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We have studied the induced one-loop energy-momentum tensor of a massive complex scalar field
within the framework of nonperturbative quantum electrodynamics (QED) with a uniform electric field
background on the Poincaré patch of the two-dimensional de Sitter spacetime (dS2). We also consider a
direct coupling the scalar field to the Ricci scalar curvature which is parametrized by an arbitrary
dimensionless nonminimal coupling constant. We evaluate the trace anomaly of the induced energy-
momentum tensor. We show that our results for the induced energy-momentum tensor in the zero electric
field case, and the trace anomaly are in agreement with the existing literature. Furthermore, we construct
the nonperturbative, regularized, one-loop effective Lagrangian of scalar QED in dS2 from the induced
energy-momentum tensor.
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I. INTRODUCTION

The basic framework of quantum field theory in curved
spacetime was originally introduced by Parker [1] in the
late 1960s and followed by others. In Parker’s pioneer work
quantization of fields was described and the average density
of created particles in an expanding universe was derived.
Progress was also being made on this issue, when in the
mid 1970s Hawking discovered [2] that a black hole emits
as a blackbody due to the particle creation which is known
as Hawking radiation. With these discoveries the develop-
ment of quantum field theory in curved spacetime received
much further motivations; see, e.g., [3–5] for introduction.
Indeed, a general curved spacetime is not invariant under
transformations of the Poincaré group, as a consequence
there is no natural set of field modes which are invariant
under Poincaré transformations. This ambiguity leads to
ambiguity in definition of particle concept. The fact that the
field modes are defined on the whole of at least a large
patch of spacetime illustrates the global nature of the
particle concept. This is in contrast with the at least
quasilocal nature of physical detectors. Hence, it is more
advantageous to construct locally defined quantities; see [3]
for a comprehensive review. One such object of interest is
the energy-momentum tensor which is constructed from
fields and their derivatives at the same point of spacetime.

There are two important reasons for studying energy-
momentum tensor [3,4]. In Einstein’s equation the
energy-momentum tensor appears as a source term of
the gravitational field, hence it can be used to investigate
the backreaction effects of the matter on the dynamics of
gravitational field. Also, it is a useful quantity to explore
the physical properties of the quantum fields. Thus, study-
ing the energy-momentum tensor of quantized fields get
more interesting when the cosmological spacetimes have
been considered.
The regularized and renormalized energy-momentum

tensor for different quantum fields in curved spacetime
has been extensively studying using various methods. The
renormalized energy-momentum tensor of a quantized
neutral scalar field propagating in a spacetime of the type
of Friedmann-Lemaitre-Robertson-Walker (FLRW) uni-
verses has been analyzed in several cases of interest:
(1) For a massive field with the arbitrary [6–12], minimal

]13,14 ], and conformal [15–17] coupling to the Ricci scalar
curvature. (2) For a massless field with an arbitrary [18,19],
and conformal [20] coupling to the Ricci scalar curvature.
In [21], the energy-momentum tensor and effective
Lagrangian of a massive neutral scalar field with the
nonminimal coupling to the Ricci scalar curvature in a
de Sitter spacetime (dS) have been calculated by using the
dimensional regularization. In Ref. [22], to study the effects
of the particle creation in a dS the finite energy-momentum
tensor of a massive neutral scalar field with the nonminimal
coupling to the Ricci scalar curvature was evaluated by
computing the difference in energy-momentum between
the in-vacuum and out-vacuum states. Then, it was realized
that the energy-momentum tensor of the created particles
describes a perfect fluid with vacuum equation of state
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which vanishes for massless, conformally coupled field.
Also, the author discovered that the invariant vacuum state
and the effective cosmological constat decay due to the
particle creation. In the work of [23] the energy-momentum
tensor of a quantum noninteracting, massive, and non-
minimally coupled scalar field in a dS has been inves-
tigated. And, it was shown as a consequences of the
quantum backreaction effects that there may exist a phase
of superacceleration in which the Hubble constant ampli-
fies. With the aim of developing the adiabatic expansion for
the case of fermion fields, the average number of created
particles and regularized energy-momentum tensor of a
noninteracting, massive Dirac field in a spatially flat FLRW
universe have been computed in Refs. [24–28].
In order to make one step forward in the context of

particle creation in curved spacetime, it seems natural to
add an electromagnetic gauge field interacting with the
quantum matter field. In fact a strong electromagnetic field
background in the Minkowski spacetime can create pairs of
particles [29–31] which is known as the Schwinger effect;
see [32,33] for a comprehensive review. Indeed, the
physical mechanism underlying the Schwinger effect is
analogous to that of the gravitational particle creation
phenomena in curved spacetime [34]. Thus, studying the
Schwinger effect in the cosmological spacetimes would be
interesting because it may amplify the gravitational particle
creation process; see [35] and references therein for a
review. It is a well-accepted paradigm [36] that strong
electric and magnetic fields might be generated in the early
universe which motivates the study of Schwinger effect in
the dS. Investigation of the Schwinger effect in the dS was
initiated by [37,38]. The Schwinger effect and the rate of
scalar pair creation process in the presence of a uniform
electric field background have been analyzed in a dS of two
[38–42], four [43], and general [44] dimensions, by using
the technique of Bogoliubov transformation that requires
semiclassical conditions. By using this technique, the
influence of a uniform and conserved flux magnetic field
on the creation of scalar pairs by the Schwinger mechanism
in a four dimensional de Sitter spacetime (dS4) has been
explored [45,46]; see also [47]. The authors of [45,46]
found that a strong magnetic field can intensify the
Gibbons-Hawking radiation [48] of dS4 even when there
is no an electric field. It is worth mentioning that the
creation of Dirac pairs by Schwinger mechanism in a dS
has also been studied using semiclassical methods [49–53],
with the main conclusion that a strong electric field
enhances significantly the gravitational pair creation. The
Schwinger effect has been explored in a flat FLRW [54],
anti-de Sitter [40,41,55,56], and a charged black hole [57–
59] spacetimes; also, widely considered in studies relevant
to the inflationary universe scenarios [60–71].
The investigation of the Schwinger pair creation in a dS,

by using the Bogoliubov transformation method, needs to
define an adiabatic out-vacuum state at late times in

addition to the adiabatic in-vacuum state at early times,
which in turn requires to impose semiclassical conditions.
In the semiclassical conditions, either the mass of the
particle or the eclectic potential energy across the Hubble
radius or both must be very larger than the energy scale
determined by the curvature of the spacetime [39,43]. On
the contrary, the in-vacuum state of quantum fields in dS
satisfies the adiabatic conditions at all times. Hence,
computation of expectation values of physical quantities,
such as current and energy-momentum tensor, in the in-
vacuum state enables us to probe wider ranges of the related
parameters. The regularized in-vacuum expectation value
of the current of a charged scalar field, caused by a uniform
electric field background, has been computed in two [39],
three [44], and four [43] dimensional de Sitter spacetimes.
The authors showed that in the strong electric field regime,
the induced current asymptotically approaches the semi-
classical current. In particular, it was reported that for an
essentially light scalar field in the weak electric field
regime, the induced current has an inversely proportional
response to the electric field, which is referred to as the
infrared hyperconductivity phenomenon [39,43,44]. The
derived results for the induced current in dS4 [43] have
been verified by applying an alternative regularization that
is the point-splitting method [72], and also calculating the
current by using the uniform asymptotic approximation
method [60]. An investigation of the influence of a uniform
magnetic field background on the current of created scalar
pairs by a parallel uniform electric field background in dS4
illustrates that there is a period of infrared hyperconduc-
tivity [45,46]. In dS2 [51] and dS4 [73], the in-vacuum
expectation value of the current of a Dirac field coupled to a
uniform electric field background has been analyzed. And
the authors come to the conclusion that in the infrared
regime the fermionic current is free of the hyperconduc-
tivity phenomenon, as opposed to the scalar current. The
negative current phenomenon is another remarkable feature
of the regularized current in dS4, which is occurred for the
scalar fields with essentially small masses [43,72] and
the Dirac fields with any mass [73] in a certain range of
the electric field strength when the current points in the
opposite direction to the electric field background. By
introducing a novel condition for renormalization of the in-
vacuum expectation values of the scalar and Dirac currents
in dS4, it was shown that the infrared hyperconductivity
period would be removed from the scalar current, however
the negative current phase would still be present [74].
A satisfactory explanation for the behaviors of the current
has been given in Ref. [75].
The aim of this paper is to study the expectation value of

the energy-momentum tensor of a massive complex scalar
field coupled to a uniform electric field background in the
Poincaré patch of dS2. We also consider a direct coupling
the scalar field to the Ricci scalar curvature of dS2 which is
parameterized by an arbitrary dimensionless nonminimal
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coupling constant. To compute the expectation value, we
will choose the in-vacuum state of the quantized scalar
field, because it is an adiabatic and Hadamard state [38,39].
We evaluate the expectation value to one-loop order, hence
the ultraviolet divergences will naturally occur in our
calculations. To remove these ultraviolet divergences, we
will use the method of adiabatic regularization [12–
14,17,76], because it is comparatively simpler than the
other methods, such as, point-splitting regularization
[7,19,20,77] and dimensional regularization [21,78]. It
was verified [79] that the adiabatic and point-splitting
regularization methods will lead to the equivalence result
in spatially flat FLRW spacetimes. There has been several
studies to investigate the energy-momentum tensor of
created scalar and Dirac pairs by a uniform electric field
in a dS. The energy-momentum tensor of created scalar
pairs by a uniform electric field in a dS of general
dimension was calculated by using the Bogoliubov coef-
ficients in the two limiting regimes: the heavy scalar field
[44], and the strong electric field [80]; which leads to a
decay of the Hubble constant. An investigation of the
gravitational consequences of scalar pair creation due to a
uniform electric field background in the three [81] and four
[82] dimensional dS has been made by calculating the
regularized expectation value of the trace of energy-
momentum tensor in the in-vacuum state. Recently, in
[83] for a massive Dirac field coupled to a uniform electric
field background in the Poincaré patch of dS2, the adiabatic
regularized in-vacuum expectation value of the energy-
momentum tensor has been evaluated. A common con-
clusion of [81–83] was that the sign of the trace can be
either positive or negative, depending on the intensities of
the parameters mass and electric field. Consequently, the
Hubble constant decreases under the condition that the
trace is positive, in contrast it increases when the trace is
negative. The significant achievement of this paper is the
construction of the nonperturbative, regularized, one-loop
effective Lagrangian of scalar QED in dS2 from the
regularized energy-momentum tensor.
The paper proceeds as follows. In the next section,

we briefly introduce the elements of our analysis. In
Sec. III, the expectation value of the energy-momentum
tensor in the in-vacuum state, and the complete set of
appropriate adiabatic counterterms are computed, we then
obtain the regularized energy-momentum tensor. In Sec. IV,
the regularized energy-momentum tensor is analyzed, then
we use it to derive the trace anomaly and construct the
effective Lagrangian. Eventually, our conclusions are
drawn in Sec. V. In the Appendix, we include essential
information which is needed for the study of the paper.

II. THE QUANTUM SCALAR FIELD IN
ELECTRIC AND DS BACKGROUNDS

In this section we will introduce the elements of model
under consideration and set up our analysis. We imagine a

massive charged scalar field which interacts with a uniform
electric field background in the Poincaré patch of dS2.
Hence, the scalar field is under the influence of two
backgrounds, i.e., the electromagnetic and gravitational
fields which are supposed to be unaffected by the dynamics
of the scalar field. The classical action of a complex scalar
field φðxÞ of massm and electric charge ewhich is coupled
to an electromagnetic gauge field Aμ in the dS2 is

S ¼
Z

d2x
ffiffiffiffiffiffi
−g

p fgμνð∂μ þ ieAμÞφð∂ν − ieAνÞφ�

− ðm2 þ ξRÞφφ�g; ð1Þ

where ξ is a dimensionless nonminimal coupling constant
and R ¼ 2H2, written in terms of the Hubble constant H,
denotes the Ricci scalar curvature of the dS2. The metric gμν
on the Poincaré patch of dS2 can be read from the line
element

ds2 ¼ Ω2ðτÞðdτ2 − dx2Þ; ΩðτÞ ¼ −
1

Hτ
: ð2Þ

The coordinates conformal time τ and spatial coordinate x
have ranges

τ ∈ ð−∞; 0Þ; x ∈ R; ð3Þ

and cover half of dS2 manifold. We consider a uniform
electric field background with a constant energy density in
the patch (2), which can be derived from the vector
potential

AμðτÞ ¼ −
E
H2τ

δ1μ; ð4Þ

where E is a constant coefficient. Substituting the ingre-
dients (2) and (4), the Klein-Gordon equation arising from
the action (1) can be written as

� ∂2

∂τ2 −
∂2

∂x2 −
2iλ
τ

∂
∂xþ

1

τ2

�
1

4
− γ2

��
φðτ; xÞ ¼ 0; ð5Þ

where the definitions of the dimensionless parameters are
given by

λ ¼ −
eE
H2

; μ ¼ m
H
; γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
− λ2 − μ2 − 2ξ

r
: ð6Þ

Since we ultimately wish to compute the expectation value
of the energy-momentum tensor in the in-vacuum state, we
only require that of the solutions of Eq. (5) which represent
this vacuum sate. Therefor, we impose the boundary
condition that in the in region of the manifold as
τ → −∞, the mode functions be plane waves of fixed
comoving momentum k. The normalized positive UkðxÞ,
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and negative VkðxÞ, frequency mode functions that reduce
to the plane wave form in the in region are found to be [see
[38,39,44] for derivations]

UkðxÞ ¼ ð2jkjÞ−1
2e

iπκ
2 eþikxWκ;γð2e−iπ

2 jpjÞ; ð7Þ

VkðxÞ ¼ ð2jkjÞ−1
2e−

iπκ
2 e−ikxWκ;γð2eþiπ

2 jpjÞ; ð8Þ

where the dimensionless physical momentum p and the
parameter κ are expressed as

p ¼ −τk; κ ¼ −iλr; r ¼ sgnðkÞ: ð9Þ

In Eqs. (7) and (8), the factor Wκ;γ denotes the Whittaker
function; see, e.g., [84]. If the values of the parameters κ, γ,
and the phase of the variable z satisfy conditions

1

2
� γ − κ ≠ 0;−1;−2;…; jphðzÞj < 3

2
π; ð10Þ

then the Whittaker function Wκ;γðzÞ, with the help of
gamma function ΓðzÞ, can be represented by a convenient
Mellin-Barnes integral

Wκ;γðzÞ

¼ e−
z
2

Z þi∞

−i∞

ds
2πi

Γð1
2
þ γþ sÞΓð1

2
− γþ sÞΓð−κ− sÞ

Γð1
2
þ γ− κÞΓð1

2
− γ− κÞ z−s:

ð11Þ

The contour of integration is a straight line along the
imaginary axis in the complex plane s from −i∞ to þi∞
that can be joined by a semicircle at the infinity to sort out
the poles of Γð1=2þ γ þ sÞ and Γð1=2 − γ þ sÞ from the
poles of Γð−κ − sÞ.
The mode functions (7) and (8) satisfy the conserved

Wronskian conditions

Uk
_U�
k −U�

k
_Uk ¼ V�

k
_Vk − Vk

_V�
k ¼ i; ð12Þ

where we use a single dot above a symbol to denote the first
conformal time derivative and two dots to denote the
seconde conformal time derivative. To quantize the scalar
field φðxÞ, we adopt the canonical procedure. Hence, we
promote φðxÞ to operator and expand it in terms of the
complete set of orthogonal mode functions (7) and (8) as

φðxÞ ¼
Z þ∞

−∞

dk
ð2πÞ ½akUkðxÞ þ b†kVkðxÞ�; ð13Þ

where the annihilation ak, bk, and creation a
†
k, b

†
k, operators

obey the commutation relations

½ak; a†k0 � ¼ ½bk; b†k0 � ¼ ð2πÞδðk − k0Þ; ð14Þ

with all other commutators equal to zero. Then, we choose
the in-vacuum state jini to be the state that is annihilated by
ak and bk operators

akjini ¼ bkjini ¼ 0; ð15Þ

for all values of comoving momentum k.

III. COMPUTATION OF THE REGULARIZED
ENERGY-MOMENTUM TENSOR

We are now ready to compute the expectation value of
energy-momentum tensor of the scalar field in the in-
vacuum state. In general, variation of the action δS with
respect to the inverse metric δgμν defines the energy-
momentum tensor as

Tμν ¼ þ 2ffiffiffiffiffiffi−gp δS
δgμν

: ð16Þ

Vary gμν in the action (1) and use of definition (16) along
with the Kline-Gordon equation of motion (5), yields the
following symmetric expression for the energy-momentum
tensor of the scalar field

Tμν ¼ gμν½ð4ξ − 1Þgαβð∂αφ
� − ieAαφ

�Þð∂βφþ ieAβφÞ
− ð4ξ − 1Þm2φ�φ − 4ξ2Rφ�φ�
þ ð1 − 2ξÞð∂μφ

�∂νφþ ∂νφ
�∂μφÞ

þ ieAμðφ∂νφ
� − φ�∂νφÞ þ ieAνðφ∂μφ

� − φ�∂μφÞ
þ 2e2AμAνφ

�φþ 2ξΓα
μνðφ∂αφ

� þ φ�∂αφÞ
− 2ξðφ∂μ∂νφ

� þ φ�∂μ∂νφÞ; ð17Þ

where Γα
μν is the Christoffel connection associated with the

metric (2) whose nonzero components are

Γ0
00 ¼ Γ0

11 ¼ Γ1
01 ¼

_ΩðτÞ
ΩðτÞ ; ð18Þ

or related to these by symmetry.

A. The evaluation of the expectation value
in the in-vacuum state

To evaluate the expectation value of the energy-
momentum tensor in the in-vacuum state, we consider
φðxÞ as the scalar field operator and we would put Eq. (13)
into the expression (17). Using the relations (14) and (15),
we then obtain the integral expressions for the in-vacuum
expectation values of the components of the energy-
momentum tensor. Changing the integral variable from
the comoving momentum k, to the dimensionless physical
momentum p ¼ −τk, and imposing an ultraviolet cutoff Λ
on p, the measure of integration can be written as
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Z þ∞

−∞

dk
ð2πÞ ¼ HΩðτÞ

X
r¼�1

Z
Λ

0

dp
ð2πÞ : ð19Þ

Then, the in-vacuum expectation value of the timelike
component can be expressed as

hinjT00jini¼Ω2ðτÞ H2

ð2πÞ
X
r¼�1

�
I1−2λrI2þ

�
λ2þ1

2
μ2
�
I3

þ1

2
I4þI5−2ξI6þλrI7

�
; ð20Þ

where the coefficients I1; I2;…; I7 denote the
momentum integrals over the Whittaker functions, and
are defined in Eqs. (A1)–(A7), respectively. Similarly, the
in-vacuum expectation value of the spacelike component is
expressed by

hinjT11jini¼Ω2ðτÞ H2

ð2πÞ
X
r¼�1

�
I1−2λrI2

þ
�
λ2−

1

2
ð1−4ξÞμ2þ4ξ2

�
I3þ

1

2
ð1−4ξÞI4

þð1−4ξÞI5−2ξI6þð1−4ξÞλrI7

�
: ð21Þ

By using Eq. (12), it can be verified that the in-vacuum
expectation values of the off-diagonal components are
equal to

hinjT01jini ¼ hinjT10jini ¼ Ω2ðτÞH
2

π
λΛ: ð22Þ

Substituting the expressions (A8)–(A14) into Eqs. (20) and
(21), yields the unregularized in-vacuum expectation values
of the timelike and spacelike components of the energy-
momentum tensor, respectively. We find the unregularized
timelike component

hinjT00jini¼Ω2ðτÞ H2

ð2πÞ
�
Λ2þμ2 logð2ΛÞ−ξþμ2

2
þλ2

−
μ2

2
ð1− icscð2πγÞsinhð2πλÞÞψ

�
1

2
þ γþ iλ

�

−
μ2

2
ð1þ icscð2πγÞsinhð2πλÞÞψ

�
1

2
− γþ iλ

�

þλγ cscð2πγÞsinhð2πλÞ
�
; ð23Þ

where the notation log is used to denote the natural
logarithm function and ψ denotes the digamma function
which is given by the logarithmic derivative of the gamma
function. Also, we find the unregularized spacelike
component

hinjT11jini¼Ω2ðτÞ H2

ð2πÞ
�
Λ2−μ2 logð2ΛÞþξþμ2

2
þ λ2

þμ2

2
ð1− icscð2πγÞsinhð2πλÞÞψ

�
1

2
þ γþ iλ

�

þμ2

2
ð1þ icscð2πγÞsinhð2πλÞÞψ

�
1

2
− γþ iλ

�

þλγ cscð2πγÞsinhð2πλÞ
�
: ð24Þ

We see that the expectation values of the components
of the energy-momentum tensor contain ultraviolet diver-
gences. We will show below that these divergences will be
subtracted by the adiabatic counterterms.

B. Adiabatic counterterms and regularization
of the expectation values

In order to eliminate the divergent terms of the expres-
sions (22)–(24), we employ the adiabatic regularization
procedure. We return to the Kline-Gordon Eq. (5) and
consider its positive frequency solution as

fðτ; xÞ ¼ eþikxhðτÞ: ð25Þ

Then the function hðτÞ satisfies the following field equation

d2hðτÞ
dτ2

þ ω2ðτÞhðτÞ ¼ 0; ð26Þ

and it is convenient to rewrite the conformal time depen-
dent squared frequency as

ω2ðτÞ ¼ ω2
0ðτÞ þ ΔðτÞ; ð27Þ

where ω0ðτÞ is given by

ω0ðτÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2keA1ðτÞ þ e2A2

1ðτÞ þm2Ω2ðτÞ
q

; ð28Þ

where A1ðτÞ is read from Eq. (4), and ΔðτÞ is given by

ΔðτÞ ¼ 2ξ

τ2
: ð29Þ

To adjust the set of the required counterterms, following the
usual prescription, we assume that the conformal scale
factor ΩðτÞ, and the electromagnetic vector potential AμðτÞ,
to be of zero adiabatic order and the energy-momentum
tensor Tμν, to be of second adiabatic order in dS2.
Therefore, ω0ðτÞ is of zero adiabatic order and ΔðτÞ which
can be rewritten as

ΔðτÞ ¼ 2ξ
_Ω2ðτÞ
Ω2ðτÞ ; ð30Þ
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is of seconde adiabatic order. The Klein-Gordon
Eq. (26) possesses a Wentzel-Kramers-Brillouin (WKB)
form solution

hðτÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WðτÞp exp

�
−i

Z
τ
dτ0Wðτ0Þ

�
; ð31Þ

where the functionWðτÞ solves the exact nonlinear second
order differential equation

W2ðτÞ ¼ ω2
0ðτÞ þ ΔðτÞ − Ẅ

2W
þ 3 _W2

4W2
: ð32Þ

Recall that the set of counterterms which are required to
cancel the divergences from the expressions (22)–(24) must
be constructed up to second adiabatic order. It is then
necessary to find an adiabatic expansion up to second order
for the function W. Thus, we write an appropriate series

WðτÞ ¼ Wð0ÞðτÞ þWð2ÞðτÞ; ð33Þ

where the superscripts on the terms indicate their adiabatic
orders. The iteration process begins by considering the
zeroth adiabatic order. At this step, the adiabatic series (33)
is truncated to W ¼ Wð0Þ. Substitution of this ansatz into
Eq. (32) shows that the derivative terms on the right-hand
side of the equation are of second adiabatic order and since
the Δ term is of second adiabatic order too, all these terms
vanish. Therefore, we have

Wð0ÞðτÞ ¼ ω0ðτÞ: ð34Þ

The next iteration is done by substituting the second order
adiabatic series (33) into Eq. (32), using the result (34) and
keeping only terms up to the second order. We then find

Wð2ÞðτÞ ¼ 1

2ω0

�
Δ −

ω̈0

2ω0

þ 3 _ω2
0

4ω2
0

�
: ð35Þ

Thus, the adiabatic expansion ofWðτÞ up to second order is
obtained from Eqs. (33)–(35) as

WðτÞ ¼ ω0ðτÞ þ
1

2ω0

�
Δ −

ω̈0

2ω0

þ 3 _ω2
0

4ω2
0

�
: ð36Þ

We need also the adiabatic expansion ofW−1ðτÞ, which up
to second order is given by

1

WðτÞ ¼
1

ω0ðτÞ
−

1

2ω3
0

�
Δ −

ω̈0

2ω0

þ 3 _ω2
0

4ω2
0

�
: ð37Þ

Putting together the pieces (31), (36), and (37) of Eq. (25)
determines the adiabatic expansion of positive frequency
mode function up to second order. Having these orthogonal
adiabatic mode functions fðxÞ, we can perform similar

steps which led from Eq. (7) to Eq. (15) and establish the
adiabatic expansion of the quantum scalar field operator
and the vacuum up to second order. The counterterms
are then obtained by putting the adiabatic expansion of
the scalar field operator into Eq. (17) and computing the
expectation values of the resulting expressions in the
adiabatic vacuum. After these remarks, we find the set
of appropriate counterterms as

TðadiÞ
01 ¼ TðadiÞ

10 ¼ Ω2ðτÞH
2

π
λΛ; ð38Þ

TðadiÞ
00 ¼ Ω2ðτÞ H2

ð2πÞ
�
Λ2 þ μ2 logð2ΛÞ þ 1

6
− 2ξþ μ2

2

þ λ2 þ λ2

12μ2
− μ2 logðμÞ

�
; ð39Þ

TðadiÞ
11 ¼ Ω2ðτÞ H2

ð2πÞ
�
Λ2 − μ2 logð2ΛÞ − 1

6
þ 2ξþ μ2

2

þ λ2 −
λ2

12μ2
þ μ2 logðμÞ

�
: ð40Þ

Subtraction of the counterterms (38)–(40) from the unregu-
larized expressions (22)–(24), respectively, yields the
regularized energy-momentum tensor, which is referred
to as the induced energy-momentum tensor. We find that
the off-diagonal components of the induced energy-
momentum tensor vanish

T10 ¼ T01 ¼ hinjT01jini − TðadiÞ
01 ¼ 0: ð41Þ

The timelike component of the induced energy-momentum
tensor is obtained

T00 ¼ hinjT00jini − TðadiÞ
00

¼ Ω2ðτÞ H2

ð2πÞ
�
ξ −

1

6
−

λ2

12μ2
þ μ2 logðμÞ

−
μ2

2
ð1 − i cscð2πγÞ sinhð2πλÞÞψ

�
1

2
þ γ þ iλ

�

−
μ2

2
ð1þ i cscð2πγÞ sinhð2πλÞÞψ

�
1

2
− γ þ iλ

�

þ λγ cscð2πγÞ sinhð2πλÞ
�
: ð42Þ

Eventually, the spacelike component of the induced energy-
momentum tensor is given by
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T11 ¼ hinjT11jini − TðadiÞ
11

¼ −Ω2ðτÞ H2

ð2πÞ
�
ξ −

1

6
−

λ2

12μ2
þ μ2 logðμÞ

−
μ2

2
ð1 − i cscð2πγÞ sinhð2πλÞÞψ

�
1

2
þ γ þ iλ

�

−
μ2

2
ð1þ i cscð2πγÞ sinhð2πλÞÞψ

�
1

2
− γ þ iλ

�

− λγ cscð2πγÞ sinhð2πλÞ
�
: ð43Þ

In the case of zero electric field, our result for the induced
energy-momentum tensor can be compared to the energy-
momentum tensor of a neutral scalar field in dS2, which has
been derived in Ref. [7] using the covariant point-splitting
technique. If we set λ ¼ 0 in Eqs. (42) and (43), we then
find that the induced energy-momentum tensor can be
written as

Tμν ¼
H2

ð2πÞ
�
ξ −

1

6
þ μ2 logðμÞ − 1

2
μ2ψ

�
1

2
þ γ

�

−
1

2
μ2ψ

�
1

2
− γ

��
gμν: ð44Þ

The result (44) differs from the corresponding result
obtained in [7] only by a prefactor of 2, because in [7] a
real scalar field has been considered, however here we
have considered a complex scalar field φðxÞ, which has two
real scalar field components. Thus, the induced energy-
momentum tensor, in the zero electric field case, agrees
with the energy-momentum tensor of a neutral scalar field
obtained earlier.
One of the powerful approaches to investigate the

quantum effects during inflation stage of the early universe
is the stochastic inflation, which was introduced by
Starobinsky [85]. In this formalism, the quantum fluctua-
tions of the scalar field are divided into two groups,
depending on whether the magnitudes of the momentums
of the perturbations are smaller or larger compered to the
Hubble constant. The stochastic inflation formalism for
scalar QED in de Sitter background has been developed in a
series of papers [86–88]. The basic framework of the
stochastic de Sitter scalar QED has been described in
Ref. [86]. With the aim of checking the stochastic formal-
ism predictions, in Refs. [87,88] the two-loop expectation
values of the gauge invariant operators in scalar QED
in a dS4 background have been evaluated perturbatively
using dimensional regularization. The authors have set the
renormalized values of the scalar field mass, the conformal
coupling, and the scalar field self-coupling to zero. The
results of [87,88] agree with the stochastic formalism
predictions. In Ref. [88], the two-loop energy-momentum
tensor has been obtained, and it is found that inflationary

production of charged scalars leads to a decrease in the
vacuum energy. Although in this paper we also evaluate the
regularized one-loop energy-momentum tensor of scalar
QED in a de Sitter background, the current study is
different from investigation of [86–88] due to two meth-
odological choices, made differently for the studies. First of
all, we consider the electromagnetic field as a classical
background; hence our nonperturbative analysis of de Sitter
scalar QED has been very different from the perturbative
analysis of Feynman diagrams which was employed in
Refs. [87,88]. Second, to evaluate the expectation values of
the quantum operators we perform the involved momentum
integrals over the whole phase space from zero to infinity
which are regularized by a convenient ultraviolet momen-
tum cutoff; see Eq. (19). This should be in contrast with the
stochastic procedure, where the effect of the perturbations
with low momentum is computed differently from those
with high momentum. Thus, the two approaches are
completely different.

IV. IMPLICATIONS OF THE INDUCED
ENERGY-MOMENTUM TENSOR

In this section we investigate the induced energy-
momentum tensor and consider some of its implications.

A. Analysis of the induced energy-momentum tensor

We begin our survey of the induced energy-momentum
tensor by finding its qualitative behavior. Figures 1 and 2
show graphs of the magnitudes of the timelike jT00j [see
Eq. (42)] and spacelike jT11j [see Eq. (43)] components of
the induced energy-momentum tensor versus the electric
field parameter λ, respectively. In these figures note
especially that the both scales are logarithmic to cover
several orders of magnitude. Several features are clear from
these figures. For the cases μ≳ 1, in the strong electric field
regime that the condition λ ≫ maxð1; μ; ξÞ is valid, jT00j
and jT11j are independent of the values of the parameters μ
and ξ; hence all the curves asymptotically approach one
another at the right end of the figures. Although the
expressions (42) and (43) are rather complicated, they
have simple asymptotic forms in the limit λ → ∞, which
are given by

T00 ≃Ω2ðτÞ H2

ð2πÞ λ
2

�
1 −

1

12μ2

�
; ð45Þ

T11 ≃Ω2ðτÞ H2

ð2πÞ λ
2

�
1þ 1

12μ2

�
: ð46Þ

The asymptotic behaviors of the curves in Figs. 1 and 2, in
the strong electric field regime, are well approximated by
Eqs. (45) and (46), respectively. For the cases μ < 1, the
second terms in both Eqs. (45) and (46), which depend on
μ, dominate and as μ becomes smaller the magnitudes of
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T00 and T11 enhance by factor μ−2. While, the first terms in
both Eqs. (45) and (46), which become dominate for the
cases μ≳ 1, are independent of the values of μ and ξ.

We see clearly in Figs. 1 and 2 the characteristic decrease
of the magnitudes of T00 and T11 at large mass parameter μ,
and the increase at small μ. To find the asymptotic behavior

FIG. 2. The normalized magnitude of the spacelike component of the induced energy-momentum tensor jT11jτ2, versus the normalized
electric field λ ¼ −eE=H2, that both scales are logarithmic. The curves correspond to different values of the mass parameter μ ¼ m=H,
and the conformal coupling constant ξ.

FIG. 1. The normalized magnitude of the timelike component of the induced energy-momentum tensor jT00jτ2, versus the normalized
electric field λ ¼ −eE=H2, that both scales are logarithmic. The curves correspond to different values of the mass parameter μ ¼ m=H,
and the conformal coupling constant ξ.
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of the induced energy-momentum tensor in the heavy scalar
field regime that the condition μ ≫ maxð1; λ; ξÞ is valid, we
can expand expressions (42) and (43) in Taylor series about
μ ¼ ∞. We then have

T00 ≃ −T11 ≃ Ω2ðτÞH
2

π

�
c1
μ2

þ c2
μ4

þOðμ−6Þ
�
; ð47Þ

where the coefficients c1 and c2 are given by

c1 ¼
1

60
−
ξ

6
þ ξ2

2
;

c2 ¼
λ2

20
−
λ2ξ

6
þ 2

315
−

ξ

15
þ ξ2

3
−
2ξ3

3
: ð48Þ

In the heavy scalar field regime, the approximate expres-
sion (47) shows that the induced energy-momentum tensor
is suppressed as μ−2 instead of an exponentially suppres-
sion with a Boltzmann factor e−2πμ, which is derived by
semiclassical approaches [44]. This behavior has been seen
for the in-vacuum expectation value of the energy-momen-
tum tensor of a Dirac field coupled to a uniform electric
field in dS2 [83]. Similar asymptotic behavior occurs in the
in-vacuum expectation value of the current of a scalar field
in four [43] and three [44] dimensional dS, and also the
fermionic induced current in dS4 [73]. Attempts have been
made in Refs. [74,75] to address this observation.
Another feature of Figs. 1 and 2 is that some of the

curves have a singularity. We remark that the graphs have
been plotted on the logarithmic scales; hence the zero
values of T00 and T11 are appeared as extremely sharp
decrease in the graph. We stress that the components of the
induced energy-momentum tensor, which are given by
Eqs. (41)–(43), are continuous and analytic functions of the
parameters mass, conformal coupling constant and electric
field; as they must [89].

B. Trace anomaly

The trace of the induced energy-momentum tensor T, is
contracted from the metric (2) and the components (41)–
(43) as

T¼ gμνTμν

¼H2

π

�
ξ−

1

6
−

λ2

12μ2
þμ2 logðμÞ

−
μ2

2
ð1− icscð2πγÞsinhð2πλÞÞψ

�
1

2
þ γþ iλ

�

−
μ2

2
ð1þ icscð2πγÞsinhð2πλÞÞψ

�
1

2
− γþ iλ

��
: ð49Þ

To calculate the trace anomaly, we take the combined limit
of Eq. (49) as λ → 0, μ → 0, and ξ → 0. We then find

lim
λ;μ;ξ→0

T ¼ −
H2

6π
¼ −

R
12π

; ð50Þ

where in the last step we have used R ¼ 2H2. The trace
anomaly for a real scalar field has been obtained as
ð−RÞ=ð24πÞ [90] in a general two-dimensional spacetime,
where R is the Ricci scalar curvature of the spacetime.
Here, note in particular that we have regarded a complex
scalar field φðxÞ, which has two real scalar field compo-
nents. Therefore, the result (50) is in agrement with the
result obtained in the literature; see, e.g., [3,4] for a
comprehensive review.

C. Effective Lagrangian

Now thatwe have obtained the induced energy-momentum
tensor, it is possible to return the definition (16) and construct
the effective action Seff such that its functional derivatives
reproduce the expressions (41)–(43), then we can identify the
effective Lagrangian Leff . We begin by introducing the
induced current Jμ, which is the regularized in-vacuum
expectation value of the current of the scalar field φðxÞ,
whose dynamics is described by the action (1). The induced
current has been computed in Ref. [39], and is given by

Jμ ¼ ΩðτÞH
π
eγ cscð2πγÞ sinhð2πλÞδ1μ: ð51Þ

Thus, the effective electromagnetic potential A:J, can be
constructed by combining Eqs. (4) and (51) as

A:J ¼ gμνAμJν ¼
H2

π
λγ cscð2πγÞ sinhð2πλÞ: ð52Þ

To reach our goal of deriving the effective action, it is
convenient to rewrite the expressions (42) and (43) in terms
of the trace (49) and the effective electromagnetic potential
(52). We then obtain

T00 ¼
1

2
Ω2ðτÞðT þ A:JÞ; ð53Þ

T11 ¼ −
1

2
Ω2ðτÞðT − A:JÞ: ð54Þ

Variation of

Seff ¼ −
1

2

Z
d2x

ffiffiffiffiffiffi
−g

p fT þ A:Jg; ð55Þ

with respect to the inverse metric gμν gives

δSeff ¼
1

2

Z
d2x

ffiffiffiffiffiffi
−g

p �
1

2
ðT þ A:JÞgμν − AμJν

�
δgμν; ð56Þ

then definition (16), leads to Eqs. (41), (53), and (54).
Therefore, Eq. (55) is the desired nonperturbative, regular-
ized, one-loop effective action of scalar QED in dS2, and the
corresponding effective Lagrangian reads

Leff ¼ −
1

2

ffiffiffiffiffiffi
−g

p ðT þ A:JÞ: ð57Þ
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Substitution of Eqs. (49) and (52) into Eq. (57) yields the
explicit form of the effective Lagrangian as

Leff ¼
ffiffiffiffiffiffi
−g

p �
H2

2π

��
1

6
− ξþ λ2

12μ2
− μ2 logðμÞ

þ μ2

2
ð1 − i cscð2πγÞ sinhð2πλÞÞψ

�
1

2
þ γ þ iλ

�

þ μ2

2
ð1þ i cscð2πγÞ sinhð2πλÞÞψ

�
1

2
− γ þ iλ

�

− λγ cscð2πγÞ sinhð2πλÞ
�
: ð58Þ

The nonperturbative scalar QED effective action in two-
dimensional de Sitter and anti–de Sitter spacetimes has been
obtained in Ref. [40], by employing the in-out formalism
which is introduced by Schwinger and DeWitt; see, e.g., [91]
for a review. In the in-out formalism, the effective action is
related to the transition amplitude between in-vacuum and
out-vacuum states of the quantum fields; hence it is required
to use the Bogoliubov coefficients. In de Sitter spacetime, in
order to have a well-defined out-vacuum state to calculate the
Bogoliubov coefficients, it is necessary to adopt the semi-
classical approximation. In the semiclassical regime, the
parameters λ, μ, and ξ are constrained as [39,43,44]

λ2 þ μ2 þ 2ξ ≫ 1: ð59Þ
However, the approach that we adopt in this paper involves
only the in-vacuum state. Hence, we do not need to consider
the out-vacuum satewhich in turn requires the condition (59).
Consequently, the effective Lagrangian (58) can be probed in
larger domains of the parameters λ, μ, and ξ, compared with
those effective Lagrangians which are derived under the
semiclassical condition.

V. CONCLUSIONS

This paper has investigated the one-loop induced energy-
momentum tensor of a complex scalar field in the context
of scalar QED in a two-dimensional de Sitter spacetime.
The dynamics of the scalar field is described by the action
presented in Eq. (1). We have assumed that the scalar field
propagates in a uniform electric field background in the
Poincaré patch of dS2. The metric of the spacetime can be
read from Eq. (2), and the electric field background is
described by the vector potential (4). Since, a systematic
treatment of ultraviolet divergences in expectation values
which are computed in an adiabatic and Hadamard state is
relatively simple and straightforward, we calculate the
expectation value of energy-momentum tensor in the in-
vacuum state. The results for the expectation values of the
energy-momentum tensor components in the in-vacuum
state are given by Eqs. (22)–(24). We have used adiabatic
subtraction method to regularize the expectation values, the
complete set of the appropriate counterterms is obtained in
Eqs. (38)–(40). Then, each of the expressions (22)–(24) is

regularized by subtracting its counterterm. This procedure
removes all the ultraviolet divergences and brings us to
the induced energy-momentum tensor whose components
are given by Eqs. (41)–(43). The components of the induced
energy-momentum tensor are continuous and analytic func-
tions of the parameters mass μ, conformal coupling constant
ξ, and electric field λ. We showed that, in the zero electric
field case, the induced energy-momentum tensor takes the
form (44), and agrees with the energy-momentum tensor of a
neutral scalar field obtained earlier in the literature.
We observe that the off-diagonal components of the

induced energy-momentum tensor vanish. Figures 1 and 2
reveals the behaviors of the magnitudes of timelike T00 and
spacelikeT11 components of the induced energy-momentum
tensor, respectively. For fixed values of μ and ξ in the strong
electric field regime λ ≫ maxð1; μ; ξÞ, themagnitudes ofT00

andT11 increase significantlywith increasing λ; except in the
close neighborhoods of the zerovalues ofT00 andT11. Recall
that in the figures the both scales are logarithmic; hence near
the zero values of T00 and T11 a singular behavior is seen for
the curves. In the strong electric field regime,T00 andT11 can
be well approximated by the expressions (45) and (46),
respectively. For fixed values of λ and ξ, the magnitudes of
T00 and T11 decrease with increasing μ. In the heavy scalar
field regime μ ≫ maxð1; λ; ξÞ, the approximate expressions
for T00 and T11 are given by Eq. (47).
The trace of the induced energy-momentum tensor

has been obtained in Eq. (49), which yields the trace
anomaly (50). In the discussion below Eq. (50), we have
pointed out that our result for the trace anomaly is in
agrement with the trace anomaly of a massless conformally
coupled real scalar field in a general two-dimensional
spacetime obtained earlier in the literature.
Themajor achievement of this research is the derivation of

the effective Lagrangian (58) from the induced energy-
momentum tensor.More precisely, the expression (58) is the
nonperturbative, regularized, one-loop effective Lagrangian
for a scalar field coupled to a uniform electric field back-
ground in the Poincaré patch of dS2. In the derivation of the
effective Lagrangian (58), we do not impose any semi-
classical condition such as (59). Consequently, our result for
the effective Lagrangian can be examined in larger domains
of the parameters λ, μ, and ξ, compared with those effective
Lagrangians which are derived by using semiclassical
approaches.
It will be important that future research could continue to

extend this work in higher dimensions, e.g., three or four
dimensional de Sitter spacetime within the scalar and Dirac
QED frameworks. In analogy to Eqs. (41)–(43), one can
calculate the induced energy-momentum tensor, and then the
effective action can be found bymatching the components of
the induced energy-momentum tensor to the definition (16).
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APPENDIX: MOMENTUM INTEGRALS OVER
THE WHITTAKER FUNCTIONS

In the appendix we present the definitions and explicit
values of the coefficients I1;I2;…; I7 which are appeared
in Eqs. (20) and (21). These coefficients are defined as

I1 ¼ eπλr
Z

Λ

0

dppjWκ;γð−2ipÞj2; ðA1Þ

I2 ¼ eπλr
Z

Λ

0

dpjWκ;γð−2ipÞj2; ðA2Þ

I3 ¼ eπλr
Z

Λ

0

dp
p

jWκ;γð−2ipÞj2; ðA3Þ

I4 ¼ eπλr
Z

Λ

0

dp
p

jW1þκ;γð−2ipÞj2; ðA4Þ

I5 ¼ −eπλrℑ
Z

Λ

0

dpWκ;γð−2ipÞW1−κ;γð2ipÞ; ðA5Þ

I6 ¼ −eπλrℜ
Z

Λ

0

dp
p

Wκ;γð−2ipÞW1−κ;γð2ipÞ; ðA6Þ

I7 ¼ eπλrℑ
Z

Λ

0

dp
p

Wκ;γð−2ipÞW1−κ;γð2ipÞ; ðA7Þ

where the operators ℑ and ℜ extract the imaginary and real
parts of the expressions, respectively. Integrals (A1)–(A7)
are seen to be of the same type as those momentum
integrals which occurred in calculation of the induced
current of a scalar field in dS2 [39] and dS4 [43]. For
calculating these integrals, we consider the Mellin-Barnes
integral representation of the Whittaker function evaluated
on a contour described just below Eq. (11) and accomplish
the resulting integrals, as explained in Ref. [43] with some
routine modifications. We eventually find

I1 ¼
1

2
Λ2 þ rλΛþ 1

2

�
γ2 þ 3λ2 −

1

4

�
logð2ΛÞ þ 5

16
−
7

4
λ2 −

1

4
γ2 −

3

2
rλγ cscð2πγÞe2πλr

−
3

2
rλγ cotð2πγÞ − i

4

�
γ2 þ 3λ2 −

1

4

�
cscð2πγÞ

�
π sinð2πγÞ þ ðe2πλr þ e−2πiγÞ

× ψ

�
1

2
− γ þ iλr

�
− ðe2πλr þ e2πiγÞψ

�
1

2
þ γ þ iλr

��
; ðA8Þ

and

I2 ¼ Λþ rλ logð2ΛÞ − rλ − γ cotð2πγÞ − γ cscð2πγÞe2πλr

−
i
2
rλ cscð2πγÞ

�
π sinð2πγÞ þ ðe2πλr þ e−2πiγÞψ

�
1

2
− γ þ iλr

�
− ðe2πλr þ e2πiγÞψ

�
1

2
þ γ þ iλr

��
: ðA9Þ

Also, integrals (A3)–(A7) have been computed in Ref. [92], by using the procedure explained in [43], and the following
results have been obtained

I3 ¼ logð2ΛÞ − i
2
π −

i
2
cscð2πγÞ

�
ðe2πλr þ e−2πiγÞψ

�
1

2
− γ þ iλr

�
− ðe2πλr þ e2πiγÞ × ψ

�
1

2
þ γ þ iλr

��
; ðA10Þ

I4 ¼ 2Λ2 − 4rλΛþ 1

2

�
1

4
þ λ2 − γ2

�
þ rλγ cotð2πγÞ þ rλγ cscð2πγÞe2πλr; ðA11Þ

I5 ¼ −Λ2 −
1

2

�
γ2 þ λ2 −

1

4

�
logð2ΛÞ þ 1

4
πrλþ 1

4

�
3λ2 þ γ2 −

5

4

�
þ 1

2
rλγ cotð2πγÞ þ 1

2
rλγ cscð2πγÞe2πλr

þ i
8
cscð2πγÞ

�
γ2 þ λ2 −

1

4
− irλ

��
ðe2πλr þ e−2πiγÞψ

�
1

2
− γ þ iλr

�
− ðe2πλr þ e2πiγÞψ

�
1

2
þ γ þ iλr

��

þ i
8
cscð2πγÞ

�
γ2 þ λ2 −

1

4
þ irλ

��
ðe2πλr þ e−2πiγÞψ

�
1

2
þ γ − iλr

�
− ðe2πλr þ e2πiγÞψ

�
1

2
− γ − iλr

��
; ðA12Þ

I6 ¼
1

2
; ðA13Þ

I7 ¼ 2Λ − rλ − γ cotð2πγÞ − γ cscð2πγÞe2πλr: ðA14Þ
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