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We compute the expectation value of the energy-momentum tensor in the in-vacuum state of the
quantized Dirac field coupled to a uniform electric field background on the Poincaré patch of the two-
dimensional de Sitter spacetime (dS2). The adiabatic regularization scheme is applied to remove the
ultraviolet divergencies from the expressions. Then we obtain a finite result for the induced energy-
momentum tensor that varies continuously under a continuous change of the electric field strength and the
Dirac field mass. We find that the off-diagonal components of the induced energy-momentum tensor
vanish. The absolute values of the diagonal components increase as the electric field increases and decrease
as the Dirac field mass increases except in the very near vicinity of their zero points. We derive the trace
anomaly of the induced energy-momentum tensor, which agrees precisely with the trace anomaly derived
earlier in the literature. We have discussed the backreaction of the induced energy-momentum tensor on the
gravitational field of the dS2.
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I. INTRODUCTION

The theory of renormalization of the quantum electrody-
namics (QED) in Minkowski spacetime is well established.
Generally, in a curved spacetime and especially in the case of
the de Sitter spacetime (dS), there is no unique vacuum state
to compute the expectation values of the quantities.
Furthermore, the additional divergences are caused by the
gravitational interactions. In order to establish the theory of
renormalization in curved spacetime various methods have
been developed; see [1,2] for introduction. Perhaps one of
the most efficient methods for regularizing the expectation
values of the quantities is the adiabatic subtraction method.
This method is based on the approximation that the creation
of a particle with the frequency much larger than the energy
scale determined by the curvature of the spacetime can be
neglected. Hence, the adiabatic expansion is a power series
of the spacetime curvature. Specifically, in the case of a
Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime
with a spatially flat metric the number time derivatives of the
scale factor determines the adiabatic order. Adiabatic sub-
traction process starts from considering aWentzel-Kramers-
Brillouin (WKB) type solution for the under consideration
mode equation and proceed to construction of the Fock

space of the state vectors to compute the expectation values
of the quantities; see [1,2] for details. Adiabatic regulari-
zation was introduced by Parker to obtain a finite expect-
ation value of the particle number in an expanding universe
[3]. After this original work, adiabatic regularization gen-
eralized and applied for various types of quantities and
particles.Using adiabatic regularization scheme, the energy-
momentum tensor of a scalar field has been computed in
spatially flat [4–13] and closed [14] FLRW type universes,
anisotropic spacetimes [15,16], and conformal coupling
case [17]. The effective Lagrangian and the energy-
momentum tensor of a scalar field in dS have been computed
in Ref. [18] using the dimensional regularization method.
Cosmological applications motivated the authors of [19,20]
to compute the energy-momentum tensor of the created
scalar particles in a four dimensional de Sitter spacetime
(dS4). In [19], the finite energy-momentum tensor has been
defined as difference of the expectation values in the in-
vacuum and out-vacuum states; and the author found the
decay of the effective cosmological constant due to the
Hawking effect. In [20], a novel renormalization technique
has been applied to compute the energy-momentum tensor,
and the authors found that for a massive noninteracting
scalar field quantum corrections may lead to a superaccel-
eration phase where the Hubble constant increase.
With the use of covariant point-splitting regularization

approach, finite and unambiguous energy-momentum ten-
sor of a scalar field has been calculated in a spatially flat
FLRW spacetime [21,22] and dS [23], which are in
agrement with the results obtained by applying dimensional
regularization technique [18]. In [24], it was proven that the
adiabatic and point-splitting regularization methods are
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equivalent in FLRW type spacetimes. The method of
dimensional regularization is restricted only to special
spacetimes which can be generalized to n complex dimen-
sions in a meaningful way, and the associated field
equations can be solved explicitly [23,24]. In fact the
point-splitting regularization is known to be the unique
prescription (up to counterterms) that satisfies a list of
desired properties, namely, locality, covariance, and appro-
priate continuity under variations of the coupling param-
eters and the metric; see, e.g., Ref. [25]. Although the
point-splitting method can be applied to any spacetime, it
deals with difficult calculations even in comparatively
simple case of FLRW type spacetimes [23,24]. It is
emphasized, the method of adiabatic regularization which
deals with a mode-by-mode subtraction process is espe-
cially convenient for problems in which numerical calcu-
lations must be performed [1]. Hence, from a cosmological
point of view which necessitate the use of numerical
methods, adiabatic regularization is desirable. These facts
illustrate the importance of the adiabatic regularization
approach and motivate us to consider this method in this
paper. In all the works [3–17] the adiabatic regularization
method developed and applied for the case of a scalar field.
The adiabatic expansion for the case of a Dirac field has
been introduced in [26] and further details provided in [27].
The energy-momentum tensor of the Dirac field in a
spatially flat FLRW spacetime has been regularized using
the adiabatic subtraction prescription [28]; see also [29–
31]. As proved in [32] this method of regularization gives
the same result as the DeWitt-Schwinger point-splitting
regularization, when applied to the energy-momentum
tensor of the Dirac field in a spatially flat FLRW universe.
In this paper, we purpose to go beyond considering only

a scalar or fermion field in a curved spacetime background,
by adding an electromagnetic gauge field to this picture.
More specifically, wewish to consider a Dirac field coupled
to a uniform electric field background in a dS. Creation of
pairs in a strong electric field background in the flat
spacetime is a well-known nonperturbative phenomenon
in quantum field theory which is referred to as the
Schwinger effect [33–35]; see [36,37] for introduction.
The possibility of existing strong electromagnetic fields in
the early universe [38] motivates studying the Schwinger
effect in the cosmological context [39]; see [40] for a recent
review and references. Due to the cosmological event
horizon dS emits particles [10,11,19,41–50] which is
known as the Gibbons-Hawking radiation [51,52]. In a
dS, by using semiclassical approaches the Schwinger effect
for scalar [53–64] and Dirac [65–70] fields has been
investigated which may amplifies the Gibbons-Hawking
radiation. Perturbative amplitude for production of scalar
[71–75] and Dirac [76–78] pairs in the presence of an
electric field on the dS has been studied and the authors
found that the pair production is significant only when the
expansion parameter is large compered to the mass of the

field. Recently, the effect of a magnetic field on the
Schwinger effect in the dS4 has been investigated [79];
see also [80–86], and it has been shown that the pair
production is enhanced in the strong magnetic field regime.
The Schwinger effect during inflation has been investigated
using various approaches in Refs. [87–96]. To provide
further evidence for the ER ¼ EPR conjecture, the holo-
graphic Schwinger effect in dS was studied in Ref. [97].
As noted in [53,55], the in-vacuum state of the quantum

fields in dS has the Hadamard form, i.e., the ultraviolet
divergencies in the expectation values of the quantities
which are calculated in this state, behaves similar to what is
expected in the flat spacetime. Hence, it is a preferred
vacuum state in study of renormalization theory in dS. In
the pioneering work [55], the Schwinger effect and the in-
vacuum expectation value of the induced current of a scalar
field in a dS2 has been investigated. The authors found that
in the strong electric field regime, i.e., when the electric
field is sufficiently large compered to the Ricci scalar
curvature and the scalar field mass, the current agrees with
the semiclassical result [53]. A notable feature of the
current was found in the weak electric field regime for a
small enough scalar field mass compered to the Hubble
constant, where the current is inversely proportional to the
electric field which leads to a phenomenon of infrared
hyperconductivity. These remarkable results motivate the
study of the induced current for both scalar and fermion
fields in various dimensions of dS. The Schwinger effect
and the adiabatic regularized induced current of scalar field
in a dS4 has been investigated in [56], and particularly the
phenomenon of infrared hyperconductivity was reported. In
order to compare the results, the vacuum expectation value
of the induced current was renormalized using point-
splitting method in [98] which completely agrees with
the results of [56]. In [62], those results for the current
have been derived by using the uniform asymptotic
approximation method. The Schwinger effect in a general
D-dimensional dS and, as an example of odd dimensions,
the induced current of the scalar field in the three dimen-
sional dS have been investigated in [57] which a period of
the infrared hyperconductivity phenomenon was observed.
Furthermore, the authors of [79] considered a uniform
magnetic field with conserved flux parallel to a constant
energy density electric field in the dS4 and found that the
density of states are proportional to the magnetic field,
consequently the scalar Schwinger effect is enhanced in the
sufficiently large magnetic field. They also showed that in
the sufficiently weak magnetic field the infrared hyper-
conductivity phenomenon occurs in the induced current of
the scalar field. For the case of Dirac field the Schwinger
effect and induced current of the created pairs have been
investigated in dS2 [67] and dS4 [68]. Contrary to the scalar
field case, no infrared hyperconductivity phenomenon has
been observed in the induced fermionic current. Analyzing
the induced current of both the scalar [56,98] and the Dirac
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[68] fields in dS4 reveals a period of the negative current
where the current flows in opposite direction of the electric
field background weaker than a threshold value depending
on the field mass. The negative current leads to the
antiscreening effect which increases the magnitude of
the electric field background. Obviously, the infrared
hyperconductivity and the negative current phenomena
are contrary to physical intuition. In attempts to address
these peculiarities, a new renormalization condition defined
for the scalar and Dirac induced currents in dS4 which was
named maximal subtraction [99]. The maximal subtraction
scheme defines the asymptotic value of the renormalized
vacuum expectation value equal to that of obtained from the
semiclassical approaches. Following this scheme the infra-
red hyperconductivity period is removed, however a phase
of the negative current would be present. Recently, in [100]
all the contributions to the regularized induced current in
dS4 have been clarified. In all the works [56,57,67,68]
adiabatic subtraction scheme has been applied to regularize
the induced current. In de Sitter spacetime with any
dimension, the energy-momentum tensor of the semiclass-
ical Schwinger scalars has been computed in the heavy
scalar field [57] and the strong electric field [101] regimes;
the authors found a decay of the Hubble constant due to the
pair creation. The adiabatic regularized in-vacuum state
expectation value of the trace of the induced energy-
momentum tensor for a charged scalar field coupled to a
uniform electric field background in three [102] and four
[103] dimensional dS has been studied. In [103], it was
shown that gravitational backreaction effects of the trace of
the induced energy-momentum tensor in the semiclassical
regime leads to a decay of the Hubble constant, whereas
in the infrared regime a superacceleration phenomenon
occurs, i.e., the Hubble constant increases. The method of
adiabatic subtraction for regularization of both cases scalar
and spinor QED in an expanding universe has been
extensively studied in Refs. [104–107]. In [108], a suitable
adiabatic expansion has been introduced to regularize the
energy-momentum tensor and helicity of the gauge fields
coupled to a pseudoscalar field in a spatially flat FLRW
spacetime. In this paper our main goals are the investigation
of the induced energy-momentum tensor of the Dirac field
in de Sitter QED and further exploring the validity of the
adiabatic subtraction regularization. Hence, we consider a
massive charged Dirac field coupled to a uniform electric
field background in a dS2. To regularize the expectation
value of the energy-momentum tensor in the in-vacuum
state we adopt the second order adiabatic expansion of the
appropriate counterterms.
The paper is structured as follows. In Sec. II, we briefly

introduce our model. In Sec. III, we compute the expect-
ation value of the energy-momentum tensor and regularize
it. We examine the regularized energy-momentum tensor
and discuses its consequences in Sec. IV. Eventually, the
conclusions are presented in Sec. V.

II. THE MODEL

We consider a massive Dirac field coupled to a uniform
electric field with constant energy density on the Poincaré
patch of dS2. We assume the electric and gravitational
fields as classical backgrounds which are not affected by
the presence of the Dirac field. The half of dS2 can be
represented as a spatially flat FLRW spacetime

ds2 ¼ dt2 − e2Htdx2; t ∈ ð−∞;∞Þ; x ∈ R; ð1Þ

where t is the proper time andH is the Hubble constant. By
using the transformation

τ ¼ −
1

H
e−Ht; τ ∈ ð−∞; 0Þ ð2Þ

the metric (1) can be expressed in a manifestly conformally
flat form

ds2 ¼ Ω2ðτÞðdτ2 − dx2Þ; ΩðτÞ ¼ −
1

Hτ
: ð3Þ

In order to have a uniform electric field with a constant
energy density in the metric (3), we choose the electro-
magnetic vector potential to be

AμðτÞ ¼
E
H2τ

δ1μ; ð4Þ

where E is a constant.
The QED action for the Dirac field ψðxÞ, with mass m

and charge ewhich is coupled to the electromagnetic vector
potential (4) in the dS2 with metric (3) can be written as

S ¼
Z

d2x
ffiffiffiffiffiffi
−g
p �

i
2
ψ̄ðxÞΓμDμψðxÞ −

i
2
ψ̄ðxÞDμ
 �

ΓμψðxÞ

−mψ̄ðxÞψðxÞ
�
; ð5Þ

where g is the determinant of the metric, and Γμ are the
Dirac gamma matrices in the dS2. The metric tensor of the
spacetime gμν, can be expressed in terms of the Minkowski
metric ηab, by using the tetrad coefficients eaμ,

gμνðτÞ ¼ eaμðτÞebνðτÞηab: ð6Þ

We choose the tetrad in the gauge

eaμðτÞ ¼ ΩðτÞδaμ; ð7Þ

then, the Dirac gamma matrices in the Weyl representation
are given by

Γ0 ¼ Ω−1ðτÞσ1; Γ1 ¼ Ω−1ðτÞiσ2; ð8Þ
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where σ1, σ2, and σ3 are Pauli matrices. In this representa-
tion the adjoint Dirac field ψ̄ðxÞ, is defined

ψ̄ðxÞ ¼ ψ†ðxÞσ1: ð9Þ

The gauge covariant derivatives can be expressed as

Dμ¼∂μþBμþ ieAμ; Dμ
 �¼ ∂μ

 �
−Bμ− ieAμ; ð10Þ

where the spin connection Bμ, is given by

Bμ ¼ −
_Ω
2Ω

σ3δ
1
μ; ð11Þ

where we use the over dot to denote the derivative with
respect to the conformal time τ.
The Dirac equation follows from the action (5),

½iΓμð∂μ þ Bμ þ ieAμÞ −m�ψðxÞ ¼ 0: ð12Þ

By using the fact that the Dirac Eq. (12) is invariant under
spatial translations, we can write ψðxÞ as decomposed two-
component spinor

ψðxÞ ¼ ψðτ; xÞ ¼ eikx
�
U1ðτÞ
U2ðτÞ

�
: ð13Þ

Substituting the decomposed form of the spinor (13) into
the Dirac Eq. (12), and by using Eqs. (4), (8), and (11) we
arrive to a system of coupled deferential equations

i _U1ðτÞþqðτÞU1ðτÞþ i
_ΩðτÞ
2ΩðτÞU1ðτÞ−mΩðτÞU2ðτÞ¼ 0;

i _U2ðτÞ−qðτÞU2ðτÞþ
i _ΩðτÞ
2ΩðτÞU2ðτÞ−mΩðτÞU1ðτÞ¼ 0;

ð14Þ

where we have defined

qðτÞ ¼ kþ eA1ðτÞ: ð15Þ

The system of coupled first order linear deferential equa-
tions (14) can be converted into an equivalent two single
second order linear deferential equations

Ü1ðτÞ þ
�
ω2
kðτÞ − iqðτÞ

�
_qðτÞ
qðτÞ −

_ΩðτÞ
ΩðτÞ

�
þ
�
Ω̈ðτÞ
2ΩðτÞ −

3 _Ω2ðτÞ
4Ω2ðτÞ

��
U1ðτÞ ¼ 0;

Ü2ðτÞ þ
�
ω2
kðτÞ þ iqðτÞ

�
_qðτÞ
qðτÞ −

_ΩðτÞ
ΩðτÞ

�
þ
�
Ω̈ðτÞ
2ΩðτÞ −

3 _Ω2ðτÞ
4Ω2ðτÞ

��
U2ðτÞ ¼ 0; ð16Þ

where the conformal time dependent frequency is given by

ωðτÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ðτÞ þm2Ω2ðτÞ

q
: ð17Þ

The solutions of the Dirac Eqs. (16) with the desired
asymptotic forms at early times τ → −∞, and late times
τ → 0, which describe the in and out-vacuum states,
respectively, have been obtained in Ref. [67]. Since, we
wish to compute the expectation value of the energy-
momentum tensor in the Hadamard in-vacuum state, we
take only the solutions of Eqs. (16) with the desired
asymptotic behavior at early times. Hence, the components
of the normalized positive frequency mode spinor are
given by [67]

U1kðτÞ ¼ −iμeiπκ
2 Wκ−1

2
;γð−2ipÞΘðkÞ

þ e−
iπκ
2 W−κþ1

2
;γð−2ipÞΘð−kÞ; ð18Þ

U2kðτÞ ¼ e
iπκ
2 Wκþ1

2
;γð−2ipÞΘðkÞ

− iμe−
iπκ
2 W−κ−1

2
;γð−2ipÞΘð−kÞ; ð19Þ

and, the components of the normalized negative frequency
mode spinor are obtained [67]

V1kðτÞ¼ e
iπκ
2 W−κþ1

2
;γð2ipÞΘðkÞ− iμe−

iπκ
2 Wκ−1

2
;γð2ipÞΘð−kÞ;

ð20Þ

V2kðτÞ ¼ −iμeiπκ
2 W−κ−1

2
;γð2ipÞΘðkÞ

þ e−
iπκ
2 Wκþ1

2
;γð2ipÞΘð−kÞ; ð21Þ

where W is the Whittaker function [109], and the normal-
ized step function has been defined as

ΘðkÞ ¼
ffiffiffiffiffiffiffiffi
H
2jkj

s
×

�
1 k > 0;

0 k < 0:
ð22Þ

We have defined the dimensionless variables

p ¼ −jkjτ; μ ¼ m
H
; λ ¼ eE

H2
;

r ¼ k
jkj ; κ ¼ −iλ; γ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ λ2

q
: ð23Þ
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The normalized mode spinor components which are given
by Eqs. (18)–(21), may be represented in the doublet form

UkðτÞ ¼
�
U1kðτÞ
U2kðτÞ

�
; VkðτÞ ¼

�
V1kðτÞ
V2kðτÞ

�
: ð24Þ

Then, it can be shown that these doublets satisfy the relation

UkðτÞU†
kðτÞ þ VkðτÞV†

kðτÞ ¼ Ω−1ðτÞI; ð25Þ
where I denotes the 2 × 2 dimensional unit matrix.
The set of complete orthonormal mode spinors (24)

determines the in-vacuum state j0i which is annihilated by
acting the operators ak for a fermion and bk for an
antifermion with the comoving momentum k, as

akj0i ¼ bkj0i ¼ 0; ∀ k: ð26Þ
Then, the Fock space of state vectors is built by successive
acting the creation operators a†k and b†k for fermions and
antifermions, respectively. To quantize the Dirac field ψðxÞ,
we impose the anticommutation relations

fak; a†k0 g ¼ fbk; b†k0 g ¼ ð2πÞδðk − k0Þ: ð27Þ
Then, the quantized Dirac field operator ψðxÞ, can be
written as

ψðxÞ ¼
Z þ∞

−∞

dk
ð2πÞ ½akUkðτÞeikx þ b†kVkðτÞe−ikx�: ð28Þ

III. REGULARIZATION OF ENERGY-
MOMENTUM TENSOR

The energy-momentum tensor of the Dirac field is
defined by variation of the action (5) with respect to
variation of the inverse metric δgμν, or more precisely

TμνðxÞ ¼
2ffiffiffiffiffijgjp δS

δgμν
: ð29Þ

After some algebra, definition (29) yields the expression
for the energy-momentum tensor of the Dirac field
coupled to the uniform electric field background in
the dS2, as

TμνðxÞ¼
i
4
ðψ̄ΓμDνψþ ψ̄ΓνDμψ − ψ̄ Dν

 �
Γμψ − ψ̄ Dμ

 �
ΓνψÞ:
ð30Þ

A. In-vacuum state expectation values

By considering the Dirac field ψðxÞ, as the quantum
operator which is given by Eq. (28) and using the relations
(26) and (27), we arrive at the following expressions
for the in-vacuum state expectation values of the energy-
momentum tensor components. The timelike component is
given by

h0jT00ðxÞj0i¼−
H2Ω2ðτÞ

2π
ℜ
X
r¼�1

Z
Λ

0

dp
p
½p2−μ2ðp−λrÞeπλrjWiλr−1

2
;γð2ipÞj2þ iμ2e−πλrW−iλr−1

2
;γð2ipÞWiλrþ1

2
;γð−2ipÞ�;

ð31Þ

where ℜ denotes the real part of the expression. For the spacelike component we have

h0jT11ðxÞj0i ¼ −
H2Ω2ðτÞ

2π

X
r¼�1

Z
Λ

0

dp
p
½p2 − μ2ðp − λrÞeπλrjWiλr−1

2
;γð2ipÞj2�; ð32Þ

and the symmetric off-diagonal component is obtained

h0jT01ðxÞj0i ¼
H2Ω2ðτÞ

2π
λΛ: ð33Þ

To regularize the ultraviolet divergencies in the momentum
integrals of Eqs. (31)–(33), we have considered cutoffK for
the comoving momentum k. Accordingly, cutoff Λ ¼ −Kτ
is defined for the dimensionless physical momentum p; see
definitions in Eq. (23).
To evaluate the momentum integrals involving the

Whittaker functions in Eqs. (31) and (32), we follow the
procedure that introduced in Refs. [55,56] for computing

the induced current of the scalar field in a dS2 and dS4,
respectively. This method of integration has also been used
for computing the induced current of the Dirac field in a
dS2 [67] and dS4 [68]. The appropriate Mellin-Barnes
integral representation [109] of the Whittaker function is
given by

Wκ;γðzÞ¼e−
z
2

Z þi∞

−i∞

ds
2πi

Γð1
2
þγþsÞΓð1

2
−γþsÞΓð−κ−sÞ

Γð1
2
þγ−κÞΓð1

2
−γ−κÞ z−s;

1

2
�γ−κ≠0;−1;−2;…; ð34Þ
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which is vialed for arbitrary values of the phase of the
argument in the domain jphðzÞj < 3π=2. The condition is
that the contour of integrationmust be arranged in away that

the chain of poles of Γð1
2
þ γ þ sÞΓð1

2
− γ þ sÞ lies a part

from the chain of polesΓð−κ − sÞ. Bymeans of Eq. (34) and
the theorem of residues, we then obtain the final results

h0jT00ðxÞj0i ¼ Ω2ðτÞH
2

4π
½−2Λ2 − 2μ2 logð2ΛÞ − 2λ2 − μ2 − iγ sinhð2πλÞ cscð2πγÞ þ iλþ 2γλ sinhð2πλÞ cscð2πγÞ

þ μ2ð1þ i sinhð2πλÞ cscð2πγÞÞψðiλþ γÞ þ μ2ð1 − i sinhð2πλÞ cscð2πγÞÞψðiλ − γÞ�; ð35Þ

and

h0jT11ðxÞj0i ¼ Ω2ðτÞH
2

4π
½−2Λ2 þ 2μ2 logð2ΛÞ − 2λ2 − μ2 þ iγ sinhð2πλÞ cscð2πγÞ − iλþ 2γλ sinhð2πλÞ cscð2πγÞ

− μ2ð1þ i sinhð2πλÞ cscð2πγÞÞψðiλþ γÞ − μ2ð1 − i sinhð2πλÞ cscð2πγÞÞψðiλ − γÞ�; ð36Þ

where log is the natural logarithm function and ψ denotes
the digamma function which is defined by the first
derivative of the logarithm of the Gamma function; see,
e.g., [109].

B. Adiabatic regularization

To remove the ultraviolet divergencies from the expect-
ation values given by Eqs. (33), (35), and (36) we apply the
adiabatic subtraction scheme. This method has been used to
regularize the induced fermionic current in dS2 [67] and
dS4 [68]. To find the appropriate counterterms, we perform
the same procedure as used in [67]. As usual in the
literature, we assume that the electromagnetic vector
potential and energy-momentum tensor in the two dimen-
sional spacetime to be of adiabatic order zero and two,
respectively. We begin by considering aWKB type solution
for the Dirac equations (16) as

UaðτÞ ¼ Na exp

�
−i

Z
τ
ðXaðτ0Þ þ iYaðτ0ÞÞdτ0

	
; ð37Þ

where a ¼ 1, 2 is the spinor index, Na is a normalization
coefficient, and the real functions Xa and Ya are required to
satisfy equations

YaðτÞ¼ ð−1Þa
qðτÞ

2XaðτÞ
�
_qðτÞ
qðτÞ−

_ΩðτÞ
ΩðτÞ

�
−
1

2

d
dτ

logðXaðτÞÞ;

ð38Þ

X2
aðτÞ ¼ Y2

aðτÞ þ _YaðτÞ þ ω2ðτÞ þ Ω̈ðτÞ
2ΩðτÞ −

3 _Ω2ðτÞ
4Ω2ðτÞ : ð39Þ

Inserting the function Ya from Eq. (38) into Eq. (37), we
find that Ua can be expressed as

UaðτÞ ¼
Naffiffiffiffiffiffiffiffiffiffiffiffi
XaðτÞ

p exp

�Z
τ
�
−iXaðτ0Þ þ ð−1Þa

qðτ0Þ
2Xaðτ0Þ

�
_qðτ0Þ
qðτ0Þ −

_Ωðτ0Þ
Ωðτ0Þ

��
dτ0

	
: ð40Þ

Then, substituting Ua from Eq. (40) into the decoupled Dirac Eqs. (16) yields an algebraic equation for the function Xa,
which exactly is

X2
aðτÞ − ω2ðτÞ ¼ −

1

2Xa
ðẌa − ð−1Þaq̈Þ þ

1

4X2
a
ð3 _X2

a þ _q2Þ − ð−1Þa
_Xaq
X2
a

�
_q
q
−

_Ω
Ω

�

−
q2

4X2
a

_Ω
Ω

�
2
_q
q
−

_Ω
Ω

�
− ð−1Þa q

2Xa

�
_Ω
Ω

_q
q
−

_Ω2

Ω2
þ Ω̈
Ω

�
−
3 _Ω2

4Ω2
þ Ω̈
2Ω

: ð41Þ

The remaining undetermined factor in the adiabatic mode spinor (37) is the normalization constantNa. We will show below
that the counterterms are independent of Na. We constrain the components of the adiabatic mode spinor (37) to obey the
normalization condition

jU1ðτÞj2 þ jU2ðτÞj2 ¼ Ω−1ðτÞ: ð42Þ
Following the adiabatic regularization method, the set of counterterms are constructed from the expectation values of the
energy-momentum tensor components (30) in the adiabatic vacuum sate which is described by the solutions (37). Such
expressions can be written as

MANIZHEH BOTSHEKANANFARD and EHSAN BAVARSAD PHYS. REV. D 101, 085011 (2020)

085011-6



T 00 ¼
Z þK

−K

dk
ð2πÞ

�
qðτÞðjU1j2 − jU2j2Þ −mΩðτÞðU1U�2 þ U�1U2Þ

jU1j2 þ jU2j2
	
; ð43Þ

and, for the spacelike component

T 11 ¼
Z þK

−K

dk
ð2πÞ qðτÞ

�jU1j2 − jU2j2
jU1j2 þ jU2j2

	
; ð44Þ

where K is an ultraviolet momentum cutoff. The symmetric
off-diagonal component finally is obtained

T 01 ¼ −
1

2

Z þK

−K

dk
ð2πÞ qðτÞ ¼

H2Ω2ðτÞ
2π

λΛ: ð45Þ

Defining the ratio of the spinor components

R ¼ U2

U1

; ð46Þ

one can rewrite Eqs. (43) and (44) as

T 00¼
Z þK

−K

dk
ð2πÞ

�
qðτÞð1− jRj2Þ−mΩðτÞðRþR�Þ

1þjRj2
	
; ð47Þ

T 11 ¼
Z þK

−K

dk
ð2πÞ qðτÞ

�
1 − jRj2
1þ jRj2

	
: ð48Þ

The expressions for U1 and U2 can be read from Eq. (40)
with a ¼ 1 and a ¼ 2, respectively. Substituting these
expressions into the coupled Dirac Eqs. (14), we then obtain

R ¼ 1

Ωm

�
X1 þ q −

ið _X1 þ _qÞ
2X1

þ i _ΩðX1 þ qÞ
2X1Ω

	
; ð49Þ

where X1 satisfies Eq. (41) with a ¼ 1. By virtue of
Eqs. (43)–(49) the counterterms are independent of the
normalization constants Na, as mentioned above.
We now return to Eq. (41), to find a solution for the

function X1. Obviously, terms appearing on the right side of
Eq. (41) are of two higher adiabatic order than those on the
left side. By using the fact that the conformal time dependent
frequency ω [see Eq. (17)] is of zero adiabatic order, at the
lowest adiabatic order the function Xa is obtained

Xð0Þa ðτÞ ¼ ωðτÞ; ð50Þ

where the superscript denotes the adiabatic order. Then, up
to the second order the adiabatic expansion of Xa is
constructed iteratively and is given by

Xð2Þa ðτÞ ¼ ωðτÞ − 1

4ω2
ðω̈ − ð−1Þaq̈Þ þ 1

8ω3
ð3 _ω2 þ _q2Þ − ð−1Þa _ωq

2ω3

�
_q
q
−

_Ω
Ω

�

−
q2

8ω3

_Ω
Ω

�
2
_q
q
−

_Ω
Ω

�
− ð−1Þa q

4ω2

�
_Ω
Ω

_q
q
−

_Ω2

Ω2
þ Ω̈
Ω

�
−

1

2ω

�
3 _Ω2

4Ω2
−

Ω̈
2Ω

�
: ð51Þ

Hence, the adiabatic expansions of X1, up the order of zero and two are read from Eqs. (50) and (51) with a ¼ 1,
respectively. Then, substituting the second adiabatic order expansion of the expression on the right side of Eq. (49) into
Eqs. (47) and (48), we finally obtain

T ð2Þ00 ¼ Ω2ðτÞH
2

2π

�
−Λ2 − μ2 logð2ΛÞ þ 1

12
þ μ2 logðμÞ − μ2

2
− λ2 þ λ2

6μ2

	
; ð52Þ

T ð2Þ11 ¼ Ω2ðτÞH
2

2π

�
−Λ2 þ μ2 logð2ΛÞ − 1

12
− μ2 logðμÞ − μ2

2
− λ2 −

λ2

6μ2

	
: ð53Þ

Subtracting the second adiabatic order counterterms, given by Eqs. (45), (52), and (53) from the corresponding original
expressions for the in-vacuum expectation values which are given by Eqs. (33), (35), and (36), leads to the regularized
induced energy-momentum tensor

T00 ¼ h0jT00ðxÞj0i − T ð2Þ00

¼ Ω2ðτÞH
2

4π

�
−
1

6
− μ2 logðμ2Þ − λ2

3μ2
− iγ sinhð2πλÞ cscð2πγÞ þ iλþ 2γλ sinhð2πλÞ cscð2πγÞ

þ μ2ð1þ i sinhð2πλÞ cscð2πγÞÞψðiλþ γÞ þ μ2ð1 − i sinhð2πλÞ cscð2πγÞÞψðiλ − γÞ
	
; ð54Þ

and
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T11 ¼ h0jT11ðxÞj0i − T ð2Þ11

¼ Ω2ðτÞH
2

4π

�
1

6
þ μ2 logðμ2Þ þ λ2

3μ2
þ iγ sinhð2πλÞ cscð2πγÞ − iλþ 2γλ sinhð2πλÞ cscð2πγÞ

− μ2ð1þ i sinhð2πλÞ cscð2πγÞÞψðiλþ γÞ − μ2ð1 − i sinhð2πλÞ cscð2πγÞÞψðiλ − γÞ
	
: ð55Þ

The important result is that the symmetric off-diagonal
component of the regularized induced energy-momentum
tensor vanishes

T01 ¼ h0jT01ðxÞj0i − T 01 ¼ 0: ð56Þ

IV. EXAMINATION OF THE INDUCED
ENERGY-MOMENTUM TENSOR

In this section, we examine the regularized energy-
momentum tensor which is given by Eqs. (54)–(56). In
Figs. 1 and 2, we have logarithmically plotted the absolute
value of T00 (54) and T11 (55) as functions of the
parameters electric field λ and Dirac field mass μ, respec-
tively. Figure 1 shows that for a fixed value of μ, the absolute
value of T00 increases analytically as λ increases. For a fixed
value of λ, as μ increases smoothly from zero, T00 increases
analytically from large negative values passes through zero
and near this point attains a maximum, then falls continu-
ously to zero. For the case ofT11, Fig. 1 shows that for a fixed
value of μ≲ 1, the absolute value of T11 is an analytic

increasing function of λ. For a fixed value of μ ≳ 1, as λ
increases smoothly from zero, T11 increases analytically
from negative values and passes through zero, then con-
tinuously tends to infinity. For a fixed value of λ, as μ
increases smoothly from zero, T11 decrease analytically
from large positive values passes through zero and near this
point attains a minimum, then continuously approaches
zero. It should be noted that in Figs. 1 and 2, the points at
which T00 or T11 become zero appear as sharp singularities
in the logarithmic plots of the absolute values of these
expressions, i.e., jT00j and jT11j. Thus, the components of
the induced energy-momentum tensor are analytic and
continuous functions of the parameters λ and μ. The
magnitudes of the diagonal components of the induced
energy-momentum tensor, i.e., jT00j and jT11j increase as the
electric field increases and decrease as the mass increases
except in the very near vicinity of their zero points.

A. Asymptotic behaviors

We now analyze the induced energy-momentum tensor
in the limiting values of the electric field and the Dirac field

FIG. 1. The normalized absolute values of the induced energy-momentum tensor components jT00jΩ−2H−2, in solid line and
jT11jΩ−2H−2 in dashed line are plotted as functions of the normalized electric field λ ¼ eE=H2, for different values of the normalized
Dirac field mass μ ¼ m=H. The scales are logarithmic on both axes.
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mass, to find the explicit asymptotic behaviors shown in
Figs. 1 and 2.

1. Strong electric field

In the strong electric field regime, the asymptotic
behavior of the induced energy-momentum tensor is
obtained by expanding T00 (54) and T11 (55) in a Taylor
series about λ ¼ ∞with fixed μ. We then obtain the leading
order terms as

T00 ≃Ω2ðτÞH
2λ2

2π

�
e−

πμ2

λ −
1

6μ2

�
; ð57Þ

T11 ≃Ω2ðτÞH
2λ2

2π

�
e−

πμ2

λ þ 1

6μ2

�
: ð58Þ

2. Weak electric field

In the weak electric field regime, the asymptotic behavior
of the induced energy-momentum tensor is obtained by
expanding T00 (54) and T11 (55) in a Taylor series about
λ ¼ 0. For the case of a light Dirac field μ ≪ 1, we obtain
the leading order terms

T00¼−T11

≃−Ω2ðτÞH2

�
1

24π
þ λ2

12πμ2
þμ2

4π
logðμ2ÞþγEμ

2

2π

�
; ð59Þ

where γE ¼ 0.577 � � � is Euler’s constant. And for the case
of a heavy Dirac field μ ≫ 1, the leading order terms are
given by

T00 ≃ Ω2ðτÞH2

�
1

240πμ2
þ 4λ2μe−2πμ −

λ2

3μ
e−2πμ

�
; ð60Þ

T11 ≃Ω2ðτÞH2

�
−1

240πμ2
þ λ2

3μ
e−2πμ

�
: ð61Þ

3. Heavy Dirac field

For the case of a heavy Dirac field, we can expand
T00 (54) and T11 (55) in a Taylor series about μ ¼ ∞ with
fixed λ. We find that the expressions

T00 ≃Ω2ðτÞH2

�
1

240πμ2
þ λμ

π
e−2πμ

�
; ð62Þ

T11 ≃ Ω2ðτÞH2

�
−1

240πμ2
þ λ

12πμ
ð1 − 4λ2Þe−2πμ

�
; ð63Þ

well approximate the behavior of the diagonal compo-
nents of the induced energy-momentum tensor as long
as λ ≪ μ.

B. Trace of the induced energy-momentum tensor

The trace of the induced energy-momentum tensor reads
from Eqs. (54) and (55),

FIG. 2. The normalized absolute values of the induced energy-momentum tensor components jT00jΩ−2H−2, in solid line and
jT11jΩ−2H−2 in dashed line are plotted as functions of the normalized Dirac field mass μ ¼ m=H, for different values of the normalized
electric field λ ¼ eE=H2. The scales are logarithmic on both axes.
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T¼ gμνTμν

¼H2

2π

�
−
1

6
−μ2 logðμ2Þ− λ2

3μ2
− iγ sinhð2πλÞcscð2πγÞþ iλ

þμ2ð1þ isinhð2πλÞcscð2πγÞÞψðiλþ γÞ

þμ2ð1− isinhð2πλÞcscð2πγÞÞψðiλ− γÞ
	
; ð64Þ

whose absolute value has been logarithmically plotted in
Fig. 3. For a fixed value of μ≲ 1, as λ increases from zero,
T monotonically goes to large negative values, thus as
shown in Fig. 3 its absolute value, jTj, is an increasing
function of λ. For a fixed value of μ ≳ 1, as λ increases from
zero, T increases from a positive small value and attains a
maximum then it decreases and passes through zero when λ
reaches a specific value λ� and then analytically goes to
large negative values. In this case, at the point λ ¼ λ� at
which T becomes zero, a sharp singular behavior appears in
the logarithmic plot of the absolute value of T in Fig. 3.
Hence, the trace of the induced energy-momentum tensor is
an analytic and continuous function of the parameters λ and
μ, whose magnitude increase as the electric field increases
and decrease as the mass increases except in the very near
vicinity of its zero point.
We emphasize, for the case of a light Dirac field μ≲ 1,

the trace is negative T < 0. For the case of a heavy Dirac
field μ≳ 1, the precise value of λ� is evaluated by solving
the equation

Tðμ; λ�Þ ¼ 0: ð65Þ

For λ < λ� the trace is positive T > 0, whereas for λ > λ�
the trace is negative T < 0. To find the behavior of λ�
against the Dirac field mass parameter μ, at which the
evaluation was made, we present Fig. 4 which shows that λ�
increases as μ increases.
Before concluding, we would like to point out some

consequences of the trace of the induced energy-
momentum tensor, namely, the trace anomaly and gravi-
tational backreaction.

C. Trace anomaly

The trace anomaly of the induced energy-momentum
tensor is derived by taking the limit of λ → 0 and μ → 0 in
the expression (64), which yields

T ¼ −
R
24π

; ð66Þ

where R ¼ 2H2 is the Ricci scalar curvature of dS2. This
result agrees precisely with the well-known trace anomaly
[110] of a Dirac field in the two-dimensional de Sitter
spacetime.

D. Gravitational backreaction

In Ref. [111], the backreaction effect of the induced
Dirac field current on the electromagnetic field background
in dS2 has been studied. The main conclusion was that the
backreaction of the fermion pair creation does not amplify
the electric field background. In this section we wish to
study the backreaction of the induced energy-momentum

FIG. 3. The normalized absolute value of the trace of the induced energy-momentum tensor jTj=H2, is plotted as function of the
normalized electric field λ ¼ eE=H2, for different values of the normalized Dirac field mass μ ¼ m=H. The scales are logarithmic on
both axes.
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tensor on the gravitational field background. A natural way
to do this is to use the Einstein gravitational field equations.
However, as is well known, there is no Einstein gravity in
two-dimensional spacetimes. Perhaps the most natural
analogues of the Einstein gravitational field equations in
two-dimensions is given by

R − Λ ¼ 8πGT; ð67Þ

where R is the Ricci scalar curvature, Λ is the cosmological
constant, G is Newton’s gravitational constant in two-
dimensions and T is the trace of the energy-momentum
tensor; see, e.g., [112,113].
In a dS2 the cosmological constant vanishes, hencewe set

Λ ¼ 0 in Eq. (67). In natural units, Newton’s gravitational
constant G should be dimensionless in two-dimensional
spacetimes. Hence in a dS2 the Newton’s gravitational
constant, in terms of the Planck mass MP and the Hubble
constant H, can be written naturally as G ¼ H2=M2

P. To
explore the consequences of induced energy-momentum
tensor, it is convent to define the time dependent Hubble
parameter as

HðτÞ ¼ Ω−2ðτÞ dΩðτÞ
dτ

: ð68Þ

The pair creation begins from early times, τ → −∞, where
the Ricci scalar curvature is given by R ¼ 2H2ðτÞ and the
induced energy-momentum tensor of the created pairs is
negligible compared to the Planck mass; and eventually,
finishes at late times, τ → 0, where theRicci scalar curvature
approaches zero,R ≈ 0, and the induced energy-momentum
tensor of the created pairs is given by Eqs. (54)–(56).

Therefore, in this picture the time scale of the pair creation
is of order of the Hubble time, i.e., δτ ≈H−1, and variations
of the Ricci scalar curvature, δR, and the trace of the induced
energy-momentum tensor, δT, are given by

δR ¼ −R; δT ¼ T; ð69Þ
whereT is given by Eq. (64). Then, variation of both sides of
Eq. (67) leads to the evolution equation for the Hubble
parameter

_HðτÞ ¼ −
2πH2

M2
P

T: ð70Þ

Therefore, if T > 0 then the Hubble constant decays. This
condition holds for the case of heavy Dirac fields μ≳ 1
created by an electric field background with the strength
λ < λ�. Whereas, the Hubble constant amplifies and a
superacceleration phenomenon with _H > 0 occurs in the
condition that T < 0. This is the case for light Dirac fields
μ≲ 1 created by an unbounded electric field strength or
creation of heavy quanta μ ≳ 1 in an electric field with the
strength λ > λ�.

V. CONCLUSION

In this paper we have computed the in-vacuum state
expectation value of the energy-momentum tensor of a
Dirac field in a uniform electric field background on the
Poincaré patch of dS2. As expected the expectation values
in the Hadamard in-vacuum state acquire quadratic ultra-
violet divergences; see Eqs. (33), (35), and (36). To obtain
finite expressions, we have applied the adiabatic regulari-
zation scheme. Since the energy-momentum tensor is of
second adiabatic order in two dimensions, we have

FIG. 4. The values of λ� are plotted against the normalized Dirac field mass μ at which the evaluation was made.
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constructed the set of the appropriate counterterms up to the
second order of the adiabatic expansions; see Eqs. (45),
(52), and (53). Hence, we reach our goal of driving the
induced energy-momentum tensor in Eqs. (54)–(56). We
have shown that the off-diagonal components of the
induced energy-momentum tensor vanish. We have found
that the magnitudes of the diagonal components of the
induced energy-momentum tensor increase as the electric
field increases and decrease as the mass increases except in
the very near vicinity of their zero points; see Figs. 1 and 2.
More precisely, these behaviors have been determined in
Eqs. (57)–(63). We conclude that the components of the
induced energy-momentum tensor are analytic and con-
tinuous functions of the electric field and Dirac field mass.
The trace of the induced energy-momentum tensor is

given by Eq. (64), whose absolute value logarithmically is
plotted in Fig. 3. We have found that the trace of the induced
energy-momentum tensor is an analytic and continuous
function of the parameters electric field and mass, whose
magnitude increases as the electric field increases and
decreases as the mass increases except in the very near
vicinity of its zero point. The analytic behavior of the trace in
the limiting values of the electric field and mass can be read
fromEqs. (57)–(63). For the case of a light Dirac field μ≲ 1,
the trace is negative T < 0. We have found that for the case
of a heavy Dirac field μ≳ 1, the trace becomes zero at a

specific value of λ, which is denoted by λ�. The sign of
the trace changes at λ ¼ λ�. For λ < λ� the trace is positive
T > 0, whereas for λ > λ� the trace is negative T < 0.
Figure 4 shows that λ� increases as the Dirac field mass
increases. We have shown that the induced energy-
momentum tensor acquires the trace anomaly [see
Eq. (66)] which precisely agrees with the trace anomaly
derived earlier in the literature for a Dirac field in dS2.
In Sec. IV D, we have briefly discussed the evolution of

the Hubble constant caused by the induced energy-momen-
tum tensor; see the final result in Eq. (70). We have found
that creation of heavy Dirac fields μ ≳ 1 in an electric field
whose strength is bounded as λ < λ� leads to a decay of
the Hubble constant due to the positive trace of the
induced energy-momentum tensor. Whereas, creation of
light Dirac fields μ≲ 1 in an electric field with unbounded
strength or heavy Dirac fields μ ≳ 1 in an electric field with
the strength λ > λ� amplifies the Hubble constant and a
superacceleration phenomenon with _H > 0 occurs due to
the negative trace of the induced energy-momentum tensor.
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