0,u1, . . . ,un−1,v0,v1, . . . ,vn−1},
E(I(n, j,k)) = {uiuu+ j,uivi,vivi+k ; 0≤ i≤ n−1},

respectively. The aim of this paper is to compute the spectrum of an
arbitrary I−graph and the extremal I−graphs with respect to the S−order.

1. Introduction

In this section we recall some definitions that will be used in the paper. All
graphs considered here are simple and undirected, without loops or multiple
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edges. The symbols Pn, Cn, Sn and Un stand for the path of length n, the cycle of
size n, the star graph on n vertices and a graph obtained from Cn−1 by attaching a
leaf to one of its vertices, respectively. Our undefined terminology and notation
can be found in [3].

Suppose G is a graph with adjacency matrix A(G) and µ1(G) ≤ µ2(G) ≤
·· · ≤ µn(G) are eigenvalues of A(G). The numbers Sk(G) = ∑

n
i=1 µk

i (G), 0 ≤
k ≤ n−1, are said to be the k−th spectral moment of G. The sequence S(G) =
(S0(G),S1(G), · · · ,Sn−1(G)) is called the spectral moments sequence of G. It is
well-known that S0 = n, S1 = 0, S2 = 2m and S3 = 6t, where n, m and t denote
the number of vertices, edges and triangles, respectively [3]. Suppose G1 and
G2 are graphs. If there exists an integer k, 1 ≤ k ≤ n− 1, such that for each i,
0 ≤ i ≤ k− 1, Si(G1) = Si(G2) and Sk(G1) < Sk(G2) then we write G1 ≺S G2.
If for each i,0 ≤ i ≤ n−1, Si(G1) = Si(G2) then we shall write G1 =S G2. We
shall also write G1 �S G2 if G1 ≺S G2 or G1 =S G2. Let G1 and G2 be two sets
of graphs. We write G1 ≺S G2 if G1 ≺S G2 for each G1 ∈ G1 and each G2 ∈ G2.
Suppose F and G are graphs. An F−subgraph of G is a subgraph isomorphic to
the graph F . The number of all F-subgraphs of G is denoted by φG(F) or φ(F)
for short.

The generalized Petersen graph GP(n,k) is a graph with vertices and edges
given by

V (GP(n,k)) = {ai,bi | 1≤ i≤ n},
E(GP(n,k)) = {aibi,aiai+1,bibi+k | 1≤ i≤ n}

respectively, where i+k are integers modulo n, n > 6. Since GP(n,k)∼= GP(n,n
−k), we can assume that k ≤ b n−1

2 c. The I−graph I(n, j,k) has

V (I(n, j,k)) = {u0,u1, . . . ,un−1,v0,v1, . . . ,vn−1},
E(I(n, j,k)) = {uiui+ j,uivi,vivi+k ; 0≤ i≤ n−1}.

as vertices and edges, respectively. Since I(n, j,k) = I(n,k, j), we have j ≤ k
or k ≤ j. Since I(n,1,k) = GP(n,k), the class of I−graphs contains the class of
generalized Petersen graphs.

Following Boben et al. [1], we draw the vertices of an I−graph on two
concentric circles, vertices ui on one circle and vertices vi on another circle.
We call the vertices on these two circles the vertices on the outer rim and the
vertices on the inner rim. Edges between the two rims are called spokes. A
proper I−graph is a connected I−graph which is not isomorphic to a generalized
Petersen graph. The smallest proper I−graphs are I(12,2,3) and I(12,3,4) that
are depicted in [1, Figure 1].
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In [4], Cvetković and Rowlinson obtained the first and the last graphs in
an S−order, in the classes of trees and unicyclic graphs with a given girth, re-
spectively. In [2], the authors continued the pioneering work of Cvetković and
Rowlinson to compute the last d + bd

2c−2 in the S−order, among all unicyclic
graphs of order n and diameter d. In [9], the present authors computed the last
third graphs in the S−order, among all generalized Petersen graphs. The aim of
this paper is to generalize our earlier results to I−graphs. It is merit to mention
here that a result of Gera and Stănică regarding the eigenvalues of generalized
Petersen graphs [5] and another result of Hu et al. [6, Lemma 2.3] on computing
the k− th, 4≤ k≤ 8, spectral moment of an arbitrary graph G are critical in our
work. We encourage the interested readers to also consult [7, 8, 10] for more
information on this topic.

2. Main Results

In this section, we find our description for the spectrum of I-graphs I(n, j,k).
Let A(I(n, j,k)) be the adjacency matrix of I(n, j,k). An n×n matrix is called
circulant, if it has the following form:

circ(s1,s2, . . . ,sn) =


s1 s2 . . . sn

sn s1 . . . sn−1
...

...
...

...
s2 s3 . . . s1


For the sake of completeness, we mention here two results of [1] which are

used later.

Theorem 2.1. ([1, Proposition 1]) The I-graph I(n, j,k) is connected if and only
if gcd(n, j,k) = 1. If gcd(n, j,k) = d > 1, then this graph consist of d copies of
I( n

d ,
j
d ,

k
d ).

Theorem 2.2. ([1, Theorem 2]) A connected graph I(n, j,k) is bipartite, if and
only if n is even and j and k are odd.

Lemma 2.3. The adjacency matrix of the I(n, j,k) has the block form

A(I(n, j,k)) =
[

Cn
j In

In Cn
k

]
,

where In is the n×n identity matrix, Cn
k and Cn

j are circulant matrices, with

Cn
k = circ(0,0, . . . ,0︸ ︷︷ ︸

k times

,1,0,0, . . . ,0,1,0,0, . . . ,0︸ ︷︷ ︸
k−1 times

),

Cn
j = circ(0,0, . . . ,0︸ ︷︷ ︸

j times

,1,0,0, . . . ,0,1,0,0, . . . ,0︸ ︷︷ ︸
j−1 times

)
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being the adjacency matrix for inner rim and outer rim, respectively.

Proof. Let gcd(n, j) = d and gcd(n,k) = d′. If d,d′ = 1, then there is a cycle
with n vertices in outer and inner rims. If d,d′ > 1, then the outer rim whose
adjacency matrix is Cn

j has d connected components each of which is isomorphic
to a cycle graph with n

d vertices and the inner rim whose adjacency matrix is Cn
k

has d′ connected components each of which is isomorphic to a cycle graph with
n
d′ vertices. It is clear that the adjacency matrix depends on the labeling of the
graph. We label the graph I(n, j,k) in the following manner: the vertices of the
outer rim are consecutively labeled by i, i+ k, i+2k, . . . and the vertices of the
inner rim are labeled by i, i+ j, i+2 j, . . .. All of labels are computed modulo
n. Notice that the vertex u0 is adjacent to the vertices u j, un− j and v0 in inner
and outer rims, respectively. On the other hand, the vertex v0 is adjacent to the
vertices vk, vn−k and u0 in outer and inner rims, respectively. Therefore,

Cn
k = circ(0,0, . . . ,0︸ ︷︷ ︸

k times

,1,0,0, . . . ,0,1,0,0, . . . ,0︸ ︷︷ ︸
k−1 times

),

Cn
j = circ(0,0, . . . ,0︸ ︷︷ ︸

j times

,1,0,0, . . . ,0,1,0,0, . . . . ,0︸ ︷︷ ︸
j−1 times

),

which complete the proof.

Lemma 2.4. The eigenvalues of circulant matrix Cn
j associated to the inner rim

and the circulant matrix Cn
k associated to the outer rim can be calculated as

λr = 2cos(2π jr
n ) and µr = 2cos(2πkr

n ), respectively.

Proof. The proof follows from this fact that the eigenvalues and eigenvectors of
the cycle graph Cn are αr = 2cos(2πr

n ) and vr = (1,εr
n, ...,ε

(n−1)r
n )t , respectively.

We are now ready to state one of our main theorem as follows:

Theorem 2.5. The eigenvalues of I(n, j,k) are all roots of the quadratic equa-
tion

ρ
2− (λr +µr)ρ +µrλr−1 = 0,

where λr = 2cos(2π jr
n ) and µr = 2cos(2πkr

n ), 0 ≤ r ≤ n−1, are eigenvalues of
C j and Ck, respectively.

Proof. Suppose d = gcd(n,k) and d′ = gcd(n, j). We first consider the case that
d = d′ = 1. In this case, Cn

k and Cn
j are the adjacency matrices of a cycle with n

vertices, and so they are similar to Cn. This means that there are two permutation
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matrices P and Q such that P−1Cn
k P =Cn and Q−1Cn

j Q =Cn. Hence, Cn
k and Cn

j
are containing the same eigenvalues and eigenvectors. Define λr and µr to be
the eigenvalues corresponding to the eigenvector vr = (1,εr

n, · · · ,ε
(n−1)r
n )t . We

are looking for an eigenvector for A(I(n, j,k)) of the form wr = (arvr,brvr)
t ,

0≤ r ≤ n−1, where ar and br are appropriate multipliers. To do this, we have
to find a number ρ depending on r such that[

Cn
j In

In Cn
k

][
arvr

brvr

]
= ρ

[
arvr

brvr

]
Therefore, arvrCn

j +brvr = ρarvr and arvr +brCn
k vr = ρbrvr. This implies that{

arλrvr +brvr = ρarvr

arvr +µrbrvr = ρbrvr
and so

{
ar(ρ−λr)vr = brvr

br(ρ−µr)vr = arvr
.

Thus, (ρ − λr)(ρ − µr) = 1. We now consider the case of d,d′ > 1. The
eigenvectors wr must be the form wr = (a1v′r, . . . ,adv′r,b1v

′′
r , . . . ,bd′v

′′
r)

t , where

v′r = (1,εr
n, . . . ,ε

(n′−1)r
n )t , v

′′
r = (1,εr

n, . . . ,ε
(n
′′−1)r

n )t , n′ = n
d and n

′′
= n

d′ . So, we
have:

[
Cn

j In

In Cn
k

]


a1v′r
...

adv′r
b1v

′′
r

...
bd′v

′′
r


= ρ



a1v′r
...

adv′r
b1v

′′
r

...
bd′v

′′
r


.

Therefore,{
Cn

j (a1 + . . .+ad)v′r +(b1 + . . .+bd′)v
′′
r = ρ(a1 + . . .+ad)v′r

(a1 + . . .+ad)v′r +Cn
k (b1 + . . .+bd′)v

′′
r = ρ(b1 + . . .+bd′)v

′′
r

,

which concludes that (ρ−λr)(ρ−µr) = 1.
Next suppose that d > 1 and d′ = 1. Then wr must have the form wr =

(a1v′r, . . . ,adv′r,vr)
t , where vr = (1,εr

n, . . . ,ε
(n−1)r
n )t , v

′
r = (1,εr

n, . . . ,ε
(n
′−1)r

n )t

and n′ = n
d . Then a similar system to the two above cases will be obtained

and finally we have ρ2− (λr +µr)ρ +µrλr−1 = 0.

Corollary 2.6. The eigenvalues of I(n, j,k) are given by

cos
(

2π jr
n

)
+ cos

(
2πkr

n

)
±

√(
cos
(

2π jr
n

)
− cos

(
2πkr

n

))2

+1,

0≤ r ≤ n−1.
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We now represent the spectral moments of I(n, j,k) by using of their eigen-
values. It is well-known that the k− th spectral moment of G is equal to the
number of closed walks of length k. The following result will be used in com-
puting the spectral order of I−graphs.

Lemma 2.7. (See [6, 8]) For every graph G, we have:

(1) S4(G) = 2φ(P2)+4φ(P3)+8φ(C4),

(2) S5(G) = 30φ(C3)+10φ(H1)+10φ(C5),

(3) S6(G) = 2φ(P2)+12φ(P3)+6φ(P4)+12φ(S4)+12φ(H2)

+ 36φ(H3)+24φ(H4)+24φ(C3)+48φ(C4)+12φ(C6),

(4) S7(G) = 126φ(C3)+84φ(H1)+28φ(H7)+14φ(H5)

+ 14φ(H6)+112φ(H3)+42φ(H15)+28φ(H8)

+ 70φ(C5)+14φ(H18)+14φ(C7).

Lemma 2.8. The spectral moments S2(I(n, j,k)) and S3(I(n, j,k)) can be com-
puted by the following formulas:

S2(I(n, j,k)) = 6n and S3(I(n, j,k)) =


4n 3 | n, k = j = n

3 ,
2n 3 | n, j = n

3 or k = n
3 ,

0 Otherwise

Proof. It is easy to see that |E(I(n, j,k))| = 3n. Therefore, S2(I(n, j,k)) = 6n.
Suppose 3 | n and k = j = n

3 . Then uiui+ n
3
ui+ 2n

3
ui is a triangle in inner rim. Also

vivi+ n
3
vi+ 2n

3
vi is a triangle in outer rim. Thus t = 2n

3 and so, S3(I(n, n
3 ,

n
3)) = 4n.

If j = n
3 and k 6= n

3 , then there is only one of the triangle for any vertex and so
t = n

3 . Thus, S3(I(n, j, n
3)) = 2n. Otherwise, there are not any cycle of length 3

in I(n, j,k) and so S3(I(n, j,k)) = 0.

Lemma 2.9. The spectral moment S4(I(n, j,k)) is computed by the following
formula:

S4(I(n, j,k)) =


38n k = j
42n 4 | n, k = j = n

4
32n 4 | n, j = n

4 or k = n
4

30n Otherwise

.

Proof. We first assume that j = k. Choose vertices ui in the inner rim and vi in
the outer rim. Then uivivi+kui+kui is a quadrangle and so φ(C4) = n. On the other
hand, there exists a path of length 3 corresponding to each pair of edges attached
to a vertex. Hence, φ(P3) = 6n, φ(P2) = 3n. Thus, S4(I(n,k,k)) = 6n+24n+8n
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= 38n. We now assume that k = j = n
4 . Then, uiui+ n

4
ui+ n

2
ui+ 3n

4
ui is a quadrangle

in the inner rim and vivi+ n
4
vi+ n

2
vi+ 3n

4
vi is a quadrangle in the outer rim. Since

j = k, uivivi+kui+kui is a quadrangle in I(n, j,k). Therefore, φ(C4) = n
4 +

n
4 +n

= 3n
2 , and so S4(I(n, n

4 ,
n
4)) = 6n+24n+12n = 42n. Let j = n

4 and k 6= n
4 . Then,

φ(C4) = n
4 , and so S4(I(n, n

4 ,k)) = 6n+ 24n+ 2n = 32n. Otherwise, φ(C4) =0,
φ(P3) = 6n and φ(P2) = 3n. Therefore S4(I(n, j,k)) = 30n.

Lemma 2.10. The spectral moment S5(I(n, j,k)) is computed by the following
formula:

S5(I(n, j,k)) =



4n (5 | n, k = j = n
5) or (5 | n, k = j = 2n

5 )

2n (5 | n, j = n
5 ,k /∈ {n

5 ,
2n
5 }) or (5 | n, j = 2n

5 ,k /∈ { n
5 ,

2n
5 })

10n (k = 2 j, j /∈ {n
5 ,

n
3}) or (2 | n, j = 2r,k = n

2 − r)
or (2 - n, j = 2r+1,k = n−1

2 − r; r > 1)
60n 3 | n, k = j = n

3
20n 3 | n, k = n

3 , j /∈ { n
3 ,

n
6 ,

n
5 ,

2n
5 }

22n (15 | n, j = n
3 and k = n

5 or k = n
3 and j = 2n

5 )

24n 5 | n,k = n
5 , j = 2n

5
30n 6 | n,k = n

3 , j = n
6 and j,k /∈ { n

5 ,
2n
5 }

12n 10 | n, j = n
10 , k = n

5
0 Otherwise

.

Proof. We first consider the case that 5 | n and j = k = n
5 . Then for each vertex

ui in the inner rim and each vertex vi in the outer rim, uiui+ n
5
ui+ 2n

5
ui+ 3n

5
ui+ 4n

5
ui

and vivi+ n
5
vi+ 2n

5
vi+ 3n

5
vi+ 4n

5
vi are two pentagons in the inner and outer rims, re-

spectively. Thus, φ(C5) = n
5 +

n
5 = 2n

5 . Since I(n, j,k) does not have a triangle,
φ(C3) = φ(H1) = 0, and so S5(I(n, n

5 ,
n
5)) = 4n. Similarly, if j = k = 2n

5 , then
uiui+ 2n

5
ui+ 4n

5
ui+ 6n

5
ui+ 8n

5
ui and vivi+ 2n

5
vi+ 4n

5
vi+ 6n

5
vi+ 8n

5
vi are pentagons in I(n, j,k).

Thus, φ(C5) = n
5 +

n
5 = 2n

5 and S5(I(n, 2n
5 ,

2n
5 )) = 4n.

Suppose j = n
5 and k /∈ { n

5 ,
2n
5 }. Then φ(C5) = n

5 and so S5(I(n, n
5 ,k)) =

2n. Similarly, S5(I(n, 2n
5 ,k)) = 2n. We now assume that k = 2 j and j /∈ { n

3 ,
n
5}.

Hence for each vertex vi, vivi+ jvi+2 jui+2 juivi is a pentagon in I(n, j,k), and so
φ(C5) = n. Thus, S5(I(n, j,2 j)) = 10n. Let r ≥ 1 be an integer. Choose an
arbitrary vertex vi. If (2|n, j = 2r, k = n

2 − r) or (2 - n, j = 2r+1, k = n−1
2 − r),

then vivi+ jui+ jui+ j+kui+ j+2kvi is a pentagon in I(n, j,k). Thus, φ(C5) = n and
S5(I(n, j,k)) = 10n.

Suppose that 3|n and j = k = n
3 . Then φ(C3) = 2n

3 and φ(H1) = 2n. Also for
each vertex vi, vivi+ n

3
ui+ n

3
ui+ 2n

3
uivi and vivi+ n

3
ui+ n

3
ui+ 2n

3
vi+ 2n

3
vi are pentagons in

I(n, j,k). So, φ(C5) = 2n and therefore, S5(I(n, n
3 ,

n
3)) = 20n+20n+20n = 60n.
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Let 3|n, k = n
3 and j /∈ { n

3 ,
n
6 ,

n
5 ,

2n
5 }. Then it is easy to see that φ(C3) = n

3 ,
φ(H1) = n and φ(C5) = 0. Thus S5(I(n, j, n

3)) = 20n.
If 15|n, ( j = n

3 and k = n
5 ) or ( j = n

3 and k = 2n
5 ), then φ(C3) = n

3 , φ(H1) =
n and φ(C5) = n

5 . Therefore, S5(I(n, n
3 ,

n
5)) = 10n+ 10n+ 2n = 22n. Let 5 | n,

k = n
5 and j = 2n

5 . Then φ(C5) = 12n
5 and so S5(I(n, n

5 ,
2n
5 )) = 24n.

If 6 | n, k = n
3 and j = n

6 , then φ(C5) = n, φ(C3) = n
3 and φ(H1) = n. This

implies that S5(I(n, n
3 ,

n
6)) = 30n. Let 10 | n, k = n

10 and j = n
5 , then φ(C5) = 6n

5
and so S5(I(n, n

5 ,
n

10)) = 12n. Otherwise, φ(C5) =0, φ(C3) = 0 and φ(H1) = 0.
Therefore S5(I(n, j,k)) = 0. This completes the proof.

Lemma 2.11. The spectral moment S6(I(n, j,k)) is computed by the following
formula:

S6(I(n, j,k)) =



282n j = k, k /∈ {n
3 ,

n
4 ,

n
6}

286n (6 | n,k = j = n
6) or (3 | n,k = j = n

3)
366n 4 | n, k = j = n

4
200n (12 | n,k = n

3 , j = n
4) or (12 | n,k = n

6 , j = n
4)

190n 6 | n, k = n
3 , j = n

6
186n (k = 3 j, j /∈ { n

3 ,
n
6 ,

n
4}) or (2 | n,k = n

2 − j)
176n (6 | n, j = n

6 ,k /∈ { n
6 ,

n
3 ,

n
4},n 6= 18)

or(3 | n, j = n
3 ,k /∈ { n

3 ,
n
6 ,

n
4})

198n (4 | n, j = n
4 ,k /∈ {n

4 ,
n
6},n 6= 12)

or (5 | n, j = n
5 ,k =

2n
5 ) or (10 | n,k = 3 j, j = n

10)
188n (6 | n,k = n

3 , j = n
9) or (6 | n,k = n

6 , j = n
18)

210n 4 | n,k = n
4 , j = n

12
174n Otherwise

.

Proof. It is easy to see that φ(P4) = 12n, φ(S4) = 2n and φ(H3) = φ(H4) = 0.
We first assume that j = k. Then φ(C4) = n and φ(H2) = 4n. Also for each
vertex vi, viuiui+ jui+2 jvi+2 jvi+ jvi is a hexagon in I(n, j,k). Thus φ(C6) = n and
S6(I(n, j, j)) = 6n+72n+72n+24n+48n+48n+12n = 282n.

Suppose 6 | n and j = k = n
6 , then φ(C4) = n and φ(H2) = 4n. Choose vertices

ui and vi in the inner and outer rims, respectively. Then vivi+ n
6
vi+ 2n

6
vi+ 3n

6
vi+ 4n

6
vi+ 5n

6
vi is a hexagon in the inner rim and uiui+ n

6
ui+ 2n

6
ui+ 3n

6
ui+ 4n

6
ui+ 5n

6
ui is a

hexagon in the outer rim. Also there is a hexagon of the form vivi+ n
6
vi+ 2n

6
ui+ 2n

6

ui+ n
6
uivi. Thus, φ(C6) = 4n

3 and so, S6(I(n, n
6 ,

n
6)) = 6n+ 72n+ 72n+ 24n+

48n+ 48n+ 16n = 286n. Let 3 | n and j = k = n
3 . Then, φ(P4) = 10n, φ(C3)

= 2n
3 , φ(H1) = 2n, φ(C4) = n and φ(H2) = 4n. On the other hand, we can

correspond a hexagon vivi+ n
3
vi+ 2n

3
ui+ 2n

3
ui+ n

3
uivi to each vertex of I(n, j,k). So,
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φ(C6) = n and S6(I(n, n
3 ,

n
3)) = 6n+72n+60n+24n+48n+16n+48n+12n=

286n.

Next we suppose that 4|n and j = k = n
4 . Then, φ(C4) = 3n

2 , φ(H2) = 6n
and φ(C6) = 4n. Thus, S6(I(n, n

4 ,
n
4)) = 6n+ 72n+ 72n+ 24n+ 72n+ 72n+

48n=366n. If 12|n, j = n
4 and k = n

3 , then φ(C4) = n
4 , φ(H2) = n, φ(C3) = n

3 ,
φ(P4) = 11n. Thus, S6(I(n, n

4 ,
n
3)) = 6n+ 72n+ 66n+ 24n+ 12n+ 8n+ 12n =

200n. In the case that 12|n, j = n
4 and k = n

6 , we have φ(C4) = n
4 , φ(H2) =

n, φ(C6) = n
6 and so S6(I(n, n

4 ,
n
6)) = 6n+ 72n+ 72n+ 24n+ 12n+ 12n+ 2n

= 200n. If 6|n, j = n
6 and k = n

3 , then there are n
6 hexagons in the inner rim

and for each vertex vi, vivi+ n
6
vi+ 2n

6
ui+ n

3
ui+ 2n

3
uivi is a hexagon. This implies that

φ(C6) = n
6 + n = 7n

6 . Since φ(C4) = 0, φ(H2) = 0, φ(P4) = 11n and φ(C3) = n
3 ,

S6(I(n, n
6 ,

n
3)) = 6n+72n+66n+24n+8n+14n= 190n.

Suppose k = 3 j. Then for each vertex vi, vivi+ jvi+2 jvi+3 jui+3 juivi is a
hexagon in I(n, j,k), and so φ(C6) = n and φ(C3) = 0. Hence S6(I(n, j,3 j))
= 6n + 72n + 72n + 24n + 12n = 186n. Also, if 2 | n and k = n

2 − j, then
uiui+ n

2− jvi+ n
2− jvi+ n

2
vi+ n

2+ jui+ n
2+ jui is a hexagon in I(n, j,k) and so φ(C6) = n

and S6(I(n, j, n
2 − j)) = 6n+ 72n+ 72n+ 24n+ 12n = 186n. If 3|n, j = n

3 and
k /∈ {n

3 ,
n
4 ,

n
6}, then φ(C3) = n

3 and so S6(I(n, n
3 ,k)) = 6n+72n+66n+24n+8n

= 176n. If 6|n, j = n
6 and k /∈ {n

3 ,
n
4 ,

n
6}, then φ(C3) = 0 and φ(C6) = n

6 . So,
S6(I(n, n

6 ,k)) = 6n+72n+72n+24n+2n = 176n.

We now assume that 4|n, j = n
4 and k /∈ {n

4 ,
n
6}. Then, φ(C4) = n

4 , φ(C6) =0,
φ(C3) = 0 and φ(H2) = n. So, S6(I(n, n

4 ,k)) = 6n+72n+72n+24n+12n+12n
= 198n. If j = n

5 and k = 2n
5 , then for each vertex vi, there are two hexagons of

the forms vivi+ n
5
vi+ 2n

5
ui+ 2n

5
ui+ 4n

5
vi+ 4n

5
ui and vivi+ n

5
ui+ n

5
ui+ 3n

5
vi+ 3n

5
vi+ 4n

5
vi. Thus

φ(C4) = 0, φ(C6) = 2n and so S6(I(n, n
5 ,

2n
5 )) = 198n. If j = n

10 and k = 3n
10 , then

it is easy to see that φ(C6) = 2n and so S6(I(n, n
10 ,

3n
10)) = 198n. If j = n

3 and
k = n

9 then, φ(C6) = n and φ(C3) = n
3 . Thus, S6(I(n, n

3 ,
n
9)) = 6n+66n+72n+

24n+ 8n+ 12n = 188n. If j = n
18 and k = n

6 then φ(C6) = n+ n
6 = 7n

6 and so
S6(I(n, n

6 ,
n

18)) = 6n+72n+72n+24n+14n = 188n. If j = n
12 and k = n

4 then
φ(C6) = n, φ(C4) = n

4 and φ(U5) = n. Thus, S6(I(n, n
4 ,

n
12)) =6n+ 72n+ 72n+

24n+ 12n+ 12n+ 12n = 210n. In other cases, φ(C6) = 0, φ(C3) = 0, φ(H2) =
n and φ(C4) = 0. Therefore, S6(I(n, j,k)) = 6n+72n+72n+24n = 174n. This
completes the proof.

Lemma 2.12. The spectral moment S7(I(n, j,k)) is computed by the following
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formula:

S7(I(n, j,k)) =



4n (k = j = n
7) or (k = j = 2n

7 ) or (k = j = 3n
7 )

2n (k = n
7 or k = 2n

7 or k = 3n
7 and j /∈ {n

3 ,
n
5})

172n (k = n
7 , j = 2n

7 ) or (k = n
7 , j = 3n

7 ) or (k = 2n
7 , j = 3n

7 )
644n 3 | n,k = j = n

3
112n (5 | n,k = j = n

5) or (5 | n,k = j = 2n
5 )

322n k = n
3 , j = n

6
168n (k = n

3 , j /∈ { n
3 ,

n
6 ,

n
5}) or (k = n

5 , j = n
10)

196n (k = n
3 , j = n

5)or(k = n
3 , j = 2n

5 )

28n (k = n
5 , j /∈ { n

3 ,
n
6 ,

n
5 ,

n
7}) or (k = 2n

5 , j /∈ {n
3 ,

n
6 ,

n
5 ,

n
7})

or (k = n
4 , j = n

6)

336n k = n
5 , j = 2n

5
140n (k = 2 j) or (2 | n, j = 2r,k = n

2 − r)
or (2 - n, j = 2r+1,k = n−1

2 − r; r > 1)
154n (k = n

4 , j = n
8) or (k = n

4 , j = 3n
8 )

170n (k = n
7 , j = n

3) or (k = 2n
7 , j = n

3)or(k = 3n
7 , j = n

3)

30n (k = n
5 , j = n

7) or (k = 2n
5 , j = n

7) or (k = n
5 , j = 2n

7 )or
(k = 2n

5 , j = 2n
7 )or (k = n

7 , j = 3n
14) or(k = 2n

7 , j = n
14)

16n (k = n
7 , j = n

28) or (k = n
7 , j = 2n

21) or (k = 3n
7 , j = 3n

28)

42n (k = n
5 , j = n

20) or (k = 2n
5 , j = n

10)

14n (k = 4 j, j /∈ { n
7 ,

2n
7 ,

3n
7 ,

n
3 ,

n
5}) or (2k = 3 j,n 6= 22)

182n (k = n
3 , j = n

12) or (k = n
3 , j = n

9) or (k = n
3 , j = 2n

9 )

56n k = 2n
5 , j = n

10
142n (k = n

7 , j = n
14) or(k = 3n

7 , j = 3n
14)

0 Otherwise

Proof. We first assume that 7 | n and k = j = n
7 or k = j = 2n

7 or k = j = 3n
7 . Then

φ(C7) = 2n
7 and so S7(I(n, j,k)) = 4n. Suppose k = n

7 or k = 2n
7 or k = 3n

7 and
j /∈ {n

3 ,
n
5}, then φ(C7) = n

7 and so S7(I(n, j,k)) = 2n. If k = n
7 and j = 2n

7 , then
it is easy to see that φ(C7) = 16n

7 , φ(C5) = n and φ(H18) = 5n. So, S7(I(n, j,k))
= 70n+70n+32n=172n.

If 3|n and k = j = n
3 , then φ(C3) = 2n

3 , φ(C5) = 2n, φ(H18) = 10n, φ(H1) =
2n, φ(H5) = 2n, φ(H6) = 4n and φ(H15) = 2n

3 . So, S7(I(n, j,k)) = 84n+168n+
56n+ 28n+ 28n+ 140n+ 140n = 644n. If 5|n and k = j = n

5 , then φ(C5) =
2n
5 , φ(H18) = 2n and φ(C7) = 4n and hence S7(I(n, j,k)) = 28n+ 28n+ 56n

= 112n. Moreover, if k = n
3 and j = n

6 then φ(C3)= n
3 , φ(H1) = n, φ(H5) =

n, φ(H6) = 2n, φ(C5)=n, φ(H18) = 5n and φ(C7) = n. Thus, S7(I(n, j,k)) =
42n+ 84n+ 14n+ 28n+ 70n+ 70n+ 14n = 322n. If k = n

3 and j /∈ {n
3 ,

n
5 ,

n
6}

then φ(C3) = n
3 , φ(H1) = n, φ(H5) = n and φ(H6) = 2n and so S7(I(n, j,k)) =

42n+ 84n+ 14n+ 28n = 168n. We now assume that k = n
5 and j = n

10 . Then
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φ(C5) = 6n
5 , φ(H18) = 6n and so S7(I(n, j,k)) = 84n+84n = 168n.

If k = n
3 and j = n

5 or j = 2n
5 , then φ(C3) = n

3 , φ(C5) = n
5 , φ(H1) = n, φ(H18)

= n, φ(H5) = n, φ(H6) = 2n and so S7(I(n, j,k)) = 42n+ 84n+ 14n+ 28n+
14n+14n = 196n. If k = n

5 and j /∈ { n
3 ,

n
5 ,

n
6 ,

n
7}, then φ(C5) = n

5 and φ(H18) = n.
Hence, S7(I(n, j,k)) = 14n+14n = 28n. If k = n

5 and j = 2n
5 then φ(C5) = 12n

5 ,
φ(H18) = 12n and so S7(I(n, j,k)) = 168n+168n = 336n.

Suppose k = 2 j. Then φ(C5) = n and so S7(I(n, j,k)) = 140n. Similarly if
(2 | n, j = 2r,k = n

2−r) or (2 - n, j = 2r+1,k = n−1
2 −r), for r > 1, S7(I(n, j,k))

= 140n. If k = n
4 and j = n

8 , then φ(C5) = n, φ(H18)=5n, and φ(C7) = n, which
implies that S7(I(n, j,k)) = 70n+70n+14n = 154n. In a similarly way, if k = n

4
and j = 3n

8 then it is easy to see that S7(I(n, j,k))= 154n. If k = n
7 and j = n

3 , then
φ(C3) = n

3 , φ(H1) = n, φ(H5) = n, φ(H6) = 2n and φ(C7) = n
7 . Thus, S7(I(n, j,k))

= 42n+ 84n+ 14n+ 28n+ 2n = 170n. Similarly in the case that (k = 2n
7 and

j = n
3 ) or (k = 3n

7 and j = n
3 ) one can see that S7(I(n, j,k)) = 170n.

We now assume that k = n
5 and j = n

7 . Then φ(C5) = n
5 , φ(H18) = n and

φ(C7) = n
7 . This shows that S7(I(n, j,k)) = 14+ 14n+ 2n = 30n. In a similar

way, if k = 2n
5 and j = n

7 , k = n
5 and j = 2n

7 or k = 2n
5 and j = 2n

7 , then we have
S7(I(n, j,k)) = 30n. If k = n

7 and j = n
28 or k = n

7 and j = 2n
21 or k = 3n

7 and
j = 3n

28 , then it is easy to see that φ(C7) = 8n
7 and we have S7(I(n, j,k)) = 16n.

Next we assume that j = n
20 and k = n

5 . Then φ(C7) = n, φ(C5)= n
5 and

φ(H18)=n. This implies that S7(I(n, j,k)) = 14n+ 14n+ 14n = 42n. If j = n
10

and k = 2n
5 , then by a simple check we have S7(I(n, j,k)) = 42n. If k = 4 j and

j /∈ {n
7 ,

2n
7 ,

3n
7 ,

n
3 ,

n
5}, then one can see that φ(C7) = n and so S7(I(n, j,k)) = 14n.

Similarly if 2k = 3 j, then φ(C7) = n and so S7(I(n, j,k)) = 14n. If j = n
12 and

k = n
3 then φ(C7) = n, φ(C3) = n

3 , φ(H1) = n, φ(H5) = n and φ(H6) = 2n. So,
S7(I(n, j,k)) = 42n+84n+14n+28n+14n = 182n. One can easily prove that
if j = n

9 and k = n
3 or j = 2n

9 and k = n
3 , then we have S7(I(n, j,k)) = 182n. If

k = n
10 and j = 2n

5 , then φ(C7) = 2n, φ(C5) = n
5 and φ(H18) = n, which implies

that S7(I(n, j,k)) = 14n+14n+28n = 56n. In the case that k = n
7 and j = n

14 , we
have φ(C5) = n, φ(H18) = 5n and φ(C7) = n

7 . Thus S7(I(n, j,k)) = 70n+2n+70n
= 142n. Similarly if k = 3n

7 and j = 3n
14 , then S7(I(n, j,k)) = 142n. Otherwise,

φ(C5) = 0, φ(C7) = 0, φ(C3) = 0 and so S7(I(n, j,k)) = 0.

We are now ready to order all of the I−graphs with respect to spectral mo-
ments in an S−order.

Theorem 2.13. Let 3 | n and G = {I(n, j,k) : j,k 6= n
3}. Then G ≺S G1 ≺S

I(n, n
3 ,

n
3). where G1 = {I(n, n

3 ,k) : k 6= n
3}.

Proof. Apply Lemmas 2.9−2.12. Since number of edges in I(n, j,k) is 3n, we
have to consider the number of triangles. Suppose G ∈ G and G1 ∈ G1. Then
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Si(G) = Si(G1) = Si(I(n, n
3 ,

n
3)), i = 0,1,2, S3(G) < S3(G1) < S3(I(n, n

3 ,
n
3)).

Thus, G ≺S G1 ≺S I(n, n
3 ,

n
3). This shows that G ≺S G1 ≺S I(n, n

3 ,
n
3), as desired.

Theorem 2.14. Suppose 3 - n. If n is odd and G = {I(n, j,k) : j 6= k, j,k≤ n−1
2 },

then G ≺S G2, where G2 = {I(n,k,k) : k≤ n−1
2 }. If 4 | n and G = {I(n, j,k) : j 6=

k and j,k 6= n
4}, then G ≺S G1≺S G2≺S I(n, n

4 ,
n
4), where G1 = {I(n,k, n

4) : k 6= n
4}

and G2 = {I(n,k,k) : k 6= n
4}.

Proof. We first assume that n is odd. Let G ∈ G and G2 ∈ G2. Then S4(G) =
30n and S4(G2) = 38n. So, Si(G) = Si(G2), i = 0,1,2,3, and S4(G) < S4(G2).
Thus, G ≺S G2 and so G ≺S G2. Now we let 4 | n, G ∈ G, G2 ∈ G2 and G1 ∈
G1. Then S4(G) = 30n, S4(G1) = 32n and S4(G2) = 38n. Hence, Si(G) =
Si(G1) = Si(G2) = Si(I(n, n

4 ,
n
4), i = 0,1,2,3, and S4(G) < S4(G1) < S4(G2) <

S4(I(n, n
4 ,

n
4). This shows that G ≺S G1 ≺S G2 ≺S I(n, n

4 ,
n
4) and hence G ≺S

G1 ≺S G2 ≺S I(n, n
4 ,

n
4), proving the theorem.

Theorem 2.15. Let 3 | n. If n is odd and G = {I(n, j,k) : j 6= k and j,k 6= n
3}

then G ≺S G1, where G1 = {I(n,k,k) : k 6= n
3}. If 4|n and G = {I(n, j,k) : j 6=

k and j,k /∈ { n
3 ,

n
4}}, then G ≺S G2 ≺S G1 ≺S I(n, n

3 ,
n
4), where G2 = {I(n,k, n

4) :
k /∈ {n

3 ,
n
4}} and G1 = {I(n,k,k) : k /∈ { n

3 ,
n
4}}.

Proof. Suppose n is odd, G ∈ G and G1 ∈ G1. Then S3(G) = S3(G1) = 0,
S4(G) = 30n and S4(G1) = 38n. So, Si(G) = Si(G1), i = 0,1,2,3, and S4(G)<
S4(G1). Thus, G ≺S G1 and so G ≺S G1. If 4|n and G2 ∈ G2, then Si(G) =
Si(G1) = Si(G2) = Si(I(n, n

4 ,
n
4)) for i = 0,1,2,3 and S4(G)< S4(G2)< S4(G1)

< S4(I(n, n
4 ,

n
4)). Thus, G ≺S G2 ≺S G1 ≺S I(n, n

4 ,
n
4) and so G ≺S G2 ≺S G1 ≺S

I(n, n
4 ,

n
4).

Theorem 2.16. Suppose n is even such that 3 - n and 4|n. Then,

1. If 5|n and G = {I(n, j,k) : k /∈ { j,2 j} and j,k /∈ {n
5 ,

2n
5 ,

n
4}}, then

G ≺S G2 ≺S G1 ≺S I(n,
n
5
,

n
10

)≺S I(n,
n
5
,
2n
5
),

where G1 = {I(n, j,2 j), I(n,2r, n
2 − r),r ≥ 1 and j 6= {n

5 ,
n
4}} and G2 =

{I(n,k, n
5), I(n,k,

2n
5 ) : k /∈ { n

5 ,
2n
5 ,

n
4}}.

2. If 5 - n and G = {I(n, j,k) : k /∈ { j,2 j} and j,k 6= n
4} then G ≺S G1, where

G1 = {I(n, j,2 j), I(n,2r, n
2 − r) j 6= n

4 ,r ≥ 1}.
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Proof. Let G ∈ G, G1 ∈ G1 and G2 ∈ G2. Then S5(G) = 0, S5(G1) = 10n and
S5(G2) = 2n. So, Si(G) = Si(G1) = Si(G2) = Si(I(n, n

5 ,
n
10)) = Si(I(n, n

5 ,
2n
5 )),

i= 0,1,2,3,4, and S5(G)< S5(G2)< S5(G1)< S5(I(n, n
5 ,

n
10))< S5(I(n, n

5 ,
2n
5 )).

Thus, G ≺S G2 ≺S G1 ≺S I(n, n
5 ,

n
10) ≺S I(n, n

5 ,
2n
5 ). We now assume that 5 - n,

G ∈ G and G1 ∈ G1. Then Si(G) = Si(G1), i = 0,1,2,3,4, and S5(G)< S5(G1).
So, G≺S G1 which implies that G ≺S G1.

Theorem 2.17. Suppose 12|n. Then the following are satisfied:

1. If 5|n and G = {I(n, j,k) : j /∈ {k,2k} and j,k /∈ {n
3 ,

n
4 ,

n
5 ,

2n
5 }}, then

G ≺S G2 ≺S G1 ≺S I(n,
n
5
,

n
10

)≺S I(n,
n
5
,
2n
5
),

where G1 = {I(n, j,2 j), I(n, n
2 − r,2r) : r ≥ 1, j /∈ {n

3 ,
n
4 ,

n
5 ,

2n
5 }} and G2 =

{I(n, j, n
5), I(n, j, 2n

5 ) : j /∈ {n
3 ,

n
4 ,

n
5 ,

2n
5 }}.

2. If 5 - n and G = {I(n, j,k) : k /∈ { j,2 j} and j,k 6= {n
3 ,

n
4}}, then G ≺S G1,

where G1 = {I(n, j,2 j), I(n, n
2 − r,2r) : j 6= n

3 ,r ≥ 1}.

3. Suppose 2|n, 3 - n and G = {I(n, j,k) : j /∈ {k,2k,3k},k 6= n
2 − j}. Also,

when 4|n we assume that G 6∼= {I(n,k, n
4) : k 6= n

4} and when 10 | n we
assume that G 6∼= {I(n,k, n

5), I(n,k,
2n
5 ), I(n,k,

n
10) : k 6= {n

5 ,
2n
5 }}. Then,

G ≺S G1, where G1 = {I(n,k,3k), I(n, j, n
2 − j) : k, j /∈ { n

4 ,
n
5 ,

2n
5 }}.

4. Suppose 6 | n and G = {I(n, j,k) : j,k /∈ { n
3 ,

n
6},k /∈ { j,2 j,3 j, n

2 − j}}.
When 4|n we assume that G 6∼= {I(n,k, n

4) : k 6= n
4} and when 10 | n we

assume that G 6∼= {I(n, j, n
5), I(n, j, 2n

5 ), I(n, j, n
10) : j 6= {n

5 ,
2n
5 }}. Then

G ≺S G1 ≺S G2, where G1 = {I(n, j, n
6) : j /∈ { n

3 ,
n
4 ,

n
5 ,

2n
5

n
6}} and G2 =

{I(n, j,3 j), I(n, j, n
2 − j) : j /∈ {n

3 ,
n
4 ,

n
5 ,

2n
5 ,

n
6}}.

Proof. Suppose G∈G, G1 ∈G1 and G2 ∈G2. If 0≤ i≤ 4 then Si(G) = Si(G1) =
Si(G2) = Si(I(n, n

5 ,
n

10)) = Si(I(n, n
5 ,

2n
5 )) and S5(G)< S5(G2)< S5(G1)< S5(I(

n, n
5 ,

n
10)) < S5(I(n, n

5 ,
2n
5 )). So, G ≺S G2 ≺S G1 ≺S I(n, n

5 ,
n
10)) ≺S I(n, n

5 ,
2n
5 ),

which proves that G ≺S G2 ≺S G1 ≺S I(n, n
5 ,

n
10) ≺S I(n, n

5 ,
2n
5 ). A similar argu-

ment as Theorem 2.16 will prove the second part of this theorem.
We now assume that G ∈ G and G1 ∈ G1. Then S4(G) = 30n and S5(G) = 0.

We have to count the number of closed walk of length 6. Suppose that G1 ∈ G1.
Then S6(G)= 174n and S6(G1)= 186n. If i= 0,1,2,3,4,5, then Si(G)= Si(G1)
and S6(G)< S6(G1). Thus, G≺S G1 and therefore G ≺S G1, proving the result.

Finally, we assume that G ∈ G, G1 ∈ G1 and G2 ∈ G2. Then S6(G) = 174n,
S6(G1) = 176n and S6(G2) = 186n. Hence, Si(G) = Si(G1) = Si(G2), 0≤ i≤ 5,
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and S6(G)< S6(G1)< S6(G2). Thus, G≺S G1 ≺S G2 and therefore G ≺S G1 ≺S

G2. This completes our argument.

Theorem 2.18. Suppose 6|n and G= {I(n, j,k) : k /∈{ j,2 j,3 j,4 j, 3 j
2 } and j,k /∈

{n
3 ,

n
6 ,

v
7 ,

2n
7 ,

3n
7 }}. We also assume that when 4|n, G 6∼= {I(n,k, n

4) : k 6= n
4} and

when 10 | n, G 6∼= {I(n, j, n
5), I(n, j, 2n

5 ), I(n, j, n
10) : j 6= {n

5 ,
2n
5 }}. Then G ≺S

G1 ≺S G2 ≺S G3 ≺S G4, where

G1 = {I(n, j,
n
7
), I(n, j,

2n
7
), I(n, j,

3n
7
) : j /∈ {n

3
,
n
4
,
n
5
,
2n
5
,
n
7
,
2n
7
,
3n
7
}},

G2 = {I(n, j,4 j), I(n, j,
3 j
2
) : j /∈ {n

3
,
n
5
,
n
6
,
n
4
,
n
7
}},

G3 = {I(n, n
7
,

n
28

), I(n,
n
7
,
2n
21

), I(n,
3n
7
,
3n
28

)},

G4 = {I(n, n
7
,
3n
14

), I(n,
n
14

,
2n
7
)}.

Proof. Let G ∈ G, G1 ∈ G1, G2 ∈ G2, G3 ∈ G3 and G4 ∈ G4. If 0 ≤ i ≤ 6, then
Si(G) = Si(G1) = Si(G2) = Si(G3) = Si(G4), and S7(G) < S7(G1) < S7(G2) <
S7(G3) < S7(G4). Therefore, G ≺S G1 ≺S G2 ≺S G3 ≺S G4. This implies that
G ≺S G1 ≺S G2 ≺S G3 ≺S G4, as desired.
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