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Abstract: Mapping flood-prone areas is a key activity in flood disaster management. In this paper, 
we propose a new flood susceptibility mapping technique. We employ new ensemble models based 
on bagging as a meta-classifier and K-Nearest Neighbor (KNN) coarse, cosine, cubic, and weighted 
base classifiers to spatially forecast flooding in the Haraz watershed in northern Iran. We identified 
flood-prone areas using data from Sentinel-1 sensor. We then selected 10 conditioning factors to 
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spatially predict floods and assess their predictive power using the Relief Attribute Evaluation 
(RFAE) method. Model validation was performed using two statistical error indices and the area 
under the curve (AUC). Our results show that the Bagging–Cubic–KNN ensemble model 
outperformed other ensemble models. It decreased the overfitting and variance problems in the 
training dataset and enhanced the prediction accuracy of the Cubic–KNN model (AUC=0.660). We 
therefore recommend that the Bagging–Cubic–KNN model be more widely applied for the 
sustainable management of flood-prone areas. 

Keywords: flood; machine learning; remote sensing data; goodness-of-fit; overfitting; Haraz; Iran 
 

1. Introduction 

Increases in global flood occurrences have been attributed to deforestation, land-use changes, 
poor watershed management, and climate change [1–3]. Floods happen when streams overflow their 
banks, often as a result of heavy rainfall, and inundate surrounding areas that are not typically 
covered by water [4]. Floods can damage roads, rail lines, agriculture, and ecosystems, claim lives, 
and pollute surface water through the transfer of biological and industrial waste, resulting in 
environmental pollution [5–8]. More than 20,000 lives are lost to flooding annually [9], and between 
1995 and 2015, approximately 109 million people were impacted by the flood damage, with direct 
costs of USD 75 billion per year [10]. 

Iran is an arid and semiarid country that is prone to damaging floods, especially in its northern 
provinces. Between 25 March and 8 April 2019, for example, a devastating flood impacted more than 
25 of the 31 provinces in the country. Damage was exacerbated by heavy rainfall, poor watershed 
management, inadequate flood control structures, and a lack of a flood warning system. Maps of 
flood hazard and risk derived from physical models that only predict peak discharge may be subject 
to considerable uncertainty and error [11], and numerical models require large amounts and types of 
data that are difficult to acquire in a developing country like Iran. Fortunately, over the past several 
decades, remote sensing (RS) and Geographic Information Systems (GIS) have been shown to be 
effective in handling large hydrological datasets to create more accurate flood hazard maps. 

Our study focuses on the Haraz catchment in northern Iran (Figure 1). This catchment has a 
wetter climate, more cloudy days, and denser vegetation than other parts of Iran, making flood 
susceptibility mapping based on optical remote sensing imagery more challenging than in regions 
with little vegetative cover and fewer cloudy days. In such areas, satellite-based, synthetic aperture 
radar (SAR) and light detection and ranging (LiDAR) penetrate clouds and detect the ground surface 
and surface water; they are valuable tools for real-time flood forecasting [12,13]. SAR can collect data 
during day or night, either independently or together with other remote sensors [14]. In this study, 
we used imagery acquired by Sentinel-1, a SAR satellite known for its high spatial resolution and 
short repeat cycles, which makes it ideal for monitoring changes in flood inundation [15]. 

Several data-driven models have been developed and used for flood mapping, including 
bivariate models of frequency ratio [16,17], Shannon entropy [18], weight of evidence (WOE) [11], 
and the evidential belief function (EBF) [16]. In addition, a variety of multivariate methods have been 
used in flood hazard studies, notably logistic regression [19,20] and multicriteria decision-making 
(MCDM) methods such as analytic hierarchy process (AHP) [21–23] analytic network process (ANP) 
[24], vlse kriterijuska optamizacija I komoromisno resenje (VIKOR), and a technique for order 
preference by similarity to ideal solution (TOPSIS) [25]. Unfortunately, many of these models have 
performance limitations in that they do not incorporate nonflood locations and generally consider 
only sum weights or class weights rather than weights for specific layers [26]. Additionally, MCDM 
models are based on expert opinion and generate the greatest sources of bias and error [25,27]. 
Finally, flooding at a watershed scale is a complex phenomenon, involving nonlinear processes that 
cannot be predicted using these simple models. 
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Recently, artificial intelligence (AI) algorithms have been developed to overcome these 
weaknesses. Artificial neural network (ANN) is the most widely used algorithm in hydrology [28,29], 
but has poorer predictive power when the range of the testing dataset is not within the range of the 
training dataset [30–33]. To improve its predictive power, researchers have integrated the ANN 
model with fuzzy logic (FL) and adaptive neuro-fuzzy interface (ANFIS) models. Although ANFIS is 
a powerful algorithm and has higher predictive power than both ANN and FL, its membership 
function fails to adequately determine optimum weights [34,35], hence an optimization algorithm has 
been applied to calculate optimum values automatically [8,9,36,37]. 

Further developments in hazard modelling have relied on hybrid algorithms. Within this group 
are machine learning ensemble models, which are more flexible and better suited for sophisticated 
flood modeling than the above-mentioned methods. Machine learning ensemble models have been 
shown to provide better hazard predictions for floods [8,9,16,25,38–42], wildfires [43,44], sinkholes 
[45], droughts [42,46], earthquakes [47,48], gully erosion [49,50], ground subsidence [51], 
groundwater [52–56], and landslides [15,55,57–78]. Nevertheless, there still is no universal model that 
has been shown to be superior in all study areas [35]. In this paper, we develop and test four new 
algorithms of K-Nearest Neighbor (KNN), a machine learning ensemble method that has not 
previously been used for flood ensemble modeling. The four algorithms are Cosine KNN, Coarse 
KNN, Cubic KNN, and Weighted KNN. We compare the performance of the four KNN algorithms 
with those of Bagging Tree models and a hybrid of KNN and bagging. 

2. Description of Study Area 

The Haraz watershed is located in Mazandaran Province in northern Iran (Figure 1). The 4015 
km2 watershed is mountainous, ranges in elevation from 328 m to 5595 m asl, and has cold winters 
and mild humid summers with mean annual rainfall of 430 mm [16]. Factors that contribute to 
flooding here include rainfall, deforestation, land-use changes, and inadequate flood management 
policies [53]. GIS data show that slopes in the watershed range up to 66°, with 5% flat terrain and 95% 
hilly and mountainous terrain [8]. Most of study area (92%) is rangeland. The ground is rocky and 
dominantly developed on Jurassic formation [16]. Haraz has a long history of catastrophic flooding. 
In April 2019, floods in Mazandaran Province killed six people, damaged more than 200 villages, and 
caused USD $166.4 million damage to agriculture [16]. Thus, there is a pressing need for more reliable 
flood hazard maps for this area. 
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Figure 1. The Haraz catchment showing flood training and testing sites. 

3. Methodology 

The flowchart for the methodology used in this study is shown in Figure 2. The workflow 
includes: 1) data collection and preparation, which involves determining appropriate conditioning 
factors (factor ranking and selection); 2) preparation of a flood inventory map; 3); modeling flood 
susceptibility with KKN functions and its ensembles using the Bagging Tree algorithm; 4) 
preparation of flood susceptibility maps; and 5) validation and comparison of the models and flood 
susceptibility maps using training (goodness-of-fit) and validation (prediction accuracy) datasets. 
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Figure 2. Flowchart of the research methodology used in this study. 

3.1. Data Acquisition 

3.1.1. Flood Inventory Map 

We mapped flooded areas using Sentinel-1 images, remote sensing data and field surveys. In 
this study, a flood inventory was assembled based on flood events in 2008, 2012, 2016, and 2017. We 
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also used flood event data collected by the Mazandaran Regional Water Authority (MRWA), aerial 
photographs, Google Earth, and field surveys. To prepare our flood map, we chose 201 flood points 
and 201 nonflood points, of which we used 70% for training (141 points) and 30% for validation (60 
points). Both flood and nonflood points are needed for flood susceptibility modelling [11,79]. 

3.1.2. Flood Conditioning Factors 

A variety of flood conditioning factors should be tested in flood susceptibility modelling [11]. 
We chose the following 10 conditioning factors (Table 1) for our study [80] and mapped them at 30-
m spatial resolution [30]: distance to river, elevation, slope, lithology, curvature, rainfall, topographic 
wetness index (TWI), stream power index (SPI), land use/land cover, and river density. We quantified 
topographic and hydrological factors using an Advanced Space-borne Thermal Emission and 
Reflection Radiometer (ASTER) DEM. Relevant details for the 10 conditioning factors are described 
below and in Table 1: 

Slope 

Higher slope angles increase water velocity and surface runoff [81] and reduce infiltration. 
Lower slope angles are associated with greater flood depths [82]. We classified slope angle based on 
the manual classification method into five categories: 0°–5°, 5°–10°, 10°–15°, 15˚–25°, and > 25°. 

Elevation 

Lower elevations are receiving areas for runoff and generally have a higher potential for flooding 
[82] than higher elevation areas [83]. In this study, we classified elevation using the natural breaks 
classification method and defined the following nine categories: 328–350, 350–400, 400–450, 450–500, 
500–1000, 1000–2000, 2000–3000, 3000–4000, and >4000 m. 

Curvature 

Water flow is affected by slope curvature [84]. A zero curvature value generally has more 
potential for flooding than positive and negative curvature values. Most flood-prone areas in the 
Haraz watershed have zero curvature values associated with flat landforms. We classified curvature 
using the natural breaks classification method and defined three categories: convex (negative values), 
flat (zero value), and concave (positive values). 

Stream Power Index 

Stream power index (SPI), which is a measure of the erosive power of water flow, is defined by 
the followed equation [85]: 

( tan )SSPI A    (1) 

where AS is the specific area in m2/m and β is the slope angle in degrees. SPI is related to fluvial 
processes such as sediment transport and river channel erosion [86]. Fuller [87] found that a high SPI 
value in confined channels can lead to severe channel transformation. It is generally accepted that an 
increase in SPI corresponds to an increased likelihood of flooding. We classified SPI using the manual 
classification method with nine categories: 0–80, 80–400, 400–800, 800–2000, 2000–3000, and >3000. 

Topographic Wetness Index 

The topographic wetness index (TWI) is a measure of the tendency for water to accumulate at 
any location within a catchment under the influence gravity and is an important attribute in flood 
susceptibility mapping [87–91]. It generally reflects spatial soil moisture patterns related to 
floodplains [90]. Moore et al. [87] proposed the following equation to calculate TWI: 

( / tan )STWI In A   (2) 
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We classified SPI using the natural breaks classification method with six categories: 1.9–3.94, 
3.95–4.47, 4.48–5.03, 5.04–5.71, 5.72–6.96, and 6.97–11.53. 

Lithology 

Lithology can affect flooding through the differences in permeability of rocks and sediments 
[17]. We obtained a geology layer in GIS shapefile format, which was originally prepared by the Iran 
Geological Survey Department, from the Mazandaran Regional Water Organization. We created 
three geologic units: Paleozoic rocks (4.7% of watershed), Mesozoic rocks (56.4%), and Cenozoic rocks 
and sediments (38.9%). 

Rainfall 

Rainfall has an obvious and direct effect on flood occurrence [9,16,17,37,92] and, for flood 
susceptibility mapping, is most commonly expressed as annual rainfall [93]. We quantified the 
rainfall factor based on 20 years of precipitation data (1991–2011) from 17 stations inside and outside 
the study area. We selected a simple kriging method to create the rainfall layer because it produced 
the lowest root mean square error (RMSE) and mean absolute error (MAE) [2]. We divided the rainfall 
layer into six classes: 183–333, 334–379, 380–409, 410–448, 449–535, and 536–741 mm [86]. 

Land Use/Land Cover 

Land use/land cover has an important role in flooding. For example, runoff increases when 
vegetated land is converted to bare land [94]. We extracted land use/land cover from the operational 
land imager (OLI) of Landsat 8 scenes acquired in 2013 using the land-use unit classification method 
in ArcGIS 10.3 and supervised classification in Environment for Visualizing Images (ENVI 5.1) 
software. Our seven land use/land cover classes are: water bodies, residential areas, grassland, 
garden, farm land, forest land, and barren land. 

River Density 

River density is a measure of the number of streams and rivers in an area. If all other 
conditioning factors are constant, high river densities have a higher potential for flooding than low 
river densities [8]. We classified river density using the natural breaks classification method and 
defined six categories: 0–0.401, 0.401–1.17, 1.92–2.67, 2.67–3.66, and 3.66–7.3 km/km2. 

Distance to River 

Distance to river (i.e., distance of the measurement points from the river) plays a major role in 
the distribution and magnitude of floods in the study area [95]. The shorter the distance, the higher 
the probability of flooding, especially where the river has a low storage capacity [96,97]. To create the 
distance-to-river layer, we edited the digital watershed map using the multi-ring buffer command in 
ArcGIS 10.3. Generally, low infiltration rates in the Haraz watershed result in rapid runoff in the 
vicinity of rivers during high-intensity rainfall events, which in turn causes catastrophic flooding in 
areas with low topographic gradients [28]. We divided distances to river into eight classes: 0–50, 50–
100, 100–150, 150–200, 200–400, 400–700, 700–1000, and >1000 m. 

Table 1. Database for flood hazard mapping. 

Figure Type Variable Type 
GIS Data 

Type 
Description 

Scale or 
Resolution 

Elevation 
Independent 

variable 
Grid 

Elevation layer was extracted 
from a digital elevation model 

(DEM) 
30 m×30 m 

Slope 
Independent 

variable 
Grid 

Slope layer was produced using 
the DEM layer. 

30 m×30 m 

Curvature 
Independent 

variable 
Grid 

Curvature layer was generated 
from the DEM 

30 m×30 m 
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Stream 
power index 

(SPI) 

Independent 
variable 

Grid 
SPI factor was created based on 

topographical data  
30 m×30 m 

Topographic 
wetness 

index (TWI) 

Independent 
variable 

Grid 

TWI is a topo-hydrological 
factor that is produced from the 
DEM. It is commonly used for 
evaluating soil water/wetness 

conditions  

30 m×30 m 

Lithology 
Independent 

variable 
Vector 

Lithology layer was derived 
from a geological map 

produced by the Geological 
Survey of Iran 

1:100,000 

Rainfall 
Independent 

variable 
Grid 

Rainfall layer was generated 
from meteorological databases 

30 m×30 m 

Land 
use/Land 

cover 

Independent 
variable 

Grid 

Land use/Land cover layer was 
extracted from Operational 

Land Imager (OLI) of Landsat 8 
image  

30 m×30 m 

River 
density 

Independent 
variable 

Grid 
River density was extracted 

from river network 
30 m×30 m 

Distance to 
river 

Independent 
variable 

Grid 
Distance to river was extracted 

from river network 
30 m×30 m 

Flood 
inventory 

Dependent 
variable 

Grid 
Flood points were derived from 

records of flooding and field 
surveys 

30 m×30 m 

3.2. Detection of Flood-Prone Area by Sentinel-1 

Sentinel-1 is the first satellite constellation of the European Space Agency’s Copernicus 
Programme and comprises two satellites that share the same orbital plane—Sentinel-1A and Sentinel-
1B. They carry a C-band (5.7 cm wavelength) synthetic radar instrument, which collects data in all 
weather, day or night. The radar has four different operational modes: strip map (SM), wave (WV), 
interferometric wide swath (IW), and extra wide swath (EW). Its main drawback is that radar waves 
cannot penetrate dense vegetation [98]. 

The backscatter signal from inundated areas is identifiable in Sentinel-1 SAR data products, 
which are freely available through the Sentinel Scientific Data Hub (scihub.copernicus.eu). The 
specular reflection of C-band signals over flooded areas is significantly lower than over bare ground 
in the present study, Sentinel-1 Level-1 Ground Range Detected (GRD) data were projected onto the 
ground using an Earth ellipsoid model (WGS84). Finally, we used Sentinel-1 SAR data to identify and 
map flooded areas using the InSAR method [99–101]. 

Data Preprocessing and Processing 

The process of flood detection using Sentinel-1 data includes the following steps: 
Step 1: Radar data acquisition. We used Sentinel’s Application Platform (SNAP) to manipulate 

radar data, as well as threshold data acquired during the flood (Table 2). 
Step 2: Radar data preprocessing: We coregistered radar images using the coherence between 

master and slave images [102]. We selected two images from 05/10/2016 and 23/11/2017 as the master 
images. We combined a split su-swath and applied the orbit file technique to extract the boundary of 
the study area. We then overlaid the coregistered radar data. Next, we enhanced the spectral 
resolution of the radar images using a spectral diversity technique. 
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We produced an interferogram by multiplying the values of pixels in the master image and the 
conjugate complex number of related pixels in the slave image [102,103]. To detect flood-prone areas, 
we applied pre- and post-flood data by the interferogram formation technique. 

We identified zones of terrain observation progressive scan (TOPS) data [104]. Data within these 
zones were considered to be invalid and thus were removed. Removal of the topographic phase 
provided an interferogram [102,104,105] that allowed us to specify nonflood-prone areas. Finally, we 
used phase filtering to detect flood-prone. 

Step 3: Radar data processing. We used the output from step 2 as input for processing the digital 
images with SNAPHU and ENVI 5.1 software. We used ArcGIS 10.3 to analyze spatial data (Figure 
2). We viewed the phase and the unwrapped and the coherence bands in Google Earth to identify 
and record historical flood locations. We used a handheld GPS in the field to validate the extracted 
flood-prone locations, 40% of which were near the main rivers. Finally, we verified the accuracy of 
Google Earth images and the radar data, and vectorized points using ArcGIS 10.3 software. For 
georeferencing, we employed ground control points (GCPs), nearest neighbor resampling, and a first-
order transformation (Figure 3). 

Table 2. Technical attributes of Sentinel-1 data used in this study. 

Platform Sensor Mode Product Type Path Dates 

S1A Interferometry wide 
swath (IW) 

Ground range detected 
(GRD) 

Ascending 05/10/2016 
23/11/2017 

 
Figure 3. Flow chart for detecting flood points in the study area using Sentinel-1 data. 

3.3. Background of Flood Susceptibility Models 

3.3.1. K-Nearest Neighbor Classifier 

K-Nearest Neighbor (KNN) is a common classification tool used in data mining applications 
[106]. It is a nonparametric, lazy learning algorithm that makes no assumptions about the primary 
dataset. This is important when modeling hydrological processes, such as floods and stream flow, for 
which there is little or no prior knowledge of the data distribution [107]. In addition, these processes 
are nonlinear and heterogeneous with noisy data that challenge common statistical assumptions such 
as those underpinning linear regression models [108]. In this context, KNN is a useful tool as it uses 
all contributing cases in the dataset and classifies new cases based on their similarity indices (also 
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called ‘distance functions’). Cases are classified by voting for neighbor classes. The optimal case is 
the one with the highest similarity indices [109]. 

In KNN, the optimal choice of the chosen number of neighbors (K) depends on the metrics used 
for classification and regression purposes. In the case of continuous variables, the most common 
distance metric is Euclidean distance, also known as the straight-line distance. Conversely, for 
discrete variables, the overlap metric (or Hamming distance) is frequently used. Other metrics that 
have been used are correlation coefficients, such as the Pearson and Spearman correlation coefficients. 
The K value is sensitive to the chosen dataset and differs between datasets. Based on an empirical 
rule-of-thumb introduced by Dude [110,111], K is equal to the square root of the number of samples; 
this makes parameter tuning difficult for diverse applications. 

There are other popular methods, such as K-fold Cross-Validation (CV), Leave-one-Out Cross-
Validation (LOOCV), and bootstrapping. K-Fold Cross-Validation can be used to evaluate the test 
error with a statistical learning method. This approach places randomly chosen sets of observations 
into K folds of equal size. In contrast, LOOCV does not use two sets of equal size; rather, it employs 
a single observation for the validation set and the remaining observations for the training set. We use 
these two methods as well as bootstrapping to measure the accuracy of our statistical learning 
approach. However the K-fold Cross-Validation method is preferred for the following reasons [112]: 

1. There are typically only a few probable choices of K (e.g., from 3–10 or 50–100). 
2. The K-fold CV offers a greater computational advantage than other methods. 
3. The K-fold CV yields more accurate estimates of the test error than bootstrapping and LOOCV. 

With K-fold CV, the training phase is short and fast. All training datasets are required during 
the testing phase to decide on the best subset of the entire training dataset. This method has been 
used in diverse applications such as big data classification, pattern recognition, ranking models, and 
computational geometry [106]. 

The K-fold CV algorithm applies a vector as an input to the K training dataset. It then uses the 
most common class to classify the K nearest neighbors. During the training phase, neighbors are 
defined based on their distances from the test dataset; the classes of the test dataset are determined 
in the testing phase [4]. The number of neighbors can be changed to determine the best performance 
of the KNN algorithm. There are four KNN classifiers introduced by MATLAB [113]: 

1. Coarse KNN: The number of neighbors is 100. The classifier is defined as the nearest neighbor 
among all classes. 

2. Cosine KNN: The cosine distance metric is the nearest neighbor classifier. It is generally used as 
a metric for distances when vector magnitudes are irrelevant. The following equation is used to 
measure the distance between two vectors, u and v [113]: 

1 −
𝑢𝑢. 𝑣𝑣

|𝑢𝑢|. |𝑣𝑣|′
 (3) 

3. Cubic KNN: The number of neighbors is 10, and the cubic distance metric is the nearest neighbor 
classifier [109]. The following equation is used to measure the distance between two n-
dimensional vectors, u and v: 

�� |𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

3

 (4) 

4. Weighted KNN: The number of neighbors is 10, and the weighted Euclidean distance is used as 
the nearest neighbor classifier. The following equation is used to measure the weighted 
Euclidean distance between two n-dimensional vectors, u and v: 
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��𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (5) 

where 0 < 𝑤𝑤𝑖𝑖 < 1 and ∑ 𝑤𝑤𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1   . 

3.3.2. Bagged Tree Ensemble Algorithm 

Ensemble methods apply a variety of decision trees, instead of only one, to improve predictive 
performance. The two most common techniques used with ensemble models are [114] bagging and 
boosting. 

Bagging (Bootstrap Aggregation) improves the precision and consistency of machine learning 
algorithms used for regression and statistical classification. The purpose of bagging is to decrease 
variance while retaining the bias of a decision tree and preventing overfitting. The Bagging Tree 
randomly generates multiple sets of input data from training samples by replacement [115]. The 
chosen subset data are used to train the assigned trees and generate models. Subsequently, the 
average of all predictions from these trees is used to make the final decision with a higher degree of 
robustness. The accuracy of a single tree is increased by using multiple copies of the trained subset 
of data. 

Boosting is a useful ensemble method in high bias situations. Predictors are trained sequentially 
with simple training models, and the data are then analyzed for errors. At every step, the net error is 
calculated from the prior decision tree [115]. In a high bias dataset for which an input is not well 
classified by an hypothesis, its weight is amplified so that next hypothesis will classify it properly. 

For the present study, we used the Bagging Tree ensemble method on a well classified set of 
inputs with low bias. The method yields results with a lower variance than its components, which in 
turn makes the learning procedure more efficient. The best classifier type depends on the training 
dataset. In the current study, we employed a classifier that provides the optimum tradeoff in memory, 
speed, interpretability, and flexibility. 

We subdivided the dataset into two probable classes and generated an algorithm of continuous 
classifiers ( mH ,  m 1, , M= … ) Hm :  Dm  R®  on on a training set (flood collection) D. We then 
grouped the generated classifiers into a composite classifier with a resulting prediction weight as 
follows: 

𝐻𝐻(𝑑𝑑𝑖𝑖) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(� 𝛼𝛼𝑚𝑚𝐻𝐻𝑚𝑚(𝑑𝑑𝑖𝑖)) , where sign is:𝑀𝑀
𝑚𝑚=1  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥) = �

1 , 𝑥𝑥 > 0
0 , 𝑥𝑥 = 0
−1 , 𝑥𝑥 < 0

 (6) 

Equation (6) describes a voting procedure known as majority (plurality) voting for each 
classifier. Plurality voting efficiently attains the optimum tradeoff in error and rejection rate. An 
example 𝑑𝑑𝑖𝑖  is classified based on the majority of classifier votes [116–118]. ma ,  m 1, ,M= …  are 
parameters that indicate the impact of more accurate classifiers on the final result. 𝐻𝐻𝑚𝑚 are termed 
‘weak classifiers’ because their accuracy is higher than the accuracy of other random classifiers [119]. 

We used the following bagging algorithm in our study [120]: 

1. Training set D initialization. 
2. Range selection for m = 1, ..., M. 

2.1. Random selection of the set D to create a new set 𝐷𝐷𝑚𝑚  . 
2.2. Machine-learning application on the base of 𝐷𝐷𝑚𝑚  to train a classifier  Hm :  Dm  R® . 

3. Creation of a composite classifier H from mH ,  m 1, , M= … . 

3.1. 𝑑𝑑𝑖𝑖 classification based on 𝑐𝑐𝑖𝑖  classes, depending on the number of votes gained from  
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𝐻𝐻𝑚𝑚 𝐻𝐻(𝑑𝑑𝑖𝑖,𝑐𝑐𝑖𝑖) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(�
𝛼𝛼𝑚𝑚𝐻𝐻𝑚𝑚(𝑑𝑑𝑖𝑖,𝑐𝑐𝑖𝑖)) ,
where sign is ∶

𝑀𝑀

𝑚𝑚=1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥) = �
1 , 𝑥𝑥 > 0
0 , 𝑥𝑥 = 0
−1 , 𝑥𝑥 < 0

 (7) 

We note that to achieve a better performance and decrease the classification error, the 𝐻𝐻𝑚𝑚 values 
can be reformed, while 𝛼𝛼𝑚𝑚 values remain constant. 

3.3.3. Proposed New Ensemble Machine Learning Models of Bagging with KNNs Functions 

We used the Classification Learner application in MATLAB R2018a to automatically train a 
selection of different KNN classification models on a training dataset. Then we used the Bagging Tree 
ensemble together with the coarse, cosine, cubic, and weighted KNN base classifiers to spatially 
predict floods. For a given training set, we produced multiple different training sets (‘bootstrap 
samples’) from replacement samples from the original dataset. Then, we built KNN models for each 
bootstrap sample. The result is an ensemble of models, where each model votes with equal weight. 
The goal of this procedure is to reduce the variance of the model of interest. 

3.3.4. Flood Factor Selection Using the Relief Attribute Evaluation (RFAE) Technique 

Supervised machine learning algorithms rely on the selection of the best factors or features to 
accurately classify sample data and enhance the efficiency of training [121]. The main aims of factor 
and feature selection are to enhance the learning efficiency of the modelling process and the 
robustness of predictive accuracy, and to reduce complexity, noise, and overfitting by eliminating 
irrelevant or low-performing factors [122]. Conditioning factors can be evaluated and categorized 
based on a variety of metrics, including distance, information, dependency, consistency, and classifier 
error rate [123]. In this study, we selected the Relief Attribute Evaluation (RAE) technique to check 
the importance of conditioning factors on flood classification performance (Figure 3). RAE is a 
distance-based attribute/factor ranking approach proposed by Kira and Rendell [124], and later 
improved by Kononenko [125] and Hall and Holmes [126]. It calculates the class of each attribute 
based on the distance between the data point and its nearest neighbors (Figure 4). First, it randomly 
selects instances in the training dataset (Ri in line 3 of Figure 4). Then, it searches for K of its nearest 
neighbors from the same class, as well as from each of the different classes, called nearest hit Hj and 
nearest miss (Mj(C) (lines 4 and 6, respectively). Depending on the average values of Ri, Hj, and Mj 
(C) (lines 7, 8, and 9), RAE updates the quality estimation W[A] for all attributes. W[A] is reduced 
when instances Ri, and Hj have different values of attribute A. To obtain a desired value, attribute A 
is separated into two instances with the same class values. If Ri and Mj (C) have different values of 
attribute A, attribute A is divided into two instances with different class values. The prior probability 
for each class of misses, P(C), is calculated based on the training dataset. P(C) is symmetric and ranges 
from 0 and 1 for hits and misses. If the sum of the class is missing, its probability weight is divided 
by factor 1-P (class (Ri)) to represent its probability sum. This process is repeated m times. The quality 
of a flood attribute is evaluated based on how well it distinguishes nearby instances. Weights for all 
attributes are assigned by the ReliefF algorithm through iterative estimation using the nearest hit-
and-miss neighbors. Accordingly, an attribute is ranked highest if the same value is obtained for 
instances of the same class and distinguished for instances of different classes [127,128]. 
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Figure 4. Pseudo code of the basic Relief Attribute Evaluation (RFAE) technique. 

3.4. Evaluation and Comparison 

New models should be tested to verify their performance and evaluate their potential 
applicability in other regions. For the purpose of validation, an objective function (‘forecasting error’), 
such as mean square error (MSE) and root mean square error (RMSE), can be used to find the 
difference between observed and predicted values. Although there are a variety of error indices that 
can be used to assess the predictive capability of the models, many studies advocate the use of RMSE 
as a standard metric for model errors in geosciences [129]. MSE and RMSE can be formulated as 
follows: 

2
. .

1

1 ( )
n

est obs
i

MSE F F
n 

   (8) 

2
. .

1

1 ( )
N

est obs
i

RMSE F F
N 

   (9) 

where .estF , .obsF  and n  are respectively, estimated floods, observed (actual) floods, and the 
number of floods for the modelling process. 

In addition to MSE and RMSE, we used accuracy, the receiver operatic characteristic curve 
(ROC), and the area under the ROC curve (AUC) to further evaluate the predictive capability of the 
models. The accuracy metrics are formulated based on true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN) values. TP and TN are the number of flood pixels that are 
correctly classified as flood and nonflood pixels, respectively [37,52]. FP and FN are the number of 
nonflood pixels that correctly classified as nonflood and flood pixels, respectively [16,17]. Accuracy 
can be formulated as follows: 

TP TNAccuracy
TP TN FP FN




  
 (10) 

The ROC curve has been used in some flood modeling studies to check the overall performance 
of models [8,39,40,130]. It is plotted using two statistical metrics—specificity on the x axis and 
sensitivity on the y axis [63]. Specificity and sensitivity are defined, respectively, as the number of 
incorrectly and correctly classified floods [92]. An AUC equal to 1 indicates that the model is perfect 
or ideal, whereas a value of 0 indicates an inaccurate model [3]. 
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TP TNAUC
M N





   (11) 

where M and N are the number of total flood and nonflood pixels [131]. 

4. Result and Analysis 

4.1. Flood Detection Using AIRSAR and Optical Satellite Images 

Using the InSAR technique and SNAP software, we generated coherence, unwrapped, and 
phase bands from Sentinel-1 satellite imagery dating to between 05/10/2016 and 23/11/2017. The 
highest and lowest values in the phase and unwrapped bands were mapped and depicted on maps 
in red and green colors. The coherence band provided the best results because white areas (high 
values) can be clearly distinguished from stable areas (low values). The InSAR-generated coherence, 
phase, and unwrapped bands were then transformed into KML format and draped on Google Earth 
(GE) images to digitize flood locations. Our Sentinel-1-derived flood polygons are in good agreement 
with our field survey observations (Figure 5). 

 
Figure 5. Detection of flood-prone areas in the Haraz watershed using Sentinel-1 data. 

4.2. The Most Important Factors for Flood Modelling 

The results of factor selection by the RFAE technique are shown in Figure 6. The average merit 
(AM) values range from 0.002 to 0.198, indicating different strengths of individual conditioning 
factors for flood susceptibility modelling. Intuitively, distance to river has the highest average merit 
(AM = 0.198) because most flood points are near rivers and streams. The other factors, in order of 
decreasing importance are slope (AM = 0.186), curvature (AM = 0.160), drainage density (AM = 0.150), 
elevation (AM = 0.135), TWI (AM = 0.124), lithology (AM = 0.059), rainfall (AM = 0.053), SPI (AM = 
0.043), and land use/land cover (AM = 0.002). 
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Figure 6. Important flood factors selected by the Relief Attribute Evaluation (RFAE) technique. 

4.3. Flood Modelling Process 

The Bagging Tree and Modified K-Nearest Neighbor classifiers (Cubic–KNN, Coarse–KNN, 
Cosine–KNN, and Weighted–KNN) were used in this study for flood modelling. We trained and 
tested the models with, 70% and 30% of our dataset, respectively. We calculated the accuracy criteria 
of the models by comparing the training/test dataset with predicted flood pixels as output (Figure 7). 
In the training step, the MSEs of the Cubic–KNN, Coarse–KNN, Cosine–KNN, Weighted–KNN, and 
Bagging Tree models are 0.0568, 0.0575, 0.0504, 0.000, and 0.0072, respectively; the corresponding 
RMSEs are 0.2383, 0.2399, 0.2244, 0.0000, and 0.0848. These results show that the Weighted–KNN 
model had the best performance in the training step (mean = −0 and standard deviation = 0). In the 
test step, the MSEs and RMSEs of the Cubic–KNN, Coarse–KNN, Cosine–KNN, Weighted–KNN, and 
Bagging-Tree models are, respectively, 0.0396 and 0.1989, 0.0682 and 0.2611, 0.0682 and 0.2611, 0.0568 
and 0.2384, and 0.0454 and 0.2132. These results suggest that the Cubic–KNN model performed best 
in the test step (mean = −0.0324 and standard deviation = 0.1966). 
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Figure 7. Modelling process using (a) Cubic–KNN, (b) Coarse–KNN, (c) Cosine–KNN, (d) Weighted–
KNN, and (e) Bagging Tree models. 

We also evaluated the accuracy of the KNN classifier functions in the modelling process. Table 
3 shows the optimum parameters for achieving the highest model accuracy. The Cubic–KNN model 
has the highest accuracy value (96.4%), followed by the Cosine–KNN (92.8%), Weighted–KNN 
(92.14%), and Coarse–KNN (92.1%) models. We also built hybrid models of Bagging Tree based on 
KNN classifiers and derived their optimum parameters based on the highest accuracy. Table 4 shows 
the optimum parameter values of the hybrid models. We obtained the highest accuracy for the hybrid 
model of Bagging Tree–Coarse KNN (98.6%), followed by Bagging Tree–Weighted KNN (97.1%), 
Bagging Tree–Cosine KNN (96.6%), and Bagging Tree–Cubic KNN (94.3%). 

Table 3. Accuracies of KNN functions used for spatial prediction of floods in the modeling process. 

 Description 
Classifier Preset Coarse KNN Cosine KNN Cubic KNN Weighted KNN 

Accuracy 92.1% 92.8% 96.4% 92.1% 

Distance metric Euclidean Cosine Minkowski 
(cubic) 

Metric Euclidean 

Distance weight Equal 
standardize 

Equal 
standardize 

Equal 
standardize 

Weight squared inverse 
standardize 

Number of 
neighbors 

100 10 10 10 

Prediction speed 
(obs/sec) 

~27,000 ~22,000 ~15,000 ~29,000 

Time training 
(Secs) 

0.255 0.282 0.293 0.211 
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Table 4. Accuracies of the Bagging Tree ensemble on KNN used in the flood modeling process. 

 Description 

Classifier Preset 
BaggingTree–
Coarse KNN 

Bagging Tree–
Cosine KNN 

Bagging Tree–
Cubic KNN 

Bagging Tree–
Weighted KNN 

Accuracy 98.6% 96.6% 94.3% 97.1% 
Learner type Decision tree Decision tree Decision tree Decision tree 
Number of 

learners 
30 30 30 30 

Ensemble 
method 

Bag Bag Bag Bag 

Prediction speed 
(obs/sec) 

~2200 ~3900 ~5100 ~5800 

Time training 
(secs) 

0.375 0.737 0.693 0.761 

4.4. Development of Flood Susceptibility Maps 

We used the hybrid methods to evaluate the flood susceptibility index (FSI) in all pixels in our 
study area. Each pixel was given a unique FSI, and the results then were exported into a readable 
ArcGIS 10.3 format for the task of flood mapping. We classified the calculated FSIs into flood and 
nonflood classes. Figure 8 shows flood susceptibility maps produced by the Bagging Tree ensemble 
and based on Modified K-Nearest Neighbor classifiers. The maps show that flood-prone areas in the 
watershed are located near rivers at lower elevations and on low-gradient slopes. Figure 8b,d; Figure 
8b; Figure 8d,f,h show that the Bagging Tree ensemble model can enhance and extend flood-prone 
areas adjacent to rivers such that most known flood locations are located in high and very high 
susceptibility classes. In addition, Figure 8 shows that areas near the outlet of the Haraz watershed, 
as well as areas in the northwest part of the catchment, are more prone to flooding than other parts 
of the study area. In comparison to the nearest neighbor models, the hybrid models predict that 
higher proportions of the study area are flood susceptible (Figure 8). Of the hybrid models, the 
Bagged Tree–Cubic KNN model (Figure 8b) has the largest flood-prone area. 
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Figure 8. Flood susceptibility maps of the study area based on: (a) Cubic–KNN, (b) Bagging Tree–
Cubic KNN, (c) Coarse–KNN, (d) Bagging Tree–Coarse–KNN, (e) Cosine–KNN, (f) Bagging Tree–
Cosine–KNN, (g) Weighted–KNN, and (h) Bagging Tree–Weighted KNN. 
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4.5. Evaluation and Comparison 

We next compared the flood susceptibility performance of the new hybrid Bagging Tree–KNN 
models with that of the KNN models using the area under receiver operating characteristic (AUC) 
curve. Figure 9 shows the AUC of ROC curves that we produced for the training and testing steps of 
our flood susceptibility map datasets. The AUC curves show that the Coarse–KNN model performed 
best in the training and testing steps, with AUC values of 0.795 and 0.790, respectively. It is followed 
by the Weighted–KNN model (AUC = 0.719 and 0.710), Cosine–KNN model (AUC = 0.692 and 0.690), 
and the Cubic–KNN model (AUC = 0.662 and 0.660) (Figure 9a,b). Among the hybrid models, the 
Bagging Tree–Cubic KNN model had the highest performance in both the training and testing steps, 
with AUC values of 0.811 and 0.800, respectively. It is followed by the Bagging Tree–Coarse KNN 
model (AUC = 0.762 and 0.740), the Bagging Tree–Weighted KNN model (AUC = 0.722 and 0.710), 
and the Bagging Tree–Cosine KNN model (AUC = 0.659 and 0.640) (Figure 9c,d). The hybrid models 
outperformed the KNN classifier models. This result accords with the conclusion of Kantardzic [132] 
that the Bagging Tree–Cubic KNN model performs better than rival models (Figure 9). We therefore 
recommend that our highest performing model, the Bagging Tree–Cubic KNN model, be tested for 
flood susceptibility modelling in other areas. 
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Figure 9. Flood model evaluations using AUC. (a) KNN-individual classifiers, training dataset. (b) 
KNN-individual classifiers, validation dataset. (c) Bagging Tree–KNN ensembles, training dataset. 
(d) Bagging Tree–KNN ensembles, validation dataset. 

5. Discussion 

Flood susceptibility maps can be used by a variety of decision-makers and hazard managers to 
reduce injury and damage to built infrastructure from floods. We found that Sentinel-1 radar data 
are useful for mapping flood extent. In terms of flood susceptibility modelling, the task of choosing 
the best-performing machine learning algorithm can be difficult due to data complexity [102]; it 
commonly requires a trial-and-error approach. In our study area, the best performing model is a new 
intelligent hybrid model (Bagging Tree–Cubic KNN), which is a combination of a bagging ensemble 
technique and the four functions of the KNN classifier. We used the information gain ratio (IGR) on 
our ten flood conditioning factors and showed that, although all factors are significant in the model 
training, distance to a river stands out as the most important factor, followed by slope gradient and 
curvature. Our results are in agreement with those of Ahmadlou et al. [130], Bui et al. [39], Khosravi 
et al. [3], and Shafizadeh-Moghadam et al. [40]. As most floods in the Haraz watershed result from 
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brief heavy rainfall and overbank river flow, it follows that areas adjacent to rivers and floodplains 
have the greatest flood susceptibility. 

The KNN model is one of the most popular neighborhood classifiers; it is very simple to use and 
highly efficient in some fields of studies [133]. Computer memory requirements and operation time 
are the main limitations of KNN classifier performance, because this classifier depends on every 
example in the entire training set [134]. To solve these limitations and increase the performance of 
KNN, we used a bagging meta classifier. The combination of the Bagging Tree ensemble method and 
the KNN classifier allowed us to overcome the above-mentioned limitations and develop a reliable 
flood model. The AUC value (0.800) of the proposed Bagging Tree–Cubic KNN model indicates that 
its performance is best. This hybrid model may significantly improve the prediction accuracy of 
Cubic KNN as a base classifier. 

Chapi et al. [8] tested and evaluated the bagging ensemble method to improve the power 
prediction of the logistic model tree (LMT) classifier in a new model (Bagging–LMT) for flood 
mapping in the Haraz watershed. They concluded that bagging increases the power prediction of the 
LMT base classifier in flood modelling. The ensemble model outperforms the basic classifier due to 
the synergy provided by the two classifiers when used together. We therefore recommend the 
proposed new model as an appropriate method for flood hazard management. 

Flood modelling is a complex procedure with numerous uncertainties. Machine learning 
approaches efficiently handle these uncertainties as long as reliable historical flood inventory maps 
are available. The proposed machine learning model provides decision makers with a less expensive 
and less time-consuming way of evaluating flood hazards and risk than field surveys. It also provides 
authorities guidance as to what additional data (e.g., rainfall and river discharge data) might be 
required to produce more accurate flood maps for mitigating further damage. The flood susceptibility 
maps are thus fundamental products for further analyses and for hazard and risk disaster 
management and mapping. Our model may be used in other areas aside from the Haraz watershed. 

6. Conclusion 

The best way to mitigate and control floods is to identify all factors that have a relationship to 
flooding; in this study, we refer to these as conditioning factors. We used Sentinel-1 remote sensing 
radar data to identify and map flood locations in the Haraz watershed in northern Iran. We used 10 
flood conditioning factors and 201 flood locations as our model inputs. Eight new hybrid models 
(Cubic–KNN, Bagging Tree–Cubic KNN, Coarse–KNN, Bagging Tree–Coarse–KNN, Cosine–KNN, 
Bagging Tree–Cosine–KNN, Weighted KNN, and Bagging Tree–Weighted KNN) were created to 
analyze and map flood susceptibility. Results based on the relief attribute evaluation metric indicate 
that distance from the river and slope gradients are the two most important factors for flood 
occurrence in the Haraz watershed. Among the eight models, we found that Bagging Tree–Cubic 
KNN model has the highest predictive power. 

Flood modeling is a complicated task with many uncertainties, but we have shown that machine 
learning algorithms can improve flood susceptibility mapping. Our proposed flood model is 
effective, simple and intuitive. It reduces the variance and the noise of the training dataset, resulting 
in enhanced prediction accuracy. Our method of combining satellite radar data with the Bagging 
Tree–Cubic KNN model should be evaluated in other flood-prone regions, especially in large 
catchments where collecting data in the field is difficult and commonly expensive. This machine 
learning model can be used to improve the efficiency and accuracy of flood hazard mapping and thus 
assists in disaster management and land-use planning. 
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