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Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime
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We investigate the effect of a uniform magnetic field background on scalar QED pair production in a
four-dimensional de Sitter spacetime (dS,). We obtain a pair production rate which agrees with the known
Schwinger result in the limit of Minkowski spacetime and with Hawking radiation in dS spacetime in the
zero electric field limit. Our results describe how the cosmic magnetic field affects the pair production rate
in cosmological setups. In addition, using the zeta function regularization scheme we calculate the induced
current and examine the effect of a magnetic field on the vacuum expectation value of the current operator.
We find that, in the case of a strong electromagnetic background the current responds as E - B, while in the
infrared regime, it responds as B/E, which leads to a phenomenon of infrared hyperconductivity. These
results for the induced current have important applications for the cosmic magnetic field evolution.
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I. INTRODUCTION

A fascinating effect in quantum field theory is the
Schwinger effect [1]: the creation of pairs of particle and
antiparticle out of the vacuum in the presence of a back-
ground electromagnetic field. While it was Sauter [2],
Heisenberg, and student Euler [3] who first investigated
this effect, history has remembered Schwinger who revis-
ited their works some 20 years later [4]. Despite being a
very useful tool for the theoretical understanding of
quantum field theory and for the development of powerful
calculation techniques in a strong field background, the
Schwinger effect has so far not been detected in laboratory
experiments. The production of electron-positron pairs,
however, was realized in an experiment, in which high-
energy gamma rays are scattered with a Coulomb potential
[5]. The main reason is that the Schwinger effect is
exponentially suppressed unless the electric field is close
enough to a threshold electric field Eyognolq = 1.3 X
10" V/m [6]. A new idea developed in recent years is
aimed at detecting this effect: changing the system under
study and considering the Schwinger effect in astrophysical
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and cosmological contexts where huge background fields
could naturally be present [7]. We will investigate in this
paper the Schwinger effect in four-dimensional de Sitter
spacetime (dS,;) under the influence of both a constant
electric field and a uniform magnetic field background.

The Schwinger effect in dS spacetime has recently
become an active field of research. The seminal papers
studied this effect in two-dimensional de Sitter spacetime
(dS,) [8] and in dS, [9]. The one-loop vacuum polarization
and Schwinger effect in a two-dimensional (anti—)de Sitter
spacetime was explicitly found and a thermal interpretation
was proposed for the Schwinger effect in Ref. [10]. The
initial motivation of [8] was to use this framework to
investigate bubble nucleation in the context of the multi-
verse proposal. However, this toy model for pair creation
turns out to have a wide range of applications, from
constraining magnetogenesis scenarios [9] and investigat-
ing the ER = EPR conjecture via holographic setups [11]
to pair creation around charged black holes [12—-14] and
baryogenesis [15].

These physical motivations led to a series of papers in
which the Schwinger mechanism was investigated for
various types of particles and spacetime dimensions. It
was investigated whether the known equivalence between
bosonic and fermionic particles with respect to the
Schwinger effect holds in dS, [16]. Particles differentiate
themselves only if one goes beyond the semiclassical
limit and computes the current which, in turn, is a more
physically relevant quantity to describe the Schwinger
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mechanism in curved spacetimes. These results were
generalized to dS; in Ref. [17]. For bosons in dS,, the
results of Ref. [9] were reinforced in Ref. [18] which
considered an alternative renormalization scheme and
found the same results. In Ref. [19], an alternative method
was employed: the uniform asymptotic method was used to
derive new results for the Schwinger effect in dS,; see also
Ref. [20]. In Ref. [21], the Schwinger mechanism in three
dimensions was explored as an example of odd-dimension
field theory in dS. In all these works the gravitational field
and electric field were assumed to be background fields
whose variations due to backreactions are negligible during
the typical time scale of pair creation. This approximation
can be shown to hold for some range of the parameters.
However, taking a constant background field can only be
seen as a toy model to understand some physical impli-
cations of pair creation, and in realistic models of inflation
requiring quasi-dS, the backreaction effects both on the dS
metric and on the background electric field should be taken
into account. In Refs. [21,22], it was shown that both the
gravitational and electromagnetic fields would be sup-
pressed by the Schwinger effect. In Refs. [23,24], it was
pointed out that the quantum-gravity originated cosmo-
logical constant term Ag*” results in the creation of particle-
antiparticle pairs and their fields whose energy-momentum
tensor T, in turn backreacts on Ag", and that these are
important to understand the inflationary process in the early
Universe and the dark energy—matter interaction for Q, ~
Qy\ ~ O(1) in the present Universe. Recently it was argued
that dS was unstable due to quantum effects [25-27]. The
idea is that a nontrivial Bogoliubov transformation leads,
after decoherence, to a breaking of the dS invariance and
therefore to a decrease of the cosmological constant.

In this article, we propose to go one step further and add a
uniform magnetic field to a dS spacetime and an already
present electric background. This is a common generaliza-
tion of a flat spacetime in which the analytic results have
been known for a long time [4], but the Schwinger effect has
never been properly investigated in dS. One motivation to
consider a uniform magnetic field in dS is the recent result
that a uniform magnetic field is a stable configuration of dS
in modified gravity theories [28]. The effect of a uniform
magnetic field exhibits new properties of the Schwinger
mechanism compared to a pure electric field in dS. And
another possible reason to consider an electromagnetic field
in the early Universe would come from the observation of
blazars leading to a lower bound for the magnetic field in the
intergalactic medium: B > 6 X 107'% G [29]. The origin of
these magnetic fields is now an open question in cosmology
but two main scenarios are emerging: their origin is either
after recombination or primordial; see the reviews [30-33].
In the case of a primordial origin, just as for a scalar field,
the vacuum fluctuations of the gauge field are amplified to
larger scales. Once inflation comes to an end, the Universe
becomes conductive, causing the electric field to vanish and

the magnetic field to evolve until the present epoch via flux
conservation. If the primordial origin of the currently
observed magnetic field is adopted, it is necessary for
inflation model builders to investigate physical effects due
to the presence of an electromagnetic field, i.e., the
Schwinger effect, which is the main topic of this paper.
One constraint from the Schwinger effect has been worked
out in this scenario: the Schwinger pairs screen the para-
metric amplification of the magnetic field leading to an
upper bound on the current magnetic field [9]. We expect
that including a magnetic field in the Schwinger pair setup
should give a more stringent bound on the current magnetic
field. Besides, it has been found [34] that the quantum
fluctuations of the vacuum of a charged scalar field in dS
generates a strong magnetic field which induces an insta-
bility of the vacuum [35].

The effect of a magnetic field background on the scalar
pair creation probability [36] and the number density [37]
in spatially flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) universes has been investigated. In Ref. [36],
the author showed that in the presence of a pure magnetic
field background, i.e., in the absence of an electric field
background, the gravitational pair creation does not change
in dS, whereas in a radiation-dominated universe, a pure
magnetic field background minimizes the gravitational pair
creation [37]. In holographic setups, the inclusion of a
magnetic field in the Schwinger effect was investigated in
Ref. [38]. It is, however, difficult to compare that result
directly with the case of dS under consideration in this
paper. Adopting the perturbative QED approach in dS, the
first-order amplitude for the fermion production in a
magnetic field has been analyzed in Ref. [39]; see also
Refs. [40,41]. The authors [39] found that the fermion
production is significant only in strong gravitational fields.
This paper aims at investigating the influence of the
magnetic field on the Schwinger pair creation of charged
scalars in dS,, specifically, by computing the semiclassical
decay rate and analyzing the quantum vacuum expectation
value of the current operator, which is equivalent to the
exact one-loop approach including all one-loop diagrams.

The organization of this paper is as follows. In Sec. II,
the working assumptions on the gravitational and electro-
magnetic field backgrounds are presented. In Sec. III, we
recall the main equations for charged scalars in a magnetic
field as well as an electric field for the pair creation setup.
In Sec. 1V, we compute the pair creation rate using a
semiclassical approach to the exact one-loop order.
In Sec. V, we present an expression for the induced current
and discuss several relevant limiting cases of different field
intensities. We draw some conclusions and future lines of
research in Sec. VI. Appendix A contains some math-
ematical aspects of this work: some useful properties of the
Riemann and Hurwitz zeta functions. Eventually, in
Appendix B, the computation and regularization of the
current are reviewed.
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II. GRAVITATIONAL AND ELECTROMAGNETIC
BACKGROUNDS

To study the Schwinger effect in dS,, we consider the
action of a complex scalar field coupled to a U(1) gauge
field as

S = /d4x\/—_g [g‘“’((?v —ieA,)p* (0, +ieA,)p
1
-+ R = Fu | m

where e is the gauge coupling (the charge of the particle), m
is the mass of the scalar field, and £ is a dimensionless
nonminimal coupling. From now on, we consider, for
simplicity, the minimal coupling case and set £ = 0. We
assume that the complex scalar field is a test field probing
two background fields: the gravitational field and the
electromagnetic field.

A. Gravitational field background

The gravitational field is described by the dS; metric
which reads in the conformal coordinates as

ds®> = Q*(7)(dv® — dx* — dy* — dZ?),

7 € (—0,0), x = (x,y,2) € R, (2)
where the scale factor Q(z) and the Hubble constant H are
given by
1 dQ(r)
H=Q2(1)——=. 3

@=2 o)
We add that this slicing of dS covers only one half of the
manifold: the Poincaré patch.

B. Electromagnetic field background

For the electromagnetic field, we consider that it is
composed of a uniform electric field with a constant energy
density parallel to a uniform magnetic field with a
conserved flux. We choose a vector potential A, in the
Coulomb gauge

Ag=0,  9,A; =0; (4)

then, with respect to a comoving observer with a four-
velocity vector u* = Q7!(z)d,, the time and spatial com-
ponents of the electric and magnetic field vectors are
given by [9]

E():O,
B():O,

E;i(7) = Q7' ()doA;,
B;(z) = Q7' (7)€ x0;As. (5)

where €,,,, is the completely antisymmetric Levi-Civita

symbol which is normalized as €y;,3 = 1. Having a

uniform electric field with a constant energy density
requires that the magnitude of the electric field vector
satisfies

E,(1)E (1) = -Q(0)E()E(1) = -E*,  (6)

where E is a constant. In order to describe a uniform
magnetic field with a conserved flux, the magnitude of the
magnetic field vector should satisfy

B,(7)B!(t) = —Q7(7)B(7)B;(7) = -Q~*(7)B*,  (7)

where B is a constant. In this paper, we shall consider
the case where the electric and magnetic fields are parallel
to each other, namely along the z axis. It can be verified
that the vector potential describing such electric and
magnetic fields along the z axis, in the conformal metric
(2), is given by

E
A, (x) = —H—%éﬁ + By}, (8)

To discuss the Maxwell equation satisfied by the
electromagnetic field configuration (8), we need to dis-
tinguish two types of currents: the induced current J of the
newly created Schwinger pairs which will be calculated in
Sec. V, and the classical background current J’,;. We assume
that the electromagnetic field background F** is a classical
field which is produced by the background current J}, and is
not affected by the pair production. In this approximation,
the induced current J of the Schwinger charges is
neglected. Hence, the general covariant Maxwell equation
is written as

VP = g0, (lghF) = Tt ©)

This leads to the Maxwell equation for the vector potential
in the Coulomb gauge (4) and the geometry (2),

agA, - a]a]Al - QZ(T)Jb,i. (10)

Substituting the vector potential (8) into the Maxwell
equation (10) implies that the background current is

Ji = 2EHQ (7). (11)

We comment here that in order to have a well-defined and
self-consistent model, the background current (11) has to
be larger than the induced current (see Sec. V below) of the
pairs created by the Schwinger mechanism. Besides, this
background current (11) should also be weak enough not
to gravitate and significantly modify the gravitational field
background (2). This implies that the electromagnetic
energy density E2 + Q~*(7)B? is much smaller than the
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vacuum energy density H>M3
Planck mass.

[34], where Mp is the

III. KLEIN-GORDON EQUATION

Using Eqs. (2) and (8), the Klein-Gordon equation reads
from the action (1),

{63 +2HQ(7)9y — (0 + ieBy)* — 03
<a3 + @g( ))2 + m292(r)} o(x) =0, (12)

The solution of the spatial part of Eq. (12) is a bit more
involved than a simple Fourier transformation because of
the explicit y dependence. Substituting

p(x) = Q7 (1)p(x). (13)

into Eq. (12) yields
. ieE
9% — (0, +ieBy)* - 03 — (33 —|——Q( ))
+ m*Q?(z) — 2H2§22(7)] p(x) =0. (14)

Using the ansatz

P(x) = K= (y) f5 (1), (15)

where we have defined
k)ﬁ = (kx’ 0, kz)’ (16)
and £ denotes the positive- and negative-frequency sol-
utions of Eq. (14), respectively, we decouple the spatial and

time-dependent parts of Eq. (14) as

dzhi( )

= (eBy kI =
B0 (v k) + - A ==
(18)

The harmonic wave function A*(y) is a Landau state
given by

| e 2
hn(y:t): %CXP(—%)H,&)@Q,

yi::

— —shE(y),  (17)

ky
veB '

where H, with n € N is the Hermite polynomial and s is
the Landau energy

s =(2n+1)eB. (20)

The normalized wave functions (19) satisfy the orthonor-
mality relation

+o0
| ) b @D
and the completeness relation

> (o)

n=0

2 (V) =60y =), (22)

where y', is given by replacing y by y’ in the definition (19)
of y.. We note that the standard prescription in a flat
spacetime applies also to our results; when one adds a
magnetic field, the pair creation in the general case can be
deduced from the pure electric field case (B =0) by
replacing the transverse momentum squared ki by the
Landau levels (2n + 1)eB. Following Refs. [13,21], the
positive- and negative-frequency solutions with the desired
asymptotic forms at early times (r — —o0), i.e., the in-
vacuum mode functions are given by the Hadamard states

ink

ez 2 —in
Uy n) =~ 07 (e 585, . W (42p).
(23)
Vin(xikgon) =< \/2—]( H(z)e ™ *ih, (y ) Wiy (€32p).
(24)

Similarly, the positive- and negative-frequency solutions
with the desired asymptotic forms at late times (z — 0), i.e.,
the out-vacuum mode functions are given by

iy

e

Q
V4rlk

Uou (% kg, n) = T(e)e ¥ Kih, (v, )My, (€72p),

(25)

iny

ez

V4rlk

Vou(x: Ky, n) = Q' (1)e ™ ®ih, (y_ )M, _, (e F2p).

(26)

Here, W, and M, , are some hypergeometrical functions
known as the Whittaker functions [42] and the parameters
have been defined as
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k
k: k%—l—(Zn—l—l)eB, r:f’ p:_'[-k7

py = —7ky, ¢ = eB1?, u= %,

E 9
x:%, k=ilr. y=q\7-F-p QD)

In Secs. III and IV of this paper, we assume the semi-
classical condition,

P4t >1, (28)

and hence the parameter y is purely imaginary. We adopt
the sign convention y = +ily/|.
The orthonormality relations
(Uin(out) (X; k)ﬁ’ I’l), Uin(out) (X; k)ff/’ I’l/))
~(Vintouy (5 Ky, 1), Vingouy (x: k', 1))
= (2728 (ky = g/ )B
(Uin(out) (X; k)f‘? I’l), Vin(out) (X; k;, I’l/)) =0, (29)
can be shown to hold. Using two complete sets of
orthonormal mode functions, we expand the scalar field

operator. In terms of the in-mode functions we can express
the field operator as

© Pk
¢m=;/@§mmwm%wm
+ Vin(x; ky, n)b], (kg )], (30)

where the operator a;, annihilates a particle and the

operator b;rn creates an antiparticle in the state with the
momentum ky and the Landau level n. The quantization is
implemented by imposing the commutation relations

[ain (kg n). af, (K. n')] = [byy (ky. ). b (K} )]
= (27)°6° (ky = K{)8,., (31)
and the in-vacuum state is defined as
ai,(ky n)lin) =0, V ky,n. (32)

We can expand the scalar field operator in terms of the out-
mode functions and we similarly define the out-annihilation

doy and creation b)), operators as
- d*k
0) =D [ 5 U )
e (27)

+ vout(X; k]h n)bj)ut(k)(” I’l)], (33)

where the quantization
given by

commutation relations are

[aout(k)fn ) out(k n )} = [bout(kﬁ’n)vbzut(k;’n/)]
= <2”)252<k} - k;-)fsn,n’a (34)
and the out-vacuum state is defined as
agu(ky, n)lout) =0, V Ky, n. (35)

The canonical momentum 7z(x) conjugated to the scalar
field ¢(x) is defined through the Lagrangian. It reads from

Eq. (1),

= Q2 ()" (36)

Then, using the explicit form of the scalar field operator
¢(x) and the canonical momentum z(x) in terms of the
mode functions, one can verify that the canonical equal-
time commutation relation correctly holds

[p(,x), n(r,x)] = i8°(x — x'). (37)

IV. SCHWINGER EFFECT

The usual quantity describing the Schwinger effect is the
pair creation or decay rate which is derived from the
Bogoliubov coefficients [43,44],

A(ky, n; K n') = (Ugu(x: ky, n), Ui (x; k. n')),  (38)
B(ky. n; ki, n') = —=(Uou(x: ky, 1), Vin(x; ki n')). - (39)

Substituting the explicit form of the mode functions
(23)—(26) into Egs. (38) and (39) leads to
A(kx,n;k;n) (2ﬂ)252(k —k’)énn

_ @Iy ey

, 40
rG+x+ y) (40)
B(kyn;ky'n") = (Zﬂ)zéz(kﬁ + k;)én’n,ﬂ,

FG+x-7)
where the coefficients satisfy the bosonic relation

la|?> — |B]> = 1. A Bogoliubov transformation relates the
out-operator a,,, to the in-operator a;, as

/
Aoy (Ky, 1) Z/ ‘2 A*(ky, n; kx,n)am(k;,n’)
n'=0

— B (ky, n; K, n')bf (K, n')]. (42)
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Using the out-operator a(ky,n), we can calculate the
expected number of created pairs with the comoving
momentum ky and the Landau level n carried by the
in-vacuum state

1
L.L

(inlady (K. n)agu(ky. n)|in) = |Bk..n)P, (43)

Z

where we have used Eqgs. (41) and (42) and, for conven-
ience, the three-volume of dS, is normalized into a box
with dimensions V = L,L,L,. Then the decay rate I, i.e.,
the number of created pairs N per unit of the physical four-
volume of the dS, is given by

dk, dk,

(ke m)[.

(44)

N 1
- V09TV - QY1)TL, ;

where T is the time interval of the pair creation. The
Bogoliubov coefficient f is independent of the momentum
component k, which determines the position of the center
of the Gaussian wave packet on the y axis by the relation
y = k,/(eB). Consequently, the integral gives [45]

/ dk,
(27)
To perform the k, integral on the right-hand side of

Eq. (44), we adopt the semiclassical method used in
Refs. [8,9]: most of the particles are created around the time

eBL,
(27)

(45)

ly|
~ 46
T~ (46)

Z

Imposing the relation (46) and transforming the k, integral
into a 7 integral, we then obtain

H*? ©_2xk]| —2zly|
AT o il (47)
4n? — e2rlr| — p=2nly|
where
Aly|
|| = (48)

WP+ @n+ 1)

A physical magnetic field in a spatially flat FLRW universe
with a cosmological scale factor Q(z) dilutes as BQ ()
where B behaves as a magnetic field in the comoving
spacetime [46,47]. This preserves the flux conservation for
the physical magnetic field. Recalling that # = eB7?,
consequently, the decay rate I" depends on the time 7
due to the dilution of the physical magnetic field. We may
write Eq. (47) in another form

o (B H2|y| O el — 1
- o0 ; el — e—ZHM el — 11
(49)

The first term in the square brackets in Eq. (49) is the pair
creation rate from the electromagnetic field while the
second term is the dS radiation with a new temperature
T = m/(2x|y|) weighted by the density of states for the
electromagnetic field.

A few comments are in order. First, there is a term
independent of the Landau levels, whose sum apparently
gives a diverging factor. We tackle this issue by using the
Riemann zeta function prescription as in Ref. [48]. We also
use the n = 0 term which gives a constant factor

0

1
> =140 =1. (50)
n=0 2
where Eq. (A3) has been used. Thus, the pair production
from the zeta regularization technique leads to a finite result

= (5) (5 )l )
(51)

Second, in the regime of the weak magnetic field [/ <«
min(1, u, )] and the strong electric field [A>>max(1,u,£)],
Eq. (51) leads to

1 (eBQ 2\ [¢E\ -m?
F = — “’E‘ 2
2( 2 )(2;:)6 (52)

Third, in the limit of zero electric field E = 0, the first
term in the square brackets of Eq. (49) vanishes and the
second term is the dS radiation with the Gibbons-Hawking
temperature [49]

1 (eBQ™2\ (H?|y| 1
r=- .
2( 27 )( 27 )ezm -1 (53)

The factor 1/2 comes from the spin multiplicity for spinless
bosons while it is 1 for spin-1/2 fermions. The radiation in
the pure dS, without electromagnetic fields consists of
massive particles m > 3H /2 and the leading term of H>|y|
is Hm for the density of states [50]. Thus, the presence of a
cosmic magnetic field enhances the dS radiation through
the density of states by a factor of eBQ™2. The density of
states eB becomes H? when there is no magnetic field.
Finally, in the Minkowski spacetime limit H = 0, Eq. (47)
gives the Schwinger formula in scalar QED [4]

1 /eB)\ [eE e“j—g‘f
I'=—{—|[— ) ——. 54
2 (27:) (27:) sinh(%) (54)
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V. INDUCED CURRENT

Semiclassically, the conductive current J,, of the newly
created Schwinger pairs having a charge e, a number
density N, and a velocity v due to the background electric
field is defined as J,, = 2e/N'v. The number density of the
semiclassical Schwinger pairs at the time 7 reads

N(z) = Q73(z) /_ ' gw)r(ff)dm?, (55)

[se]

where I"is given by Eq. (47). The current J ., is valid under
the semiclassical condition, which is given by Eq. (28).
In this section we investigate the in-vacuum expectation
value of the current operator which is referred to as the
induced current, without assuming the constraint (28) on
the parameters. Hence, y can be real or purely imaginary
depending on the value of involved parameters, 1 and .
The current operator is defined by
@) =5 g ({0, + ieA)p. 0"} = {(0, — ieA)g" 0}),

2
(56)

and can be shown to be conserved Vﬂ Jj# =0 [43]. In order
to compute the expectation value of the current operator, we
will use the in-vacuum state since it is a Hadamard state
[8,51]. Substituting the scalar field operator (30) into the
current expression (56) and using Egs. (31) and (32), we
find that the only nonvanishing component of the current is
the one parallel to the electric field which is given by

eH? -
(inl P ()fin) = 2 02(5) Y

2
4 g

+oo (]
x / P (1 e Wi (20

< [ apio). (57)

Using the orthonormality relation (21) the p, integral is
performed

+00
[ apdis) = e (5%)
If we parametrize the induced current as
J = Q(z)(in|/* (x)|in), (59)
then Eq. (57) is simplified to

eH3¢ &\ [+odp ~ )
=S [T e Wi (i)
n=0 7=

(60)

47

FIG. 1. The normalized induced current J/eH?> (upper surface)
and semiclassical current J,,/eH> (lower surface) are plotted as
functions of A and Z, in the lowest Landau state n = O with u = 1.

The remaining integral in the induced current expression
(60) deals with the Whittaker functions. In the absence of
the magnetic field background, the translational symmetry
helps us perform the integral using the Mellin-Barnes
representation of the Whittaker functions; see Refs. [8,9].
However, even in this case the exact expression for the
induced current is very complicated and one has to look at
limiting regimes to better grasp the physics of the results.
In the regime of 4 > 1 the semiclassical condition (28) is
satisfied, and the induced current (60) is comparable to the
semiclassical current J.,, = 2eN'v. Considering ultra-
relativistic particles with velocity v ~ 1, Fig. 1 shows that
the induced current J approaches the semiclassical current
Jsem for the strong electric field regime A > max(1, y, ©).
In Figs. 2 and 3 we plot the induced current expression
(60) as a function of the electric and magnetic fields,
respectively. The figures illustrate that the induced current
of a massive scalar field responds to the strong electro-
magnetic field as J « B - E; for additional numerical
investigations see Ref. [52]. As a matter of consistency,

0.100

J/eH?

0.010 |

0.001

FIG. 2. For different values of #, the normalized induced
current J/eH? is plotted as a function of A, in the lowest Landau
state n = 0 with gy = 1.
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10

0.010

FIG. 3. For different values of A, the normalized induced current
J/eH? is plotted as a function of #, in the lowest Landau state
n =0 with y = 1.

we will now analytically investigate the limiting behavior
of the induced current (60) to show that it agrees with the
numerical investigations.

A. Weak magnetic field regime

In the weak magnetic field regime the relation £ <
min(1, 4, 4) is satisfied. Taking the limit £ — 0 in the
momentum p gives p ~ |p.|; see the definition of p in
Eq. (27). Then the induced current expression (60) is
simplified to

H3f
J=

dp .
/ P rpet e W (2ip)

(61)

The integrand on the right-hand side of Eq. (61) is indepen-
dent of the Landau states. Hence, similarly to the prescription
used in Sec. IV, using the zeta function representation (50),
the current expression (61) is regularized to

nOr:tl

eH f dp —air
J= / L .t e Wi (200 )P
r==41

(62)

The computation and adiabatic regularization of the current
(62) are reviewed in Appendix B and the final result can be
read from Eq. (B14). We then obtain

3
Jrg = <ZH > ¢y sinh(27A) (63)

7% ) sin(2zy)
We comment here that our result is unlike the case of a pure
electric field in dS, [9], where in order to renormalize the
current an adiabatic expansion up to order two has been
performed to remove the quadratic divergence; here the
zeroth adiabatic order is enough as in the dS, case [8]. The
reason is that we deal here with an effective integration in

1 4 1 dimensions, and the integration over momentum in the
directions orthogonal to the magnetic field is replaced by a
discrete sum over quantized Landau levels, which is regu-
larized and renormalized by using the Riemann zeta function
technique; see Appendix A.

1. Strong electric field regime

In the strong electric field regime the relation A >
max(1,u, ) is satisfied. Taking the limit A — oo in the
regularized induced current (63) with x4 and £ fixed, to the
leading order, gives rise to

e [eBQ 2\ [¢E\ -m?
~ \eE\
e = ( 27 ) <27r>e (64)

In this regime the decay rate is given by Eq. (52) and the
semiclassical current follows from Eq. (55). Then, one can
verify that the induced current (64) agrees with the semi-
classical current for particles with velocity v ~ 1.

We remark that the limit eE/H”>> 1 of Eq. (60)
presented in Eq. (64) nicely recovers the Schwinger
formula, which comes from the fact that the background
current (11) vanishes in the Minkowski spacetime limit,
when H — 0 and Q(z) — 1. Therefore, this model could be
relevant for modeling our Universe deep in the inflationary
regime when a de Sitter spacetime (2) can be assumed or
close enough to the Minkowski spacetime limit so that the
background current (11) stays weak.

2. Weak electric field and heavy scalar field regime

In this regime the relations A« 1 and x> 1 are
satisfied. Taking the limits 4 - 0 and y — oo in the
regularized induced current expression (63) with # fixed,
to the leading order, gives rise to

drem [(eBQ 2\ [(€E\ -sm
Jreg—?(T) (ﬂ) (65)

In this regime the decay rate from Eq. (53) and the induced
current (65) agree with the semiclassical current J, for
particles with velocity v ~ (4zeE)/H>.

3. Infrared regime

In this regime the relations £ < ¢ < 1 < 1 are satisfied.
Hence the semiclassical current cannot be compared to the
induced current in this regime. Taking the limits 4 — 0 and
4 — 0 1in the induced current expression (63), we then find

9¢H? £
J =— |7, 66
e 8x2 (/12 + ,u2> (66)

or in terms of dimensionful variables
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In this regime for an interval of y <A <1 a decreasing
electric field gives rise to an increasing current and con-
sequently hyperconductivity. This infrared phenomenon was
first discovered in Ref. [8] and dubbed infrared hyper-
conductivity (IRHC) for the case of a scalar field coupled
to a constant, purely electric field background in dS,. In
Ref. [9], using an alternative approach to thatin Ref. [19], the
authors computed the current due to a pure electric field in
dS, and found IRHC. In Ref. [9], the second-order adiabatic
expansion led to a term of the form log(m/H) in the
regularized induced current expression. Therefore, it was
not possible to discuss IRHC for the case of a massless
minimally coupled scalar field. However, we note here that
the inclusion of the magnetic field and the change of the
renormalization prescription allow to explore IRHC in the
massless limit. We find indeed that the induced current
responds as J ~ B/E and increases unboundedly in the case
of a massless minimally coupled scalar field. For a massive
scalar field, an upper bound on the induced current occurs at
A = p and is given by

9¢H? [eBQ?
=2 . 8
Ires 8zm < 27 > (68)

The exact nature of IRHC remains a mystery but it has been
reported in various works in the past. It is unexpected as for a
decreasing cause (the electric field background) the conse-
quence (the induced current due to the creation of Schwinger
pairs) increases. It might be a signal for the need for
backreaction and the breaking of the working assumptions
of the toy model used to derive it or it could have a deeper
physical meaning that is yet to be understood. In any case,
if it is confirmed within the next few years, it has to be taken
into account and will give constraints on inflation scenarios.

B. Strong magnetic field regime

In the strong magnetic field regime the relation £ >
max (1, , A) is satisfied. In this regime, in order to examine
the limiting behavior of the induced current, it is convenient
to rewrite Eq. (60) in the form

eH3 ¢ & /+1 dr
J= (rp(r) +4)
47 ) (1-1r?)
X e Wy, (=2ip(r)) |, (69)

where the momentum p as a function of r is given by

(1+2n)¢
11—

p(r) = (70)

In the limit £ — oo and as a consequence p(r) — oo, the
Whittaker function approximates

Wiy (=2ip(r))? ~ ™. (71)

Substituting the asymptotic form (71) into Eq. (69) and
using the prescription (50), we obtain

J

H?3 +1
_e f/l/ dr (72)

871'2 1 (1 —l’z)‘

In order to regularize the integral in Eq. (72), we use the
prescription

+1 dr 2. [+l 2. 1
- drr" = NG
Lam= o=y ™

and using the definition of the Hurwitz zeta function given
by Eq. (A4), we represent the summation as

= 1 7 1
= — e = — ). 4
Zn+% 8a8sé<s 0. 2) (74)

n=0

Finally, with Egs. (72)—-(74) and (A12), we obtain the
regularized induced current in the strong magnetic field
regime

eH3¢) e [eBQ?\ [eE
Jreg = (yEuler + ln(4>)v NE ( o > (Z) s (75)

where ygyor = 0.577--- is Euler’s constant. This result
shows the new contribution of the magnetic field in the
strong magnetic field regime. As for the strong electric field
regimes, the induced current presents a linear behavior in
the magnetic field. As expected, it is the pair production
due to the electromagnetic field which dominates its
gravitational counterpart, in this regime.

VI. CONCLUSION

We have investigated for the first time the effect of a
uniform magnetic field on Schwinger pair production and
the induced current due to a constant electric field in dS,.
On the one hand, in Minkowski spacetime, a strong
constant electric field can create pairs of charged particles
from the vacuum at the cost of electrostatic energy. This is
known as the Schwinger effect. A pure magnetic field does
not produce pairs of charged particles since the virtual pair
from the vacuum immediately annihilate each other. On the
other hand, dS can emit radiation of all species of particles.
This is known as Gibbons-Hawking radiation. These two
effects have been considered together in the past. In this
case, two important results are that the Gibbons-Hawking
radiation enhances the pair production [10] and the super-
horizon behavior of the field leads to a phenomenon of
infrared hyperconductivity for the induced current
[8,9,19,21].
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In this paper, we have added one more ingredient to this
setup: we included a uniform magnetic field parallel to the
electric field in dS,. The results of this paper recover the
Schwinger effect and the induced current in the absence of
a magnetic field, which has been systematically investi-
gated in Ref. [9]. The effect of a uniform magnetic field on
the Schwinger effect and the induced current with or
without an electric field in dS; have been extensively
studied.

First, the Schwinger effect is enhanced due to the density
of states proportional to the magnetic field. Even in the
absence of the electric field, the pair production rate is a
product of the Gibbons-Hawking radiation and the mag-
netic field. This means that a strong magnetic field indeed
assists the pair production in dS; see the result in Eq. (53).
This is in contrast to the Schwinger effect due to parallel
electric and magnetic fields in Minkowski spacetime, in
which the density of states is proportional to both the
electric field and the magnetic field and vanishes when the
electric field is absent because a pure magnetic field is
stable against spontaneous pair production.

Second, infrared hyperconductivity has been observed
in the regime u < 4 < 1, for weak magnetic fields; see
the result in Eq. (67). This indicates that in dS
(i) u =m/H <1 (i.e., the Compton wavelength m~' of
the charge is much bigger than the Hubble radius H™'),
(i) 1 =eE/H?> <1 (ie., the electric field E is much
smaller than the scalar curvature R = 12H?), and (iii) 4 < A
or ¢eE/H > m (i.e., the electric potential energy across the
Hubble radius H~! is much larger than the mass of charge).
This is in contrast to the regime eE/m > m for the
Schwinger effect for a pure electric field in flat spacetime,
i.e., the electric potential energy across one Compton
wavelength of the charge is much larger than the mass
of the charge. The upper bound for the induced current
in the magnetic field and electric field is given by
eBQ2H?/m modulo a constant of order one, while in
the pure electric field, the induced current has an upper
bound given by eH*/m, independently of the electric field.

Finally, in the limit of a magnetic field stronger than the
mass of the charges, the electric field and scalar curvature
of the dS, the induced current is proportional to the
pseudoscalar of the Maxwell theory [see the result in
Eq. (75)] which corresponds to the chiral magnetic effect
for spin-1/2 fermions [53]. The chiral magnetic effect for
fermions in dS, which is likely to hold for spinor QED
considering the analogy with scalar QED, would be
physically interesting but is beyond the scope of this paper
and will be addressed in a future study.

Our new results open the road to systematically constrain
primordial magnetogenesis scenarios. The inclusion of a
magnetic field leads to an increase of the creation of
Schwinger pairs which themselves screen the magneto-
genesis amplification. We will present this new bound in a
future paper [54].

Going further, an extension of the setups already known to
investigate the Schwinger effect in dS would be to consider
anisotropic inflationary spacetime where a constant electric
field could be naturally sustained. Links to axion inflation
and possibly a mechanism of baryogenesis with the help of
the Schwinger effect could also be exhibited.
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APPENDIX A: RIEMANN AND HURWITZ
ZETA FUNCTIONS

In this appendix some useful properties of the Riemann
and Hurwitz zeta functions are reviewed; for more proper-
ties see, e.g., Ref. [42].

The Riemann zeta function is a function of the complex
variable s that analytically continue the Dirichlet series

> 1
— Al
e W
for when 9 (s) > 1. Another representation of it is
= (A2)

n:0 2n +1

Via the analytic continuation of Eq. (A1), it is possible to
assign a finite result to the divergent series

o 1
21:4(0):—5.

n=1

(A3)

Similarly, the Hurwitz zeta function is defined by the series
expansion

el 1
=N () > La#0,-1,-2, ...
nz:;(n—ka)s () *

(A4)
The Riemann zeta function is nothing but a special case

{(s.1) =L(s). (AS)
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The following special values of the Hurwitz zeta function
are relevant here:

(A6)

1
£(0,a) = ;T (A7)
The Hurwitz zeta function satisfies the symmetry of second

derivatives and its derivative in the second argument is a
shift

0? ?
OsOa £, a) = Oads £(s.a), (A8)
2 f(s.a) = ~sL(s + 1.a)
9 s,a) = —sC(s ,a),
s#0,1;, N(a) > 0. (A9)
One of its limiting behaviors reads
i ¢5.0) - 25| = wl@. (a0

where y(a) is the digamma function which has the special

value
: In(4)
— | = —yr —1In(4).
"4 3 YE

With Egs. (A8)-(All), one can verify the useful math-
ematical formula

0? 1
Dads C(S =0,a= 2) = —7YEuler — 111(4)

(A11)

(A12)

APPENDIX B: ADIABATIC REGULARIZATION
OF THE CURRENT

In order to compute the one-dimensional momentum
integral on the right-hand side of Eq. (62), we adopt the
integration procedure that has been introduced in Refs. [8,9].
The Mellin-Barnes representation of the Whittaker function
is given by [42]

. [t dsTG+y+s)DG—y+s)D(—k—s) _
Wx,y(z) =e: : 1 1 <
—ico 2mi CG+y=x)lG=r—«)

9’

3z 1
Ph(2)| <S5ty =k #0.~1.=2..... (B1)

2
where the contour of integration separates the poles of
FG+y+s)FG—r+s) from those of I'(—k—s).
Substituting the integral representation (B1) into Eq. (62)

and choosing the contour of integration similar to Ref. [9],
leads to the final result

J_eH%ﬂ y sinh(271) )
472\ sin(27y) '

(B2)

In order to regularize the current (B2) we apply the
adiabatic subtraction method. Starting from Eq. (18), for
positive-frequency modes it can be rewritten as

d2
IO | () fae) =0, (B3)
dr
where @ reads
22k. A2 +4ut 2\t
w(r) = +<k2 —T“r ;” —;>2. (B4)

A WKB-type solution for the mode equation (B3) is

Fat6) = W) exp (=i ["W@)av). (89

provided that the function W(z) satisfies the equation

3w W

4W? 2w’
where the dot indicates a derivative with respect to the
conformal time 7. For the zeroth-order adiabatic expansion

of W(z), the derivative terms on the right-hand side of
Eq. (B6) are neglected, and we then obtain

W2 (1) = 0*(7) + (B6)

WO (7) = wy(2). (B7)

Since the last term in Eq. (B4) is of second adiabatic order

2 Q?
2= g (B8)
we then have
2k, 2%+ u?\z
0)0(’[) :+<k2—1_z+ :;” )2. (B9)

With Egs. (13), (15), (BS5), (B7), and (B9) the zeroth
adiabatic order for the positive- and negative-frequency
mode functions are

Un(x:ky,n) = Q7 (2)e ™ h(y, ) 2w(7))*

« expl —i / Two(f/)df') (B10)
VAl —ky, n) = Q7 (2)et ™k h(y, ) (2w0())?
X exp <+i/f wo(r’)dr’>. (B11)
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This adiabatic complete set of orthonormal mode
functions can be used to construct the Fock space.
Then, the zeroth adiabatic order expansion of the
vacuum expectation value of the current operator is
given by

in = eg—2(1>n§;/ (fﬂk)fz (kz —%) (lUAl2 + IVAlz).

(B12)

After some algebra and using Eq. (50), it can be shown
that

. eH?A
Ja=Q(1)ja = a2

The adiabatic regularization scheme consists in sub-
tracting the counterterm (B13) from the original
expression (B2),

(B13)

Jeog = J = J (B14)
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