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Foreword

This book grew out of the lecture notes of a course which I gave at Yale
University in the Fall semester, 1972. Exercises were added and the text was
rewritten in 1975 end 1976. The first four chapters in their present form were
used in a course at Ohio State University in the Fall quarter, 1975.

The fivst six chapters can be read, in conjunction with appendices 1 -3, by
anyone who is familiar with the most bagic material covered in standard under-
gradueste courses in linear algebra and gbstract algebra. Some complex analysis
(meromorphic functions, series and products of fuuctions? is required for chapters
7 and 8. Specific references are given.

The level of exposition rises as the book progresses. In chapter 2, for
example, the degree of & field extension is defined, while in chepter b it is
assumed that the reader knows Galois theory. The idesa is to make it possible for
someone with little experience to begin reading the book without difficulty and
to be lured into reading further, consulting the appendices for background material
when necessary.

I have attempted to present the mathemstics in e straightforward, "down to
earth"” manner that would be accessible to the inexperienced reader but hopefully
still interesting to the more sophisticated. Thus I hewve avoided local methods
with no apparent disadvanteges except possibly in exercises 20-Z1 of chapter 3
and exercises 19-22 of chapter L. Even there I feel thet it is worthwhile to hawve

availsble "dirvect" proofs such es I present. Any swkwardness therein can be taken
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by the reader as mobivation to lesrn sboubt loealization. At the seme time, it is
assumed that the reader is reasonably adept at filling in deteils of arguments. In
many places details are left as exercises, often with elsboraste hinta. The purpose
of this is to meke the proofs cleaner and easier to read, and to promote involvement
on the part of the reader.

Major topics are presented in the exercises: fractionsl ideals and the
diffevent in chapter 3, remification groups and the Kronecker-Weber Theorem in
chapter 4, fundamental units in non-totally real cubic fields in chapter 5,
cyclobomic class mumbers and units in chapter 7. Many other results sppear In
step-by-step exercise form. Among these are the determination of the algebraic
integers in pure cubic fields (chapter 2), the proof that prime divisors of the
relative differvent are ramified over the ground field (chepter L), and the Frobenius
Density Theorem (chapter 7).

I have teken the liberty to introduce some new terminology ("number ring" for
the ring of algebraic integers in a number field), a notational reform (||I|| for
the index of an ideal I in a nuber ring, rather than the more cumbersome N(I) ),
and the concept of polar density, which seems to be the "right" density for sets
of primes in & number field. Notice, for example, how easily one cbtains Theorem
43 and its corollaries.

Chapter 8 represents a departure from tradition in several ways. The
distribution of primes is handled in an abstract context (Theorem 48) and withoub
the complex logarithm. The main facts of class field theory are stated without
proof (but, I hope, with ample motivation) eand without fractional ideals. Results
on the distribution of primes are then derived from these facts. It ic hoped that

this chapter will be of some help to the reader who goes on to study class field

theory.

Daniel A. Marcus
Colunbus, Chio
June, 1577

’



Chapter 1
A special case of Fermat's conjecture

Algebraic nunber theory iz essentislly the study of number fields, which are
the finite extensions of the field ¢ of rational nunbers. BSuch fields can be
useful in solving problems which at first appear to involwe only rational mumbers.

Consider, for example, this problem:

Find all primitive Pythagorean triples: i.e., integer sclutions

of xe-z—ye:ze heving no common factor.

Agsuming that we have such a triple and considering the equation mod k4, we
find immediately that =z must be odd. This will be used later. Now comes the
introduction of a nunber field (namely €[i] = {& + bi: a,b € §}) into the problem:

if we factor the left side of the equation we obtain
2
(x + yi)(x - y1) = =

and thus we have a multipliestive problem in the ring of Gaussian integers
m[i]-a {(a + bi: a,b € Z}. It is well known (see exercise 7 &t the end of this
chapter.) thet #%[i] is a unique factorization domein: every nonzero Gaussian
integer can be expressed in a unique way (up to order and unit factors) as a
product of Gaussien primes. We will use this fact to show that x + yi has the
form ucf for some Gaussien integer « &nd some Geussien integer wnit u. If

we then write o« =m + ni and observe that the only units in ZE[i] are + 1 and



+ 1 (see exercise 2), we obtain

{x,y} = (£ @? - 2y, +2m} and z = + (n?+ n?).

It is cbviously necessary that m eand n be relatively prime and not both odd
(otherwise x, y, and z would have a factor in common) and it is easy to see that
a primitive Pythagorean triple results from any such choice of m and n, and a
choice of signs. Furthermore it is clear that nothing is lost if we take only
positive m and n.

Thus the problem will be solved if we can show thet for any primitive solution,
% +yl has the form wof . To do this, it is enough to show thet if 11 is &
Geussian prime dividing x + yi, then in faect T divides x + yi an even number
of times: T |x + yi and 1TE+1A|—x + yi for some even e . Since
(x + yi)(x - yi) = 2 and T obviously divides 22 an even mumber of times
(twice as many times as it divides z), we need only show that 1Mx - yi.

Thus, supposing that 7 divides both x + yi eand x - yi, we want a
contradiction. Adding, we get T|2x. Also we have f|z. But 2x and =z are
relatively prime integers (recall thet =z is odd, end if x and z had a non-
trivial factor in common, then so would x, y, end z). So there exist integers
m end n such thet 2xm + zn=1. Bub then T1 in Z[i]. This is
impossible since 1 is a prime, not a unit,

Thus by working in the field @[i] we have determined all primitive
Pythagorean triples.

Since this was so successful, let us try to apply the same idea to
the equation x" + y® = z" for n > 2. Fermat, in his famous marginal
note, claimed that he had a proof that there are no solutions in
nonzero integers when n > 2. This is known as "Fermat’s last theorem"
or "Fermat’s conjecture." For over three centuries it has been one of

the most famous unsolved problems in mathematics.*

Using our result on primitive Pythagoresn triples, we can show that Fermat
was right for n =L and hence (automatically) also for any multiple of 4. (See

*Fermat’s last theorem may have finally been proved in 1993-94 by Andrew
Wiles using concepts from the theory of elliptio curves.



exercise 15.) It is therefore sufficient to consider only the case in which n is
an odd prime p, since if no solutions exist when n = p then no solutions exist
when n is a mitiple of p. Thus the problem is to show that if p is an odd
prime, then ¥ + y¥ = z¥ has no solubion in nonzero integers x, y, 2 »

Suppose, for scme odd prime p, there is a solution x,y,2 € Z - {0}.
Clearly we may assume that x, y, z have no common factor (divide it cut if there
is one). We want & contradiction. It is convenient to separate the argument into
two cases: elther p divides none of x, y, z (case 1), or else p divides
exactly one of them (case 2). (If p divided more than one then it would divide
all three, which is impossible.)

We will consider only case 1. Tt is easy to show that 35 + y° = z3 has no
cgse 1 solutions: If x, y, and z are nobt midtiples of 3, then in fact
2+ 33 #23 (mod 9) since each of these cubes is =+ 1 (mod 9) .

Now assume p > 3; X, ¥, and 2z are not midtiples of p; and xp+ypmzp.

Factoring the left side, we cbtain

(1) (x + ¥)(x + yu)(x + yo©) wen (x4 yoP L) = 2P

where w 1is the pth rook of wity e-'i/P,

(To see why this is true, note that
1, w, mE, “.,wpul are the p roots of the polynomial tp-l, hence we have

the identity

(2) tP e l=(b-1)(6- o)t - o) e (8-dP7T),

from which (1) follows by substituting the number -E-;E for the varisble t.)

Thus we have a multiplicative proplem in the nuber field €[w]}, and in fact
in the subring Z[w]. *  Kumer attempted to prove Fermat's conjecture by consider-

ing whether the unique factorization property of % and Z[1] generalizes to

¥

*elw] = {ag + 8w+ <0u + ap_emp-e: 8, €Q Vvi};

Zlw] = {5.0-1- B0+ aae 4 %_Ewp_zz e.iE Z vi).



the ring Z[w]. Unfortunately it does not. For example if p = 23, then not
all members of Z[w] Ffactor unigquely into irreducible elements: i.e., elements
o € Z[w] which are not unite and such that whenever o = py, either p or v
is & unit (see exercise 20). In other words, Z[w] is not a unique factorization
domain (UFD) for p=23. It is, however, & UFD for all primes less than 23.
For these primes it is not difficult to show that xp + yp = zF ‘has no

case 1 solutions.

The argument can be organized as follows: Assuming that %[w] is s UFD,
it can be shown that X + yw has the form uc® for some « € Z[w] and some
wit w € Z[w]. It can then be shown that the equation x + yw = uo® , with
x end y not divisible by p, implies that x =y (mod p). (See exercises
16 -28 for the details.) Similarly, writing »* + (-z)® = (-y)P, we obtain

= -z (mod p) . Bubt then
oxP = %P 4 yP = 2P = - (mod p),

implying that p|3:x®. Since p}x and p # 3, this is a contradiction. Thus
cose 1 of Fermat's conjecture can be established for all primes p for which
Zlw] is a UFD.

What can be done for cther primes? Unique factorizetion in Z[w] wss needed
only for the purpose of deducing x + yw = uo® from equation (1); might it not
be possible to deduce this in some other way? The answer is yes for certain values
of p, including for example p = 23. This results from Dedekind's amazing
discovery of the correct generslization of unique factorization: although the
elements of Z[w] may not factor uniquely into irreducible elements, the ideals
in this ring always factor uniquely into prime ideals. Using this, it is not hard
to show that the principal ideal (x + yw) is the pth power of scme ideal I (see
exercises 19 and 20). For certain p, called "regular" primes (defined below}, it

then follows that I must itself be & principal ideal, say (¢t), so that

(x + yu) = T = (@) = (&P)



and thus sgain we ha.ve x + yw = uo¥ for some wit wu. As before, this implies
x =y (mod p) and & contradiction follows. Thus cese 1 of Fermat's conjecture
can be estsblished for all regular primes, which we now define.

There is an equivalence relation ~ on the set of ideals of Z[w], defined
as follows: for idesls A and B

A~B Iff QA= pB for scme ¢, B € Zlw].

(Verify that this is an equivalence relation.)

It turns out (see chapter 5) that there are only finitely many equivalence classes
of ideels under ~. The number of classes is called the clasg number of the ring

#Z[w] , and is denoted by the letter h. Thus h is & function of p.
DEFINITION: A prime p dis regular iff p4h.

To explain why I (in the equation (x + yu) = hid ) must be principal whenever
p 1i# a regular prime, we note first thet the ideal classes can be multiplied in
the cbvious way: the product of two ideal clesses is chtained by selecting an
idesl from eech; multiplying them; and taking the ideal class which contains the
product ideal. This is well-defined: The resulting idesl class does lmt depend
on the particular ideals chosen, but only on the two original ideal classes (prove
this). Multiplied in this way, the ideal classes actually form & group. The
identity element is the class CO consisting of all principal ideals (which really
is & class; see exercise 31). The existence of inverses will be esteblished in
chapter 3. Thus the ideal classes form a finite sbelian group, called the ideal
class group. If p is regular then clearly this group contains no element of
order p, and it follows that if IF¥ is principal thenso is I: Iet C be
the ideel class contalning I; then C° dis the class containing TP, which is
CO - Since 00
p, it follows that C = C,, which shows that I is principal.

is the identity in the idesl class group and ¢ cannot have order

As we noted before, this leeds to & contradiction, showing that & 4 yp = ¥



has no case 1 solutions (i.e., solutions for which ptxyz) when p is a rvegular
prime. It is also possible, although somewhat more difficult, to show that no case
2 solutlons exist for regular primes. (For this we refer the reader to Borevich
and Shafarevich's lMumber Theory, p. 378-361.) Thus Fermat's conjecture can be
proved for all regular primes p, hence for all integers n which have at least
one regular prime factor. Unfortunately irregular primes exist (e.g. 37, 59, 67).
In fact there are infinitely many. On the other hand, it is not known if there are
infinitely many regular primes.

In any case our attempt to prove Fermat's conjecture leads us 'to consider
various questions sbout the ring Z[w] : What are the units in this ring? What
are the irreducible elements? Do elements factor wiiquely? If not, what .
can we ssy sbout the factorization of ideals into prime ideals? How many ideal
classes are there?

The investigetion of such problems forms s large portion of classical algebraic
number theory. More accurately, these questions are asked in subrings of arbitrary
mumber fields, not just @[w] . In every number field there is a ring, analogous

to Z[w], for which there are interesting answers.

EXERCISES

1-G: Define N: Z[il» Z by N(a + bi) = aE + bE 5

1. Verify that for all o,p € Z[i], N(ap) = N(@)N(g), either by direct
compubation or by using the fact that W(a + bi) = (& + bi)(a - bi).
Conclude that if aly in Z[i], then N(@)|N(y) in =.

2. Let « € Z[i]. Show that o is & wnit iff N() =, 1. Conclude that the

only units are +1 and + 1.

3. Iet « ¢ Z[i]. Show that if N(a) is a prime in Z then o is

irreducible in Z[i]. Show that the same conclusion holds if N(x) = p2 s

vhere p iseprime in Z, p=3 (modl).



L.,

6.

B.

9.

Show that 1 - i is irveducible in Z[i] and that 2 = u(l - 1)2 for some

it u.

Notice that (2 + 1)(2 - 1) =5 = (1 + 21)(1 - 21) . How is this consistent

with unique factorization?

Show that every nonzero, non-unit Gaussian integer « is a product of

irreducible elements, by induction on N(a) .

Show that Z[i] is a principal ideal domain (PID); i.e., every ideal I
is principel. (As shown in Appendix 1, this implies that Z[i] is = UFD.)
Buggestion: Take « € I - {0} such that N() is minimized, and consider
the madtiplies wvyo, v € Z[i] ; show that these are the vertices of an
infinite family of squares which fill up the complex plane. (For example,
one of the squares has vertices O, o, iz, and (1 + i)a; all others are
translates of this one.) Obviously I contains all vy ; show by a
gecmetric argument that if I contained anything else then minimelity of

W) would be contradicted.

We will use unique factorization in ZE[i] to prove that every prime
p=1l(mod k) is & sum of two squares.
(a) Use the fact that the multiplicative group z: of integers mod p
is eyclic to show that if p =1 (mod &) +then nf = -1 (mod p)

for scme n € Z&.

(b) Prove that p cannot be irreducible in Z[i]. (Hint:

p|n2 +1l=(n+i)n-1).)
(e) Prove that p is & sum of two squares. (Hint: (b) shows that
p=(a +bi)(c + i) with neither factor & unit. Teke norms.)
Describe all irreducible elements in ZE[i].

2M/3 _

10=1k: Iet w=-e --%+52E1. Define N: Z[w] » Z by

N(a-t-bm)-:az—e.b-t-be g
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i,

15.

Ehow that if & + bw is written in the form w + vi, where u and v are

resl, then TN(a + bw) = e vF

Show that for a1l «,p € Z[w], N(op) = N{a)N(p), either by direct
computation or by using exercise 10. Conclude that if czh-' in 2Zlw],

then MN(a)|m(y) in =.

Tet @ € Z[w]. Show that @ is & wnit iff NW(®) = 1, and find all units

in Z[w]. (There are six of them.)

Show that 1 - w is irreducible in Z[w], and that 3 = u(l - w)® for

some wnit u.

Modify exercise T to show that %[w] is = FID, hence a UFD. Here the
squares are replaced by parallelogrems; one of them has vertices O, ¢, wa,
(w+ 1)a, and all others are translates of this one. Use exercise 10 for

the geometric argument at the end.

Here is & proof of Fermat's conjecture for n =4 :
If :{1l + :,',rl‘L = zh has & solution in positive integers, then
g0 does 2 +y' =W . Iet %, y, w be & sclution with smallest
possible w. Then 32, 32, v is & prinitive Fythagorean triple.

Assuming (without loss of generslity) that x is odd, we can write

2 2 2 2
x2=m2-n, Y =2mn, w=m +n

with m and n relatively prime positive integers, not both odd.

(a) Show that

2
x=r2-32, n=2rs, m=1 +x:2

with v and s velatively prime positive integers, not both cdd.

(b) Show that r, s, and m are pairwise relatively prime. Using

;rE = brsm, conclude that r, s, and m are all squares, say 9.2, bE,

andce.



16 -28: Iet p be an 0dd prime, w = e

16.

17.

18.

19.

20.

21.

(e) Show that a.l" + bl" = cE ;, and that this contradicts minimslity of w.

2mifp

Show that
L-o)1-f) . @-P Y =p
by considering equation (2).

Suppose that #[w] is a UFD and Tilx + yw. Show that 1/ does not divide
any of the other factors on the left side of equation (1) by showing that
if it did, then 1 would divide both z and yp (Hint: wuse 16); but =
and yp are relatively prime (essuming cese 1), hence zm + ypn = 1 for

some mn € X . How is this a contradiction?

Use 17 to show that if Z[w] is a UFD then x + yw = uap, a € Z[w],

u & unit in HElw] .

Dropping the assumption that Z[w] is a UFD but using the fact that ideals
factor uniquely {up to order) into prime ideals, show that the principal idesl
(x + yw) has no prime ideal factor in common with any of the other prinecipal

ideals on the left side of the eguation
(19 e+ P+ vo) cen (x4 v ") = (2P

in which all factors are interpreted as principal ideals. (Hint: modify the
proof of exercise 17 sppropriately, using the fact that if A is an idesl

dividing enother ideel B, then A DB.)

Use 19 to show that (x + yu) = I¥ for some idesl I.

Show that every member of @[w] is uniquely representeble in the form
- aD+alw+a2m2+...+a.P_2mp-2, 8, €Q Vi

by showing thet w® is =& root of the polyncomial



21.

22.

23.

Eh.

25.

10

{continued)

et) =tP L4 tP 2 Lt el

and that f£(t) is irreducible over §. ' (Hint: It is enough to show that
£f(t + 1) is irreducible, which can be estseblished by Eisenstein's criterion

-

(eppendix 1). Tt helps to notice that £(t + 1) = ((t + 1)® - 1)/t .)

Use 21 to show that if o € Z[w] and pla, then (writing

T =8y + 80+ ees + 8 _EuP'E, a.iE Z) all ay ere divisible by p.

P
Define congruence mod p for B,y € Zlw] &s follows:

g=vy (mod p) iff p -y =56p for some 5 € Z{w].
(Equivalently, this is congruence mod the principel ideal pZ[w].)

Show that if £ = y (mod p), then p =¥ (mod p) where the bar denotes

eccnplex conjugetion.

Show that (p + v)P = p¥ + +F (mod p) and generslize this to sums of

arbitrerily many terms by induction.

Show that v o € Z[w] , of is congruent (mod p) to some & € Z.
(Hint: write « in terms of w and use 2l.)

26-28: Now sssume p > 5. We will show that if x + yw = ua® (mod p) ,

26.

d€ Zlw], vw awmit in ZE[w], x asnd y integers not divisible by
p, then x =y (mod p). For this we will need the following result,

proved by Kummer, on the units of Z[w] :

LEMMA: If u is & unit in Z[w] and u is its complex conjugste,
then u/T is a power of w. (For the proof, see chapter 2,
exercise 12.)

Show that x + yw = uc® (mod p) implies

x4+ yo = (x+ yo ) (mod p)



26.

(continued)

for some k € Z. (Use the Iemma on wnits and exercises 23 and 25. Note

thet - ot )

Use exercise 22 to show that & contradiction results unless k =1 (mod p).

(Recall that plxy, p>5, and wp'1+¢up“2+...+w+1=o.)
Finally, show x =y (mod p) .

Iet w= 3211'1}'2 3 « Verify that the product
(1.+u:2+ml"+m5+m6+mw+uxu)(1+m+u:5+w6+u:T+m9+m'u)

is dlvisible by 2 in ZE[w], although neither factor is. It can be shown
(see chapter 3, exercise 17) that 2 is an irreducible element in Z[w];

it follows that %[w] cannot be a UFD.

30-32: R is an integrel domain (commutetive ring with 1 and no zero dlvisors).

30.

31.

Show that two idesls in R are iscmorphic sg R-modules iff they are in the

same ideal class.

Show that if A is an ideal in R and if «A is principal for some
@ €R, then A dis principal. Conclude that the principal ideals form an

ideal class.

Show that the ideal classes in R form a group iff for every idesl A there
is an idesel B such that AB is principal.



Chapter 2
Number fields and number rings

A number field is & subfield of € having finite degree (dimension as g
vector space) over § . We know (see sppendix 2) that every such field has the

form @[a] for some algebreic number @ €C. If ¢ is a root of an irrveducible

polynomisl over @ having degree n, then
Qla] = {8y + a0 + ... +an_lozn'l: & €€ vi)

and representation in this form is unique; in other words, [l,a,...,an"l} is &
basis for Q[a] as & vector spece over Q.

We have already considered the field @[w] where w= eE‘lTifp , P prime.
Recall that n =p - 1 in that case. More generally, let m=e-2ﬂifm, m not
necessgarily prime. The field @[w] is called the Et_‘i cyclotomic field. Thus the
first two cyclotomic fields are both just @, since w=1, -1 (resp.) for
m=1, 2. Moreover the third cyclotomic field is equal to the sixth: If we set

o = 2T/6

, then w= -wl‘ = _(we)e , which ghows that Q[w] = Q[mE] . In general,
for odd m, the m'® cyclotomic field is the same as the 2m" . (Show that if

w=e2M/20 b = -®*! €quf].) On the other hand, we will show that the
cyclotomic fields, for m even (m > 0), are all distinct. This will essentially
follow from the fact (proved in this chapter) that the degree of the mth cyclotomie

field over § is @(m), the mmber of elements in the set
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{k: 1<k<m (km)=1}.

Another infinite class of mumber fields consists of the quadratic fields
@/ m], m€ Z, m not a perfect square. Clesrly these fields have degree 2
over @, having basis (1,/m}. We need only consider squarefree m since, for
example, Q[/I12] = @[,/J3]. The @[,/m], for m squarefree, are all distinct
(see exercise 1). The @[/m], m >0, are called the real quadratic fields; the
Q/ml, m<O0, the imeginery quadretic fields. Thus Q[i] is an imaginary
quadratic field as well as a cyclobomic field. Notice that @[/ -3] is also a
cyclotomic field (which one?).

While working with the pth cyclotomic field @[w] din chapter 1, we promised
* to show that the ring Z[w] has certain nice properties: for example, every
ideal factors uniquely into prime ideals. This is true more generally for the
ring Z[w] in any cyclotomic fileld. It is also true for Z[/m] for certain
velues of m. However it fails, for example, for %[/ -3] (see exercise 2).
levertheless we know that @[/ ~3] has a subring in which ideals factor uniquely

inte primes, namely

E-‘]'—'%E'IE]:: Zlw] , w=ez1ﬁ‘j3.

This ring consists of all

2+h/3 a,b € Z, a=b (med?2).

F=] »

(Verify this; recall that Z[w] = (e + bw: a,b € &} .) We will see that every
nunrber field contains a ring different from Z (4if the field is not € ) having
this unique factorizebtion property; it consists of the elgebralc integers in the

field.

DEFINITICN: A complex number is an glgebraic inbeger iff it is a root of
some monic (leading coefficient 1) polynomisl with coefficients in %Z.
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Notice that we hawve not required that the polymomial be irreducible over @.
Thus we can eagily see that w = e2ﬂi/m is an algebraic integer, since it is a
root of X" - 1. It is true, however, that every algebraic integer « i=s a root

of some monic irreducible polynomiel with coefficients in % :

THECEREM 1: Iet @ be an algebreic integer, and let f be & monic
polyncmial over & of least degree having o as & root. Then f is

irreducible over @. (Equivalently, the monic irreducible polynomisl
over @ having « eas a root has coefficients in % .)

IEMA: Iet f be & monic polynomial with coefficients in Z, and
suppose f = gh whe;e g and h are monic polynomials with coefficients
in §. Then g and h actuslly have coefficients in % .

Proof: ILet m (resp. n) be the smallest positive integer such that mg
(resp. nh) has coefficients in % . Then the coefficients of mg have no
common factor. (Show that if they did then m could be replaced by & smaller
integer; use the fact that g is monic.) The same is true of the coefficients
of nh. Using this, we can show that m=n=1: If mn > 1, take any prime
p dividing mn and consider the equation mnf = (mg)(nh) . Reducing coefficients
mod p, we obtein O = mg nh where the bars indicate that coefficients have been
reduced mod p. (We have applied the ring-homomorphism Z[x] = Ep[x] .) But
Z D[x] is an integrel domein (since zzp is; this is easy to show), hence &g
or oh = 0. Butthen p divides all coefficients of either mg or nh; as we

showed sbove, this is impossible. Thus m =n = 1, hence g,h € Z[x]. O

Proof of Theorem 1: If f is not irreducible, then f = hg vhere g and h

are nonconstant polynomials in @[x] . Without loss of generslity we can sssume
that g and h are moniec. Then g,h € Z[x] by the lemma. But o is & root
of either g or h and both have degree less than that of f. This is a

contradietion. [0
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CORCLLARY 1: The only algebreic integers in @ &are the ordinary integers. [

COROLTARY 2: Tet m be 2 squarefree integer. The set of alpgebraic
integers in the quadratic field @[/ m] is

[a+b/m: abe Z} if m=2or 3 (mod k),

{%E: a,b € Z, a=b (mod 2)}] if m =1 (mod k) .

Proof: ITet d¢=r+s/m, xr,s €Q. If s# 0, then the monic irrveducible

polynomial over @ having ¢ as a roob is

z z 2
X =2r€ + ¥ =-ms .

Thus © 1is an algebralc integer iff 2r and I° - ms° are both integers. We

leave it ez an exercise to show that this implies the result stated above. O

Corollary 2 shows that the algebraic integers in @[,/ m] form a ring. The
same is true in any mmber field. To prove this, it is enough to show that the
sum and product of two algebraic integers are also algebraic integers. For this
it is helpful to establish some alternative characterizations of algebraic integers.

THECEEM 2: The following are equivalent for o € € :

(1) o is an algebreic integer;

(2) The additive group of th;a ring Z[o] is finitely generated;

(3) o is a menber of some subring of € having a finitely generated
additive group;

(k) oA c A for some Ffinitely generated additive subgroup A C €.

Proof: (1) = (2): If o is a root of a monic polynomial over Z of degree
n, then in fact the additive group of Z[c] is genersted by 1, @, ..., o~ L.

(2) = (3) = (4) trivially.

(&) = (1): 1et 8,,+++,8, generate A. Expressing each Oa; as & linear

combination of Byseeesty with coeffleients in &, we coblaln
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()0 .

where M is an n ¥ n mabrix over Z. Equivalently,

(ox - M)

®n

iz the zerc vector, where I denobes the n xn identity matrix. Since the ay
are not all zero, it follows that I - M has detexrminant 0. (In other words,
we have shown that « is an eigenvaelue of M.) Expressing this determinant in

2

terms of the n~ coordinates of oI - M, we obtain

crn-l-loﬁerdegreetems:ro.

Thus we have produced & monic polynomisl over Z having o as a root. O

CORQLLARY 1: If o and P are slgebraic integers, then so are o + B

end Cip.

Proof: !rfe know that Z[o] and =[] have finitely generated additive
groups. Then so does the ring Z[c,p]l. (If Olyyeee,0  generste Z[a] end
Byse-+sB, @enerate Z[p], then the mn products 0B, generate Z[a,p].)
Finally, Z[c,p] contains o+ p and «p. By characterization (3), this implies
that they are algebraic integers. [

EXERCISE: Pick your two fevorite algebraic integers and apply the determinant
procedure to obbain monic polynomiale for their sum and product.

Ihie result shows that the set of algebraic integers in € is a ring, which
we will denote by the synbol A . In perticular A NK is a subring of K for
any munber field K. We will refer to A NK as the purber ring corresponding
to the number field K. We have determined the number rings corresponding to §

and the quadratic fields. For the cyclotomic fields we have £ N Qlw] = Zlw] ;
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however &t this point a1l that is clear is that A N Q[w] contains Z[w] (since
w €A and A NQw] is & ring). To esteblish equality we will need soms further

information sbout Q[w] : specifically, its degree over @ end its discriminant.

THE CYCLOTOMIC FIELDS

Iet w=e2™M,  Erery conjugate of © (root of the seme irreducible
polynomisl over @) is clearly also an mD root of 1 and 1s not an n'® root of
1 for eny n<m. (Tosee this, note that the irreducible polynomisl for w over
@ must divide ¥" - 1 but cannot divide x" -1, n<m, since ¢ £1.) Tt
follows that the only cendidates for these conjugates are the mk » 1<k<m,
(k,m) = 1. Tt is true (but not cbvious!) that all such oF are actuslly
conjugates of w. Proving this will estsblish the fact that @[w] has degree
¢{m) over @ and will ensble us to determine the Galois group; moreover we will

be eble to determine which roots of 1 are in @Q[w] .

THEOREM 3: 411 wk, 1<k<m, (k,m} = 1, are conjugstes of .

Proof: Tt will be enough to show that for each e=wk, k as gbove, and
for each prime p not dividing m, ©F is a conjugate of 8. Since the
relation "is & conjugate of" is clearly transitive we can spply this result shout
® and g° repeatedly to cbtain what we want: for example, for m = 35 and
k =12 we would have (writing ~ to dencte the conjugacy relation)

wﬂweﬂwuﬂwmo

Thus let G:wk and let p be & prime not dividing m. Iet f be the
monic irreducible polynomisl for € over Q. Then X - 1 = £(x)g(x) for some
monic g € @[x], and the lemma for Theorem 1 shows that in fact f,g € Z[x].
Clearly 6 is & root of xm-l, hence ep is e roob of £ or g; we have
to show 6P is & root of f. Supposing otherwise, we have g(gF) = 0. fhen
8 is a root of the polyncmiel g(x¥). Tt follows thet g(xF) is divisible by
f(x) in @[x]. Applying the lemms agein, we obtain the fect that g(xFf) is
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divisible by #£(x) in Z[x]. Now we can reduce coefficients mod p: ILetting
the bar denote the image of a polynomial under the ring-homomorphism

Z(x] » % [x], we obtain the fact that F(x¥) is aivisivle by F(x) 1in Z [x] -
But g(xF) = (g(x))¥ (see exercise 5) and Ep[x] is & unique factorization
domein (see appendix 1); it follows that T end g have & common factor h in
Z[x]. Then 1|Tg =™ - 1. Tnis implies (see exercise 6) thst h divides
the derivative of ¥ - 1, which is =t (Here the bar denotes m reduced
mod p.) Since p4m, m# O; then in fact h(x) is just & monomial (agein
using unique factorizetion in Z [x]). But this is impossible since h|x" - 1.

That completes the proof. [

CORCLLARY 1: @[w] has degree ¢{m) over q.

Proof: w has @(m) conjugates, hence the irreducible polynomial for g

over @ has degree ®m). D

COROLLARY 2: The galois group of @[w] over § is isomorphic to the
multiplicative group of integers mod m

z;:{k: 1<k<m, (km)=1].

For each k € z.:, the corresponding eutomorphism ih the Galois group sends

w to W {and hence g{w) +g(wk} for each g € Z[=x]).

Proof: An automorphism of Q[w] is uniquely determined by the image of y,
end Theorem 3 shows that u can be sent to any of the uﬁk, (k,m) = 1. (Clearly
it can't be sent anywhere else.) This establishes the one-to-one correspondence
between the Galois group and the multiplicative group mod m, and it remains only
to check that composition of sutomorphisms corresponds to multiplication mod m.

We leave this ez an exercise. O

As an application of Corollary 2, we find that the subfields of @Q[w]

correspond to the subgroups of Z;. In parbicular, for p prime, the pth
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cyclotomic field contains & unique subfield of each degree dividing p - 1 (since
:z.; is cyclic of order p - 1). Thus for each odd prime p, the pt cyclotomic

field contelns & unique quadratic field. This turns out to be @[,/ +p ] with the

sign depending on ‘p {see exercise 8). We will exploit this fact in chapter b

to prove the quadratic reciprocity law.

COROLLARY 3: Iet L is even, the only roots of 1 in

0[w] are the m'® roots of 1. If m is odd, the only ones are the Zmtl

roots of 1.

Proof: It is enough to prove the statemernt for even m, since we know thsat

'bhemt'h cyclotomic fileld, m odd, is the same as the E:nth. Thus, assuming m is

even, suppose @& is & primitive kth root of 1 in @Q[w]. (i.e., @ is a kth

root of 1 bub not an n°B

rth

root for any n<k.) Then @[w] contains a primitive
root of 1, where ¥ ig the least common multiple of k and m (see exercise
9). Bubt then @[w] contains the rtB cyclotomic field, implying that @H(r) < $(m).
This is a contradiction unless r = m (see exercise 10). Hence k|m end @ is

an mthroot of 1. O

Corollary 3 implies

COROLLARY 4: The m'" cyclotomic fields, for m even, are all distinct, and
in fact pairwise non-isomorphic. I

We turn next to some theoretical matters concerning arbitrary nurber fields.
Eventually we will return to the cyclotomic fields to prove that & N Qlw] = Z[w] .

EMBEEDDINGS IN €

Iet K be a mmber field of degree n over §. We know (see appendix 2)
that there are exactly n enbeddings of K in €. These are easlly described
by writing K= @[c] for some « and observing that « can be sent to any one

of its n conjugetes over @ . Each conjugate P determines a unique ermbedding
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of K in ¢ (gla) —glp) v g € @Q[x]) and every embedding must arise in this

way since « must be sent to one of its conjugates.

EXAMPIES: The quadratic fleld @[/ m], m squarefree, has two enbeddings
in €: The identity mapping, end also the one which sends &+ b/m to a - b/ m
(a,b €q), since J/m and -/ m are the two conjugates of ,/m. The meP
eyclotomic field has ¢{m) embeddings in €, the ®(m) seutomorphisms. On the
other hand, the field Q[ 2] has three embeddings in €, only one of which (the
identity mepping) is an aubomorphism. The other two embeddings correspond to the
conjugates g 2 and m2§_2 of ,?E , where w = eETTif 3 » These are clearly
not in Q['?’J"E-’] gince they are not resl.

More generally, if K and L are two nudber fields with K c L, then we
know (see sppendix 2) that every embedding of K in € extends to exactly [L:K]
embeddings of L in €. In particular, L has [L:K] erbeddings in € which
leave each point of K fixed.

It is often prefersble to work with subomorphisms of a fleld, rather than
embeddings in € (particularly if we want to compose them with each other). A
useful trick for replacing embeddings of a number field K with automorphisms is
to extend K to a normal extension L of § (which is alweys possible; see
appendix 2); each embedding of K extends to [L:K] enmbeddings of L, all of
which are sutomorphisms of I since L 1s normal. For example, the field
K= Q[ﬁ] can be extended to I = Q[«?_E,w] y W= &2111{3, which is normal
over Q. BEach embedding of K extends to two automorphisms of L. (Exercise:
describe the six automorphisms of L in terms of where they send “:j}"ﬁ end w.)

THE TRACE AWD THE INORM

Iet K be & nusber field. We define two funchtions T and N (the trace
and the norm) on K, as follows: ILet Opseses0y dencte the embeddings of K in

€, where n = [K:@]. For each o € K, set

() = o-l(cx) + az(a) F oaee gn(a)
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n(a) = Ul(ﬁ)aa'(ﬁ) O cn(a} 0

Clearly T(or) end N(ct) depend on the fleld K as well as on <. When moxe
than one field is involved we will write T (o) and N(@) to avoid confusion.
Immedistely from the definition we obtein T(x + ) = Ta) + T(p) end
Nap) = m(a)n(p) for all o,p € K. Moreover for r € @ we have T(r) = nr,
Wr) =" . Also, for r €q and @ €X, T(ra) = rT{a) and Wrao) = rwlx).
We will esteblish another formuls for the t:mce and norm and show that the
values are alweys rational: Iet O have degree d over § (i.e., the
irreducible polynomial for & over @ has degree d; equivalently, & has 4
conjugates over @ ; equivalently @[] has degree d over §). Iet +t(x) end
n{a) denote the sum and product, respectively, of the d conjugates of @ over

€. Then we have

THEOREM k: (ct) = %*b(a)
K@) = (n(0))™/4

where n = [K:@]. (Hote that
[K:q[a]].)

-E is an integer: in fact, it is the degree

Preof: t(0) and n(a) are the trace and norm G T L) B
Fach embedding of Q] in € extends to exactly % erbeddings of K in €.
That establishes the formulas. O

CORCLIARY 1: T(a) end N(a) are rationsl.

Proof: It is enough to show that +(x) end nle) sare rational, This is
clear since -t{ct) is the second coefficient of the monic irreducible polynomial

for o over §, and sn(a) is the constant term. O

If o is an algebraic integer, then ites monic irreducible polynomisl over

@ has coefficients in % ; hence we cbtain
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COROLLARY 2: If o is an slgebraic integer, theén T(at) and n(e) are
integers. O

EXAMPIE: For the quadratic field K = @[/ m] , We have

T(a + b/ m) = 2a
N(a+ﬁ}=a2-mh2

.

for a,b € @. TIn this case « is an algebraic integer iff its norm and trace
are both integers. (That is not true in general, of course: consider, for

example, any root of x3+%x+l.}

SOME APPLICATIONS

Suppose we want to determine the units in the ring & NK of algebraic
integers in K. Using Corollary 2 sbove and the fact that the norm is multiplice-
tive, it is easy to see that every unit has norm + 1. On the other hand if «
is an algebraic integer having norm + 1, then Theorem b shows that c% is also
an algebraic integer {since all conjugates of « are algebresic integers). Tais
shows that the units in A N K are the elements having norm + 1. Thus, for
example, the only wits in Z[/-2] are +1. A similer result holds for all
but two of the imaginary quadratic fields (see exercise 13). On the other hand,
the unite in Z[J 2] correspond to integer solutions of the equation
S - 25 = + 1; there are infinitely many (see exercise 1k).

The norm can also be used to show thabt certain elements are irreducible in
& N K, @s defined in chapter 1. Clearly o € A N K is irreducible in A N K
whenever its norm is a prime in Z (but not necessarily conversely). Thus, for
example, 9 + /10 is irreducible in Z[,/10] .

As an spplication of the trace, we can show that certain fields cannct contain
certain elements. For example, ./ 3 £ a[:‘?_EJ (see exercise 16). The trace is
also closely connected with the discriminant, which we will define in the next

section. First, however, we generslize the trace and the norm by replacing @
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with an erbitrary number field:

I.Et K mﬁ. Il betmnwm fielﬂB ﬂiﬂl KcIl'l ]huatieh}- Ul,oio,cln th-e

n = [L:K] erbeddings of L in € which fix K pointwise. For « € L, define

the relative trace and relative ncrm by

Iﬁ{tx} = 51(01) +ap(a) + ...+ .:rn(a}

Me(@) = 6, @)y (@) -ev g ()«

Thus, in this notation, we have TK=TE and NK=N:§. Agein we have

Te(@ + B) = T(0) + T(p) and Ny(ap) = NY(O)NL(p) for all o,p € L; To(B) = md
and N(6) = 8" for all & ¢K; and T(60) = ﬁTE(a) and mlrgtsce) - 8" (c)
for 8 €EK and @ € L. Exactly as before we can prove

THEOREM 4': ILet o € L and let d be the degree of o over K. Iet t(x)

and n(x) be the sum and product of the @ conjugates of & over K. Then

Te@) = § ()

@) = (a@)™?. o

CORCLLARY : uf;{cx) and N(0) are in K. If @ €A NT, then they are in
ANK. O

When there are three different fields, the relstive traces and norms are

related in the following way:

THEOREM 5: Iet K, L, and M be number fields with Kc Lo M. Then for

all ¢ €M we have
T(TH@) = Ti(a)
. M) = M(@) .
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(This is referred to as transitivity.)

Proof: Let oy,...,0, be the embeddings of L in € which fix K pointwise
and let my,...,7, be the embeddings of M in € fixing L pointwise. We want
to compose the oy with the 7., but we can't do that yet; first we have to
extend all of the embeddings to automorphisms of some field. Thus fix a normal
extension N of § such that M cN. Then all oy and T;j can be extended to
automorphisms of N j; f£ix one extension of each and sgain dencte these exbtensions
by o; and Ty . (Wo confusion will result from this.) Now the meppings can be

composed, and we have

Pa)) = 2 o B
T’I‘lﬁa - 151':=ri 3511'3 @) ni,zj %7y

=

m

W) = JL. oy ( ngfj(a)) - i]lj oy7y(@) «
It remeins only to show that the mn mappings I when restricted to M, give
the embeddings of M in € which fix K pointwise. Bince all o374 fix K
pointwise and there is the right mumber of them (mn = [M:L]J[L:K] = [M:K]), it is
encugh to show that they are all distinet when restricted to M. We leave this

to the reader (exercise 18). O

THE DISCRIMINANT OF AN n-TUFPLE

Let K be & number field of degree n over . Let Oy5=++,0, denote the
n enbeddings of K in €. For any n~tuple of elements cxl,...,cx“EK, define

the diseriminant of C4,...,& %o be

aise(oy, e, ) = Ia::r‘,,L(cz_.]Jl2 ;

i.e., the square of the determinent of the matrix having gi((xd) in the '.lth TOW,

;]th colum. (Notation: we will write [aiJ] to denote the matrix having 2y 5
in the i® row, 3% colum, and |aijl to denote its detexminant.) Notice that
the square makes the discriminant independent of the ordering of the o; and the
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As with the norm and trace, we can generalize the concept of the discriminant
by replacing @ with an arbitrary number field. (See exercise 23.)

We can express the discriminant in termes of the trace T = 1‘K':

THEOREM 63 dise(0y, ..., ) = [ﬂaicxd)l .

Proof: This follows immediately from the matrix equation
log(03) 100 ()] = Lo loyoy) + we + g (aga)] = [oye,)]
and familisr properties of the determinant:
Ia.ijl = |a.ji], end |aB| = |a||B| for matrices A and B. O

COROLIARY : ﬁisc(cxl,...,an) € Q; and if all o, are algebraic integers,
then éisc(al,...,an} e Z. 0

Among obther things, the discriminent determines whether the C.':;l are linearly
dependent :

THEOREM 7 : ﬂisc{o:l,...,cxn) =0 iff o,...,0, are Llinearly dependent

over Q.

Proof: It is easy to see that if the a'.j are linearly dependent over @

then so are the cclumns of the matrix [gi{aj)] 3 thus the diseriminant is O,

Conversely, if disc(oy,...,0 ) = O, then the rows R;

are linearly dependent. Suppose that Cyyeee,Q, 8Te lineerly independent over §.

Fixing retional numbers a.l,...,a.n {not 811 ©) =such that a.lﬁl R a.an is

of the matrix [T(cziaj)]

the zero vector, consider o = 810y + eee + B0 Necessarily o # 0. Moreover

by considering only the jth coordinate of each row, we cbtain the fact that

T{-::wj) =0 foreach j. Since the 0y are essumed to be lineerly independent

over €, they form a basis for K over §; it then follows (since « # 0) that

the same is true of the acul_]. But then T(p) = 0 for every p € K (why?).
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This is clearly & contradiction since, for example, T(1) =n. O

Theorem 7 shows that every basis for K over @ has a nonzero discriminant.
We can cbtain a relatively simple formula for the discriminant in the case of a

basis consisting of the powers of a single element:

THEOREM 8: Suppose K = @[a], and let ClyseensOy denote the conjugetes
of & over . Then
atse(l,0, . ee,d 1) = N o, - G‘s}a = + B (£ (@)
151‘{ SEn

where f is the monic irreducible polynomial for « over §; the + sign

holds iff n=0 or 1 (medl).

Proof: The first equality follows immedistely from the fact that
-d o | =3
loge? "] = JCoy (@) 72 = o "

(with the oy ordered appropriately) is s Vandermonde determinsnt: In general we
have the well-known formula
Iaj'l|= I (a_ -8,
8 T
1<r<s<n
velid over any commutetive ring (see exercise 19).
For the second equality, we have
o _
M (o -a) =4 M (e - o)
r<s * ° rfds * F

with the second product teken over all n(n - 1) ordered pairs of distinct indices.
We leave it to the reader to verify that the + =ign holds here iff n=0 or
1 (mod 4) . Thus it remains to show that this last product is equal to Nx(f"{a)] .

Using the faect that f£' has rational coefficients, we have
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W) = e lere) = ] re (e = M e
Y=

r=1 r=

Finelly, we leave it as an exerciee to show that for each r,

(o) = i (o, =)
o

r

with the product teken over the n - 1 indices s, & #r. (See exercise 20.)[

As an spplication of this, we compute disc(l,m,...,mp'e} for o = EF_‘TI'i/p,
v an odd prime. The field K is @Qfw]. We know that
P(X) =1+ X4+ 2% 4 eee +22°1, e easiest way to compute f'(w) is to write
X -1 =(x-1)(x) and differentiste: px® "+ = fx) + (x - 1)£'(x) . This
gives f'(w) = m. Teking norms, we cbtain

i

N (o) = oW =T

It is easy to see that N(p) = pp'l and W(w) = 1; moreover exercise 16 of
chepter 1 shows that N(1 - w) = p. This is the seme as N(w - 1) (why?). Thus
we obtain N(f'(w)) = pp'e .

We will write disc(a) to denocte disc(l,a,...,c?]'l} for any elgebraic
nuiber « of degree n over §. The field K is understood to be Q[o]. Thus
we have shown that dise(w) = + pP-E for ws= e-?Tﬁ-fp, P prime. More generally,
if @ = eETfifm , there is & compliceted expression for disc(w) (see exercise 23c).
However we can show very easily that dise(w) divides mtp(m), which will be geod
encugh for our purposes: Letting £ be the monic irreducible polynomisl for w
over §, we know that %" - 1 = f(x)g(x) for some g € Z[x]. Differentiating
and substituting w for x, we obtain m = wf*(w)eg(w) . Teking norms yields

n@(m) _ + dise(w)n(we(w)) ,

vhich establishes what we want since W(ug(w)) € Z (why?).
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THE ADDITIVE STRUCIURE OF A NUMEER ERING

Iet K be & number field of degree n over @, and let R be the ring
A N K of algebraic integere in K. We will use the discriminant to determine
the additive sﬁmctui*e of R: Specifically, we will show that R is a free
sgbelian group of rank n.

A free sbelian group of finite rank n is any group which is the direc‘l.:.sum
of n subgroups, each of which is isomorphiec to X ; equivalently, it is
isomorphic to the additive group Z"  of lattice points in n-space. The ran]: of
such & group is well defined because the % sare pairwise non-isomorphic, (The
simplest way to see this iz to observe that Z"/2 Z" has 2" elements. )

The only thing we will need to know sbout free sbelian groups is the fact that
every subgroup of & free sbelian group of rank n is also a free sbelian group, of
rank <n. (See exercise 24 for the proof.) From this it follows immediately
thet if & group is sandwiched between two free abelisn groups of equal rank, then
it too must be such & group:; If AcCcBcC, and if A and C are both free
abelian groups of rank n, then so s B. We will use this to establish the
result for ER.

We elaim first that there exist bases for K over § consisting entirely of
algebraic integers; in fact such a besis can be cbtained from any given basis by
multiplying all members by a fixed integer. This follows immediately from the
observation that for each « € K there :1.&; an Integer m € Z such that mq is
an algebraic integer-(see exercise 25).

Fixing such s hasis {czl,...,(xn} cR for K over @, we have a free sbelian

group of renk n inside R, namely

ﬁ.=[mlal+...+mn£xn:all m € Z},

the additive group generated by the O » Thi= can be expressed as the direckt sum

Eal P ... @ EC'In
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which is clearly free sbelian of renk n since each summand is isomorphic to Z.
We have A CR. What about the other half of the sandwich? That's vhere
the discriminant comes in:

THECREM 9: Iet [ctl,...,cxn} be & basis for K over @ consisting entirely
of algebraic integers, and set a = disc(al,‘..,{xn} . Then every © € R can

be expressed in the form

mlal + oaee o+ mnctn

d

with all mj(_-' #Z, and gll Il'g divisible by d.

(vote: We know that d # O since the o; form & basis, and 4 € %

since the o, are algebraic integers. )

Proof: Write o = (O F e X O with the xl_] € 8. Letbing O350,

denote the embeddings of K in € and epplying each o; to the above equation,

we obtain the system
gi{cx) = xlgi(al) Foees + xnni(ccn} , i=1,...,n.

Solving for the x., wvia Cramer's rule, we find that x, = ij& where & is the

d d
determinant [ci(a:])I and Y;j iz obtained from & by replacing the jth column

by the Ui(a) + It is clear that Yy and & are algebraic integers, and in fact
2

& =d. Thus dxd=a-\ad, which shows that the rational number dxj is an
algebreic integer. As we have seen, that implies ﬂxj € E. Call it m\:j .

It remeins to show that m?/& € Z. This is rational, so it is enough to
show that it is an algebraic integer. We leave it to the reader to check that in
‘fact m?/d = \-r? . O

Theorem 9 shows that R is contained in the free sbelian group

Q’l &

1 n
A=E&®.I¢$Ed.

a
Thus E conbalins, and is conbained in, free sbelian groups of rank n. As we
have cobserved, this implies
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COROLLARY: R is a free sbelian group of renmk n. O

Equivalently, R has & basis over % : There exist E‘l-’”"ﬁn € R such
that every O € B is uniquely representasble in the form

m1ﬁ1+...+mnﬁn, m_le Z .

{ﬁl,...,ﬁn] is called an integral basis for R, or & basis for R over Z.

[ﬁl,...,ﬁn} is clearly alsoc & basis for K over Q.

EXAMPIE: In the quadratic field @[/ m], m squarefree, an integral basis
for R =R N @[/ m] consists of 1 and ,/m when m=2 or 3 (mod 4); and 1 and
(L+/m)/2 vwhen m=1 (mod 4). (Verify this, using the description of R given

in Corollary 2 of Theorem 1.)

As we have indicated, the ring of algebraic integers in the mth cyclotomic
field is jJust Z[w], and hence an integral besis consists of 1,w,...,w‘9(m) =,

At this point we can prove it for the case in which m is a power of a prime:

THEOREM 10: Iet w=e£‘11’ifm, where mnpr, p & prime. Then
& Nele] = Z[w].

We need two lemmas:

IEMMA 1 (velid for all m > 3): Z[1 - 0] = Z[w] and
disc(l - w) = disclw) .

Proof: Z[1 - w] = Z[w] is obvious, since w=1- (1 - w). This in itself
implies that the discriminants are equal (see exercise 26). However it is probebly
easier to use Theorem 8: As Cci runs through the conjugates of w, 1 -czi:runﬂ

through the conjugetes of 1 - w. Thus

dise(w) = m (-:zr - czBJE 1T (Q-o)-(1- C:E))E

i<r<s<gn l<r<s<n

dise(l - w) . ]
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ImMA 2: (for m=7p )
T - &%) = p
k
where the product is taken over all k, 1<k <m, such that p{'}:.

Procf: Set

r
r-1 r-1 r-1
f(x):-—xf—-’-'-—;—=1+xp + P + + xB-1)P .

=T
o -1

k I

Then a1l w. (k as sbove) are roots of f, since they are roots of x* - 1
r=1
but not of x* - 1. Thus in fact
£{x) =mx-mk)
k

since there are exactly o(p’) = (p - 1}?1'-1 values of k. Finally, set
x=l- D

Proof of Theorem 10: By Theorem 9, every o € R =A N §[w] can be expressed
in the form

_mli'nb(l“"’)"' e +mn{1-m}n-l
B d

o

where n = ¢p’), all m € Z, and d= dise(l - w) = dise(w) . Ve have already
seen that dise(w) is a divisor of mﬁm} (for any m), hence in this case d
is & power of p. We will show that R = Z[1 - w]; the‘theox;emwill‘bhen Tollow
by Lemma 1.

If R# Z[1 - w], then there must be some « for which not sll m, are
divisible by d. It follows that R contains an element of the form

. _mi(l - m)i -1 +mi+ll:l - m}i Foane +mn(1 - m)n-l
B P

for some i<n end integers m; € Z, with m; not divisible by »p (why?)

r
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Lemms 2 shows that p/(l - m}n € Zlw] since 1 - u.!k is easily seen to be
divisivle (in Z[w]) by 1 - w. Then p/f{1 - {u)i € Z[w] and hence

gp/(1 - u.-.)i € R. Subtracting terms which ere obviocusly in R, we obbain

m /(1 - w) €R. Tt follows that NI - w)|1-‘f(mi) , where N = w4l | Bt tmis
is impossible since N(m;) = m; , while Lemma 2 shows thet N(1 - w) =p. O

A number ring has more than one integral basis and there is not alweys an

obvious choice. However all of them have the same discriminant.

THEOREM 11: Iet {ﬁl,“.,ﬁn} and [Yl,...,yn} be two integral bases for
R=ANK. Then disc(ﬁl,...,ﬁn) = d.i.sc('\,rl,...,'\,fn} .

Proof: Writing the B's in terms of the vy's, we have

Py Y1

. = M|

IBn Yn
where M dis an n yn mabtrix over & . P

Applying each 'D;j to each of the n equations yields the matrix equation
[cj (B;)1 = M[c:l,j (v;)1. Taking determinants and squaring, we cbtain

diBC{El,fu,ﬁn} = |HI2dch(Yl’ioi,Yn] -

Clearly |M| € Z since M is a matrix over X ; this shows that
aisc{'m.rl,...,m.rn) is 8 diviscr of éiac(al,...,an} , and both have the same sign.
(Mote that both of these discriminants ere integers since sll By and all Y; are
algebraic integers.) On the other hand e similar argument shows that
disc{ﬁl,...,ﬁn} is & divisor of disc(vl,...,yn) . We conclude that the
diseriminants are equal. [J

Thus the discriminant of an integral basis can be regarded as an inveriant of
the ring R. Dencte it by disc{R). We will alsoc write daisc(K) when R =08 NK.
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For example, we have

dise(/m) =lkm if m=2 or 3 (mod k)
dise(® N @[/ m]) =

aiacil—"E"E) =m if m =1 (mod k)

assuning m is squarefree. (Exercise: Verify this computation in four different
ways, using various formilas which have been established.)

One spplication of the discriminant is in identifying integral bases:
Assuming Oyees,0  BYe in R, they form an integral basis for R iff
ﬂiﬁc(al,...,an) = disc R (see exercise 27d).

As another spplication, we will generalize Theorem 10 to any cyclotomic field.
This will follow from & more general result relasting the algebraic integers in a
composite field KL to those im K and L. We know that if X and I are
two pumber fields, then the composite KL (defined as the smallest subfield of

¢ containing K and 1) acbually consists of all finite sums
CuBy + -vv + OB, all u:iEK, all ﬁieL

(see appendix 2). If we let R, 8, and T dencte the rings of algebralc integers

in K, L, and KL, respectively, then it is cbvious that T contains the ring
RS = [a1§1+... +op.: all o €R, all ﬂiES]

and it is natural to ask whether equality holds. In general it doesn't (see
exercise 31). However we can show that T = RS wunder certain conditions which
are, conveniently, satisfied by cyclotomic flelds.

Iet m &and n denote the degrees of K and L, respectively, over @.

Ist 4 dencte the greatest common divisor
ged(dise R, disc 8).

THEOREM 12; Assume that [KL:Q)] = mn. Then Tc%ﬁS.



Thus in particular we have
CORCLLARY 1: If [KL:@] =mn and d=1, then T=R3.
To prove Theorem 12, we need a lemms from field theory:

IEMMA: Assume that [KL:Q] =mn. Iet o be an embedding of K in €,
|

and let T be an enbedding of L in €. Then there is an embedding of

KL in € which restricts to o on K andto 7 on L.

Froof: We know (see appendixz 2) that ¢ has n distinct extensions to
embeddings of KL in € ; no two of them can agree on L, hence they have n

distinet restrictions to L. One of these must be 7, 8inece L has only n

embeddings in €. O

Proof of Theorem 12: Let [Cil,...,am} be & basis for R over Z (i.e.,

en integral basis for R) and let [ﬁl,...,ﬁn} be & basis for 8 over Z. Then

the mn products C!!iﬂj form a basis for BE over Z, and also for KL over

@ (why?). Any o € T can be expressed in the form

«=x -Ha

B
1,9 ¥ 19

where r and all ij ere in ®, and these mn + 1 integers have no common
factor > 1: ged(r, gcd(mij)) =1,

To prove the theorem, we have to show that, for sny such «, rjd. Clearly
it will be enough to show that r'disc{E} ;3 by symmetry r will also divide
disc(8) and we will be done.

The lemms shows that every embedding ¢ of K in € extends to an enbedding
(which we also call o) of KL in €, fixing each point of L. Hence for each

o we have

Im
ﬂ'{c':) = i?j "'1':]?1 G(O'ri)ﬁj .



Setting

for each i =1,...,m, we cbtain m equations
m
z q(ai)xi = U(a) *
i=1

one for each ¢. Now solve for the x; by Cramer's rule: X, = 1,'1/5, vhere ©
is the determinant formed by the coefficients o(e;), and v; 1s obtained from
& by replacing the 1™ colum by the ofe) . It is clesr that & end ell vy,
are algebraic integers, since all 0(061) and of0) are; moreover 8% = disc(R) .

Setting e = disc(R), we have ex

imsyiéﬂ; then in fact

n em
5 ——ufsjean=s.

ex
g=1 7

i -
Recalling that the E’,j form an integral basis for 8, we conclude thet the
rational numbers emij/r must all be integers: Thus r divides all em, ; +
Since by assumption r is relatively prime to gcd{mij) , it follows that
rle = dise(R). [

Using Corollsry 1, we can prove

COROLLARY 2: Iet K = qfuwl, u;=emfm, R=ANK. Then R= Z[w].

Proof: This has already been established if m is a power of a prime. If
m is not a power of a prime, then we can write m o= mm, , for some relatively
prime integers ml,n%b-l. We will show that the results for m, end for m,
imply the result for m. (Thus we &re proving R = Z[w] by induction on m.)
Setting
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By =B NK, R =ANK,

we assume (inductive hypothesis) that R, = E[ml], R, = ﬂ[mE] . To apply
Corollary 1, we have to show that K = KlH2 and that the degree and discriminant

conditions hold. Clearly mml =, u}% = w . Tt follows that w = “’i S for
some r,s € & (why?) and hence K = K K,.. Moreover this shows that

Zlw] = Zlw]Zlw,]. The degree condition holds: ¢(m) = @lm )¢(m,) since m
and m, &re relatively prime. For the discriminant condition, recall that we
have shown that di.sc{mi) divides & power of m, and disc(cuzj divides a power

of T, - Finally, then, we conclude thab
R = RiR, = E[uﬁ] Zlw,] = Zlwl. O

It would be nice if every number ring had the form Z[a] for some «.
Unfortunately, this is not always the case (see exercise 30). Equivalently, there
may not exist an integral basis of the form 1,0,...,0°0 "1, This suggests the
following vague question: Does there always exist an integral basis whose members
are expressed in terms of a single element? Of course the answer is yes, since
K = Qo] for some « and hence every member of K is a polynomial expression in
¢ with cecefficients in @ . This is not particularly illuminating. However whab
if we require that these polynomials have some special form? An answer is provided

by the following result:

THEOREM 13: Iet <« € R and suppose @ has degree n over @§. Then there
is an integral basis

s fl(o:) £, _1(@)
¥ ¥ ..‘,
4 9 -1

vwhere the d!. gre in & and satisfy dlfdzl...ldn_l; the fi are monic

polynomials over X, and f; has degree 1. The d, are uniquely determined.

Proof: For each k, 1<k<n, let F be the free abelian group of rank
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k generated by 1/4, afd, ..., czk"l/d, where d = disc(®), and set R =RNF .

Thus we have R) = Z and K =R (vwhy?). We will define the d; and the £

so that for each k, 1<k<n,

is & besis over % for Bk'

This is certainiy true for k= 1. Thus fix k < n and assume that
{1, fl(oz)/ﬂl, . fk_l{u)fdk_l} is a besis over % for R, , with the f,
and d; 8s in the theorem. We have to define f, and 4  and show that we get
a basis for R, by throwing in fk(cz],’dk .

Iet 1 be the canonical projection of

1 o
FR+1= EEQ..-G E—ﬂ—

on its last factor: That is, T selects the term of degree k. Then -rr(nk N l)

iz a subgroup of the infinite cyelic group

& mk

m'ﬁ": —d:mE E},

which implies that w(rkﬂj is itself cyclic. Fixing any p € R, such that
m(e) generates TF{Rk +1) » we leave it to the reader to show that
{1, :t‘l(cz)/dl, - fk_l(oc)/dk_l, g} 1is a basis over % for Roq (exercise
36).

It remains to show that g has the right form. We have

af (e)
& (k=2 )’
A -1 % -1
end this is in T(R_ ;) (vhy?). Tt follows that akj'ﬂk _y =mi(p) for some

m€ Z. Defining § =md _,, e have T(p) = ak/dk, wnich implies that
B = fk{ct}/dk for scme fk(cr) = o 4+ lover degree terms. However we cannot yet
say that f, has integer coefficients; all that is clear is that dfk/dk has
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integer coefficients. However since fk{a}/ﬂk .4 =mB €R, we have

f(@) - ag (@) ]
G -1

and in fact this has been selected so that vy € Bk . Using our basis for l‘w‘k 'N'e

YER,

can write vy = g(oc)/dk_l for some g € E[x] having degree < k. We leave it
to the reader to show that this implies that the polynomial :E‘k'[x) - xi‘k_l(x) is
identically equal to g(x) (see exercise 37) and hence T € Z{x] .

Finally, to show that the d, are uniquely determined, cbserve that the
conditions on the di (in the theorem, not the procf!) imply that dk iz the
smallest positive integer m such that mR . © Zlc]l (verify this; see

exercise 38). O

We have already seen this for quadratic fields: Teking o =,/ m, m square-
free, we have the integral basis {1,0) if m=2 or 3 (mod &), and
(1, (@+ 1)/2} if m =1 (mod 4). Another good class of examples is provided
by the pure cubic flelds [ m], where m 1s a cubefree integer. BSetting

G =Jm, we have the following result:

If m is squarefree, then a basis for R = A N @[a] consists of

1, @ of if m#+ 1 (mod 9)

d?io:+1

3 if m=+1 (mod 9)

1, o

with the + signs corresponding in the cbvious way. If m 1s not squarefree,

let k denote the product of ell primes vwhich divide m twice (so that m*-=hk2,

with h and k squarefree and relatively prime); then an integral basis for R

congists of
if m#+ 1 (mod 9)

if m=+1 (mod9).
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All of this is proved in exercise Ll.

EXERCISES

1. (a) Show that every number field of degree 2 over & is ome of the
quadratic fields @[,/m], m€ Z.

(b) Show that the fields @[/ m], m squarefree, sre pairwise distinct.
(Hint: Consider the equation ,/ m =a + b/ ); use this to show that

they are in fact pairwlse non-igomerphic.)

2. Iet I be the ideal generated by 2 and 1 +./ -3 in the ring
Z[J 3] = (a + b/ 3: a,b € Z)}. Showthat T # (2) but T = 21.
Conclude thet ideals in %[,/ -3] do not factor uniquely into prime ideals.
Show moreover that I 1is the unigue prime ideal containing (2) and conclude
that (2) is not a product of prime ideals.

3. Complete the proof of Corollary 2, Theorem 1.

k. Suppose Bgrvees®y _q BTE algebraic integers and o is a complex number

satisfying cxn+ah_1 'l+.u+ala+a0=0. Show that the ring

Zlag, . 58, _ 1,01 has a finitely generated additive group. (Hint: Consider

the products ﬁ::o a.:l - a?_il o™ and show that only finitely many velues

of the exponents are needed.) Conclude that « is an algebraic integer.

5. Bhow that if f is any polynomial over EP (p a prime) then
£(xP) = (£(x))P. (Suggestion: Use induction on the mmber of terms.)

6. Show that if f and g are polynomials over a field K and :f2|g in
K[x], then f]g'. (Hint: Write g = f°h and differentiate.)

7. Complete the proof of Corcllary 2, Theorem 3.
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10.

11.
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(a) Iet w= eﬁﬂiﬁ’, p &n odd prime. Show that Q[w] contains Jp if
p=1(mod k), and J—p if p=-1 (mod k). (Hinb: Recall that we
have shown that disc(w) = + p° ™% with + bolding iff p =1 (mod 4).)
Express ,f:§ and J—ﬁ' as polynomials in the appropriate w.

(b) Show that the ghh cyclotomie field contains ,J2.

(c) Show that every quadratic field is contained in a cyclotomic field: In

fact, @[/ is contained in the d'0

cyclotomic field, where

a = disc(f N @[/ m]) . (More generally, Kronecker and Weber proved that
every sbelian extension of € (normal with ebelian Gelois group) is
contained in a eyclotomie field. See the chapter b exercises. Hilbert
and othersg investigated the abelian extensions of an arbitrary number

field; their results sre known as class field theory, which :wlll be

discussed in chapter 8.)

With notation &s in the proof of Corollary 3, Theorem 3, show that there exist

integers uw and v such that eE‘ﬂijr

EE‘ITih/‘l': , h relatively prime to k.)

= w'e' . (Suggestion: First write

B =

Complete the proof of Corollary 3, Theorem 3, by showing if m is even,

njr, and o(r) < @(m), then » =m.

{a) Suppose all roots of a monic polynomial f € @[x] have sbsclubte value
1. Show that the coefficient of- x* has absolute value < (?) , where

n is the degree of f and {:} is the bincmial coefficient.

(b) sShow that there are only finitely meny algebraic integers « of fixed
degree n, all of whose conjugates (ineluding «) have absclute valus
1. (Wote: If you don't use Theorem 1, your proof is probably wrong.)

(e¢) Show that o (es in (b)) must be a root of 1. (Bhow that its powers

are restricted to a finite set.)
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12, Uow we can prove Kummer's lemma on units in the pth cyclotomic field, as
stated before exercise 26, chapter 1: Iet w= 2M/e , D &n odd prime,

and suppose u is a unit in Zlw] -

(a) Show that u/u is a root of 1. (Use 1l(c) sbove and cbserve that
complex conjugation is a menmber of the Galois group of Qfw] over @.)

Conclude that uf'ﬁ=iwk for some k.

(b) Bhow that the + sign holds: Assuming u/-ﬁ=—mk, we have uf = -u®
show that this implies that uf 1s aivisible by p in Z[w]. (Use
exercises 23 and 25, chapter 1.) But this is impossible since uf is

& unit.

13. ©Ehow that 1 and -1 are the only units in the ring anqiﬁ], m &quare=

free, m < 0, m# -1, 3. What if m= -1 or -3 ?

1k, Show that 1 +,/2 is a unit in  Z[,J2], but not a root of 1. Use the
powers of 1 + J_E to generate infinitely many solutions to the diophantine
equation aa-E'baseil. (It will be shown in chepter 5 that all units in

%Z[/ 2] are of the form _4;{1+J'é')k, ke Z.)

15. (a) &how that %[,/ 5] contains ro element whose norm is 2 or 3.

(b) Verify that 2«3 = (1 +,/-5)(1 - J-5) is an example of non-unique
factorization in the number ring Z[J -5]. -

16. Set o =JF. Use the trace T = 7% o show that J3 Eee]. (wWrite
J_jza.+ ba + cczzé- d{ta and successively show that a=0; b =0

(what is T(J3/a) ?); c = 0; and finally obtain a contradiction.)

I7. Here is another interpretation of the trace and norm: Iet KoL and fix
¢ € L; mdbtiplication by <« gives a linear mapping of L to itself,
considering L as a vector space over K. Iet A denote the matrix of this
mapping with respect to any basis {al,o;e,...] for L over K. (Thus the

jth column of A consists of the coordinates of O!IO.'j with respect to the
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(continued)

Oy .) Show that 1%(0:} and NIL((OG) are, respectively, the trace and
determinent of A. (Hint: It is well known that the trace and determinant
ere independent of the particular basis chosen; thus it is sufficlent to
celeulate them for eny convenient basis. Fix a basis (p,By,- .} for L
over K[@] and mitiply by powers of ¢ +to cbtain a basis for L over K.

Finally, use Theorem 4'.)

Complete the proof of Theorem 5 by showing that the Gi'r;j have distinet
restrictions to M. (Hint: If two of them agree on M +then they agree on

I 3 what does this show?)

Iet R be a commutative ring and fix elements a,,8,,... € R. We will prove

by induetion that the Vandermonde determinant

n-1
l al sapasnse a.l

EEEEE Y EE RN NN LN RN

n-1
l. &n IR T RN N ] &n

is equal to the product {a.s - &r) . Assuming that the result

J.c_:r.ﬂagn
holds for some n, consider the determinant

n
l a-l sasmmen g 81

[ER T FERE N ANE R RN LN E NN NS

1 &n shsansnesn Bﬁ

1 t""'n+l

sesase 0O

n+l

Show that this is equal to

l— al IR AR REEE ] f(&l}

EEEE RN EE R RN TN R KN NN

1 ah RN RN f(ﬂh)

1 By teeeee f(s'n-;-l)
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20.

23‘-

k3

(continued)
for eny monic polynomiel f over R of degree n. Then choose f cleverly
8o that the determinant is easily calculated.

Let f be & monic irreducible polynomial over a nurber field K and let o

be one of ite roots in €. Show that £'(q) = ]J (¢ - B) with the product
pa

taken over all roots p #«. (Hint: Write £(x) = (x - a)g(x).)

Let « be an algebraic integer and let f be a monic polynomial over X%
(not necessarily irredueivle) such that £(¢t) = O. Show that dise(c)

divides Na[a]f*{a) g

Iet K be a mmber field of degree n over § and fix algebreic integers
Qqsees,® € K. Ve know that ﬂ=diac(csl,...,an} is in Z ; we will show

that d =0 or 1 (mod k). Tetbing Oyss+,0, denote the embeddings of

n
K in €, we know that @ is the square of the determinant ]gi{a;])f . This
determinent is e sum of n! terms, one for each permutation of (1,...,n}.
Let P denote the sum of the terms corresponding to even permutations, and
let N denote the sum of the terms (without negetive signs) corresponding to
0dd permutations. Thus d = (P - W)° = (P+ N)® - LBN. Complete the proof
by showing that P+ N and PN are in Z. (Suggestion: Show that they
are algebraic integers and that they are in @Q; for the latter, extend all o3
to some normel extension L of @ so that they become automorphisms of L.)

In particular we have dise(B NK) =0 or 1(med It). This is known as

Stickelberger's criterion.

Just ag with the trace and norm, we can define the relative discriminant

aisc ' of an n-tuple, for eny pair of mmber fields K<L, [L:K] =n.

(a) Generalize Theorems 6 -8 and the corollary to Theorem 6.

(b) Iet KcLcM be number fields, [L:K] = n, [M:L] =m, end let
fey,---50) and {By,...,B ] be bases for L over K and M over
L, respectively. Establish the formula
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{(v) (continued)
dch;{"{alﬁl, s B ) = (disc;(ccl, . .,crn))m}i dchLM(El, “eesBy) -

Suggestion: Iet Oys++e50, be the embeddings of L in € fixing K
pointwlse, and Tyree e Ty the embeddings of M in € fixing L point-
wise. Extend all ¢'s and «+'s to aubtcmorphisms of & normal extension
of § as in the proof of Theorem 5. Define (mn) x (mn) matrices A
and B as follows: A has ':i'rh{ﬁk} inrow m(i - 1) +h and column
m(i - 1) + k, and zeroes everywhere else {so that A consists of n

m % m blocks, arranged diagonally from top left to botbtom right); B
has G‘I.{aj) inrow m(i -1) +t and column m(j - 1) + t for each t,
1<t<m, and zeroes everywhere else (so that B is obtained from the
n xn mebrix [Ui(u;i }] by replacing each entry by the corresponding
multiple of the m x m identity matrix). Show that the desired formuls
follows from the equation |aB|° = |B[?[a|?. (calculate |B| by
rearrenging rows and columns eppropriestely.)

(e) Iet K and L be number fields satisfying the conditions of Corvollary 1,
Theorem 12. Show that (disc T) = (disec R)[Lzm(disc S)[K:Q] . (Tis
can be used to obtein e formila for disc(w), w = e2H/® )

Iet G be & free sbelian group of rank n and let H be a subgroup. Without
loss of generality we take G = Z @ ... & Z (n times). We will show by
induction that H 18 & free sbelian group of renk <n. First prove it for
n=1. Then, asguing the result holds for n-1, let T: G+ & dencte
the cbvious projection of G on the first factor (so that an n-tuple of
integers gets ment to ites first component). ILet K denote the kermel of if.

(e) Show that H N K is a free sbelian group of rank <n-1.

(b) The image T(H) c Z is either (O} or infinite cyclic. If it is (0} ,
then H=HNK; otherwise fix h € H such that T(h) generates TI(H)
and show thet H is the dlrect sum of its subgroups Zh and H NK.
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©5- Show that for any algebraic nurber o, there exists m € %, m # 0, such

26.

27.

that mo  is an algebralc integer. (Hint: Obtain f € Z[x] such that

£(x) = O end teke m to be & power of the leading coefficient.) Use this

to show that for every finite set of algebraic numbers ¢, , there exists

meE & m# 0, such that all ma, € &,

Prove the following generalization of Theorem 11: Iet Byse--,B, end

Yqr+++,¥, be any members of K (a number field of degree n over §) such

that the Py and v, generate the same additive subgroup of K. Then

'ﬁisc(sl,...,ﬂn} = disc(w,fl,...,yn) + (Thus we can define disc(G) for any

edditive subgroup G of K which is generated by n elements. This is

only interesting when the n elements are linearly independent over ®, in

vhich case G is free sbelian of rank n.)

Ilet G end H be two free ebelian subgroups of rank n in K, with

Hcg.

(=)
(b)

(e)
(a)

(e)

Show that G/H is e finite group.

The well-known structure theorem for finite sbelian groups shows that
G/H is a dirvect sum of at most n cyclic groups. Use this to show
that G hes & geneveting set B),...,p, such that (for eppropriste

integers -:'li) 4;Pysee+ 4B, is & generating set for H.
Show that dise(H) = |GfH12¢iisc(G} .

Show that if Oqyeee% €R =R NK, then they form an integral basis
for R iff diac{osl,...,an} = dise(R) . (This can actually be
esteblished without using (e¢): Express the @, in terms of an integral
besis and show that the resulting matrix is invertible over % ifF the
diseriminants are equal.)

Show that if @,,...,0 €R=A NK eand disc{al,...,an) is squarefree,
then the ©; form an integral basis for R. (This result can also be
cbtained from Theorem 9.)
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28, ILet f{x}mx3+ax+b, a and b € Z, and assume f is irreducible

29.

30.

over . ILet & be arootof fT.

(a) Show that £'(c) = -(2ax + 3b)/fa.

(b) Show that 2ect + 3b is & root of (E—%E?E)a-l-a(s%)ﬁ-b. Use this

to find nﬁtﬂ](m + 3b) .
(¢) Show thet disc(c) = «(ha3 + E'Tba) .
(d) Suppose O =q + 1. Prove that {1,0,0°} is an integral basis for

B Nnelo]. (See 2fe.) Do the same if cx3+-:x=1.

Let K be the biquadratic field @/ m,,/nl = {a+b/n + ¢/n + ¢/ mn:

a,b,c,d € Q) , where m and n are distinct squarefree integers. Suppose
m and n are relstively prime. Find an integral besis and the discriminant

of AN K in esch of the cases
(&) mn =1 (mod k).
(b) m=1 (mod k), n #1 (mod 4). (Seeexercise 23c. For the general

case, See exercise 42.)

Let K =@[/7,,/10] end fix any @ €& N K. We will show that

ANK# Zla]l. Iet f denote the monic irreducible polynomial for « over
% and for each g € %[x] let g denote the polynomial in Z[x] obtained
by reducing coefficients mod 3. '

(a) Show that g(a) is divisible by 3 in Z[e] iff g is divisible by

T in zlx].
(b) Now suppose B NK = Z[Q]. Consider the four algebraic integers
oy = (1 +J7)(1 +,JI0)
o, = (1+/7) - JI0)
oy = (1 - /7 +,/10)
o = (-7 -,/I0).
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31.

3.

by

() (continuea)
Show that ell products G0, (1 £ 3) are divisible by 3 in Z[a],
but that 3 does not divide any power of any oty (Hint: Show that

Ct?f3 is not an algebreic integer by considering its trace: Show that

ﬁ(ﬁ?}:o{+%‘+o§+oﬁ

and that this is congruent mod 3 (in Z[a]) to

(al+cz2+a3+og+}"=1+“.
Why does this imply that T‘{(a;‘}sl(moaa} in Z9)

(c) et oy =f,(a), £, € Z[x] foreach i=1,2, 3, h. GShow that
?]?1?3 (i £3) in Z[x] but ?v["f‘;l. Conclude that for each i,
T has an irreducible factor (over 23} which does not divide 'fi but
which does divide all f., j#i. (Recall that 33[::] is & unique

J
factorizetion domain.)

(d) This shows that T has at least four distinet irreducible factors over

Es .
contradiction?

On the cother hand £ has degree &t most L. Why is that a

Show that (J3 + .,/ 7)/2 is an algebraic inmteger, hence the discriminamt

condition iz actually necessary in Corcllary 1, Theorem 12,

Find two fields of degree 3 over §, whose composition has degree 6. (You
don't have to lock very far.) B

et o=e""/" 1n>3., Ve knowthet N(w) =+ 1 since o is & unit.

ghow that the + sign holds.

Iet w = EET[ifm » ™M & positive integer.
(a) Show that l+t.u+‘u12+... +mk-3' is & wnit in Z[w] if Xk is

relatively prime to m. (Hint: Its inverse is (w - :f.)/'{mk - 1); show

that mnmhk for some h € % .)
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35.

36.

(continued)

(b) et m=p , p & prime. Show that p = u(l - 0)" where n .-_:p{pr}
end u is & unit in  Z[w] . (See Lemma 2, Theorem 10.)

Set 0= w4+ m‘l, where o= ezmﬁ“, m>3.

(a) Show that w is & root of a polynomial of degree 2 over @[6].

(b)

(e)

(a)
(e)

(£)

(e)

Show thet @[e] = R N Qlw] =and that @Q[w] hes degree 2 over this
field. (Hint: Qw] DR N qlw] @ &lel.)

Show that @Q[6] is the fixed field of the sutomorphism o of §lw]

determined by olw) = ol. Notice that o is just complex conjugetion.

Show thet A N @6l = B N Z[w] .

-1 - - -
Iet n = (p(m)f‘? H show that El,l.b,u} ,m2,m-2‘1000_}mn l,m (n l],wn] is

an integral basis for Z[w]. Use this to show that

{1,w,6,0uw, Be,BEm,...,en"l, 9“"1“;} is another integral basis for Z[w].

(Write these in terms of the other basis and lock at the resulting

matbrix, )

bl n-1

Show that {1,8,8 ,...,80 ~) is an integral basis for & N Q€] .

‘Conclude that & N Q6] = Z[e].

Suppose m is an odd prime p. Use exercise 23 to show that
disc(8) = + ]_)(P -3)/2 . GShow that the + sign wmust hold. (Hint:
(w+ m‘l)2 = m"e{m - 1w + 1) ; first calculate ng[“’] of this. For

the + sign, note that Q[9] contains ,/ disclo) .

In the proof of Theorem 13, show that (1,...,p} is a basis for R ., over

Zl.

(First show that T(p) £ 0.)

Iet O be an algebraic number of degree n over § &and let f and g be

two polynomials over @, each of degree < n, such that f{a) = g(a). Show

that f=g.
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38. ILet integers d, and polynomials f; beas in the statement of Theorem 13.

£, (@) £, _4(@)
shwﬂlﬂ-mmh ksn’ 1, "'-dl—, --q,"—_'a;;___ mtheabﬂﬂiﬂw
-1

Z for Hl»:' Uge this to show that dk-.':l. is the smallest positive integer

m such thet mBk c %ol .

39. Show that the f:i. in Theorem 13 can be replaced by any other monic
polynomials g; € Z[x] such that g; has degree i and all gi(c:),!ai are
slgebraic integers.

50." (a) In the notation of Theorem 13, estsblish the formula
aisc(@) = (4,d,,.+r,4, ;) aisc(R) .

(Suggestion: First show that disze(a) = dim(l,fl{a),...,fn_l(a)) 3

see exercise 26.)
(b) Show that 44y, .00,8 _; i8 the order of the group R/ Z[a] .

(c) Show that if i+ j <n then didjfdi+3. (Hint: Consider
£, (@ )‘f;! (cz}/'didj .)
(d) Show thet for i <n, ﬂi"’:ﬁ conclude that d?_{n']‘)ldiac(d} ]

Yl. Iet o =W, where m is & cubefree integer. Write m in the form hk-,

vhere h and k are relatively prime and squarefree. By Theorem 13, the
ring R = & N @[o] has as integral basis of the form 1, fl(a}{dl, fE(a}/dz .

(a) Show that disec(a) = -271112 . Using kOd, conclude that d, = 1 except

possibly whem 9|m, in which cese & =1 or 3.

(b) show thet d; =1 even when 9lm. (Hint: Suppose B = (@ + a)/3 €R,
e € I, and congider the trace of ﬁs; conelude that 3' &, hence
¢f3 € R. Why is that e contradiction?)

Since 4, =1, we can take fl(cz)ma.

(e) Show that a2/k €R, (This will turm out to be fe(c!)/da when

m#+ 1 (mod 9).



k1, (continued)
(a) Suppose m=+1 (mod 9). Set p.= (@ 1)°/3, with the signs

corresponding in the obvious way. Show that

=0.

1:2m (m - 1)
SIPNG LW
(Suggestion: Compute (g - 1/3)7 in two different ways.) Show that

this implies that p € R.
(e) Using (c) end (4), show that if m =+ 1 (mod 9) then

o & K+ i

3 €R.,

(This will twrn out to be £,(a)/d, when m =+ 1 (wod 9).)
It vemains to show that d, = k wvhen m#+ 1 (mod 9), and 3k
wien m =211 (mod 9) . We know that k|d, in the first case and 3k|a,

in the second; thus we heve to show 62 is no larger.
(£) Show that d,|3m. (Sec hoa.) Now set £,(0) =cF +act+ b, a,b € % .

(5) Suppose thet p is & prime such that p# 3, plm, p°fm. Show that
if pla,, then (o +ea +b)/p €R. By considering the trace, obtein
p|b ; hence (02 + ad)/p € R. By cubing and considering the trace,
show that pP|m(nm + &) . Obtein & contrediction, showing that pfad, .

(1) Iet p be e prime such that p#3 and p°|m. Show thet p ta,.
(Ve already know plﬂe.)

(i) Show thet a.2+2b,m+2&h, and b2+2a.m are all divisible by 4.

(Hint: square £,(a)/d,.)

(3) It remains to consider the power of 3 dividing d,. Suppose first that
34m; (£) shows that 9-+4d,. Hence we are finished when
m =+ 1 (mod 9), since in that case we know 3|62. Assuming 34m end
m#+1 (mod 9), show thet 34d,. (Hint: Assuming 3|d,, wse (i) to
show that b =1 {(mod 3) and & =m (mod 3) . Obtain
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k1. (3) (continued)

(©F +ma £1)/3 €R. If m=1 (mod3), then (- 1)2/3 €R. Raise
this to the fourth power and consider the trace: This implies
m =1 (mod g), contrery to assumption. Obtein & similar contradiction
if m=2 (mod 3).)

(x) Now suppose 3|m but 94m. Show that 34d,. (Hint: Assuning
3ld,, use (1) to show that 3|a and 3|b; conclude that o°/3 € R
and cbtain a contradiction.)

(4) Finelly, suppose 9|m. Show that 9+4d,. (Hint: Assuning 9la, ,
use (i) to show that 9|‘b, hence (0? +8a@)/9 € R. Proceed as in (g)

to obtein a contradiction.)

k2, Let K=QI.,}m,J_n] where m and n are distinct squarefree imtegers # 1.

Then X contains @[/ K], where k = mn/(mn)°. Iet R=A NK.

(8) For o € K, show that a € R iff the relative norm and trace ngm(a)
and al ﬁ](&') are slgebralc integers.

(b) Suppose m=3, n=k=2 (mod I). Show that every o € R has the

Torm

a+b/m+ce/na+ dfk
2

for some &,b,c,d € Z. (Suggestion: Write o &as & linear
combination of 1, ,/m, ,/n end ,Jk with rational coefficients and
consider all three relative traces.) Show that & and b must be even
end ¢ = d (mod 2) by considering H:[JE] (o) . Conclude that an

integral basis for R is
@, J5, /5 L2pE

(c) NWext suppose m=1, n=k=2 or 3 (modl4). Agein show that each
o €R has the form (a + b/m+ ¢/n + a/k)/2. Show that
a=b (mod 2) and ¢ =4 (mod 2) . Conclude that an integral basis for
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L3.

(e)

(a)

(e)

(£)

Let

Q.
(=)
(b)

52

(continued)

R is
, L%ﬂ JA, M]_

Now suppose m=n =% = 1 (mod k) . Show that every o € R has the
fom (a+b/m+c/n+d/k)/i, with e=b=c =d (mod 2)., Show
that by adding an appropriate integer multiple of

(1 +2JEJ(1 +2J_k)
we can obtain a menber of R having the form

r+s8/m+ t/n
2

with r,s,t € % ; moreover show that r+8+t=0(mod2). Conclude

that an integral basis for R is

(, & +2,J"E, 1 +2J£j (1 +2Iﬁ) (1 +2J"E)J .

Show that (b), (c), and (d) cover all cases except for rearrangements

of m, nand k.

Show that dise(R) is 64 mnk in (b); 16 mnk in (e); and mnk in
(a). (Suggestion: In (b), for example, compare disc{R) with
aise(l, Jm, ./ n, ,/mn) and use exercise 23 to compute the latter.)
Verify that in all cases disc(R) is the product of the disecriminents

of the three quadratic subfields.
f{x]=x5+ax+'b, e and b € %, and assume f 1is irreducible over
Iet o be & root of f.

o ule5 St s
Show that dise{0) = 42’ + 5°b° . (Suggestion: See exercise 28.)

Suppose o,5=a+l. Prove that & Ngal = Z[a] . {:P-x—l is
irredueible over & ; this can be shown by reducing mod 3. See

appendix 3.)
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k5.

o3

{continued)

(c) Iet a be squarefree and not + 1. Then ¥ + 8x + & is irreducible
by Eisenstein. Tet @ be a root and let 131, -32, 63 and du be as in
Theorem 13. Prove that if h-h'a. + 55 is also squarefree then
4 =dy =1 snd 4q[a®. (See exercise ho. Actually dy =g, =1;
see exercise 28(d), chepter 3.) Verify that lL's +57 is squarefree
vhen a = -2, -3, -6, -7, ~10, =11, -13, and -15. Note that if a
positive integer m is not a square and not divisible by any prime
P ﬁ, then m is squarefree. If you have a calculstor, find some

more exsmples.

(d) et @ be as in part (¢). Prove that ¢+ 1 is a wnit in & N gfo] .

(Hint: Write o = -a(c + 1) and tske norms.)

Let f(x)::?+a.xh+b, a and b € %, and assume f is irreducible
over B. ILet @ be a rocobt of £ and let dl’ 62,63 and dii be as in

Theorem 13.
(2) Show that disc(c) = B3(L%? + 59b) .

(b) Suppose b is relatively prime to 2a and both b and k'e? + 5b are
squarefree. Frove that d.1= EIE=63—-1 and dl;,lb' Verify that this
is the case vhen b =5 and a=-2. (% - 2% +5 is irreducible

over @3 this can be shown by reducing mod 3 .)

(¢) Mow let a =1b and suppose both a and I:ha.)h' + 5 arve squarefree.
Prove that &) =d, =1 end &q,e°. Do the seme for a=-b if
both a and {ha}h - 55 ere squarefree. For example when a = 2,
8% - 5% = 971 which is & prime. (Actually these condltions imply that
d3 =g = 1. BSee exercise 28d, chapter 3.)

(@) Prove that when a = b, ah+1 is & wit in & N Qo] . Obtain a

similar statement when a = -b .

Obtain a formule for disc(a) if o is a root of an irreducible polynomial

* +ax+b over @+ Do the same for ¥ oax® "t b,
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Iet

(a)

()
(e)

ILet

5l
f be a meonic irreducible polynomisel over %, and let @ be a root of

SBuppose f' has & root r € Z. Prove that disc(a) is divisible by
f(r) . (Hint: First show that f£'(x) = (x - r)g(x), where g(x) hes
coefficients in Z . Use the result of exercise 8c, chapter 3, or

prove it directly.)
What can you prove 1f £' has a rationel root /s, r and s € Z?

Suppose there exist polynomials g and h over %, both of which
gplit into linear factors over ®, such that

g(x)£"(x) = h(x) (mod £(x)) .
Describe a simple procedure for caleulating disec(a).

¢ be a root of f(x}n:ip—x2+l5. (This is irreducible over E'E,

hence over %, hence over §. See appendix 3.) Find disc (@) . (Hint:

Reduce xf'(x) mod f£(x).)

Suppose F(x) = 10+ ax> + bx + ¢ is an irreducible polynomial over @ .

Iet

()

(v)
(c)

(2)

¢ be arocht of f.

Suppose a2-3'b=d2 for some 4 € §. Establish the formula

aise(e) = -276(2L (1)

The formule in part (a) holds even if d £ . Why?
Prove that

8(3b - a2)3f(%2-:%)

27¢(- )

dise(x) =

(Hint: Reduce (x + %}f’(x) mod £(x) .)

Find dise(a) if a3—622+90c+3=0;if cr3—6d?-9cc+3=0.



Chapter 3
Prime decomposition in number rings

We have seen that number rings are not always unique factorization domains:
Elements may not factor uniquely into irreducibles. (See exercise 29, chapter i,
and exercise 15, chapter 2 for examples of non-unique factorization.) However we
will prove that the nonzero ideals in a number ring selways factor wniquely into
prime ideals. This can be regarded as a generslization of unigue factorizstion in
Z , where the ideals ere Just the principel idesls (n) and the prime ideals ave
the ideals (p), wvhere p is a prime integer.

Ve will show thet muber rings have three special properties, and that any
integral domein with these properties also has the unique factorization property
for idesls. Acqordinglq,r, we meke the following definition:

DEFINITION: A Dedekind domein is an integral domsin R such that

(1) Every ideal is finitely generated;
(2) Every nonzero prime idesl is a maximal ideal;
(3) R is integrally closed in its field of fractions

K= {o/p: o,p €ER, B #0}.

This last condition means that if «/p € K is a root of some monic
polynomiel over R, then in fact «/p € R; thet is, pla in R.
We note that condition (1) is equivelent to each of the conditicms
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(1') Every increasing sequence of idesls is eventually constant:

Ilcxgcrsr:... implies that all I eare equal for sufficiently

large nj
(1") Every non-empty set S of ideals has a (not necessarily unigue)
maximal member: A M €8 such that McTES=M=1I.
We leave it to the reader (exercise 1) to prove the equivelence of these three
conditions. A ring sebtisfying them is celled a Noetherian ring,
THEOREM 14: Every number ring is a Dedekind domain.

Proof: We have already seen (corollary to Theorem 9, chapter 2) that every

mumber ring is (additively) a free sbelian group of finite renk; an ideal I is
an additive subgroup, hence it too is a free sbelian group of finite renk (exercise
2L, chapter 2). Tt follows that I is finitely generated as an ideal, generated
by any Z-besis. That esteblishes (1).

To show that every nongero prime ideel P is maximal, it is sufflclent to
ghow that the integral domain R/P is in fact a field (see appendix 1). We will
show that R/P is finite; the result will then follow since every finite integral
domein is & field (exercise 2).

More generelly, if I is any nonzero idesl in a nurber ring, then R/I is
finite: Iet « be any nonzero element in I and let m = mK(a} ; Where K is
the muber field corresponding to R. We know m € Z, snd from the definition
of the norm it is easy to see that m # O. Moreover m € I: From the definition
of the norm we have m = 0p, Where B is a product of conjugates of «. These
conjugates may not be in R, but B certainly is because B =mfx € K and it is
easy to see that p €& . Thus we have shown that I contains the nonzerc integer
m. Clearly R/(m) is finite: In fact its order is exactly m"  (prove this; see
exercise 3) . Since (m) € I we conclude that R/I is finite; in fact, its order
divides m" .

Finally we cbserve that R is integrelly closed in K: If a/pg is a root

of & monic polynomisl over R then «/p 1is an algebrelc integer by exercise k4,
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chepter 2. Thus o/ €K N& =R . DO

We will prove the unique factorization result in an arbitrary Dedekind domain.
Throughout the discussion "idesl" will always mean "nonzero ideal."

We need the following importent fact:

THECREM 15: Iet I be an ideal in & Dedekind domain E. Then there is an

ideal J such thet IJ is principal.

Proof: let « be any nonzero member of I and let J = {p € R: pI < (a)}.
Then J is easily seen to be an ideal (nonzero since « € J) and clearly IJ < (a).

We will show that equality holds.

We need two lemmas:

LEMMA 1: In & Dedekind domein, every ideal contains & product of prime ideals.

Proof: Suppose not; then the set of ideals which do not contain such products
is nonempty, and consequently has & maximal member M by condition (1"). M is
certainly not a prime since it does not conbain a product of primes, so
dr,s €ER-M such that rs €M. The ideals M+ (r) and M+ (s) are strietly
bigger than M 8o they must contein products of primes; but then so does

M+ ())(M + (8)), which is contained in M. This is a contradiction. [J

IEMMA 2: Iet A be a proper ideal in a Dedekind domain R with field of

froactions K. Then there is sn element v € K - R such that YACR.

Proof: Fix any nonzero element & € A. By Lemms 1 the principal ideal (a)
contains a product of primes; fix primes Py,P,,...,P  such that (a) o PP, ... B,
and r is minimized. Every proper ideal i=s contained in a maximal ideal, vhich is
necessarily a prime (see appendix 1); hence A c P for some prime P. Then P
conteins the product P,P, ... E . It follows that P contains some P; . (zr
not, then fix elements a. €pP, -P; P conbains the product 818, eee B, SO
P contains one of the a., contrary to assumption.) Without loss of generality

we assume PO P, . Ey condition (2) for Dedekind domeins, we must have P = LA
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Finally, reeall that (a) cannot contain a product of fewer than » primes;
in particular, A b € (P2P3 .o B ) -(a). Then Y= bfe EX~R end YACR.

{rrove this lest assertion.) O

We resume the proof of Theorem 15. Consider the set .&=%IJ. This is
contained in R ({recall 1IJ c (a)), and in fact A is an ideal (verify this).
If A=R then IJ = (a) and we are finished; otherwise 4 1is & proper ideal
and we can apply Lemme 2. Thus YACR, Y € K~ R. We will cbtain a contradic-
tion from this. Since R is inbtegrally closed in K, it is enough to show that
¥ is a root of a monie polynomiel over R.

Obsexrve that A-:é-IJ containg J since o €I; thus Y cYAcR. It
follows that YJ ©J ; to see why this is true go back to the definition of J and
use the fact that YT and YA are both contained in R. We leave it to the
reader to £ill in the details.

Finally, fix & finite generating set ClyyeensCy for the idesl J and use
the relation YJ cJ to obtain a matrix equatlon

@y 2
vl 1 =m:
% %

wnere M is an m ¥ m meitrix over R. As in the proof of Theorem 2, we obbain
(via the determinant) a monic polynomisl over R heving Y as & root. That
completes the proof. [0

An immediste consequence of Theorem 15 is

COROLLARY 1: The idesl classes in a Dedekind demain form a group. (See

exercise 32, chapter 1.) O

Theorem 15 has two further consequences which will eneble us to prove unigue

factorization:
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COROLIARY 2: (cancellation law) If A, B, C =are ideals in & Dedekind

domein, and AB = AC, then BE=C.

Proof: There is an ideal J such that AJ is principal; let AT = (o) .
Then OB = OC, from which B = C follows easily. O

COROLLARY 3: If A and B are idesls in a Dedekind domain R, then A|B
iff ADB.

Proof: One dirvection is trivial: A|B = A D B. Conversely, sssuming A DB,
fix J such that AJ is principel, AJ = (0) . We lesve it to the reader to
verify that the set cué.m is an ideal in R (first show it 1s contained in

R) and that AC = B. [
Using these results, we prove

THEOREM 16: Every ideal in a Dedekind domain R is uniquely representable

as & product of prime ideals.

Proof: First we show that every ideal is representable as & product of
primes: If nob, then the set of ideals which are not representable is nonempty
and consequently has a meximel member M by condition (1"). M # R since by
convention R is the empty product, being the identity element in the semigroup
of ideals. (If you don't like thet you cen forget ebout it and just consider proper
ideals.) It follows that M is contained in some prime idesl P (see the proof
of Lemms 2 for Theorem 15). Then M = PI for some idesl I by Corcllary 3 sbove.
Then I contains M, and the cancellation law shows that the containment is
strict: If T =M then BM = B, hence R = P vhich is absurd. Thus I is
strictly bigger than M and consequently I is a product of primes. Bub then so
is M, contrary to assumption.

It remrins to show that representation is unique. Suppose BBy ees P, =
Q9 --+ @ vhere the P; eand Q; are primes, not necessarily distinet. Then

P} ®@Q, --- @, implying that P, ™ some Q; (see the proof of Temma 2 for



Theorem 15). Rearranging the @ if necessery, we can assume that P; D Q ; then
in fact P, = Q’l by condition (2). Using the cancellation law we obtain
PE ' Pr = Q2 Ty Qﬁ - Con‘l:-inuing in. thiﬁ m we E"'J'mtuﬂl]{{ :E"in.d. th&t r = 8 and

(after rearrangement) P; =@; forall i. O
Combining Theorems 14 and 16 we obbtain
COROLLARY: The ideals in a number ring factor wniquely into prime ideals. (0

As an example of this, consider the principal idemls (2) and (3) in the number

ring R= Z[/-5]. It is easily shown that

@) = (2, 1+ J5)°
(3) =(3, 1+J5)3, 1-,7-5).

.
{Verify this; note that the product (a,p)(¥,5) 1is generated by oY, pY, B, £5.)
Moreover all ideals on the right are primes: This can be seen by cbserving thet
|®/(2)] = 4, hence R/(2, 1+ ,/-5) has order dividing k. The only possibility
is 2 because (2, 1+ ,/-5) contains (2) properly and cannot be all of R (if
it were, then its square would alsc be R). This implies that in fact
(2, 1 +,/-5) is maximal as en sdditive subgroup, hence & maximal ideal, hence a
prime. Similarly the factors of (3) are primes.

This sheds some light on the example of non-unique factorization given in
exercise 15, chapter 2: (2)(3) = (L + .,/ -5)(1 -,/ -5). Verify that
Qe B)=(2, 1+, J5)3, 1+,J5) and (1-,75) =(2, 1+ J5N3,1-/5).
Thus when all elements (more precisely, the corresponding prinecipal ideals) are
decomposed into prime ideals, the two factorizations of 6 become identical.

In view of Theorem 16, we can define the greatest common divisor ged(T,J)
end the least common multiple lcm(I,J) for any two idesls, in an obvious way via
their prime decompositions. The terms “greatest” and "least" actuslly have the
opposite meaning here: Corollary 3 of Theorem 15 shows that "multiple” means sub-
ideal and "divisor" means larger ideal; thus ged(I,J) is actually the smallest
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ideel containing both I and J, and lem(I,J) is the largest ideal contained in
both. Therefore we have
ged(I,J) = I +J
lem{(L,J) =INJ.
Using this cbservation we can show that every ideal in a Dedekind domein is

generated as an ideal by at most two elements; in fact one of them can be chosen

arbitrarily.

THEOREM 17: Iet I be an ideel in & Dedekind domain R, and let o be any
nongero element of I. Then there exists B € I such that I = (a,p) .

Proof: By the observabtion sbove, it is sufficient to comstruct B € B such

that I = ged((@),(p)). (Automaticelly p will be in T; why?).

n
Let p:l ':2, - Prr be the prime decomposition of I, where the P; are

In
aistinct. Then (¢) is divisible by all B'. Iet Q...,Q dencte the obher

primes (if any) which divide (&) . We must construct B such that none of the
n

Qj divide (), and for each i, Pii is the exact power of P, dividing B).
Equivalently,
r ny nif-l B8
pe N (B -p" )N N (R-¢).
i=1 =1

This can be accomplished via the Chinese Femsinder Theorem (see appendix 1): Fix

n n, +1
B; € Pii - Pii (which is necessarily nonempty by unique factorizetion) and let

g satiafy the congruences

ni+l
EEBi {mod Pi }_, i"'—‘l,oa-o,:'

g =1 (mod Qﬂ], G=1,00e,8

(To show that such & B existe we have to show that the powers of the Pi and the
Q:] are pairwise co-maximal: that the sum of eny two is R. This is easy to
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verify 1f one interprets the sum as the greatest common divisor. Another way of

seeing this is given in exerecise 7.) 0O

We know that every principal ideal domain (PID) is a wnique factorization
domain (UFD) (see appendix 1). In general the converse is false: %[x] is a
UFD but not a PID (exercise 8). However the converse is valid for Dedekind domains:

THEOREM 18: A Dedekind domain is a UFD iff it is & PID.

Proof: As we have noted, PID always implies UFD; for Dedekind
domains we can also get this result by using Theorem 16. Conversely,
assuming that the Dedekind domain R is a UFD, let I be any ideal
in R. By Theorem 15, I divides some principal ideal (a). The element
a is a product of prime elements in R, and it is easily shown
that each prime element p generates a principal prime ideal (p):

If ab € (p), then pjab, and then pla or p|b, implying that a or

b is in (p). Thus I divides a product of principal prime ideals.
By unique factorization of ideals in R, it follows that I is itself
a product of principal primes and therefore a principal ideal.

SPLITTING OF FRIMES IN EXTENSIONS

We have seen examples of primes in % which are not irreducible in a larger
number ring, For example 5 = (2 + i)(2 -~ 1) in Z[i]. And although 2 and
3 are irreducible in Z[J-5], the corresponding principsal ideals (2) and (3)
are not prime 1deals: (2) = (2, 1+ 5)° ana (3) = (3,1 +/5)(3, 1 -J5) .
This phenomenon is ealled splitting. Abusing notetion slightly, we sey that 3
splits into the product of two primes in Z[J =51 (or in &L/ -5], the ring
being understood to be A N gL/ <5]) . We will consider the problem of determining
how a given prime splits in a given nmuber ring. More generally, if P iz any
prime idesl in eny mumber ring R=A NK, K a nmmber field, and if L is a
muber fleld contedning K, we consider the prime decomposition of the ideal
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generated by P in the nuber ring 8 =A N L. (This ideel is
PS = {onpy + -ee + B 20y €P, B, €8}, If P is principal, P = (@), then
PS8 is just o8 = (op: g €8).)

Until further notice, let K and I be mumber fields with K< L, and let
R=ANK, S=ANL. The term "prime” will be used to mean "nonzero prime

ideal."

THEOREM 19: Iet P be a prime of R, Q & prime of S. Then the
following conditions asre equivalent:

(1) qles
(2) g8
(3) eop
() a@nr=P
(5) ank="F.

Proof: (1) @ (2) by Corollary 3, Theorem 15; (2) « (3) trivielly since Q
is an ideal in 83 (&) = (3) trivially, and (4) « (5) since Q& . Finally,
to show that (3) = (4), observe that Q N R contains P and is easily seen to be
an ideal in R; since P is a maximal ideel, we have QNE=P or R. If

GNR=R, then 1 €Q, implying Q=8, contradiction. O

When conditions (1) - (5) hold, we will say that Q lies over P, or P

liez mnder Q.

THECREM 20: Every prime § of S lies over & unique prime P of R every

prime P of R lies under at least one prime § of 8.

Proof: The fivst part is clearly equivalent to showing that G NR is a
prime in R. This follows eagily from the definition of prime idesl and the
observation that 1 ¢ Q. Fill in the details, using a norm argument to show that
Q NR is nonzero. For the second part, the primes lying over P are the prime
divisors of PS; thus we must show that PS £ S, so that it has at least one

prime divisor. Equivalently, we must show 1 ¢ P5. (We know 1 ¢ P, but vwhy



can't 1 =Qf + .o + OB, 0 EP, ﬁiES?] To show 1 ¢ PS, we invoke
Iemma 2 for Theorem 15: There exists Y € K - R such that YPC R. fThen
YPS <R =85. If 1 €PS, then Y E€8. Bubtthen Y is an algebraic integer,

contradicting Y €KX -R. 0O

As we have noted, the primes lying over a given F are the ones which occur
in the prime decomposition of P8 . The exponents with which they occur are called
the remification indices. Thus if Q° is the exact power of @ dividing PS ,

then e is the ramification index of Q over P, denoted by e(g|P).

EXAMPLE: Iet R= Z, 8 = Z[i]; then the principal ideal (1 - i) in &
lies over 2 (we are writing 2 but we reslly mean 2 %) and in fact (1 - i) is
a prime. (This can be seen by considering the order of S/(1 - 1), as we did in
the case of Z[J 51/(2, 1 + J -5) after Theorem 16.) We have 25 = (1 - 1)°,
hence e((i - 1)[2) =2. On the other hand e(Q|p) = 1 whenever p #2 and Q

lies over p. More generally, if R= & and S = Z[uw], w=aaﬂi/m

where
m=p" for some prime p € %, then the principal ideal (1 - w) in & is a
prime lying over p and e((L - w)|p) = om) = p¥ "H(p - 1) (see exercise 3k,
chapter 2, and the remarks following the proof of Theorem 22.) On the other hand
e(@|g) = 1 vhenever q £ p and Q lies over q; this will follow from Theorem

2k.

There is another important number associated with a pair of primes P and @,
Q lying over P. We know that the factor rings R/P and S/Q are fields since
P end @ are maximal ideals. Moreover there is an obvious way in which R/P
can be viewed as & subfield of 8/Q: The containment of R in & induces a ring-
homomorphism R + 8/, and the kernel is RN Q. We know that R Q=P
(Theorem 19), so we obtain an embedding R/P » 8/Q. These are called the residue
fields associated with P and Q. We know that they arve finite fields (see the
proof of Theorem 14), hence 8/Q 1is an extension of finite degree over R/P; let

f be the degree. Then f is called the inertial degree of §Q over P, and is



denoted by £(Q|P) .

EXAMPIES: Iet R= %, 8= Z[i]; we have seen that the prime 2 in %
lies under the prime (1 - i) in Z[i]. S/25 has order k, and (1 - i)
properly contains 28; thervefore |S/(1 - i)| must be a proper diviscr of L, and
the only possibility is 2. So R/P and 8/Q are both fields of order 2 in this
case, hence f = 1. On the other hand 38 is a prime in S (by exercise 3,

chapter 1, end the fact that S is a PID), and [S8/38] = 9. S0 £(38]3) = 2.

Iiotice that e and f are multiplicative in towers: if PcQcU are

primes in three number rings Rc S o T, then

e(U]P) = e(U|Q)e(a|P)

£(ule) = £(u]Q)(g|P) .

We leave it to the reader to prove this (exercise 10).
In general, if Q dis any prime in any mmber ring S, we know @ 1lies over

o unique prime p € %. Then S/Q is a field of crder p°, where f = £(qlp).

We know that Q contains pS, hence o° 1is at most |s/os| , which is p",
where n is the degree of L (the number field corresponding to 8) over @.
This gives the relation £ <n for the special case In which the ground field is

€. Actually much more is true:

THECREM 21: Iet n be the degiee of L over K (R, S, K, L as before)
and let QCL’""QT be the primes of 8 lying over a prime P of R.
Dencte by e LTS and fl""’fr the corresponding ramification indices
and inertial degrees. Then ‘§l eifi =1,
i=
We will prove this thecrem simultaneocusly with another one. For an R-ideal
T we write [|T]] to indicate the index |[R/T].

THEOREM 22: Iet R, S, K and L be as before, and n = [L:K] .



(a) For ideals I and J in R,

zsll = =i} fil

(b) Tet I be an ideal in R. For the S-ideal IS,
llzsil = Ji® .
(e) Iet @ €R, @ # O. TFor the principal idesl (),
el = hgen] -

Proof of 22(a): We prove this first for the case in which I and J are

relatively prime, snd then show that ||F"| = [[P|" for all primes P. This will

imply

B K r
“Pl - Prr“ = llP]._lI el IIPI\" r;

factoring I and J into primes and applying the formila sbove, we will cbtain
22(a)

Thus we assume first that I and J are relatively prime. Then I 4+ J =R
end I NJ =17 (see Theorem 17). By the Chinese Remainder Theorem (appendix 1)

we have an isomorphism
R/IT + R/I x RAT,
hence
Nall = fif fisll -

Mext consider |[F")], P & prime ideal. We have a chain of ideals

RO PO Da.e 5P, hence it will be sufficient to show that for each k,

el = 1P

where the Pk are just considered as additive groups. We claim that in fact there

is a group-isomorphism
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R/P + Pkal“'l:

First, fixing eny O:EPk-qu'l, we have an cdbvlous isomorphism
R/P + oRfoP .

Next, the inclusion oR < F* induces the homomorphism

oR > Pk/P'lt+l

whose kernel is (cR) A 'l and whose image is ({cR) + Pk"'lJ/Pk"'l¢ To prove
what we want we must show that (0R) N P*'% =oP and (aR) + P71 = P, his
is easily done by consldering these as the least common multiple and greatest
comnon divisor of OR and FF'Y, and noting thet P° is the exact power of P

dividing oOR. (Convince yourself.) [J

Froof of Theorem 21, Specisl Case: We prove Thecrem 21 fer the case in which

K=®. Then P=p% for some prime p € Z. We have

T r

ey 8

fost = T peti= M eht.
i:l i=l

On the other hend we know that ||pS]| = p" . Thus the result is established in this
gpecial case. [

Proof of 22(b): In view of 22(a), it is sufficient to prove this for the case

in vhich I is a prime P; the general result will then follow by factoring I
into primes.

Notice that S/PS is a vector space over the field R/P. (Verify this; show
that in fact S/PS is a ring containing R/P.) We claim that its dimension in n.
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Tirst we show that the dimension is at most n., It will be sufficient to

prove thaet any n + 1 elements are linearly dependent. Thus, fixing
Oyt o €8, we must show that the corresponding elements in S/P3 ave
linearly dependent over R/P. This is not as easy as it locks. We know of course
that 0Oy,...,0,  ; ere lineerly dependent over K, and it follows that they ave
linearly dependent cver R. (See exercise 25, chapter 2.) Thus we have

Byl + vee F By %41 = 0 for some Brrew=sBy i1 €R, not a1l O. The problem
is to show that the B, need not all be in P, so that when we reduce mod P they
do not all hecome ©. For this we require the following generelization of Lemms 2

for Theorem 15:

IEMMA: Iet A& and B be nonzero ideals in a Dedekind domsin R, with
BcA and A £ R. Then there exists v € K such that YBcR, VYB¢A.

Proof the Iemms: By Theorem 15 there is a nonzero ideal C such that BC
is principsl, say BC = (). Then BC ¢aA; fix any p €C such that pB ¢ oA

and set Y = pfor. Tt works. O

The lemma is applied with & =P and B = (By,««.,B ). We leave it to

ntl
the reader to fill in the details. Thus we have established the fact that S/PS

is at most n-dimensional over R/P.
To establish equality, let PN Z = pZ and consider all primes P, of R

lying over p. We know S,(Pis is a vector space over R/Pi of dimension n; <o

we will show that equality holds for all i, hence in particular when P

i
e e[Pilp) and fi = :E‘(Pilp) « Then Eeifi =m, where m is the degree

= Pi
Set ey

of K over @, by the special case of Theorem 21 which has already been proved.

e -]
We have PR =[[P;", hence pS =[[(B;S) 1. Using22(a), we cbtaln

E f. n.e
lesl| =TTllegsll * =TTle u“ M H 1t

On the other hand we know |[pS|| = ¥" , so mn= Zfjnie, . Since &ll n, <n end

Eeifi=m, it follows that n, =n forall i. 0O
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e
Proof of Theorem 21, Genersl Case: We have FS =Hqii , hence

sl =Tl | = TTjey *°2

by 22(a) and the definition of f; « On the other hand 22(b) shows that

[|Es]| = ||1’]|I1 - Thus n= Zef, . O

Proof of 22(c): Extend K to & normal extension M of @, and let

T=ANM. For each erbedding ¢ of K in €, we have

llote ] = flom| 5

to see why this is true, extend o to an awtomorphism of M and cbserve that
ofT) = T. (Be sure you believe this srgument.) Set I = N'(¢). Then by 22(a)
we have

] = TMloteddl = llozll™ .

a

Clearly |juTf) = |u[™, where m = [M:K], end 22(b) shows that [joT| = |jer]f® .

Putting this together we obtain |c®| = |N| . O

As an spplication of these results, we have two ways to see that the principal
1desl (1 - w) in Zlw] (w=eT", 5= g') isa prime: We know
(1-w)" =pZlwl, where n=p" Hp-1) = glm) . Since n is the degree of
Glw] over g, any further splitting of (1 - w) into primes would violate
Theorem 21; thus (1 - w) must be & prime.

This result can also be cbtained via Theorem 22(a):

G-l = I - o) = ezt = 2",

hence ||(1 - w)]] = p. Moreover 22(a) shows that whenever ||I]| is a prime, I
must be a prime ideal.
Ve give some examples of splitting in cubic fields. Let K=, L= QJ 3],
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S =8NL. We know that S = Z[o], where O = J2 (exercise 41, chapter 2).
Obvicusly 28 = (0)3, hence (@) must in fact be & prime (any further splitting
would viclate Theorem 21). Moreover we must have £((@)|2) = 1. A similar result
holds if we veplace 28 by 38 and o by o+ 1 (verify this).

In the same field, one can show that 58 = (5, o + 2)(5, oF + 3a - 1), and
that the ideals on the right are relatively prime. Thus the only gquestion is
whether one of these splits further. The ring S/(5, F & 32 - 1) cen be shown to
be a field of order 25 ; thus (5, a2 + 3¢ - 1) is a prime and the corresponding
inertisl degree is 2. Applying Theorem 21 again, we find that (5, @ +2) must
be & prime, with inertial degree 1. (See exercise 12 for details.)

Now let o satisfy o5 =a+ 1, and set L=Q]. Twen S=ANL= Z],

as shown in exercise 28d, chapter 2. One can show that we have the factorization
2
238 = (23, a - 10)7(23, a - 3)

and that the ideals on the right are relatively prime (see exercise 13). It
foliows that the factors on the right are primes and that the corresponding inertisl
degrees are 1.

In this last example, the primes lying over 23 do not have the same
ramification index; in the previous one the primes over 5 did not have the same
inertial degree. We will see that this sort of thing can only happen when the field
extension is not normal.

If L is a normel extension of K and P is a prime of R=A& NK, it is
easy to see that the Galois growp G = Gal(L/K) permutes the primes lying over P:
If Q is one such prime and ¢ € G, then ¢(Q) is a prime ideel in of8) = 8,
lying over o(P) = P. Furthermore G permubtes them transitively:

THEOREM 23: With notation as sbove (I normel over K) let @ and Q' be
two primes of £ lying over the same prime P of R. Then o{Q) = Q' for

some g €G.

Procf: Suppose ofQ) # Q' for all ¢ € G. Then by the Chinese Remainder
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Theorem (appendix 1) there is a solution to the system of congruences

x =0 (mod Q')

x =1 (mod o{Q)) for ell g €G.
Ietting o € 8 be such a solution, we have
Na) €RNQ = P

since one of the factors of N]T;{a} is @ €Q'. On the other hand we have
a ¢ o(g) for each o, hence U"l(a) £ Q. We can express Nﬁ(&} as the product
of all c"l(u) , and since none of these are in the prime ideal @, it follows

that nﬁ(a)ﬁt&. But we have alresdy seen that N-(0) € PcQ. [
From this we obtain

COROLIARY: If L is normal over K and Q and Q' are two primes lying
over P, then e(Q|P) = e(Q'|P) ana £(q|P) = £(q'|P).

Proof: e(Q|P) = e(Q'|P) follows from unique factorization; £(q|p) = £(Q*|P)
is obtained by establishing an isomorphism 8/Q » 8/Q". (Fill in the details.) O

The corollary shows that in the nomal case, a prime P of R splits into
(9@, -++ @)° in § where the @ arve distinct primes, all having the seme

inertial degree f over P. Moreover ref = [L:K] by Theorem 21.

DEFINITION: Let K, L, R, and 5 be as usuval; & prime P of R is
ramified in 8 (or in I) iff e(Q|P) > 1 for some prime Q of § Iying
over P. (In other words, P8 is not squarefree.)

We have seen that p is ramified in Z[w] (w = E.E’ﬂifm,m = pr) and we
claimed that no other primes of % are ramified in Z[w]. We saw that 2 eand

3 are ramified in Z[ %] but 5 is nobt, and that 23 is ramified in Z[c],
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vhere 5 =+ 1. Becall that the discriminants of these rings are, respectively,
a power of p3 -33-22; and -23. In general, a prime p € & is ramified in a
muber ring R iff pldisc(ﬂ) .  We will prove one direction now, postponing the

converse until chapber b.

THEOREM 2h: Iet p be a prime in %, and suppose p is ramified in a

nuber ring R. Then p|daise(R).

Proof: Iet P be a prime of‘R lying over p such that e(P|p)>:l..
Then pR = PI, with I divisible by all primes of R lying over p.

Let 0p,000,0, denote the embeddings of K in € (where K 1is the number
field corresponding to R) and, as usual, extend all g; to autcmorphisms of some
extension L of K which is normal over @.

Iet OlyyoessOy be any integral besis for R. We will replace one of the

o, by a sulteble element which will enable us to see that p divides disc(R).

i
In particular, teke eny @ € I - pR (we know I properly contains pR); then o
is in every prime of R lying over p, but not in pR. If we write

O =m0y + eee FMO, my € % , then the fact that o ¢ pR implies that not all

m; are divieible by p. Rearranging the oy if necessary, we can assume that

p/l‘ml . Bet

d. = disc(ﬁ] = ﬂiﬂc(ﬂl,fu,ﬂnj H
then it is easy to see that
2
disc(on0l,, eee,0 ) = m) 4

(see exercise 18 if necessary). Since p+m1 , it will be sufficlent to show that
plaise(a,a,,...,0 ) -

Recall that o is in every prime of R Ilying over p. Tt follows that o
is in every prime of S =A NL lying over p. (Each such prime comtains p and

intersects R in some prime; this prime of R contains p, hence lies over p,
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hence contains ¢ .) Fixing any prime Q@ of § 1lying over p, we claim that in
fact o) € @ for each automorphism ¢ of L: To see this, notice that o L(c)
is & prime of cr-l{s) =8 1lying over p, and hence contains . Tn particular,
then, we have cri(or-} €Q forall i. Tt follows that Q contains
disc(a,qz,...,an) . Since the discriminant is necessarily in %, it is in

QN Z =pZ. That complebes the proof. O

If we work a little harder, we can obtain a stronger statement about the power

of p dividing disc(R). See exercise 21.

CORCLIARY 1: Let € R, K= @[e] , and let f be any monic polynomial over
% such that £(Q) = 0. If p is & prime such that p}Ne'(a), then

p is unramified in K. (See exercise 21, chapter 2.) [

COROLLARY 2: Only finitely many primes of % are ramified in a nunber
ring R. O

COROLLARY 3: ILet R and 5 be nunber rings, R S. Then only finitely

meny primes of R are ramified in 8.

Proof: If P is a prime of R which is ramified in S, then PN & = p &
is ramified in & (recall that e dis multiplicative in towers). There are only
finitely many possibilities for p, and each one lies under only finitely many

primes of K. Hence there are only finitely many possibilities for P. O

Of course p can be ramified in & withouwt P being ramified in S.
Exercise 19 provides a finer tool for showing primes of R are unramified in 8.
Better yet, there is a criterion for determining whether a particular prime ¢ of
§ is ramified over R (meaning that e(Q/P) > 1, where P=QNR). There is

& speciel ideal in S, called the different of & (with respect to R) which is

divisible by exactly those primes @ which are ramified over K. We will develop

the concept of the different in the exercises at the end of this chapter and prove
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one direction of the ramification statement. The other will be proved in chepbter L.
We now consider in detell the way in vhich primes p € Z split in quadretic
fields. Let R =4 NQ[/m], m squarefree. Recall that R has integral basis
{1,/ m} and discriminent 4m when m =2 or 3 (mod %), and integral basis
{1, (1 +,/m)/2} and discriminant m when m =1 (mod k).
Iet p be a prime in Z . Theorem 21 shows that there are Jjust three

possibilities:

¥, £(pp) =1
R =(P , £(p|p)=2

BB, 5 :E'(P]_'p) = #(p,lp) = 1.

THECREM 25: With notation as sbove, we have:

If plm, then pR = (p,/ W) . (1)

If m is odd, then

(2, 1+ Jm)° if m=3 (mod ) (2)
o = (2, 22 o) (e, 1o/ B) 4p =1 (moa 8) 3)
prime if m =5 (moa 8) . (&)

If p is odd, p4m, then

(g, n+J@)(p, n -7 if m=n° (mod p) (5)
pR={

prime if m is not a square mod p (6)

and in (3) and (5), the factors are distinct.

Proof: For (1), we have (p,/®)° = (p°,pJMm). This is contaired in pR
since p|m. On the other hand, it contains the ged of ;.2 and m, which is

p; hence it conbteins pR.
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(2), (3), and (5) are all similar to (1), and we leave them to the reader.
The distinctness of the factors in (3) and (5) follows from the fact that
p»l’diﬁlc(R} in those cases.

Finally we prove (k) and {6): In each case it will be enough to show that if
P is eny prime lying over p, then R/P is not isomorphic to Z, (since then
we will have f£(P/p) =2). Assuming first that p is odd, pdm, and m is
not & square mod p, consider the polynomial :te-m. This has & root in R,
hence & root in R/P. But by assumption it has no root in EP » This shows that
R/P end EP cannot be isomorphic which, as we have observed, implies (6).

(4) is similar, using the polynomial

2
X -K'I*T-.

VWe lemve the detsils to the reader. Wobte that it makes sense to consider this
polynomiel over R/P and Z, since 1 -m 1is assumed to be dlvisible by L. [

The prime ideals involved in these factorizations do not lock like principal
ideals, but we know that in certein cases they must be principal: for example when
m= <1 or =3 (exercises 7 and 1k, chapter 1). Can you describe principal
genersbors for the wvarious prime ideals in these two cases?

To apply Theorem 25 for a given prime p it is necessary to be asble to
determine whether or not m is & square mod p. Thig of course can be done with
the ald of Gauss' Quadrstic Reciproecity Law, which we will esteblish in chapter b
by comparing the way & prime splits in & quadratic field with the way it splite in
8 cyclotomic field. We turn now to the latter problem.

Iet w= 32111;‘111 and fix & prime p € Z. Since Qw] is a normal extension

of §, the corollary to Theorem 23 shows thet we have

PR = (Q,-LQE - Qi_}e

where the Q; eare distinet primes of %[w], all having the same inertial degree

f over p. Moreover we have ref = ¢{m).
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THROREM 26: Write m in the form pkn, p+n . Then (with notetion as above)
we have e = r,p(pk) , and £ is the (multiplicetive) order of p mod n.
(Tn other words, pf =1 (mod n) and f is the smallest positive integer

with this property.)

Proof: Set asmn, &) =mpk. Then o and B are, respectively, pk_i;_h;
and nth roots of 1. We will consider how p splite in each of the fields @[o]
end Q[pl; the result for Q[w] will then follow easily.

Whenp»l’m we have k=0 and n=m, sothat ¢ =1 and B =g.

Assuming thet plm, we consider how p splits in Qo], which is the p'th

cyclotomie field. We know that
k
» = u(1 - )¥@)

where u is a unit in Z[0] (exercise 34b, chepter 2). As we heve noted before,
this implies that pZ[o] is the (p')th power of the principel idesl (1 - ),
and since @(p") = [Q[@]:Q] , Theorem 21 shows that this must be the prime
factorization of p Z[c].

Now we consider what happens in @[p], which is the nth cyclotomic field.
We know that p is wnramified since p{'x} and disc( Z[p]) is & divisor of

nq:(n} (established in chapter 2, after Theorem 8). Thus we have

where the Pi are distinct primes of %[p], each with the same inertial degree
f over p, and rf = ¢(n). (This r and £ will turn out to be the » and
f for the splitting of p in Qlw], bubt we don't know that yet.) We claim that
£ is the order of p mod n.

To establish this, recall first that the Galois group G of G[R] over g
is isomorphic to % , the multiplicative group of integers mod n3 an subo-
morphism ¢ of @[] corresponds to the congrusnce class & € EL’.: (a € =) ifr

o(p) = BE' « In particular, let o denote the sutcmorphism corresponding to p.



T

Let {o) denote the subgroup of G generated by g3 thus {g) consists of the
powers of o. The order of the group {o) is the same as the order of the element
¢, which is the same as the order of p mod n. Thus we have to show that {g)
has order f.

Fixing any P =P, , we note that the field Z[p]/P has degree f over
%, b since that was the definition of f = £(P/p). Consequently the Galois group
of E’.[ﬁ]fP over Z’JP is cyclic of order f, generated by the automorphism 1
which sends every element to its pth power (see appendix 3).

To prove what we want, it will be sufficient to show that o = 1 iff = =1,
for every a € % . This will show that the cyclic groups {g) and {7) have the
same order.

Clearly we have oo =1 1iff BP& = B, and the latter holds iff

paal(modn). On the other hand, it is not hard to see that 'ra'=1 iff

a 2
& =p (mod P). Thus, assuming p° =g (mod P), we must show that

a8
p" =1 (mod n). Clearly we can write p~ =b (modn), 1<b<n. p° =g, so

b-1

we have ﬁb =p (mod P) . This implies B =1 (mod P) since p 1is & unit in

Z[p] . Now recall the formulas

n-1
)

Q-8 -F) e - Y =n

(see exercise 16, chapter 1). This shows that 1f b > 1 then n € P; but this is
clearly impossible since p € P and (n,p) =1. So b=1.

This completes the proof that f£(P/p) is the order of p mod n, for each
prime P lying over p in Z[g].

Finally we put together our results for #Z[o] and Z[p]. Fix primes
Qs+++,Q. of Z[w] 1lying over Py,...,P,, respectively. {Theorem 20 shows that
the @ exist.,) ALl Q lie over p € %, hence all Q; must lie over (1 -a)
in Z[c], since we showed that (1 - &) is the unique prime of Z[o] lying
over p. Considering the disgram at the right, we find that Qi

(1 - Py
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e(@;]p) 2 e((1 - @)]p) = 95"

£(a,|p) = £(p;|p) = £.

Moreover we heve rf = ¢(n) by Theorem Ei, and hence f.p(pk}rf = g(m) . Then
Theoren 21, applled to the splitting of p in Z[w], shows that the Q, are the
only primes of Z[w] lying over p and equality must hold in the inequalities
sbove. That completes the proof. 0O

We restate Theorem 26 for the specisl case in which p4m:

COROLLARY: If pim, then p splits into ¢{m)/f distinct .;:rime idesls in

Z{w] , where f i the order of p modm. O

We have not yet given s general procedure for determining how a given prime
splits in & given nunber ring. Such a procedure exists, and it works almest all
the time. Tt will explain in particular how we found the prime decompositions in
the cubic fields between Theorems 22 and 23.

Iet R, 8, K, and L be as always, and let n = [I:K] . Fix an element
@ €8 of degree n over K, so that L = K[e]. 1In general R[] is a subgroup
(edditive) of 8, possibly proper. However the factor group S/R[a] is
necessarily finite. (One way to see this is to cbserve that S and R[] are both
free sbelian groups of rank mn, where m = [K:Q] ; another way is to show that
8/R[c] ie a finitely generated torsion group. )

We will show that for all but finitely meny primes P of R, the splitting
of P in S can be determined by factoring & certain polynomial mod P,
Specifically, it will work whenever P lies over m prime p € Z which does not
divide the order of S/R[c] ; thus if § = R[o] it will work for all P.

Fizing & prime P of R, we establish the following notetion: for a
polynomial h € R[x], let h denote the corresponding polynemiel in (R/P)[x]
obtained by reducing the coefficients of h mod P.

Wow let g be the monie irreducible polynomisl for o over K. The
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coefficients of g are algebraic integers (since they can be expressed in terms
of the conjugates of the algebralc integer « ), hence they are in ANK=R.
Thus g € R[x] and we can consider g € (R/P)[x]. § factors uniquely into monic

irreducible factors in (R/P)[x], and we can write this factorization in the form

- =%1-% —&r
g = gl EE - gr
vhere the g are monic polynomiels over R. It is assumed that the Ei are

distinet.

THEOREM 27: Iet everything be as sbove, and assume elso that p does not

divide |8/R[0]], where p is the prime of % lying under P. Then the

prime decomposition of P8 is given by
qil QZE Q:r

where Q; is the ideal (p, gi(o:)} in S generated by P and gi(fx) ; in

other words,
Q, = B8 + (g;(e)) .

Also, f{qi]P) is equal to the degree of g; -
Proof: Iet fi dencte the degree of g This is the same as the degree of
gy * We will prove

i
(1) For each i, either Q; =5 or else S}Qi is & field of order IR,"P' i;
() Q + Q =8 whenever 1433

(3) rslqzl &F v T
Assumning these for the moment, we show how the result follows: Rearranging the Q
if necessary, we assume that Q;,...,Q #8, and Qg p170+=0Q = 5= (rt wina
turn out thet r = s.) In eny cese, we find that Q,...,Q  are all prime ideals

of £, ond they obviocusly lie over P =since they contain P. This alsc shows



thet £(Q;|P) = £, for 1<s. (2) shows that Qp,e-+,Q, ave distinct, and (3)

e, € e

becomes PSlel QEE res Q.: upon setting Q,S+1,...,QT=E. It follows that the
a

prime decomposition of P8 i=s Q:_:lqza tes Q,Sﬁ, with 4; £e, for i=1,...,s.

Applying Theorem 21, we cbtain n = dlfl + ane F dsfs +« ©On the other hand, n is

the degree of g, which is easily seen to be £+ .. +erfr. It follows that

€1
we must have r = s agnd dinei for all i.

Taus it remains to prove (1), (2), and (3).

Proof of (1): wWe lock around for a field of the desired order, and we find

that
F; = (R/P)x1/(g,)

is such & field. (See appendixz 1.) In order to establish a connection between Fy

and SjQ,l ; We observe that R[x] can be mapped homomorphically onto each:

R[x] = F, 1is defined in the obvious way, reducing coefficients mod P and
then reducing mod the ideal (Ei) . 'This is cbviously onto and it is not hard
to see that the kernel is the ideal in R[x] generated by P and 82

{P,gijl = P[x] + (gi} (see exercise 25). Thus we have an isomorphism

R(x]/(P,g;) + 7y .

Now map R[x] intc 5 by replacing x with «; this induces a ring-homomorphism
R[x] + S/Qi , and it i easy to see that (P,gi) is contained in the kernel. The
isomorphism above shows that (P,g;) 1is a maximal ideal, so the kemnel is either
(P,gi) or all of R[x]. Moreover R[x] is mapped onto §/Q,: To prove this,
we must show that S=B[Ct]+Q.i. We know that p € PC Q, , hence pB c Q. We
claim that in fact S = R[] + pS; this follows from the assumption that
p¥|s/Rlcl] . (The index of R[@] + pS in S is & common divisor of |SfR[Ct]|
and |S/pS|, and these are velatively prime since |S/pS| 1is a power of p.)
Thus R[x] + qui is onto. Taking into account the two possibilities for the

kernel, we conclude that elther Q = 5 or else E,f&l is isomorphle to
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R[x];'(P,gi) , which is isomorphic to F, .

Proof of (2): Recall that the Eﬁ. are distinet irreducible polymomials in
the principal ideal domain (R/P){x] ; hence, given i # j, there exist polynamiels

h and k over R such that

This implies that
gh + gdk =1 (mod P[x]) ;
replacing x by ©, we obtain the congruence
gi(a)h(cc) + gj(a]k{a) =1 (moa P8) .

(Convinece yourself that all of this is valid.) Tt follows that

1€ (P, g;(0), g5(c)) = @ + @, proving (2).

Procf of (3): To simplify notation, set Yy = gi{a) - Then @ = (P,"'(i) .

e e
It iz easy to see thet the product Qal - Q,rr is contained in, and hence

dlvisible by, the ideal
€ & e

I
(p, VU YT e Y ).

e e
This ideal is just PS. To prove this, we must show that the product 1,'11 - '\"rr

is in P3. We know that

hence

e, e e
1l "2 r
g 8y ~-e- B, = g (mod P[x]) .

As in (2), this implies that

=] e
1.% T



and we are finished. [

We note that the condition on p is satisfied, in particular, whenever
L= Qo] and p°Jdisc(c). This is because |S/R[01|° aivides |s/z[c]|®
(which is finite in this case), and the latter mumber is & divisor of dise(c)
(see exercise 27c, chapter 2).

We give some spplications of Theorem 27. Taking « =,/ m, we can re-cbtain
the results of Theorem 25 except when p=2 and m =1 (mod 4); in this
excepbional case the result can be cbtained by teking o = (1 + .,/ m)/2. &s
ancther example, we can determine how any prime splits in Z[o], where
o3 =0 +1, by factoring the polynomisl % - x - 1 mod p. Furbher examples
are given in exercises 26 and 27. See exercises 29 and 30 for some interesting

spplications of Theorem 27.

EXERCIBES

1. Prove the equivalence of conditions (1), (1'), and (1") for a commutetive ring
R. (Hints: For (1) = (17), consider the ideal generated by all I ; for
(1") = (1"), construct mn incremsing sequence; for (1") = (1), consider the

set of finitely generated sub-ideels of & given ideal.)

2. Prove that s finite integral domain is & field; in fact show that for each

¢#0 wehave of =1 for some n, hence "1 is the inverse of o.

3. Iet G be s free sbelisn group of rank n, with additive notation. Show
that for any m € Z, G/mG is the direct sum of n cyclic groups of
crder m.

k., Iet K be & nuiber field of degree n over §. Prove that every nonzero
ideal I in R=A NK is a free sbelian group of rank n. (Hint:

ORCICR foreny a €I, af0.)

5. Complete the proof of Lemma 2 for Theorem 15.
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8.

g3

Fill in any missing details in the proof of Theorem 15.

Show that if I and J are ideals in s commutative ring such that 1 € T + J,

then 1 €1+ 3" forall my n. (Hint: Write 1=Q+p, Q€TL, p€J

and reise both sides to a sufficiently high power.)

(a)
(b)

(c)

(a)

(e)

(a)

(b)

(e)

Show that the ideal (2,%x) in 2Z[x] is not principal.

let f,g € Z[x] end let m and n be the ged's of the coefficients
of f and g, vespectively. Prove Gauss' Lemma: mn iz the ged of the
coefficients of fg. (Hint: Reduce to the case in which m=n=1

end argue as in the lemma for Theorem 1.)

Use (b) to show that if f ¢ Z[x] and f is irreducible over %,

then f is irreducible over §. (We already knew this for monic
polynomials. )

Suppose f is irreducible over % and the ged of its coefficients is
1. Show thet if flgh in Z[x], then flg or f|lh. (Use (b) and
(c).)

Show thet %[x] is a UFD, the irreducible elements being the polynomials
f as in (d), along with the primes pe Z.

K and L be mmber fields, Kc L, R=aANK, 8=ANL.

Iet I and J be ideals in R, and suppose IS|J5. Show that I|J.
(Suggestion: Factor I and J into primes In R &nd consider what

hwnsm S.)

Show that for each ideal T in R, wehave I =IS NER. (Set

J=I8SNE and use (a).)

Characterize those ideals I of & such that I = (INR)S.

Prove that e and f are multiplicative in towers, as indicated before

Thecrem 21.



11. Iet K be a mmber field, R=A N K, T & nonzero ideal in R. Prove that
Il divides W(@) for a1l @ €I, and equality holds iff I = (a).

12, (a) Verify that 58 = (5, @ + 2)(5, 6F + 3¢ - 1) 4n the ring § = Z[J B,
a :% .

(b) Show that there is a ring-iscomorphism

a[x1/(5, ¥ + 3x - 1) > Z[x1/GE + 3x - 1)
(e) Show that there is a ring-homemorphism from
Z[x1/(5, P 3z - 1) onto 8/(5, of + 3 - 1) .
(4) Conclude thet either 8/(5, & + 30 - 1) is a field of.orﬂer 25 or else
(5,F +30-1)=8.

(e) Show that (5, o + 3a - 1) £ § by considering (a).

13. (a) Iet 8= mal, & =+ 1. Verify that 238 = (23, a - 10)°(23, a - 3) .

(b) sShow that (23, @ - 10, @ - 3) = 5 ; conclude that (23, o - 10) and

(23, @ - 3) are relatively prime ideals.

1. Iet K end L be nutber fields, KC L, R=ANK, S=A& N L. Moreover
assume that I is normal over K. ILet ( dencte the Galois group of L

over K. Then |G| = [L:X]=n.

() Suppose @ and Q' are two primes of S lying over & prime P of R.
Show that the number of sutomorphisms ¢ € G such that of(Q) = @ is
the same &8 the nwber of o € G such that o{Q) = Q'. (Use Theorem

23.) Conclude that this mmber is e(Q|E)2(Q|P) .

(b) For an ideal I of S, define the nom NII;{IJ to be the ideal

EnN ﬂ o(1) .
o€l

Show that for a prime § lying over P,
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(b) (continued)
KX(q) = alp)

(Use exercise 9b.)

(c) Show that for an ideal I of S,

TT of1) = (w(1))s .

cEQ
(Suggestion: First show that the product has the form J8 for some
ideal J of R 3 then use exercise Ub.)

(a) Show that

MA(17) = B(D)H(3)

for ideals I end J in S. (Suggestion: Use (c) and exercise Sb.)
(e) Iet a €8, a# 0. Show that for the principal ideal () =as, Nﬁ({a)}

iz the principal ideal in R generated by the element Hi(a} .

Parts (b) and (d) of exercise 14 suggest defining NE(I) for arbitrary

exbtensions, not necessarily normel, by setting

“E(Q) - pf(a]®)
for primes Q, and extending multiplicatively to &1l ideals, This is
congistent with the other definition in the normal case.

(8) Show that for three fields KCLCM,

Me(1) = N(1)

for an ideal T in ANM.

(b) Show that the result in exercise 1lle is still true in the general case.

(Hint: Iet M be the normsl closure of I over K.)

(c) 1In the special case K = §, show that m@::} is the principsl ideal

in Z genersted by the mumber |[|I]]. (Suggestion: Prove it first for
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15. (e) (continued)

prime ideals and use Theorem 22a .)

16. Iet K and I be number fields, K<L, R=BANK, S=&NL. Denote by
G(R) and G(8) the ideal class groups of R and 5, respectively. (See
chapter 1.)

(2) Show that there is & homomorphism @(8) + G(R) defined by teking any I
in o given class € &and sending C to the class contalning mll(‘(x) .
(Why is this well-defined?)

(b) Iet @ be & prime of & lying over & prime P or R. Iet dq denote
the order of the class containing ¢ in G(s), d, the order of the

class containing P in G(R) . PErove that

dpja e(alP) .

17. Let K= QL/-23], L = q[w], wvhere w = (3211’1/?3 . We know (exercise 8,
chapter 2) that Kc L. Iet P be one of the primes of R=A NK lying
over 2; specifically, take P = (2,8) where © = (14 ,/-23)/2 (szee
Theorem 25). ILet @ be & prime of #Z[w] lying over P.

(a) Show that £(Q|P) = 11. (Use Theorems 25 and 26 and the fact that £
is multiplicative in towers.) Conclude that in fact Q = (2,8) in
E{UJ] *

(b) Show that P> = (@ - 2), but that P is not principal in R. (Hint:
Use Theorem 22(c) to show that P is not principal.)

(¢) Show that Q is not principal. (Use 16b.)

(@) Show that if 2 =op, with a,p € Z[w], then ¢ or p is & unit in

Z{w] . (See the proof of Theorem 18 if necessary.)

18. Iet K be a mumber field of degree n over @, and let O4,...,0t €K.

(a) Show that aise(ray,a,...,0 ) = rodise(ay,...,q)) forall r €Q.
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(continued)
(b) Iet p be a linear combination of Oy -ee,0 with coefficients in Q.

Show that disc(al + B0, eee,0 ) = disc{al,.u,csn] .

Iet K and L be muber fields, Kc L, and let R=ANK, S=BNL. Iet

P be a prime of R.

(a) Show thet if € €8, p €R, and OB € PS, then either W EPS or R € P.
(Recall that S/PS is a vector space over R/P. Also give a more
straightforward proof using the fact that P is a maximal ideal.)

(r) ILet @0 ,000,0 € 85 ByBy,ee-,B, €R; and o £ PS. Suppose
Op = C4fiy + o0 + OB . Prove that there exists Y € K such that PRy
end a1l of the @;¥ are in R, and the p;¥ (i =1,...,n) are not all

in P. (Hint: See the proof of Theorem 22(b).)

(e) Prove the following generalizetion of Thecrem 2h: Iet Oyyeees0y be
& basis for L over K consisting entirely of menbers of £, and let
P be a prime of R which is remified in S. Then aisclrz(al,...,an) €r.
(See exercise 23, chapter 2, for the definition end properties of the

relative discriminant.)

Iet K, I, R, and S be as usual, and fix a prime P of R. We know (see
the proof of Theorem 22(b)) thet S/PS is an n-dimensional vector space over
R/P. Call & set of elements of 5 independent mod P iff the corresponding

elements in 8/PS are linearly independent over R/P.

For each prime Q‘!_ of 8§ l1ying over P, fix & subset B, 8
corresponding to & basis for s/qi over E/P. (Thus B, contains
£ = f{QﬂP) elements. )

For each 1= 1’ .--,r and fbr Each j = 1,.-0,91 (mre ei = &(Qilp)}

Fix en element 0y, € (qi“l -ad) n (hgiq:h) . The Chinese Remsinder

Thecrem shows that such an element exists.
Congider the n = Ee;f; elements C!ijﬁ,ﬁEBi,liigr, 1<i=e;.
Show that they are independent mod P. (Hint: Teke any nontrivial linear
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(eontinued)
dependence and consider it mod Q‘i for each 1i; then consider it mod Q,f .

ete. )

Ist K =@ in the previous exercise, sc that P = pZ for some prime p €% .

(a) Show thet if Of,e+e,0t €8 are independent mod p, then p4(s/cl
vhere G is the abelien group generated by Q,ess,0 (Hint: If p
divides the order of 8/G, then 5/G contains an element of order p.)
Conclude that disc(al,...,an) =m dise(S8), with pim. (See exercise

27, chapter 2 .)

(b) Let 0,...,@ be the set constructed in exercise 20, in the case K = @,

except replace Q;h by QE vhere K 1is large; decide how large later.
Show that disc(oy,...,a) is divisible by p°, where

k = E{e_l - 1}fi =n - Lf, . Conclude that dise(8) is divisible by this
power of p. (This improves the result given by Theorem 24, There is

also & corresponding improvement of Corollary 1 to Theorem 2L.)

Suppose o =20 +2. Prove that & NQlal = Z{a]. Do the same if
@ ot -2, (See exercises 43 and b4, chapter 2, and use the improvement

of Theorem 2l esteblished above.)

Complete the preoof of Theorem 25.

Iet R, §, K, and L be as usual. A prime P of R is totelly ramified in
§ (orin L) iff PS=@Q, n= [L:X].

(a) Show that if P ie botally ramified in 8, then P is totally

ramified in M for any intermediate field M, KCMcC L.

(b} Show that if P is totally ramified in I end unramified in ancther

extension I' of K, then LNL'=K.

(¢) Give a new proof that @[w] has degree ¢(m) over €. (First prove it
for m=pr by uwsing the fact that (p) = {l_w)cp[m) and then build up



2h. (c) (continued)

to any m by using (b) above.)

25. let R be a commutative ring, I an ideal; for each f € R[x], let T
denote the image of f under the homomorphism R + (R/T)[x] .

(a) Show that T=g iff £~ g € I[x].
(b) Show that g|f iff £ € (I,g).

(¢) show that R[x1/(I,g) is isomorphic to (R/I)[x1/(g) -

26. let anﬁ vhere m 1is a cubefree integer, K = Q[a], R = & N §[a] .
() Show that if p is & prime # 3 and peh, then the prime
decomposition of pR can be determined by factoring x3 -m mod p.

(See Theorem 27 and exercise 41, chapter 2.)

() Suppose p2|m. Writing m = hl:E as in exercise L1, chapter 2, set
Y =0 fk. Show that p does not divide |R/Z[V]]; use this to

determine the prime decomposition of pR.
(e¢) Determine the prime decomposition of 3R when m # + 1 (mod 9).

(a) Determine the prime decomposition of 3R when m = 10, (Hint: Set
= (a- 1}2/'3 and use exercise 18 to show that dise(p) = 4 dise(R) .
Also note exercise ll1d, chapter 2.) Show that this always works for

m=+1 (mod 9) except possibly when m =+ 8 (mod 27) .

(e) Show thet 94disc(R) when m =+ 1 (mod 9); use this to show that 3R
ie not the cube of & prime ideal. (See exercise 21.) Assuning the
converse of Theorem 2, show that SR=P2Q vhere P and Q are

distinct primes of R.

o7. Iet @ =5(@+1), R=&NQQ]. Iet p#3 be aprime of Z. Show that
the prime decomposition of pR can be determined by factoring
::5-5;(«-5 mod p. Do it for p=2. (See exercise 43, chapter 2.)
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29.

Let f(x}=::n+an_l:s.n"l+...+a0, all & € Z, and let p bea
prime divisor of 8. Iet g~ be the exact power of p dividing a,, end
suppose all & are divisible by pr. Assume moreover that f is irreduc-
ible over § (which is automatic if T = 1) and let Q@ be & root of f.
Tet X=g], R=ANK.

(e) Prove that (p') = p'R is the nth power of an ideal in R. (Hint:

First show that o = p'p, with (p) relatively prime to (p).)
(b) Show that if r is relatively prime to n, then (p) is the nth power
of an ideal in R. Conclude that in this case p 1is totally remified

in R.

(c) Show that if r is relatively prime to n, then aisc(R) is divisible

by Pn-l‘ (See exercise 21.) What can you prove if (n,r) =m> 1%

(@) Prove that dy = ¢ =1 in exercises 43¢ and Mhe, chapter 2.
Iet © be an algebraic integer and let f be the monic irreducible

polynomial for o over %. Iet R =AM Q] and suppose p is & prime
in % such thet f has a root r in EP end pt|R/ Z[c]] .

(a) Prove that there is & ring homcmorphism R + EP such that o goes to

r. (Suggestion: Use Theorem 27.)

(b) Let o =a+ 1. Use (a) to show that /O ¢ el . (Himb: r=2.

Find 8 sultable p. BSee exercise 28, chapter 2.)

(c) With « as in part (b), show that 3/ G end /G - 2 are not in g[o] .
(suggestion: Try various values of r with small sbsolute value.)

(@) Let o + 20 =2. Prove that the equation

o4 L

X 4y +2 =0

has no solution in @A N Qo] . (See exercise 43, chapter 2. Tt's easy

if you pick the right r.)
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31.

(a)

(®)

(e)

(a)

.(e)

Let

of
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I=st f be any nonconstant polynomial over X . Prove that £ has a
root mod p for infinitely many primes p. (Suggestion: Prove this
first under the assumpbion f£(0) = 1 by considering prime divisors of
the numbers f(n!). Then reduce to this case by setting

glx) = £(x2(0))/2(0) .)

Iet K be any number field. Frove that there aré infinitely many
primes P in K such that #(P|p) = 1, where p is the prime of X

lying under FP.

Frove that for each m € % there are infinitely many primes

p =1 (mod m).

Iet K and L bhe number fields, Kc L. Prove that infinitely many
primes of K split completely (split into [L:K] distinct factors) in
L. (Hint: Apply (b) to the normal closure of L over K.)

Iet f be s nonconstant monic irreducible polynomial over s number ring
R. Prove that f splits into linear factors mod P for infinitely

many primes P of R.

R be a Dedekind domain, K its field of fractions. A fractional ideal

K is & set of the form ©I, for some & € K and some ideal I of R.

We willl assume morecver that o and I are nonzero.

(a)

(v)

(e)

Define the product of two fractional ideals by the formulas
(eI)(pT) = 0BT . Show that thie is independent of the representation of

the factors.

Let I be a fractional ideal in K ; define
™ = {0 ex: aTcR).

Prove that II"]‘ = R. (See the proof of Theorem 15.) Conclude that the

fractional ideals of K form a growp uwnder multiplication.

Show that every fractional ideal of K is uniquely representable as a



31. (e) (continued)

(a)

(e)

(£)

Let

product P::" PZQ Pf" where the P; erve distinct prime ideals of R
and the m; are in Z. In other words, the fractionel idesls of K
form & free abelian group. It follows that every subgroup is free
sbelian. (We have only proved this in the case of finite rank, but it is
true in general.) In particular this shows that the group of prinecipal
fractional ideals oR (¢ € X) is free sbelian. How is this group

related to the multiplicstive group of K 7

& free sbelian semigroup is any semigroup which is isomorphic to & direct
sun of copies of the non-negative integers. Theorem 16 shows that the
non-zero ideals of R form a free sbelian semigroup under multiplieation.
Show that the nonzero principal ideals form & free sbelian semigroup iff

R is=®m FID.

Show that the idesl class group of R (as defined in chapter 1) is
isemorphic to the factor group G/H, where G is the group of
fractional ideels of K and H is the subgroup consisting of the -

principel ones.

Considering K a8 an R-module, show that every fractional ideal is a

finitely genersted submodule. Ccnversely, show that every nonzero

finitely genersted submodule of K is a fractional ideal.

K be s number field, R=A NK, and let I be an ideal of R. Show

that |R/I] = |3/15| for all fractional ideals J. (First prove it for

ideals J by using Theorem 22(a), then generalize.)

33 -39:

33.

K and L are muwber flelds, KCL, R=4NK, S=8NL.

Iet A be an additive subgroup of L. Define

Al - (o er: oacs)

A* = {0 € L: T(cA) C R}
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33. ({continued)
(a) Ve can consider I as an R-module, and &lso &5 an S-module. Show that

Al is an o-submodule of L and A* is an R-submodule. (In other

ll’-‘.ﬂ.*.

words, SA™F = A1 and RA* = A*.) Also show A
(b) Show that A is a fractionsl idesl iff SA=A and AT # (0) .

(c) Define the different Aiff A to be (A*)™F. Prove the following
sequence of statements, in which A and B represent subgroups of L
and I is a fractlional ideal:

AcB:a_&'l::.B

-1

, AX D BE;
aige AcA™ "L,
g,
afF T CI;

diff I is a fractional ideal ;
AcCI=diff A is a fractionsl ideal ;
I*% is an S-submodule of L

* c (aife )7L,

I* is a fractional ideal ;

ITF C 8% and I 8% I*

II*:S*;
IXTHE = B% ;
I#% = 1

diff T =1 diff 8.

34. Iet [01,“.,011} be & basis for L over K.

(a) Prove that there exist B,,..-,B, € L such that ﬁ(ociaj) =1 if
i =3, O otherwise, (Hint: Recall that the determinant iTﬁ(aiujﬂ is
nonzero, hence the corresponding matrix is Iimrertible over K.) GShow
that {ﬁl,...,ﬁn} is another basis for L over K. (This is called

the dual basis to {Cll,n.,an} o)
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35-

(continued)

(b) Tet A= Roy © +.. © Roy , the (free) R-module generated by the Qo .
Show that A* = B, where B is the B-module genereted by the By +
(Hint: Given ¥ € A*, obtein B € B such that 'JZIT;((V - B)A) = 0, and

- show that this implies ¥ =p.)

Suppose @ €L, L=ZX[a]l. Iet f be the monic irreducible polynomial for

o over K, and write f£{x) = {x - a)g(x). Then we have

n-1
B(x) = Yo + VX + cou + Y _x

for some ¥

ores¥y 3 € L. We clain that

] vO Yn—li
f*{ﬂf_) E f*{ﬂf_}

ig the dual basis to {1,0,...,0" "1} .

(a) ILet Oys+++,0, be the embeddings of L in € fixing K pointwise.

Then the gi(a) are the roots of f. Show that
£(x) = (x - a;)g; (x)

where gi(x) is the polynomial obteined from g by applying o; to all
coefficients, and o = g;(a) .
0 if if

(b) show that g, (o) = i (see exercise 20, chapter 2.)
J :E"(aj) if i=j.

(¢) Iet M be the matrix [a; '1] (where i denotes the row mumbex, J
the column number), and let N be the matwix [oi('\'j _1/E'@))] . show
that IM is the identity metrix. It follows that MN is also the
identity matrix (why?). What does this show?

(a) Show thet if & €8 then the R-module generated by Y, seey¥y o 18

Rlo] « (Hint: Muitiply (x - o)g(x).)

(e) Prove that (R[e])* = (£'(e)) Rlo] if c €s.



35. (continued)
(£) Prove that d&iff R[] = £'{(@)8 if o €8.

(g) Prove thet if « € 8, then £*(x) € difeS.

36. Iet P be aprime of R, Q & prime of 5 lying over P. Iet
CyyeeeyC € 8B, where n = [L:K] . Suppose ,...,0 are independent mod P.

(See exercise 20.)

(a) ‘Show that Clyyoeeylp form & basis for L over K. (Suggestion: Use

the lemma in the proof of Theorem 22b.)

(b) Iet A be the free R-module RO, ® ... @ RO, . Show that

PENA=PFA.

(e) Iet I= AnnR(SfA) = {r €ER: ¥8 c A} (this is clearly an ideal in R);

1

show that I ¢ P. (Hint: Show IcP=ISCPA=P ICI.)

(a) Show that aiff s |aiff A | (I8) aiff 83 conclude that the exact power

of @ in diff 8 is the same as that in 4iff 4.

(e) Suppose e(Q|P) = [L:K]. Fixing sny T €Q - @, show that the exact
power of Q@ in diff 8 is the same as that in £1(M)8, where f is

the moniec irreducible polynomial for T over K.

37. Note that diff 8 is an idesl in 5 depending on R. We will show that if

P is & prime of R and Q is a prime of S lying over P, then diff S

is divisible by Q€ T, where e = e(Q|P).

() Writing B8 = ¢ "1I, show that P contains TE(I}. (See the proof of
Theorem 2k. )}

(b) Iet P Qencte the inverse of P in K (not in L). Show that
Pls = (m8)°F.

(c) Show that (P8)™I csx.

(a) show that @°~T|aizes.

(¢) Show that Q€ “Y|£'(a)s for any o €8, where f£ is the monlc
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38. Iet M be a subfield of K, andset T=&NM. ILet aiff(s|T), aiff(s|r)

39,

Lo,
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(e) (conbinued)
irreducible polynomial for < over R.

and diff(R|T) denote the differents corresponding to each of the pairs of
number rings. (Thus the fivst two are ideals in 8, the third an ideal in

R.) Prove that the different is multiplicative in towers in the sense that
aife(s|T) = aire(s|R)(aies(R|T)S) .
(suggestion: Employing the obvious notation, show that
s; > s:{a:,s) and S;(di:f‘f(an}S) c s:
by using the transitivity property of the trace.)

Now consider the ground fleld to be §, so that R* = [0 € K: T(aR) ¢ Z}

end @iff R = aif#(R|Z) = (R)™ . Tnis is called the sbsolute diffevent

of R.)

(a) Iet [cxl,...,cxn] be an integral basis for R and let (By,...,p } be
the dual basis. Then {ﬁl,...,ﬁn} is a basis for R* over Z. (See
exercise 34%.) Show that diﬂc(&l,...,an)disc(ﬁl,...,ﬁn) =1, (Hint:
Consider the matrix product [aj(ﬁi}][cri(ﬂj)] .)

(b) Show that |R#/R| = |aisc(R)|. (Hint: Write the @ in terms of the

B; - If necessary, see exercise 27, chapter 2.)
(c) Prove that |jaifr R|| = |aisc R| « (See exereise 32.)

(4) Give a new proof that disc R is divisible by p', k = Xe; - 1), , as
shown in exercise 21. (See exercise 37.)

(e) Prove that disc(8) is @ivisible by ﬂisc{R)[L:K] . (Set M=g in
exercise 38 and use Theorem 22.) Compare this with exevcise 23, chapter

2.

Iet p be a prime, r> 1.

-
o bt S R



L0, (continued)
(a) Show that cp(pr)gr+l when p >3, and q:(Er}g_r.
k r r
() Iet o=e2™/P | show thet aisc(w) is divisible by p™P ) "1,
Conclude that p | 2 disc(w) .

(c¢) Iet R be a number ring and suppose R contains eem'fm, méE Z.
Prove that m|2 dise(R) .



Chapter 4
Galois theory applied to prime decomposition

Up to now the Galois-theoretic aspects of mmber fields have not figured
prominently in our theory. Essentially all we did was to determine the Galois
group of the mth cyclotomic field (it was the multiplicative group of integers
mod m) and to show that, in the case of a normal extension, the Galois group
prermutes the primes over a given prime transitively (Theorem 23). Galols groups
also turned up in the proof of Theorem 26 on splitting in cyclotomic fields., In
this chapter we apply Galois theory to the general problem of determining how a
prime ideal of a mumber ring splits in an extension field.

Iet K and L be mmber fields, and assume that I is a normal extension
of K. Thus the Galois group ©, consisting of all sutomorphisms of I which
fix K pointwise, has order n = [L:K]. As usual we let B and S denote the
corresponding number rings. Fixing e prime P of R, recall that a1l primes @
of 8 1lying over P have the same ramification index e and inertial degree f
(corollary to Theorem 23). Thus if there are r such primes Q, then vef = n
(Theorem 21). For each prime Q lying over P, we define two subgroups of G :

The decomposition group:

D=0(Q|P) = {[c €C: 08 = Q).

The inertis group:
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E = E(Q|P) = {c € 0: ofla) =a(mod Q) va €8}.

It is clear that these are actually subgroups of G, and that EcD. (The
condition oQ = Q can be expressed as of(0) =0 (mod Q) iff o =0 (mod Q) ;
cbvicusly the condition for E implies this.)

The members of D induce aubtomorphisms of the field S/Q in a natural wey:
Every o € G restricts to an sutomorphism of €, and if ¢ € D then the induced
mapping S > 5/Q has kernel Q; thus each ¢ € D induces an automorphism o of
8/Q, in such a way that this diagram commutes:

g el g

| |

8/Q —2—8/Q .

Moreover it is clear that g fixes the subfield R/P pointwise since ¢ fixes K,
nence R, pointwise. Thus g is & member of the Galois growp G of S5/Q over
R/P. All of this can be summed up by saying that we have a mapping D >~ G, and
it is easy to see that is is a group homomorphism: compositioh of sutomorphisms
in D corresponds to composition in G. The kernel of the homomorphism D » G
is easily seen to be E ; this shows that E is a normal subgroup of D and that
the factor group D/E is embedded in G. We will see that D + G is actually
onto, hence D/E = G is actually a group isomorphism. We know the structure of
G: It is cyclic of order f (see appendix 3), hence the same is true for D/E.

Now look at the fixed fields of D and E ; denote them by LD and LE’

respectively. Ly 1s called the decomposition field and ILp the inertia field.

In general, we adopt the following system of notation: For any subgroup H of G,
Ly denctes the fiwed field of H; thus I'{l} =L and I, =K. More generally,
for any subset X CL, let )(.H denote ]{FILH. Thus S]{ ig the number ying

in Ly, andqﬂiathemﬂ.gmprimeof Sy lying under Q. Obviuusm{a!{liQB
over P, and it follows easily from the way we have defined things that 'SH/QH is
an intermediate field between 5/Q@ end R/P. (Verify all of this.)

We can now state the main result:
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THEOREM 28: Iet X, L, R, 8, F, Q, G, D, E, r, e, and f be as sbove. Then

we have the following:

ramification inertial
degrees 1 Q indices degrees
e 3 1
Lg O
£ 1 T
Lp %
T 1 1
K P

Proof: We begin by showing thet [Ij:K] = r. By Galois theory we know that
[L:K] is the same as the index of D in G. BEach left coset oD (o € G) sends
Q@ to o (i.e., each menmber of the coset does this to Q), and it is clear that
oD = 70 iff oQ = 7@ . This establishes & one-to-one coxrrespondence between the
left cosets oD and the primes ¢4 ; as shown in Theorem 23, these primes include
all primes of 5 lying over P, hence there are r of them. That proves vwhat
we went.

Next we show B(QDIP) and :E‘{Q,D!P) are both 1. Notice first that @ is
the only prime of § lying over Q, since such primes are necessarily permuted
transitively by the Galois group of L over Ly (L is sutomatically a normal
extension of LD); this Galois group is D, which doesn't send ¢ to anything h___ﬁ,

else. Tt follows by Theorem 21 that

(L:r1 = e(efee(eley) .

The mumber on the left is ef since we have already shown that [LD:K] =r and
we know ref = n. Moreover the individual factors on the right cannot exceed e
and £, respectively; consequently equality must hold in both cases and we must

alsco have



o

e(Qy|®) = f(QD|P) =1.

Next we prove that f(QlQE} =1. Equivalently, S/Q is the trivial extension
of sE/qE . It will be sufficient to show that the Galois group of 8/Q over
BE/@E is trivial (see appendix 3). To do this, we will show that for each
B € 8/Q, the polynomial (x - 8)" has coefficients in 8p/Q for some m>1;
it will follow that every mewber of the Galois group sends @ %o mnother woot of
(x - 8)®, which can only be ©. That will prove what we want.

Fix any o € 8 corresponding to © € 8/Q; clearly the polynomial

gx) = Il (x - o)
ocEE

hes coefficients in Sp; reducing coefficlents mod Q, wWe find that g € (8/Q)[x]
actually has coefficients in sE{qE . But all olo) reduce to @ mod @ (why?),
nence g(x) = (x - 8)", where m = |E| . That completes the proof that
rlaleg) = 1.

Together with f{QD]P] = 1, this shows that :E'{QE|QD) - #(Q|P) = £. Then
by Theorem 21 we must have [IE:LD] > f. But we have seen (remarks before the
theorem) that E is a normal subgroup of D and ‘the factor group D/E is embedded
in G, which is a group of order f. Thus [LgiL;] = |n/E| < £, hence exactly
£. Tnen (Theorem 21 sgain) e(Qy|Qy) =1. Finally we easily obtain [L:L;l =e
and e{Q.|QE) = e by considering the degrees and remification lndlces elready

ectablished. [

COROLIARY 1: D is & mepped onto G by the natural mspping o+ g3 the

kernel is E, hence D/E is cyclic of order f.

Proof: We have already seen that D/E is embedded in G. Moreover both

groups have order f, since |D/E| = [Lg:lpl. O

The following specisl case indicates a reason for the terms "decomposition

field" and "inertia field."
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CORCLLARY 2: Suppose D is a normal subgroup of G. Then P splits into
r distinct primes in Ly If E is also normel in G, then each of them
remains prime (is "inert") in L. . Finally, esch one becomes an eth power

in L.

Proof: If D is normal in G,_ then by Galois theory L, is a-normal
extension of K. We know that Q’IJ has ramification index and inertial degree 1
over P, hence so does every prime P' in L; Ilying over P (ecorollary to
Theorem 23). Then there must be exactly r such primes (Theorem 21). Tt follows
that there are exactly r primes in IE lying over P since this is true in
‘both L, and L. This implies that each P' lies under & unique prime P" in
Lg 5 however it seems conceivable that P" might be remified over P'. If E is
normal in G (so that I is nommal over K), then e(P'|P) = e(QElP) = 1, hence
e(P"|P') =1, This proves that P' is inert in Ly: P = P'Sp .  Finally, we
leave it to the reader to show that P" becomes an eth power in L. O

We have already seen an example of this phenomenon: The prime 2 in %
splits into two distinct primes in @[/ 23], and eech vemains prime in g[uw],

w = emife3 (exercise 17, chapter 3). This could have been predicted by Corollary
2. Theorem 26 shows that 2 splits into two primes in Q[w], hence the decom-
position field has degree 2 over @ ; moreover there is only one quadratic subfield
of Q[w] since the Galois group is eyelie of order 22. So the decomposition field
wmust be @[/ -23] . Finally, 2 is unremified in @[p] so the inertia field is all
of §lw] .

Blightly more genevally, whenever L is normel over K with cyclie Galois
group and P (a prime in K) splits into r primes in L, then the decomposition
field is the unique intermediate field of degree r over K, and P splits into
r primes in every intermediate field containing the decomposition field.

As another exemple, consider the field L = i, /2, /51 this is normal of
"degree 8 over @, and the Galois group is the direct sum of three cyclic groups
of order 2. Tne prime 5 splits into two primes in @[il, is inert in @[/ 2],
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and becomes & square in Q[J-ﬁ-} . Consequently I must contaln at least two primes
lying over 5, and each must have ramifiestion index and inertisl degree at least
23 it follows thet each of these numbers is exactly 2. The inertis Cield must be
8 field of degree L4 over @ in which 5 is unremified. The only choice is
gli, /y2]. Tous (2 + 1) and (2 - i) vemain prime in @[i, ,/2] and become
squares of primes in L.

Hore is & nonabelien example: Iet T = QJ 15, o] where = e21/3 . fhen
I is normal of degree 6 over § with Galois group 83 (the permutation group on
three objects). Consider how the prime 3 splits: It becomes & square in Qlw],
end has the form F°Q in Q[F 1] by exercise 26, chapter 3. Consequently L
must conbain at least two primes lying over 3, and each must have ramification
index divisible by 2. The only possibility is for L +to contain three primes
over 3, each with e =2 and f=1. For each of these primes, the decomposition
field has degree 3 over ®@. There are three such fields: Q[m » Q{w,?_ﬁf_l »
and Q[HJE 3’1—9] . Any one of them can be the decomposition field, depending on
which prime over 3 is being considered. (The fact that they all can occur is
easily seen by the fact that each of them can be sent to any other one by an
automorphism of L.) The inertia field is the same since f = 1. Notice that
3 does not split into three disbinet primes in any of the possible decomposition
fields since in fact it is ramified in each (it splits into FQ in one of them,
hence in 811 since a1l are iscmorphic extensions of @ ). This shows that the
normality condition on D was actually necessary in Corollary 2 .

We now consider s veristion on the situstion. What heppens if K is replaced
by & larger subfield K' of L? We know that K' is the fixed fleld of some
subgroup H < G ; in our previous notation, K' = LH Moreover the ring

RR=RANK' is 8 and P' = QN R' is the unique prime of R' Ilying under Q.

H_’
P' galso lies over P, but it need not be unique in that respect. We know that L
is & normel extension of K', so the decomposition end inertia groups D(Q}P')

and E(Q]P') can be considered. From the definition, we immediately find thet

p(q|p') =D NH

E(Q[P') =ENH
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where D and E are as before (for Q over P). Then by Galois theory, the
fields IbI{' and I.EK' are the decompositicn end inertia fields, respectively,
for § over P'. We use this observation to establish certain maximsal and

minimal conditions for decomposition and inertis fields.

THEOREM 29: With all notation as above,
(1) L, is the lergest intermediate field X' such that
e(p'|P) = £(P'|P) = 1‘;
(2) L, is the smallest K' such that Q is the only prime of 8
lying over P';
(3) 1L, is the largest K' such that e(P'|p) = 1;

(W) Ly is the smallest K' such that Q is totally ramified over

P' (i.e., e(Q|P') = [L:K']).

Proof: HNotice first that we have already shown that LD and LE have these

properties: For example we showed in the proof of Theorvem 28 that @ is the only
prime of § lying over Q; this could also be recovered from the fact that
e(aley)f(elay) = of = [L:ry].

Buppose now that I{'=LH is any intermediate field in which @ is the only
prime lying over P'. We know that every ¢ € H sends € +o ancther prime lying

over P', so we must have H< D. This implies

L

L, © K', estsblishing (2). This result could 7 V' ,
also have been cbteined by considering the 1E/ -
diegrem at the right, in which the indicated L
degrees have been obtained by applying Theorem B Ibl':'
28 to both situations (§ over P and Q over I'D/
P'). Here e', f', and r' are the mmbers r ‘r'
associated with the splitting of P' in the Kk )

normael extension L. Thus r' is the
nunber of primes lying over P'. The disgrem shows that if r' =1, then

K' ==LDK', hence LDCK'.
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Next assume that e(P'|P) = £(P'|P) = 1. Then e=e' and £=f£' by
multiplicetivity in towers. Considering the diagram, we find that LD and LDK'
botlh bave the seme index In L. BSince one is contained in the other they must be
equa-i, implying X' <Ly. Thus we cbbain (1).

(3) is similar: If e(P'|P) =1, then e =e', hence Ly = LK', hence
K'c 13&: .

Finally, if Q is totally ramified over P' then {[I:K'] =e'. Considering
the disgrem, we find that K' =I.EK', hence I.Er_'K'. (]

This theorem has some interesting consequences. We will use it to prove the
Quadratic Recliprocity Law. It will be helpful to introduce the following concepb:
A prime P in a nunber field K splits completely in an extension field F iff

P splits into [F:K] distincet primes, in which case all must have e and £ =1
by Thecrem 21. Conversely, if all primes of F lying over P have e and f =1,
then P splits completely in F (again by Theorem 21). It follows that if a prime
splits completely in an extension F of K then it also splits completely in
every sub-extension. Combining this cbservation with (1) of Theorem 29, we obtain

COROLIARY: If D is a normel subgroup of G (for some Q lying over P)
then P splits completely in K' iff K'-::.LD.

Proof: If P splits completely in X', then in particular, e(P'|P) =
£(P'|P) =1, where P'=QNR'. Then K'cLy by (1). Conversely, Corollary
2 of Theorem 28 shows that P splits completely in Ly, and henece also in any

Kr, KCK'CLD. 0

This will be applied in & situabtion in which G is sbelian, so that all sub-
groups of G are normal.
et p bean oddprime in Z. For n€ Z, pdn, define the Legendre

symibol

n 1 if n is a square mod p
(1_3}n

-1 otherwise .
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The Quadrastic Reciprocity Law states thet

1 if p=+1 (mod 8)
-1 if p =4+ 3 (mod 8)

and for odd primes g # p we have

(B) if p or g=1 (mod k)
@) =
—{E) if p=g=3 (mod k4).

We will establish & criterion for a prime to be & dth power mod p, for any
dlvisor 4 of p-1. All of the action tekes place inside the cyclotomic field
Qlwl, ©=e"/P, e know that the Galois growp G of Q[w] over € is cyclic
of order p - 1, hence there is a unique subfield F, < @Q[w] having degree d
over @, for each dlvisor 4 of p- 1. (Fd is the fixed field of the unique

subgroup of G having order (p - 1)/d.) Moreover F"1CFd2 iff 4|4, .

THEOREM 30: Iet p be an odd prime, end let ¢ be any prime # p. Fix

g divisor 4 of p-1. Then g is a dth power mod p iff g splits

completely in Fd.'

Proof: We know that gq splits into r distinct primes in Q[w], wvhere
f=(p=1)/r is the order of q in the miltiplicative group {1,...,p-1} mod p.
This is a cyclic group of order p - 1, so the dth powers form the unique subgroup
of order (p - 1)/d, consisting of s8ll elements whose orders divide (p - 1)/d.
(Be sure you believe this. That's all the group theory we need.) Thus the

following are all eguivalent:

g is a dth power mod p

£l(p - 1)/a
dlr
Fd. (e Fr .

Finally we cbserve that Fr is the decomposibtion field for § over g, for any
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prime @ of Z[w] lying over q. {(This is becsuse the decomposition field must
have degree r over @, and F_  is the only one.) Thus the condition FgCF,
is equivalent to g splitbing completely in Fﬂ » by the corollary to Theorem

29. 0O

COROLLARY: THE QUADRATIC RECIPROCITY L&W {above).

Proof: {'g) =1 iff ¢ splits completely in F,. Vhat is F,? We recall
(exercise 8, chapter 2) that @[w] contains @[J+ p], with the + sign iff
p=1(modk). BSo this must be F,~ The result then follows from Theorem 25;

we leave it to the reader to check the details. See exereise 3. [0

Theorem 29 can also be used to establish the following result, in which there

is no normality assumption:

THEOREM 31: Iet K be a mwmber fileld, and let I and M be two extensions
of K. Fixaprime P of K. If P is unramified inboth L and M,
then P is unramified in the composite field LM. If P splits completely

in both L and M, then P splits completely in IM.

Proof: Assuming first that P is unvamified in L and M, let P’ be any
prime in LM lying over P. We have to show that e(P'|P) =1. ILet F be any
normal extension of K containing LM, and let Q be any prime of F lying over
P'. (Such a Q exists by Theorvem 20.) Q also lies over P; let E = E(Q|P)
be the corresponding inertia group, so that Fo is the inertia field. Theorem 29
shows that F,

E
necessarily unramified over P. Then Fp also contains LM, implying thabt

contains both L and M, since the primes QML and QN M are

QN ILM=P' is unramified over P.

The proof for splitting completely is exactly the same, except E is replaced
by D. We leave it to the veader to check this. Recall that splitbing completely
in IM is equivalent to the condition e(P'|P) = £(P'|P) =1 for every prime P'

of 'LM lying over P. [



COROLIARY: Iet K and L be number fields, K<L and let P be a prime
in K. If P is unramified or splits completely in L, then the same is
t.rueinthenormalclm M of L over K. (M is the smallest normal
extension of K containing L; it is the composite of all the fields o(L),
for all embeddings ¢: L » € fixing K pointwise.)

Proof: If P is unramified in L, then the same is true in all U(L}.
Then P is unramified in M by Theorem 31 {applied repestedly). The same argument
shows that P splits completely in M if it does in L. OO

We return to the situation in which I is & normal extension of K. G, R,
S8, P, and @ are as before. We are interested in knowing what happens to the
growps D(Q|P) end E(Q|P) when Q i€ replaced by another prime Q' of &
lying over the seme P. Ve know (Theorem 23) that Q' = o@ for some ¢ € G; it

is then easy to see that
p(ca|P) = o(a|P)e™t
E(cq]P) = cE(Q]P)o™ .
(We leave it to the reader to verify this.) Tmus D and E are just replaced by

conjugete subgroups of G. In particular we see that when G 1is sabelian, the
groups D(Q|P) and E(Q|P) depend only on P, not on Q.

THE FROEENIUS AUTOMORFHISM

Assume now that P is unremified in L, so that E(Q|P) is triviel. Then
we have an isomorphism from D(Q|P) to the Galois growp of 8/Q over R/P. 'his
Gelois group has a speciel generstor, the mapping which sends every x € 8/@ to
x!lP" (see eppendix 3) . The corresponding sutomorphism ¢ € D has the property

o) = ol (noa @)

for every C € 8. Assuming that P 1is unramified in L, ¢ is the only element
in D with this property, and in fact the only element in G (since this property



109

clearly implies ¢ € D). We denote this sutomorphism by ¢(Q|P) to indicate its
dependence on @ and P. It is called the Frobenius sutomorphism of § over P.

It is emsy to see that ;a(cq] F) =ﬂ'¢(QIP)U—1 for each ¢ € G (exercise), and since
all primes lying over P are of this form, we conclude that the conjugacy class of
the element @¢(QP) is uniquely determined by P. In particular, when G is
sbelian ¢(Q|P) itself is uniquely determined by the unremified prime P. This

¢ esatisfies the seme congrusnce for all §, hence it satisfies
pla) = ccﬂP“ (mod P8)

because PSS 1is the product of the primes ¢ lying over P. We summarize all of
this:

THEOREM 32: ILet L be a normal extension of K and let P be a prime of
K which is unramified in L. For each prime Q of L lying over P there

is & vnique ¢ € G such that

¢la) = cJIP" (mod Q) Vo €83

when G is sbelian ¢ depends only on P, and
¢(cx)ea"P“ (med P8) vaes, O

Part of the significance of the Frobenius sutomorphism can be seen in the fact
that its order is f£(Q|P), and thus ¢(Q|P) indicates how P splits in L. (Ve
know this because G is cyclic of order f(Q|P} and gﬁ{Q'P) corresponds to &
generator of G under the isomorphism D + G.) Thus, for example, an wnremified
prime P splits completely in the normal extension L iff ¢ =1.

' The cyclotomic fields provide & good example. ILet L = Qw], w= eﬁﬂigm,
and let K =8§. We know that G is isomorphic to ﬂi , the mitiplicative group
of integers mod m, with ¢ € G corresponding to k € ZE: iff olw) = of . The

Frobenius automorphism is defined for all unramified primes p, which are the



110

primes not dividing m, and &lso 2 when m =2 (mod k). The Galois group is
abelien, so ¢ depends only on p. We must bave ¢(a) =cf (mod pZlwl)
vo¢ Zfw] . It is easy to guess which member of G sabisfies this; surely it

must be the automorphism o which sends p to of . In general we have
i i
ol a0 ) = E agf (8, € Z);
thus we must show that

A aiu:Pi = (T aiwi)P (mod pZ[wl)

for integers &, . We leave it to the reader to verify this. (See exercise 5,
chapter 2, if necessary.) Notice that this provides another way of seeing that f
is the order of p mod m when p4m, originally proved in Theorem 26. The proof
there was essentially the same, establishing en isomorphism between G and the
group generated by ¢ ; however we had not yet developed the necessary properties
of the decomposition and inertie groups end therefore required a slightly different
argument.

The Frobenius automorphism will turn up again in chapter 8 where we will see
how it plays a central role in class field theory and has a remarkeble property:
If I ie a normal extension of X with abelian Galois group G, then every
member of ¢ is the Frobenius autcmorphism for infinitely many primes of X.
What famous theorem does this reduce to in the cyclotomic case described above?

Although the Frobenius sutomorphism is defined only in the case of & normal
extension, it can be used to determine how a prime splits in an arbitrary extension,
provided that the prime is unramified there. Suppose KcC L <M are number fields
with M normal over K. Iet G denote the Galois group of M over K, and let
R, 8, and T denote the mmber rings in K, I, and M res:;ectively. We flx a
prime P of K which is known to be unremified in M. (Thus, if P is
unramified in L then M can be taken to be the normal closure of L over K.)
Fix any prime U of M lying over P, and let ¢ = ¢(U|P), D = d(u]p).
Finglly let H dencte the subgroup of G fixing L pointwise, so that H is the
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Galois group of M over L. We will show that the way P splits in L can be
determined by considering how ¢ permutes the right cosets of H.

The cosets Hg, o € G, are permuted by right-multiplicstion by ¢ : Ho
goes to Hoop . The set of right cosets is then partitioned into disjoint sets
(orbits), each one heving the form

2 .
(o, Hog, Hog>, ..., Hog® ™4
for some 0 € G, with Hog¢" = Ho. Equivalently, this is one of the cycles of

the permutetion.

THEOREM 33: With all notetion as sbove, suppose that the set of right cosets
of H in G is partitioned into sets
-1
{Hal, Hﬁl y =we=y Hc1¢m1 }

EsssssREsRERRAERERTER AR RN RSN RN

mr“l]_

{Hﬂr, Ho $, «.., Ho ¢

Then the splitting of P in L is given by

LR CARECS

where Q1=(UiU)[‘IS. Moreover f{QilP)nmi.

Proof': Clearly all Qi are primes of 8 lying over P. We show that they

are distinct: Suppose Qi‘%—- i#3. Then o,U and oyU are two primes of

T lying over the seme prime of 8. Then by Theorem 23 we have 'rgiU=crjU for
some ¢ € H. Then 0511'01 €D, BSince D 1is cyclic, genersted by ¢ , we have
Ugl‘l'ﬁi = gjk for some k. But then Ho, and Hﬁjgﬁk are the same coset, which is

impossible since each is in a different part of the partition. This proves that the
Qi are distinct.
We. clain thatb :E'{QiIP) zm for each 1i; in view of Theorem 21 and the fact

that oo+ s+ @ = [L:X] (why?), it will follow thet equality holds for each i



11z

and the Qi are the only primes of 8 lying over P. Thus the proof will be
complete.

Fix eny Q=6;, and set m=m , o=¢ - Thus Q= (oU) NS and we have
to show f£(Q|P) >m. It is not hard to prove that

#(o]Q) = o(ou|p)T@IP)

(see exercise 11), hence

8(cU]Q) = (9o )TQIP) _ o FRIP) 2
Necessarily ¢{cU|Q) € B, so oot @Bt ¢ 1) equivatently, Hogf(UP) o 5o,
This shows f£(Q|P) >m, as promised. O

A specific application of Theorem 33 is given in exercise 13.
We conclude the chapter by proving the converse of Theorem 24. The proof uses

Theorem 28 (specifically the fact that EE] = e ) and the corollary to Theorem 3l.

THEOREM 3%: ILet K be & mmber field, R=8NK, p aprime in %

which divides dise(R). Then p is ramified in K.

Proof: Fixing en integrel basis 4,...,0 for R, we have disc(R) =
]I’K(criaj)[ . Reducing all integers mod p, we can think of this as a determinant
over the field Z . As such, it is O since p|dise(R). This implies thet the
rows are linearly dependent over EP « Equivelently, there exist integers

ml,...,mne Z , not all divisible by p, such that

is divisible by p for each j. BSetting o = Zm0, , we have plTK(thrj) for
each j. Tt follows that T(OR) CpZ. Note also that o £ pR because the m,
are not ell divisible by p (why does this follow?) .

Now suppose p 1is unramified in K. We will obtain & contradiction. Ey
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assumption, pR is a product of disbtinect primes; it follows that one of these primes
does not contain o . (Otherwise « would be in the intersection of these primes,
which is their least common multiple, which is their product.) Thus o £ P for
some prime P of R lying over p.

Wow let I be the normal closure of K over §. Then p is unremified in
L by the corollary to Theorem 31. Fixing any prime @ of S8 =8 NL lying over
P, we have 0 #Q since @ €R and QNE="P.

Wext we claim that TL(C!S)CPZ, vwhere 8 =8 NL: Using the transitivity

property of the trace and the fact that o € K, we have
(08) = TT(05) = T(am(s)) « T(oR) < pZ .

Tow fix any element p €8 vwhich is not in § but which is in all othex
primes of 8 Ilying over p; such an element is easily seen to exist by the Chinese
Remainder Theorem. We claim that for each Y €8,

(1) Tapy) €Q
(2) olopy) €Q foreach g €G- D

where G is the Galois groupof L over ® and D is the decomposition group
p{Qp) . The first statement is obvious since we have already shown that
TL{GS) cpZ, snd pZ Q. For the second, note that p Ecr-lq since o_lQ
is necessarily distinct from @ ; thus o(p) € @, implying (2) .

From (1) and (2) we cbtain

T olopy) €Q vy EsS.
OED

This leads to a contrediction, as follows: We know that the members of D induce
autcmorphisms of S{Q; thus we can reduce everything med Q, Iincluding the

autcmorphisms ¢ € D. This gives

v ol@BYy) =0 vye€ES.
c€ED
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Clearly OGP 4is a nonzero member of S/Q, and vy runs through all of S/Q as v

runs through &. It follows that

T ofx) =0 vxes/Q.
cED

However the ¢ are distinct automorphisms of 8/Q ; this is because the inertia
group E(Q|p) is triviel (recall that p is unremified in L). A sum of distinct

auvtomorphisms can never be O (see exercise 15) so we have & contradiction. [

There is a much easier proof when the discriminant is exactly divisible by an

odd power of p. See exercise 16.

1.

3.

h.

EXERCISES

Show that E(Q|P) is & normal subgroup of D{Q|P) directly from the

definition of these groups.
Complete the proof of Corollary 2 to Theorem 28,

() Iet p be an odd prime. Use the fact that z: is eyclic to show that
{-‘Zpl) =1 iff p=1 (mod k), and that (i;}(%) N (%) for integers &

and b not divisible by p.

(b) Complete the proof of the Quadratic Reciprocity Law,

Define the Jaccbi symbol (%} for 8 € Z andodd b>0, (a,b)=1, by
factoring b into primes and extending the definition of the Legendre symbol
multiplicatively:
(=%)-TG)"
| Py
TTe;

Thus for example (%) = 1, although 2 is not a square mod 15. The Jacobi

symbol is nevertheless very useful. Assuming that everything is defined, prove
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(continued)
1 . ]
() G =%, G =@ -
(b) a=a' (modb)= (%) = {%— .
1 1 if b= 1 (mod L)
(e) ()=
1 if b= -1 (mod k).
o 1 if b=+ 1 (mod 8)
@ @ -
-1 if b=+ 3 (mod 8).
. (%} if & or b=1 (mod L)
(e) For odd, positive @ &nd b, (75) =
Z) 4f a=b=-1 (malk).
(f) Use the Jaccbi symbol to ecalculate (2903) . (L4903 is a prime, so this
indicates whether 2413 is a square mod 4903.)
Iet K and L be mmber fields, I a normal extension of K with Galols

group G, and let P be a prime of K. By "intermediate field" we will

mean "intermediste field different from K and L."

(a)
(b)

(e)

(a)

(e)

Prove that if P dis inert in I then G is cyclie.

Suppose P is totelly ramified in every intermediate fleld, but not
totelly remified in L. Prove that no intermediste fields can exist,

hence G is cyclic of prime order. (Hint: dinertia field.)

Suppose every intermediate field contains & unique prime lying over P

but I does not. Prove the same as in (b). (Hint: decomposition

field.)

Suppose P is unramified in every intermediate field, but ramified in
L. Prove that G has a unique smallest nontrivial subgroup H, and
that H is normal in G ; use this to show that G has prime power

order, H has prime order, and H is conteined in the center of G.

Suppose P splits completely in every intermediate field, but not in L.

Prove the same &85 in (d) . Find an example of this over @.
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(continued)
(f) Suppose P is inert in every intermediate field but not inert in L.
Prove that G is cyclic of prime power order. (Hint: Use (a), (c),

(d) and something from group theory.)

Iet m and n be distinct squarefree integers # 1. The biquadratic ﬁéld
K=@l/m,/ n] is a normal extension of § with Galois group isomorphic to
the Klein L-group (direct sum of two cyclic groups of order 2 ). Thus there
are three quadratic subfields (what is the third?). ILet p be a prime in Z.

(a) Suppose p is remified in each of the quadratic subfields. What happens

in K? Find an example.

(b) Suppose p splits completely in each of the guadratic subfields. What
happens in K ? Find an example.

(c¢) Suppose p is inert in each of the guadrstic subfields. What happens

in K% Can this ever occcur?
an example in wh p splits n 3 0 .
(4) Find Fle in which its into PQ in K3 PG ; P
Find a prime p and guadratic extensions K and L of € illustrating
each of the following:

(a) p can be totelly ramified in K and I without being totelly ramified

in KL.

(b) K end L can each contain unique primes lying over p while KL does

not.

{(e) p can be inert in X and L without being inert in KL.

(d) The residue field exbtensions of Z, can be trivial for K and L
without being triviel for KL . '

Iet r, e, and f be given positive integers.

(&) Show that there exist primes p and g such that p splits into =r
distinct primes in the gth cyclotomic field K.
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(continued)
(b) Show that p end g in (a) can be teken so that K contains a subfield
of degree rf over & . How does p split in this subfleld? (Hink:

See the remarks following Corcllary 2 of Theorem 28.)
(c¢) Show that the further condition p =1 (mod e} ecan be satisfied.

(d) Show that (with p and g as above) the pqth cyclotomic field contaeins
& subfield in which p splits into r» primes, each with ramification
index e and inertisl degree f.

(e) Find en example of p and g for e=2, £=3, r=>5.

Iet L be a normel extension of K, P a prime of K, ¢ and Q' primes
of L lying over P. We know Q' =oQ forsome g€G. Iet D and E
be the decomposition and inertia groups for § over P and D' and E' the

corresponding things for Q' over P.

(8) Prove that D' = olg >, E = oBo ~.

(b) Assuming further that P is unramified in L, the Frcbenius auto-
morphisms ¢ = ¢(Q|P) =nd ¢' = ¢(Q'|P) are defined. Prove that

9" = apo L.

Iet K bve a number field, and let L and M be two finite extensions of
K. Assume that M 1is normal over K. Then the composite fleld IM is
normsl over I, end the Galols group Gel(IM/L) is embedded in Gal(M/X) by
restricting automorphisms to M. Iet P, Q, U and V be primes in K,
L, M and IM, respectively, such that V lies over Q &and U, and Q

gnd U lie over P.

/LH\ /V\
L M ] U
\K/ \P/

(a) Prove that D(V]Q) .is embedded in D(U|P) by restricting automorphisms.
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(eontinued)

()
(e)

(a)
(e)

Prove thet E(V]Q) is embedded in E(U|P) by restricting eutomorphisms.

Prove that if P is unremified in M then every prime of L Ilying over
P is unremified in IM.

Frove the same thing for splitting completely.
Assume that P is unyemified in M, so thet ¢(U|P) ena ¢(v|Q) are

defined. Prove that the restriction of ¢(V|Q) to M is

¢(u|1=)f(’4|1’) .

(Suggestion: Show that both mappings induce the same automorphism of
(& NM)/U. WUhy is that enough?)

Consider the specisl case of exercise 10 in which K< LecM, M normal over

K, and P is unramified in M.

(2)

(v)

(2)

Obtain
6(u]Q) = o(ulp) TP

a8 & specisl case of exercise l10e.

Suppose L dis also normsl over K; then ¢(Q|P) is defined. Prove
that ¢(Q]P) is the restriction of ¢(U]P) to L. (Show that it

satisfies the right congruence.)

et K be a subfield of @Qfw], wnesz'“. Identify z_f with the
Galois group of ®[w] over @ in the usual way, and let H be the
subgrowp of %, fixing K pointwise. For o prime p € Z not dividing
m, let f dencte the least positive integer such that ;E € H, where
the bar denctes the congruence class mod m. Show that f is the
inertial degree f(P|p) for any prime P of K lying over p.
(Suggestion: #£(P|p) is the order of the Frobenius automorphism ¢(P|p) .
Use exercise 1lb. Alternatively, use Thecrem 33.)
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(continued)
(b) ILet p be a prime not dividing m. Determine how p splits in

Qlw + w-l] « (what 18 H?)

(¢) Iet p be a prime not dividing m, end let K be any quadratic subfield
ely/ 4] c glw] . With notation as in part (a), show that if p is odd
then P €H iff d ic & square mod p; end if p =2, then p € H
iff d =1 (mod 8). (Use Theorem 25. Noté that if plm then p is
unramified in Q[w], hence also in @[,/ d].)

Iet m € Z, and assume thet m is not a square. Then K=a[b'ﬁ] has
degree L over § and qu[fj?'&?,i] is its normal closure over §. Setting
c!=r,l§7-;ﬁ and denoting the roots o, ia, ~o, -ix of :xh—m by the numbers

1, 2, 3, b respectively, we can represent the Galois group G of L over @

as permutetions of 1, 2, 3, k.

(2) Show that G = {1,7,0,70,0",70",00,7c7} , where 7 is the permutation
(2h) (meaning 2+ L4 +2, 1 and 3 fixed) and © = (1234) (meaning
1+2+3+L+1).

(b) Suppose p is an odd prime not dividing m. Prove that p is

unramified in L.

(e) Iet Q be a prime of L lying over p (p as in (b)), and suppose
@(le) = T. Use Theorem 33 to show that p splits into three primes

1n K'

(d) Determine how p splits in K for each of the possibilities for
ola]p) .

Let m:emfm, and fix a prime p in &H. Write m=pkn, where p«!’n.
The Galois group of Q[w] over @ is iscmorphic to m;, which is

¥
isomorphic in a naburel wey to the direct product Zy x Z, . Describe D
p

and E ({corresponding to p) in terms of this direct product.
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15. Iet F be any field. The set V of all functlons from F to F is a
vector space over F with the obvious pointwise operations. Prove that
distinet evtomorphisms o,...,0, ©of F are elways linearly independent over
F. (Hint: Suppose 8,00 + oo + 80 =0, 8 €F notall O, n minimal;
fix any x € F such that crl(x) # o (x) and show that Ea,iai(x)ai =0 by,
epplying Te.d; to xy. On the other hand E&ial{x}cri =0, Obtain a

contrediction. )

16. Iet K be a muwber field, R=A NK. Suppose p is & prime in % such
that d = aise(R) is exactly divisible by p°, m odd (p“]a, " *14a).
Prove that p is ramified in K by considering the fact that the normel
closure of K contains @[,/ d}. Show that disc(R) can be replaced by
ﬁisc(al,...,an) for any 0Oy,...,0f €R such that o,...,00 is a basis for

K over §.

17. Iet K end L be number fields, Kc L, R=&NK, S=ANL. Recall the
different aiff(8) with respect to R (chapter 3 exercises). Iet P be a
prime of R, @ & prime of S, and suppose diff(8) is divisible by Q.
We will prove that e(Q|P) > 1. Along with exercise 37, chapter 3, this
ghows thet the primes of S5 which are ramified over R are exactly those

which divide the different.
(a) Prove that '1'[1('(&_15) cR.
(b) vriting PS = QI, prove thet T(I)cP.

TWow suppose @ is unramified over P. This does not imply that P is
unremified in I so we cannot use the normsl closure argument &s in the proof
of Theorem 3k. Instead we fix any normal exbtension M of K containing L
and fix any prime U of M lying over Q. Iet E be the inertis group
E(U|P) . Then U, is unremified over P by Theorem 28.

{(c¢) Prove that I is contained in the inertis field Mg

(a) Ietting T=8NM (so that T, = & nmEJ prove that diff('l‘ﬂ) with
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(a) (continued)
respect to R is dlvieible by Up,. (Hint: Recall that the different

is multiplicative in towers; see exercise 3k, chapter 3.}

In view of (d) and the fact that U, is unremified over P, it will be
sufficient to obtein & contradiction in the case in which L=HE. This will
slmplify notation. Thus S-.-.:I!E and Q;=-UE.

(e) Prove that T =8+ U and 8 =1+ Q, hence T=14+ U.

(f) Prove that U is the only prime of T lying over Q. Use this to
prove that I is contained in every prime of T lying over P except

for U.

(g) Letting G denote the Galois group of M over K and D the

decomposition group D(U|P), prove that of(I) cU for every oc €G - D.

How let Oys == =s 0 be sutomorphisms of M whose restrictions to L
give 81l of the digbinct embeddings of L in € <fixing K pointwise. We
cen assume o, is the identity, hence at least some of the ©; arein D.
Iet ©p,---,q denote the ones which are in D.

(h) Prove that cl{a)+...+ch({x)EU for all o € I; using (e), show

that it holds for ell G € T .

We know that every ¢ € D induces an.automorphism ¢ of T/U; (h)

shows that 01+-.. +°k=0'

i) Prove that o.,...,0. &re distinct automorphisms of T/U, hence obbain
17" %

a contradiction by exercise 15.

Iet L be & normal extension of K, with G, R, 8, P, Q, D, and E as usual,

Define the ramification groups for m > O:

vm=Eo€G: o(a)sa(modq?n*l) voeB).

Thus Vi, = E, and the Vm form & descending chain of subgroups.

(a) Prove that each V, is a normal subgroup of D.
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18. (continued)
(b) Prove that the imtersection of all V. is (1}, hence v, = {1} for

all sufficiently large m.

19. Fix eny element ‘ITEQ-Q,E- We claim that for o €V, (m >1) we have
cev  iff ofm = Mmea ¢"* 1),

Assuming c €V, _, exnd c(ﬁ}ﬁn(modqm'*'l), pmve'
(8) olc) =o (mod @*Y) forall aems.

(b) ofe) = ¢ (mod Qm+1:| for a1l o € Q. (Suggestion: Show there exists

g £ @ such that px € 18, and show that ﬁc*(a}e.ﬁa(mod&m+l}.}

(c) of0) = (mod 1) for a1l o es. (Hint: 88 +Q.)

20, Fix M€Q-q , and prove that

o €V, iff o(m) =1 (moa @ty

holds for a1l o €E. (Suggestion: First show that if o €V, - Vy 1,
1>0, then ofm) =1 (mod @ *1) holds iff m<i.)

2l. We claim that the factor group Ef‘i'l can be ermbedded in the multiplicative
group (8/Q)*.
(a) Fix HEQ-QE; for each ¢ € E, prove that there exists « € 8
(@epending on ¢ ) such that

olm) =af (moa ¢¢),

and moreover ¢ 1ie uniquely determined mod Q. Suggestion: First
write T8 = QI &nd use the Chinese Remainder Theorem toc cbtain a

solution to the congruences

x = o(1) (mod q,e)

x =0 (mod I).
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(eontinued)
(b) 1et 0 denote the element constructed in (a), for each o €E. Show

2
that = :
at or{im) aUaTﬂ {moa §7) ; conclude that o =0 (mod Q) .

(e¢) sBhow that there i& a homomorphism
E + (s/Q}*

Having kernel V,. Conclude that E/V, is cyclic of order dividing
Isfal - 1.

Now fix m>2. We will show that V, _,/V ~ can be embedded in the additive

group of 8/q.

(8) Pix T€Q-a; then T e @ - @F1 (why?). For each cEV, 95
prove that there exists « € 8 (depending on ¢) such that

o) = 7 +a1™ (mod Qm'“l}

and morecover < 1is wiquely determined meod §.

(b) ILet @ denote the element constructed in (a), for each ¢ € LA
Show that or(m) =17 + (ag + ccT}‘rEn (moa Q,m"'l} ; conclude that

a.=a +a (mod Q) .

(e) Show that there is a homomorphism

Vm-l+ s/a

heving kernel Ym « Conclude that Vm _ l'Nm is a direct sum of cyclic

groups of order p, where p 1s the prime of ZE lying under §.

Show that Vi is the Sylow p-subgroup of E, where p is the prime of X
lying under Q. Conclude that vy is nontriviel iff e(QlP) is divisible

by p.

Frove that D and E are sclvable groups.
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26'

27.

12k

Iet T be & normal extension of K and suppose K conbains a prime vhich
becomes & power of & prime in L. Prove that G 1is solvable. (Compare

with exercise 5u.)

Iet L be normal over K, and let R, 8, P, @, G, D, E, ¢, and the V, be

as usual, Fix TIEQ—QE-

(a) Suppose c€V, _,, m>1, and o) =af {monm+l}. Prove that

olp) = op mod (Qm+l} for every B € Q. (Proceed as in 19a and 19b.)

(b) Suppose o €E, and (1) = arf (med Qe) . Prove that

¢a¢'—l () = a"P“ 7 (mod Qe) B

(e) Reeall that sll V, &re normal subgroups of D. Suppose val is
gbelian, FProve that the embedding of E/vl inte (S/Q)* actuslly sends
E/V, into the subgroup (R/E)*. (Hint: For every ¢ €E,
¢ agﬁ_ladl € V, ; use this to show that if olt) = atf (med Q2) , then
Al = o (mod Q) ; see exercise 21.) Conclude that if D/V, is abelian,
then E/V) is eyclic of order dlviding Ilell - 2.

With all notation as in exercise 26, assume that @ is totally remified over
P, so that e(Q|P) = [L:K]. Then necessarily G=D=E (vhy?). Suppose
@ is the exact power of Q dividing aiff(s) = aiff(s|R) . We know
(exercise 37, chapter 3) that k>e - 1 = |E|] - 1. We will show thet in
fact

k= ¥ (|v.| -1
mzo'm' .

This is known as Hilbert's formula.
(a) Show thet @ is the exact power of Q dividing £'(T)S, vhere T is

any menber of @ - QE and f 4is the monie irredueible polynomial for

f over K. (See exercise 36, chapter 3.)

(b) Show that for each o €V _, -V, (M - o(m))8 is exactly divisible

1l m*?
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27. (b) (continuea)

by . Conclude thet k= £ m|V . -V |. Finally, show that
n>1 - mn

this is equal to ¥ (1vm1—1}.
n>0

28. Now drop the assumption that Q is totally remified over P (in other words,
assume only normelity) end prove thet Hilbert's formula holds enyway. (Hint:
aiff(s|R) = aiff(s|s,)aire(s,|R)s .) Show that in particular ¢°|aifs(s|R)

iff ple, where Q lies over p € Z.

In the following exercises we will prove the famous theorem of Kronecker
and Weber, that every sbelian extension of € (normel with sbelian Galois group)
is contained in a cyclotomic field. We require one result from the next chapter:
If K is a nuber field # @, then some prime p € Z 1is ramified in K.

We begin with s few simple cbservations:

29, Bhow that if K and L are both sbelian extensions of @, then so is KL
in fact show that the Galois group Gal(KL|Q) cen be embedded in the direct

product Cal(k|Q) x cei(r|e) .

30. Show thet every sbelian extension of @ is the composition of shelian
extensions of prime power degree. (Lock at the Galois group.)

Exercise 30 reduces the problem to the case in vhich K is an sbelian
_extension of prime power degree over @ : If sll such fields are contained in
cyclotomic fields, then so is every sbelian extension of @. The next exercise

provides a further reduction:

31. let K be an sbelian extension of § with [K:Q] =p . Suppose g is a
prime # p vhich is ramified in K. Fixaprime Q of K lying over gq,

and set e = e(Q|q) .

(a) Prove that '\Fl(qjq) = {1} . (Hint: e 4is a power of p.)
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31, (continued)
(b) Prove that e(Q|a) divides q - 1 (see exercise 26). It follows that
the gth cyclotomie field has a unique subfield L of degree e over

. Howdoes g splitin L%

(e) Iet U be & prime of KL 1lying over Q, and let K' denote the

inertia field (XKL) Prove that g is unremified in K' and

E(ulq)
that every prime of 2 which is wnremified in K is also unramified

in KL, hence also in K'.

(a) Show that the embedding of exercise 29 sends E(U|g) into
E(e|a) x cal(L|Q).
(e) Prove that V,(U[q) = (1}. (wint: e(Ula) is a power of p (why?).)

(£) Prove that E{qu) is cyclic (use (e)); conclude that e(Ulg) =e.
(Use (@) to get the inequelity in the nontrivial direction.)

(g) Show that U is unremified over L and totally ramified over K'.

(h) Use (g) to show that K'L = KL ; conclude that if K' is contained in a
cyclctomic field then so is K. Also note that [K':Q] is a power

of p.

This result (specifically, (h) and (e)) allows us to reduce to the case in
which p is the only ramified prime. (Remove sll others, one &t a time.) Thus
assume from now on that K is an abelien extension of degree Pm over @, and
that p is the only prime of % which is ramified in K.

32. Throughout this exercise, assume thet p=2.
(a) Show that when m =1, K= @[J2], @[i]l, or QL/-21.

(b) Show that when m>1, K conteins @[/2]. (Hint: Look at K N R.)

+2
(e) Bet L= nglwl, where m=e2m‘f2m .

Show that L contains a
unique quadratic subfield (what is it?) and that this implies that the

Galois group Gal(L|g) is cyclic. (This can be obtained more directly:
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(e) (continued)
Gal(L|@) is isomorphic to {Eemz)*/{i 1}, which is known %o be
cyelie; see appendix 3.)

(d) Iet ¢ be a generator of Gal(L|Q) and extend ¢ to an automorphism T
of KL. Iet F denote the fixed field of T. Show that FNL =¢Q,

end use this to show that F=g, @il, or QL/-21.

(e) Show thet T has order 2%. (Hint: Consider the erbedding of exercise

29.)

(£) Prove that K c Qw].

Now suppose p is odd and m=1. Iet P be a prime of K 1ying over p.
Then P is remified over p (otherwise there would be no ramified primes,
which, as will be shown in chapter 5, is impossible). Then we must have
e(Plp) =p (why?). Fix TEP-F. Then T £¢Q (why?), hence 7 has
degree p over Q. Iet

-1
£(x) = x¥ + a.lxp Foaes By

be the irreducible polynomiel for T over §. Then all aiE /N

(a) Prove thet ell a, are divisible by p. (Suggestion: 1, 7, ..., et

are independent mod p; see exercise 20, chapter 3.)

(b) Iet P be the exact power of P dividing £'(7) (i.e., dividing the
principal ideal). Prove that k is a multiple of p - 1. (See

exercise 27.)

(e) Consider the exact power of P dividing each term of £'(7) =

Pt PR &,_1- Prove that the exponents of P are incongruem

mod p, hence all distinct.
(@) Use (c) to show that k is the minimm of these exponents.

(e) Prove that k =2(p - 1).
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3h.

35

36.

128

(eontinued)
(£) Prove thet aiff(m| z) = PE{P':L) , where R=RANK.

Tow assume that p is oddand m=2. Iet P be a prime of K lying over
P
(a) Prove that P is totally remified over p. (If not, what would happen

in the inertia field?)

(b) Show that E(P|p) end v, = ‘J‘l{Plp} both have order pE. (Bee exercise

23.)

(e} Iet v, = ‘.’r(PEp} be the first ramification group having order < pE .

Prove that V, has order p. (What do we know sbout V, _,/V,?)

(d) let H be any subgroup of G having order p, and let Ky be the

Pixed field of H. Prove that
aifP(R| Z) = diff(RIBH)Pe(P'l)P

where RE=8ANK and R}IﬂhﬁKH.

(e) The sbove shows that ﬂiff{RIRH) is independent of H. On the other
hand show that the exponent of P in dii‘f{R[RH) is strictly maximized

when H=V_. (Use Hilbert's formula. See exercise 27.) Conclude that

G 1is cyclic.

Now assume p is odd and m = 1. ©Show that K is unique by using exercise
3k. Conelude that K is the unique subfield of the pgﬂ cyclotomic field

having degree p over @.

Now assune p is odd and m > 1. Let L be the unique subfield of the

2 *4h cyclotomic field having degree p over €. (Uniqueness follows

from the fact that (Z m-:-l}* is cyclic (appendix 3) or just by considering
b

¥
Sylow groups.) Then Cel(L]Q) is cyclic of order p (since (% +l) is

g

eyclic; another way of seeing this is by using exercise 35).
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(continued)
(a) Iet o be a generator for (al(L]|Q), extend © %o an automorphism 7
of ¥EL, and let F be the fixed fleld of T. 6Showthat FNL =@,

and use this to show that F = @. (Hint: exercise 35.)

(b) Show that 7T hes order p . Finally conclude that K = L.
That completes the proof.

Iet K be an sbelian exbension of degree n over Q. Iet r denote the
product of all primes of X% which are ramified in K, with an extra factor
of 2 if 2 is ramified. Prove that K is contained in the nrth cyclobomic
field.

let K be a subfield of the mth cyclotomic field. Let p° be the exact

power of & prime p dividing m, and suppose p is unramified in K.
Prove that K is contained in the (m/p")th cyclotomic field. (Suggestion:

Use Theorem 29.) Use this to improve the result of exercise 37.



Chapter 5
The ideal class group and the unit group

Recall that the idesl class group of & number ring R consists of equivalence

classes of nonzerc idesls under the relation
In~J iff of = pJ for some nonzero O,p € R ;

the group operation is multiplication defined in the cbvious way, and the fact that
this is actually & group was proved in chapter 3 (Corollery 1 of Theorem 15). In
this chapter we will prove that the ideal class group of & number ring is finite
and establish some quantitative results that will eneble us to determine the ideal
class group in specifie cases.
We will elso determine the structure of the group of units of a number ring.
Finiteness of the ideal clase group is swrprisingly ‘easy to establish. First

we prove

THECREM 35: ILet K be & number field, R=fA N K. There is a positive real
mmber 3 (depending on K ) such that every nonzero ideal I of R contains

& nonzero element o with
gl < il -

(We emphasize that 2\ is independent of I. This would not be much of a



131

theorem if it were not.)

Proof: Fix an integral basis 0,,...,0, for R, and let gy,...,0 denote
the erbeddings of K in €. We claim that ) ecan be teken to be

n n

n E 'cria

i=1 j=1 +9
For any ideal I, let m be the unique positive integer satisfying

2t < Tl < (m+ )"

and consider the (m + 1)” members of R

n
0O<m, <m.
Jflm'jaj, m‘1 € x =m; =@
Two of these must be congruent mod I since there are more than ||I|] of them;

taking their difference, we obtain a nonzero member of T having the form

n

0= £ mo, m € Z |m| <m.
.1=133 J ]:il

Finally, we have
n n n
@l = Mool s T 2 myloey] <sfa <l O

COROLTARY 1: Every ideal class of R contains an ideal J with [7f] < a

(seme 3 as in the thecrem).

Proof: Given an ideal class C, consider the inverse class C ©

fdeel I €Cl. Obtein o € I as in the theorem. I conteins the principal ideal

and fix any

(), hence () = IJ for some ideal J. Wecessarily J € C. Finally, using

Thecrem 22 we have

Iig(@)] = ]l =l lial



and the result follows. O

COROLLARY 2: There are only finitely many ideal classes in R,

Proof: Only finitely many ideals J ecan satisfy [|]] < A since this
inequality restricts to a finite set the poseible prime divisors of J and pleces

bounds on the powers to which they ean oeecur. (If J =nPni, then

ol =Tliegl ) ©

As an example consider R = Z[,/2]. Taking the integral basis (1,/2), we
obtain (L + .J2)° &8s the value of ) from the proof of Tneovem 35. This is
between 5 and €, so every ideal class contains an ideal J with ||g]l <5. The
possgible prime divisors of J are necessarily among the primes lying over 2, 3,
end 5 (why?) so we factor 2R, 3R, and 5R: 2R = (JE)E while 3R and 5E are
primes (Theorem 25). This shows in fact that the only ideals J with |f] <5
are R, (JZ2), and 2R. It follows that every ideal in R is prineipal.

Wie leave it to the reader to try the same thing for R =& N @[/ m] for other
small velues of m such as 3, 5, =1, =2, =3 . When m = -5 we Tind that every
ideal cless contains some J with |[J]] < 10, hence consider primes lying over

2, 3, 5, and 7: From Theorem 25 we have

2R = (2, 1+ J=5)°

3R = (3, L+, J5)3 1-./5)
sk = (J5)°

TR = (7, 3+./5)7, 3-/-5).

It is easy to show that (2, 1+ ,/-5) is not principal: if it were, sey (o),

then we would have

Inge)] = @l = 2

hence mg(oc)=¢2. Writing O = & + b/ -5 with a,b € Z we ocbtain
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6? 4 5b% = 4+ 2 which is obviously impossible. Similarly we Find that the prime
divisors of 3R and TR are nonprincipel. The class containing (2, 1 + JTﬁ)
is an element of order 2 in the idesl class group. To investigate its relation-
ship with the classes containing the primes lying over 3 and 7, we look for
elements vwhose novms are divisible only by 2, 3, and T: Considering

N(a + b/ 5) = a° +5‘b2, we notice that N(1 + ,/-5) = 6, hence the prime factors
of the principal ideal {1 +./-5) 1ie over 2 and 3. (For each such prime factor
P, |lBll aivides [|(1+ J5)]| = 635 hence ||F| =2 or 3.) Writing I for the
ideal class conteining I, we find that (2, 1 +,/-5) is the inverse of P for
one of the primes P lying over 3. Since (2, 1+, -5) has order 2 we find
that B = (2, 1+, -5) and it is easy to see that the seme is true for the other
prime @ 1lying over 3 (because G =P +). A similar argument works for the
primes lying over 7. We conclude that all nonprincipal idesls are in the same
class, hence there are two idesl classes.

Thie could have been cbtained morve easily from an improvement (i.e., reduction)
of the value of \: It will turn out that only (2, 1+ ,/-5) has to be
considered. The reduced value will be even more helpful in higher degrees, where
our present value becomes large quickly.

The improvement of 3 comes from embedding R as an n-dimensional lattice in
' and applying scme general geomebric results.

Let ©y,++.,0,, denote the embeddings of K in IR, and let frl,?l,...,ﬂ's,"‘r's
dencte the remaining embeddings of K in €. (The horizontel bars indicate
complex conjugetion; it is clesr that the non-reel embeddings come in complex

I

conjugate pairs.) Thus r + 28 =n = [L:K]. A mapping K-» R is then obtained

by sending each ¢« to the n-tuple
(Ul{a);'";f’r(a): R«‘l‘l{ﬂ), .slrlfa},.“,ﬂ.'rs(a), J‘TS{O!))

where f and 4 indicate the real and imeginary perts of the complex mmbers. It
is easy to see that the mepping is an additive homomorphism with trivial kernel,
hence it is an embedding of K in IR" (considering only additive structure).
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We claim that R =84 N K maps onte an n-dimensional lattice AR (the Z-span of
an R-basis for K '). To see this, fix an integrel basis Gy,eees0, for R
these generate R over &, hence thelr images in =" generate hy over .
We have to show that these imsges are linearly independent over IR.

Form the n x n matrix whose ith row consists of the image of G, . We will
show that its determinant is nonzero, hence the rows are independent over IR. This

deternminent (which we describe by indiceting typical elements of the ith row) is
t-f-,ﬂ'(ﬂi),v--,ﬂ"l‘(ﬂi},m(ui),«o-l -

Elementary column operations transform this to

1
(21)®

I --.G{Gi}-..,?{ﬂi},'r{ﬂi), aaw ! -

Finally the square of this last determinant is disc(R), which is known to be
nonzero (Theorem 7).

We have proved

THEOREM 36: The mapping K » IR~ sends R onto an n-dimensional lattice
Ay o A fundamental parallelotope for this lattlee has volume

L./ laise@®)] . O

2

By a fundamentel parallelotope for an n-dimensional lattice A in ®

we mean & set of the form

n
{ § BV, aiEIR,OEai{J.}

where (v,,...,v,} is any Z-basis for A. It is well known that the
n~dimensional wolume of such & parallelotope is the sbsolute value of the
determinent formed by teking the rows Vyseee, V@ It iz ensy to show that
any besis for A results in the same volume (see exercise 2), hence this
volume is an invariant of A. We will dencte it by vol(B®"/A). Thus we have

T
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determined
vol(R"/AL) =51§.f |aise(r)] .

Replecing integer coefficients by rationsl ones we obtain
COROLIARY: The image of K is dense in R'. [

Returning to the cese of a genersl n-dimensional lattice A, suppose M is
en n-dimensional sublattice of A. Then AfM is a Finite group and it is easy

to show thet
vor(B M) = vol(m*/A) | A |

(see exercise 3). Applying this to the image A; of & nonzero ideel I in R,

we obtain

Vol (B/ny) = vl Yng) |"e/ng| = 25/ latee®] il -

This will be relevent in our sttempt to improve the value of ) in Theorem 35.
Next define a special "noxrm" on &, depending on r and s, in the

following wey: For each point x = {::l,...,xn) c ®  set
2 2 2 2
H(x) = oo (5 4+ xr+2}...(xn 1t xn) .

This is of course contrived to agree with the field norm: If « € R maps to

X € Mg s then N(x) = Hg(os) . We will prove the following general result:

THECREM 37: With N defined as sbove, every n-dimensional lattice A in

K contains & nonzero point x with

w0 <2 &) vor(m/n) .
n
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Applying this with A sy, We obtain

COROLLARY 1: Every nonzero ideal I in R contains a nonzeroc element o«
with

Ing(e)| < (n) *Jazse®)] I -
COROLTARY 2: Every ideel class of R contains an ideal J with

=4 (' Toane®] -

::]?.

llll <

(E

,n.} , which is called

This ie & really great result because the factor

:l lo-

Minkowski's constant, gets small quickly as n increases. In any case this

represents an improvement over the value of XA in Theorem 35. For example when

R = %[/ 5] we have

ol < %2 < 3

so every ideal cless contains some J with |fl <2. That justifies our
assertion earlier that only (2, 1+ ,/-5) need be considered in determining the
ideal class group.

Another nice example is the fifth cyclotomlc field @lw], w = eaﬂib « Every
ideal class conteins some 7 with o] <22L2. mis quantity is less then 2,

orf

hence every idesl class contains R. In other words every ideel is principal.
Further examples are given in the exercises.
Ancther way of looking et Corollary 2 is thet it provides a lower bound for
|aise(R)] . In perticulsr it shows that

J |aise(®)] 3:-; @°.

The mumber on the right is strictly greater than 1 whenever n >2 (see exercise
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CORCLLARY 3: |aise(R)| > 1 vhenever R# Z. O

The significance of thiz is that it enebles us to complete the proof of the
Kronecker-Weber Theorem: dise(R) must heve a prime divisor, which is necessarily
remified in R by Thecrem 34%. Thus for each K # @ there is & prime of % vwhich
is ramified in K, as promised in chapter 4,

To prove Theorem 37 we need the following theorem of Minkowski:

IEMMA: Iet A be an n-dimensional lattice in K and let E be a convex,

measureble, centrelly symmetric subset of IR such that
vol(E) > 2™vol(R* /A).

Then E contains some nongero point of A. If E is slso compact, then the
strict inequality can be weakened to > .

(By convex, we mean that if x and y are in E then so is the entire
line segment joining them. Measurable refers to Lebesgue measure in =" r
which we will not explain further except to say that the Iebesgue measure
vol(E) coincides with any reasonsble intuitive concept of n-dimensional
volume, and Iebesgue measure is countably additive in the sense that if
BBy .. BYXe pairwise disjoint measurable sets then

vl( U B) = 1z vol(g,).
i=1

i=1
Finally, centrally symmetric means symmetric around O: if x € E then so
is =x.)

Proof of lemma: Let F be a fundsmentel perallelotope for A. Then R is

the disjoint union of transletes x + F, x € A. It follows that

%E = (aisjoint union) U {(%E) n(x+ F))
XEM
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where by tE, t € IR, we mean {te: e € E} . Hence, assuming the strict

inequality, we have

vol($E) = r vol((FE) N (x + F))
XEM

vol(F) < -21-'5 vol(E)

¥ vol(((EE) -x) NF
Xen S

with the latter eguality holding because the Lebesgue measure of a set is invariant
under translation. The sbove shows that the sets ({%E) - %) NF cennot be pair-
wise disjoint., TFix any two points x,y € A such that (%E) - x and (%E) -y
intersect; then x -y iz a nonzero point of A and from the convex and symmetric
properties of E we show easily that E conteins x - y. (Do it.)

Now suppose that E is compact (which in R means closed and bounded) and
weaken the strict inequality to >. For each m = 1,2,..., the first part of the
theorvem shows that the set (1 + %}E contains some nonzero point x of A. The
X are bounded a8 m -+ « sines they are all in 2B, and sll X, are in A3 it
follows that there can be only finitely many distinet points X - Then one of
them is in (1+%)E for infinitely many m, hence in the closure E, which is
E. O

COROLLARY OF THE LEMMA: Suppose there is s compact, convex, centrally
symmetric set A with vol(A) > O, and the property

a €A= [Na)| <1,
Then every n-dimensional lattice A conteins a nonzero point x with
|5(x)]| < =Zpr voL(E / A)
S So1(A] -
Proof: Apply the lemms with E = t4, where

tn'—-%vﬁl{mﬂ/h).
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Check the deteils., [

Froof of Theorem 37: We note first that we can cobtaln a wesker result very

easily by taking A to be the set defined by the inequalities

2

2
+ X
n

2
re-E{l’ cery X g FX <1l.

Ix[(l, resy |xl<l r+1

Then vol(A) = 2™1° and we obtain the fact that every A contains a nonzero point

x with
5G| < B voL(E /) .

However we can do better. Define A by

2 2 2 2
fe | + e+ |xr| +2(./xr+l+xr+2+ O +.,flxh_.l+xn]£n;

it is not hard to show that A is convex (see exercise ), and the condition
a € A= |N(a)] <1 is cbtained by compering the geometric mean of the n positive

real mmbers

2 2 2 2 2 2 2
|xlf, ceey ]xr],Jxr+1+xr+2, Jxr+1+xr+2’ veny ,_/xn_1+xn, ,/xn_l+x

with their aritimetic mean. The geomebric mean is n...,,j |®(a)] , nence nq,,j |n(a) |

at most the arithmetic mean, which is at most 1. Moreover we will prove that
Vol(-ﬂ.) = —r E ( )

That will prove Theorem 37.
In generel, let V,_ _(t) denote the volume of the subset of T2 defined
»

2
|x [+ eee + lxrl +2(ﬂ/“r+1 g ¥ oo +Jxr+25 s r+25) =t

then



o) =6y ().
Ve claim that
V. (1) = iy 25(0°
r,s (r + 2s)} 2’ "
If >0 we have

1
r=-1+28
‘Vrjs{l) = 2]‘0 v, _1,3(1 - x)dx = 2]‘;(1 - x) dx vr_l,s{l)

2
T+ 28 vr-l,s(l) }

Applying this repeatedly we obtaln

E1.“

1Eir:l:',.'ail[‘-'l':' “Tr+es)(r+28 = 1) -.. (28 + 1) ?0,5(1) .

We leave it to the reader to consider what happens when s = 0. Howis ¥, 0(1)
r

defined?
It remains to determine ¥V, S(l} for 8>0. We have
2

Vo,s(1) = [f Vo 5 .2 - 2 L4 @

with the integral teken over the circular region x2 + :,rE < 1/ . Transforming to

polar coordinetes, we cbbain

n 1/2 /e 2(s -1
Vo, a(1) = JG Io Vo, -2(1 = 20)p dp a8 = 21 IO (@ - 202" a

1
b 2(e-1) 11,1 1
=210u (1-"')&0‘_5(23-1-25}"2IEsHEs-li .

Vo, (1) = D" =y -
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Pubting things together, we obtain the desired velue for 'ﬁfr S{l) » The formule
»
for wol(A) -follows immediately.
That completes the proof of Theorem 37. (I

THE UNIT THECREM

Consider the multiplicative group of wnits U in & number ring R. We will
show that U is the direct product of a finite eyclic group (consisting of the
roots of 1 in R) and a free sbelian group. In the notation of the previcus
section, this free sbelian group has rank r + s - 1, Thus in the imaginary
quedratic case U just consists of the roots of 1. (We have already seen this
in chapter 2 by considering norms.) In the real quadretic case the roots of 1 are
Just 1 and -1, and the free sbelian part has rank 1. Thus

U=+ k€ &)

for some unit u, called s fundawental wnit in R. Subject to the condition

u>1, the fundementel unit is uniquely determined. The fundamentsl unit in
z[/J2] is 1+ ,/2 endain 2[/3] it is 2+,/3.

The fundamental wnit in & real quadratic field is often surprisingly large.
For example in Z[,/31] it is 1520 + 273/ 31. Worse yet, in Z[,JOL] it is
2143295 + 221064,/ 9% . On the other hand in X[/ 95] it is only 39 + 4/ G5.
There are algorithms for determining these units. One of these uses continued
frections. See Borevich and Shaferevich, Number Theory, section 7.3 of chapter 2.,
A simpler but less efficient procedure is given in exercise 33 at the end of this
chapter.

There are certain other number ringe in which the free a‘belia.n‘ part of U
is cyclic. Cubic fields which have only one embedding in IR have this property
since r =8 =1 (for exemple the pure cubic fields); moreover the only roots of
1 are + 1 =since the field has an embedding in R. Thus as in the real quadratic

case
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U:-[;l-_uk:RE %}

for some wnit u. See exercises 35 -L2 for examples.

Tields of degree 4 over § having no embedding in R have r =0 and

s =2, hence
U={&uk:ke %, @ a root of 1}

for some unit w. Also, sinee the degree is L, there are only a few possibilities
for ©. An exemple is the £ifth cyclotomic field., Here wu can be taken to be

1+ w, where w:emb. See exercise U7.

THEOREM 38: Iet U be the group of units in a nurber ring R =A NK. ILet
r and 25 dencte the number of resl and non-reasl embeddings of X in C.
Then U is the divect product W X V where W is & finite eyclie group
consisting of the roots of 1 in K, and V dis a free sbelian group of

rank r + 8 - 1.

In other words, V consists of products

k
“11 1:2:2 L u:r+-;s-11, kh, € &

for some set of T + 8 - 1 units L TR TPL SO such & set is called a
fundamentel system of wnits in R. The exponents kl’“"kr+s-l are wniquely
determined for a given menber of V.

Proof: We have & sequence of mappings
UCR - {0} — Ay = (0] 228, g7F°
where

R - {0}— Ay - (0}

is the obvious thing (the restriction of the embedding of K in R®'), and log is
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defined as follows: for (xl,...,xn) € AE - {0}, lng(xl,...,xn} is the
(r +s)=tuple

(;mglle,,.,:mg[xrj,log(xf'_l_l + xi_l_e},...,log{xi_l + xﬁ}) .

x2 +x2 are all

Note that this is legitimate: the real numbers [x|,....x ;| +x

strictly positive for any point in A - {0} . (Why?)
For convenience we will refer to the compositions R - {0} + B ' ° and

Us> B "% aslogalso. ®W'® is called the logarithmic space.

It is easy to see that the following hold:
(1) logop=loga+logp vo,p € R - (0};

(2) 1og(U) is contained in the hyperplane HC R''T° defined by
. Yy +oeee #¥, =0 (because the norm of & unit is 1 or -1);

% nas a finite inverse image in U

(3) Any bounded set in ® '
(because it hes a bounded, hence finite, inverse image in A, - (0} .

Convince yourself of this.)

(1) end (2) show that log: U~ H is a mtiplicative-to-additive group
homomorphism. (3) shows thet the kernel in U is finite and this in turn implies
that the kernel consists of the roots of 1 in K: Every member of the kernel has
Tinite order, hence iz a root of 1. Conversely every root of 1 is easily shown
to be in the kernel. Moreover it is easy to show that the kernel is cyclic. (In
general every Tinite subgroup of the unit circle is eyelic.)

(3) also shows that the image log(U) ¢ B ' % has the property that every
bounded subset is finite. We will prove in exercise 31 that a subgroup of w
with this property is necessarily a lattice. (In general, by a lattice in IR-
we mean the Z-span of a set of vectors which are linearly independent over W.
& lattice is a free sbellan group bubt the converse is not necesssrily true. In
other words sn R-independent set in T is Z~independent but not conversely.)
log(U) 4is contained in H, so it is a lattice of some dimension dA<r + s - 1.

We will denote it by )‘I.U from now on.
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Hext we show that U is a direct product. We know that ﬁU is a free
sbelian group of rank 43 ﬁx units Wpyeen,y € U mapping to & Z-basis of My
gnd let V be the subgroup of U generated (multiplicatively) by the u . It
is easy to show that the wy generate V freely, so that V is free sbelian of
vank d; moreover U=W xV where W is the kernel. We leave the details to
the reader.

mmthsforwtoaoistoshowthat d=r+5 -1x. To do this
it will be enough to produce r + 5 - 1 witsnﬂmselogvecjcmvs are linearly
independent over IR. DBefore we can produce units, however, we need a lemma that

guarantees the existence of certain slgebraic integers.

IEMMA 1: Fixany k, 1<k<r+s. Foreachnonzero @ € R there exists

& nonzerc B € R with
1)) < &)Y [atee®)]
such that if

log(a) = {31""-’ar+s}

108(p) = (by,-+esy , o)

then by <&, forall ifk. (The actual value of the bound for |mﬁ(;3)|
does not matter. All we need to know is that there is some bound which is

independent of «.)

Proof: This is a simple applicetion of Minkowskl's geometric lemms which was
used in the proof of Thecrem 37. We take E +to be a subset of R defined by
inequalities

|| < eqeennlx ] S

2 2 2 2
X b1 t X0 hd Cre1rmm ¥yl R =S Cris
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where the ¢, are chosen to satisfy

lfl:-:.-:i«;eai for all i#k
and
2,8 -
€18 see € o= (ﬁ} ..,a; |aise R| .
Then Vol E = 2'T¢; ... ¢ = 2%ol(R" /Az)  (check this). Minkowski's lemms,

shows that E contains some nonzero point of Mg s and it is easy to verify that
£ cen be taken to be the corresponding element of R. O

Using Lemma 1 we can show that specisl units exist:

IEMMA 2: Fixany k, 1<k<r+s. Then there eixsts u € U such that

if
log(u) = (¥y5-+0,¥,, )

then y; <0 for all ifk.
™

Proof: Starting with any nonzero Oy € R, =apply Lemma 1 repestedly to obtaln
a sequence C,,0,,... of nonzero members of R with property that for each i £k
and for each J > 1, the ith coordinate of 1og(aa +1} is less than that of
,].ﬂg({)tj) and moreover the numbers ]ug(ajﬂ are bounded. Then the ||{-:xj)|j are
bounded; this implies (as in Corollary 2 of Theorem 35) that there are only finitely
many distinct ideals {aa) . Fixing any j and k such that (orj} - (ah) and

J <h, we have Cth=crju for some w e U. This is it. O

Lemma 2 shows that there exist units Uyyees such that all coordinates

Yyt
of lcag{vk) are negative except the kth . Necessarily the kth coordinate is
positive since lo.g(uk) €H. Formthe (r + 8) x (r + &) metrix having .'l.ng{uk}
as its kth row; we claim that this matrix has vank r + & - 1, hence there are

r+ 8 - 1 linearly independent rows. That will complete the proof of the unit
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theorem.

In general the following is true:

IEMMA 3: Let A:(aij) be an m x m matrix over R  such that

aii>0 for all i

aijcto for all i #j

andaachm—smnis 0. Then A has rank m - 1.

Proof: We show that the first m - 1 columns sre linearly independent:
Suppose tl‘u‘l-} “en +tm_l1rm_1=0, where the vj are the column vectors and
the tj are real nubers, not all 0. Without loss of generality we can assume
that some +t, =1 and all other t, <1 (why?). ILocking at the kth row, we

J
obtain the contradiction

m=-1 m=1 m
0= T t,a.,> T > T =0. O
P RPN R

The proof is now complete. O

EXERCISES

1. What are the elementary column cperations in the argument preceding Theorem
367 Verify that they transform the determinant as claimed.

2. Iet A be an n-dimensional lattice in R and let {vl,...,vn]' and
{w),...,%,} be any two beses for A over Z. Prove that the sbsolute
velue of the determinant formed by teking the v, as the rows is equal to the
one formed from the w, . (See the proof of Theorem 11.) This shows that

vol{R" /A) can be defined unambiguously.

3. Iet A be as in exercise 2 and let M be any n-dimensionel sublattice of

A . Prove that
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3. (continued)

vol (" /1) = |afM| vor(®" /A).
(See exercise 27(b), chapter 2.)

4. Prove that the subset of R® defined by the inequalities

2
[ |+ von + |, +2L‘/xr+l+x§+2+ +,.,i;x§_l+xi}5n
is convex.

(Buggestion:

First reduce the problem to showlng that the set is
closed under teking midpoints.

Then uwse the inequality

j{a+b}2+(c+d)25/32+02+Jb2+d2,
which is just the triangle inequality in B°.

5. Prove by induction that

n-X

AL
v
na

Use this to establish Corollary 3 of Theorem 37. In fact show that
laise(r)] > &7~ 1 5,

In exercises 6-27, the estimates

»

1
1@:’19-?

are often useful. In some cases T >3 is good enough.

6. Show that & N @[/ m] is & principal ideal domsin when m =2, 3, 5, 6, T,

173, 293, or k37. (Hint for m = 6: We know 2R = (2, JB)°. To show

(2, /&) is principal, lock for an element whose norm is + 2. Writing
2
a —

6b2=_-|;2, we easily find that 2 + ,/6 is such an element. This shows
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6. (continued)
that

Iz + B = ING2 + J/B| = 2.

From ||| = |l7]| loll we conclude that (2 +,8) is a prime ideel and ‘that
it lies over 2 (why?), hence (2 +./8) = (2, ,J/6).)

7. Show that theve are two idesl classes in %[/10]. (Hint: No element has

norm + 2, but there is en element whose ncrm is €. See the argument for

Z[./-5] after Corollary 2 of Theorem 35.)

8. Show that %[,/ 223] has three ideal classes. (Again, look at noxms of

elements. )

9. Show that & N @[/ m] is a principel ideel domain for m = -1, -2, -3, -7,

-11} =19, '1"3.1 "6'?: ‘163'

10. Iet m be & squarefree negative integer, end suppose that & N @[/ m] is a
principal ideal domain.
(a) Show that m =5 mod 8 except when m = -1, -2, or =7 . (Consider a
prime lying over 2.)
(b) Suppose p is an odd prime such thet m < 4p. Show that m is a non-

square med p.

(¢) Prove that if m < -19, then m is congruent to one of these mod 840 :

‘!"3: "'671 "1‘63; '1*03: '51|'Tr '667 .

{(d) Prove that the values of m given in exercise 9 are the only ones with
0>m>-2000 for whaich A& N Q[/m] is a principal ideal domain.
(Actually it is known that they sre the only ones with m< 0. See

H. M. 8tark, A complete determination of the complex quadratic fields

of class-mmber ocne, Mich. Math. J. 1k (1967), 1-27.)

11. Prove that X[/ -6] and %[/ -10] each have two ideal classes.
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17.

19.

20,
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Prove that & N @[,/ m] has three ideal classes when m = -23 . Also do it
for -31, -83, snd -139. (Hillt- for 139: .]:EL%@.)

Prove that the ideal class group of %[,/ -1k] is eyelic of order 4. Prove
the same for & N QL/-39]. (Suggestion: Show that there are either three
or four ideal classes, and eliminate the cyeclic group of order 3 and the

Klein four group as possibilities for the ideal class group. )

Prove that the ideel class group of %Z[,/m] is the Klein four group when
m=-21 or =-30.

Prove that & N Q[/-103 has five ideal classes. (Hint: There is only one

principel idesl (@) with |[(@)] =% and only one with () = 16.)

Prove that & N g[/2,,/-3] is a principal idesl domain. Note that this
contains Z[/ -6] ; this gives a counterexample to what false theorem?

Iet w= amﬁh . Prove that Z[w] is a principel ideal domain. Prove the

same for Zlw+ w]. (See exercise 35, chapter 2.)

2T /11

Prove that %[w + m-l] iz & principal ideal domain when w=e and

glso when g = eM/A3 | (suggestion: Use exercise 12, chepter 4.)

Prove that EI§ 2] is a principal ideal domain. Prove the same for Z[c],

q3=a+ll

Prove that & N Q@] is a principal idesl domein when o0 = o + 7. (Hint:

7 =00 -a.)

Iet K = Q[::,f m] , where m 1is a cubefree positive integer. Show that for

a € &

Ngm+a}=m+33.

Prove that Z[Jm] 1is a principel ideel domain when m =3, 5, or 6.
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2k,

25'

26.
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(a) With K as in exercise 21, set « =g m and show that

Nﬁ(a+iﬂ+ca2)=a3+mh3+m2c3-3ma.bc.

(b) Show that if m is squarefree then Nz{ﬁ) is & cube mod m For all

pEBNK.
Prove that Z[J 7] has three ideal classes.

Set R=&NQHI7]. Then

a+lﬂ+cde,

R=[ 3 & =c¢ = -b (moed 3)}

where a=3.,}1"|'. Also we know that BR=P2Q for some primes P and @
by exercise 26e, chapter 3.

(a) Find elements B,y € R having norm 3 end such that (g,y) = R. Use

this to show that P end @ must be principel.
(b) Prove that R is a principel ideel domain.
Set R =& NQY19]. Ten

R:—-{EMT‘}&.’E: a=b=c (mod 3))

*

where o =J15. As in exercise 25, 3R = P°Q.

(a) Prove that the ideal class group is cyclic, genersted by the class
containing P.

(b) Prove thst the mmber of ideal classes is a multiple of 3.
(c) Prove that there are either three or six ideal classes.

(a) prove that there sre three idesl classes. (Suggestion: Suppose there
were six. Show that none of the ideals J with ||J]] <9 ave in the

same class with P° )

Let O? +Bo:hu2. Prove that %Z[a] is a principal ideel domain. (See
exercise Lk, chapter 2, and exercise 22, chepter 3. BSuggestion: Show that
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(continued)
= +2¢' - 2 has no roots in Zy, T, or Z, . Wiy is that enough?)

(a) Iet X be a number field, I an ideal of R =f NK. Show that there
is a finite extension L of K in which I becomes principsl, meaning
that IS dis principal where S =8 NTL. (Hint: Some power of I is
principel, say I  =0OR. Adjoin Ta.)

(b) Show that there is a finite extension L of K in which every ideal of

K becomes principal.

(¢) Find en extension of degree L over @[,/ -21] in which every idesl of
Z[,/ 21] becomes principal.

(a) Prove that every finitely generated ideel in A is principal.

(b) Find an idesl in A which is not finitely generated.

Convince yourself that every finite subgroup of the unit circle is cyclic.

Iet G be a subgroup of R such that every bounded subset of G is Finite.

We will prove that G is & lattice.

(a) Iet A be a lattice of maximal dimension contained in G. (O contains
some lattice, for example {0}, so A exists.) Prove that @ is
contained in the subspace of ° generated by A. (ILet {vl,...,vdl
be & Z~besis for A. For any v € G, what can be said about the set
(v, vy500e,vg) 7)

(b) Fix a fundamentel parellelotope F for A and show that every coset
v+ A, v EG, has a representative in F. Use this to show that

G/N is finite.

(¢) Show that rG c A for some positive integer r. Conclude thet rG a
free abelian group of rank < d. (d = dimension of A. See exercise
2}, chapter 2.)

(d) Prove that G is a free abelian group of rank d.
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31. (continued)
(e) Fix s Z-basis for G and show that it is R-independent. (Bemenber

G >A.) Conclude that G is a latbtice.

32, Use exercise 31 to give a new proof of exercise 30. (Hint: R maps onto
the unit circle in an cbvious way: ©»— ee‘m't « Given s finite subgroup of

the unit circle, consider its inverse image in R.

33. {(a) Iet m be a squarefree positive integer, and assume first that

m=2or 3 (mod L). Consider the mumbers mha-_r-_l, b € Z, end take

the smsllest positive b such that either mb° + 1 or mb°

square, say &2, a>0. Then a+b/m isa unit in Z[/n].

Prove that it is the fundamental unit. (Hint: In any case it is a

-1l is =

power of the fundementsl unit (why?). What if the exponent is greater
than 17%)

(b) Estsblish a similar procedure for determining the fundamentel unit in

& 0 @/ m] for squarefree m>1, m=1 (mod k). (Hint: mbeil;.)

34. Determine the fundamentsl unit in & N @[,/ m] for all squarefree m,
2 <m< 30, except for m = 19 and 22.

35. Let K be a cubic extension of € having only one embedding in R. Iet u
be the fundamental unit in R =A N K. (Thus u>1 and all units in R arve

of the form + v, k€ Z.) Ve will cbtain a lower bound for u. This

will ensble us to find 1 in many cases.

ie i@

() Let vw, pe'®, and pe'® be the conjugates of u. Show that u=p -

and
disc(u) = -4 singe(ps + p'a. - 2 cos 9)2 .
(Suggestion: Use the first part of Theorem 8.)

(b) BShow that

|aise(u)] < WS + v+ 6).
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36.

36.

()

(c)

(a)

Let

(a)
(v)

(a)

()

(e)

(=)
(p)

(e)
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(continued)
Suggestion: Set X = p + po, ¢ =cos 8, and for fixed ¢ find the
maximum value of

£(x) = (1 - &“)Mx - 2¢)° - .

Conclude that

3

u >%-6—u‘3

Sf-
where d = |aise(R)] .

Show that if & >33 in part (c), then w >25EL,

Q = %}_ . BRecall that A& N @[a] = Z[a] and disc{a) = -108 (exercise
chapter 2),

show that w > 20, where u is the fundamental unit in Z[c] .

Show that B = (o - 1)‘1 is a unit between 1 and uE ; conclude that

B=u.

Show that if « is & root of a monic polynomlal £ over %, and 1f
f(r) =+1, r€ Z, then @ -r isaunitin A. (Hint: £(r) is
the constent term of g(x) = £(x + r).)

Find the fundamentel unit in & N §[a] when o =3/ 7. (Helpful
estimate: %FF{T. 23/12.)

Find the fundsmentsl unit in & N @fe] when 2 =3 3. (Hint: o isa
root of x3—9, end 02}2'1'}'13.)

Show that x3+:r.-3 has only one real yoot «, and @ > 1.2.

-

Using exercise 28, chapter 2, show that disc{o) is equarefree; conclude

that it is equel to disc{R), where R =& N glo].

Find the fundamental unlt in R.
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39, et o3 =2¢+ 3. Verify that & < 1.9 and find the fundemental unit in

& ngla].

k0. (a) Show that for & € %, & >0, the polynomial x° + ax - 1 is

irreducible over @ and has only one real root .
(b) Show that dlscla) = _(1;5,3 +27).

(¢) Suppose l.ta3+2? is squarefree. Show that u > a where u 1is the
fundamentel wnit in B = A N @[] . On the other hand, ¢ is a unit

1

(why?) between O and 1. Show that o is between = and a + 1.

Conclude that u = 0:"1 vhen a>2 and ll-a3 + 27 is squarefree.

(@) Iet m be the squarefree part of Lo + 27 (so thé.t had 4 27 = kem,
n squarefree). Show that if (m - 27)2 > 16(a + 1)3 , then u= at.
If you have a calculator, verify that this inequality holds for all &,
2<8a<25, except for a =3, 6, 8, and 15.

{e) Show that a'1=u or u- when & =8 or 15 .
(£) Prove that ot =u when & =15 by showing thet o is not a square
in R. (See exercise 29, chapter 3, and try r =2.)

(g) Verify that {0.2-2a+2}2=250c when a =8, What is u in this

case?
1. (a) Show that the polynomlal x° + &x - & is irreducible over § and has
only one real root o for a € %, a>-6, a#o0.
(b) Show that aisc(c) = -a-(ka + 27) .
(¢) Show that o -1 is a unit in R =& N Q).

(4) In each of the cases & = -2, -3, -5, and -6, show that
dise(R) = disc(a) by using exercise 28c, chapter 3. Prove that 1 -«
is the fundamentel unit in R in each of these cases.

(e) When & = -4, show that |dise R| >4 . Use this to show that
1-G=u or u. Finally verify that (a2-2)2=1+(1-a). What is

u ¥t
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2. (a) Now assume & >0; then O<a<1l. Set B:{l-a}’l énd prove

that £ 1s between a +2 &and &+ 3.

(b) Iet m be the squarefree part of La + 27, and let n be the product
of all primes p such that if pr is the exact power of p dividing
a, then r is not a miltiple of 3. Prove that dise(R) is dlvisible

by nfm. (see exercise 28, chapter 3.)

(¢) With notation as sbove, show that w = p whenever
(nam - 2’7)2 > 16(a + 3)3 .

(@) Moreover show that thie elways holds when e 1s squarefree, a>2.
(Suggestion: Show m =3 (mod k), hence m > 3.) Using a calculator,
verify that the inequality in (c) holds for all &, 2<a <100, with

the followlng exceptions:

BJ 9, 12’ ‘183 2?, 323 36? 5]+J m’ 72? 81'

(e) Prove that p=u or W shen & =12, 18, 32, or 36; and

B =1, ue’ or ‘13 when a,nB,Sr, 6!&,?2,01‘ B1.

(2) show thet B = (2/0)® when & =8, hence u=2/a, Obtein & similar

result when & = 64 .

(g) Prove that B is not & square in R when a =9, 18, 32, 36, 72, or 81
and not & cube in R when a =9, 72, or 81. Conclude thet = u
in each of these cases. (Use the method of exercise 29, chapter 3. Try
velues of r with smell sbsclute velue and be sure the prime p does
not divide |R/Z[c]].)

(h) Verify that JB(2 - JB) is & root of x + 12x - 12, hence
@=FB(2 -35) when & =12. Conclude that fc] = /2] in this
case, hence the fundamental unit was determined in exercise 36. Is P
equal to u or uE?

43, Tet K be & normal extension of @ with Gelols group G.
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(continued)
(e) Prove that K has degree 1 or 2 over KN R.

(b) Prove thet KN R 1s a normel extension of § iff KN IR has no

non~-real embeddings in C.

(c) et U be the group of units in A N K. Prove that Uf(U N R) 1is
finite iff complex conjugatlion 1s in the center of G. ‘

(a) Iet u be 2 unit in A, Show that the complex conjugate u and
sbsolute velue |u| are also units in &.

(b) Iet K be the normal closure of one of the pure cubic fields. Prove

that U/{U N R) is infinite, where U is the group of units in A NK.

(c) Show that K (in part (b)) contains a unit having absolute value 1 but

which is not & root of 1. (Hint: Show that there is a unit u, no

power of which is in TR ; then lock at u/u.) Can you find an example?

Iet K be an gbelisn extension of € end let u be s unit in AN K.
Prove that wu is the product of a reel number and a root of 1, with the

factors either in K or in an extension of degree 2 over K.

Iet R = Zlwl, mmamfp, p &n odd prime,

(a) Tet u be a unit in R. Show that u is the product of a resl unit in

R and a root of 1 in R. (See exercise 12, chapter 2.)

(b) Show thet the unit group in R is the direct product of the unit group
in Z[w + m'-l] and the cyclic group generated by .
(Z[w + w_ll = R N Z[wl]; see exercise 35, chapter 2.)

let w=eT | yo (14w,

(a) Show that w is & unit in Z[w] . (Suggestion: See exercise 3k,

chapter 2.)

(b) Show that u is a positive real muber between 1 and 2.
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(continued)

(e)
(a)
(e)

(£)

(=)

(v)

()

Show that R N glw] = QL/51.
Use (a), (b), and (c) to prove that u= (1 +,/5)/2,

Prove that all units in Z[w] are given by
+ mh{l + m)k

with k€ Z and O<hZk.

Establish formulas for ms{%} and sin(fj—T} .

m=>3, set w=e2ﬂs'fm, ﬂ:emfm

Show that
1 - of = 21" sin(e/m)

for all k € Z ; conclude that

i-w 1s
l =" I]T%E
Qk-l h
Show that if k and m are not both even, then = 4+ u for some
he &.
Show that if k 1is relatively prime to m then

_ sin(Xl/m
T ginlf

is & wnit in Z[w] . (In the chapter 7 exercises we will prove that if
m is & prime power then the w , for 1<k<mf2 and k relatively
prime to m, generate a subgroup of findte index in the full wnit

group. )



Chapter 6
The distribution of ideals in a number ring

We are going to exploit the geometric methods of chapter 5 to establish results
gbout the distribution of the ideals of & mmber ring R. In a sense te be made
precise shortly, we will show that the ideals are approximately equally distributed
smong the ideal classes, and the number of ideals with ||Il <+, t>0, is
approximately proportional to .

Iet K be a number field of degree n over §, and R=8A NK. For each
real number t >0, let 4i(t) denote the mumber of ideals I of R with
ol <+, and for emch idesl class C, let i,(t) denote the mumber of ideals in
¢ with [|T] <t. Tmus i(t) = §i,(t). As shown in chepter 5, this is a finite

Sum.

THEOREM 39: There is a number k , depending on R bubt independent of C,
such that

1C(t) =kt + ec(t)

1
]
where the "error" Ec{‘b) is ot n) (n = [K:Q]) . In other words, the
ratio
¢ (®)
1

t n
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is bounded a8 %t + .

A formuls for ¥  wlll be glven later. We note that this result implies, but
is clearly stronger than, the sthtement '
1o(t)

—— gg t o o,

t

Summing over C, we cbbain

COROLLARY: i(t) = xt + e(t) where h is the mumber of ideal classes in

o
R and e(t) is o(t ™). O

This will lead to the formula for h.
It showld be noted that in the case R= %, 4i{t) is just [t], the

greatest integer <t, so that k =1 &nd e{t) = [t] - t. Since n=1, the

condition e(t) = O(t ™) just expresses the fact that e(t) 1is bounded.

Proof of Theorem 39: The ides is to count ideals in C by counting elements

in & certain ideal. First of all, fix an ideal J in the inverse class C"l .

Then there is a one-to-one correspondence
jdesls I in C principal ideals (o) cJ

with Il < ¢ with [[(@)] < ¢l

in which I corresponds to IJ = (@) . Counting principel ideels (o) cJ 1is
almost like counting elements of J, except that « 1s determined from (@) only
up to & unit factor. If K contalned only finitely many units there would be no
problem. Then |U|'J.c{‘l:-) would be the number of elements « € J with
(@)l < t||3]|, end this number could be estimated easily.

There is one nontriviel case in which IU! is finite, namely when K is
imaginary quadratic. It seems worthwhile to consider this case first since the

result 1s important end the proof is considerebly easler then in the general case.
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Here R is s labtice in € (Why?), hence so is J. Moreover [[(a)|| is just
||° for @ #0. Tms we want to count the mmber of nonzero points of J in
the circle of radius ,f/ t||J]| centered at O. If we let F be a fundamental

parallelotope for J§ in € (it is actuslly & persllelogram) and consider
translates of F centered at the various points of J, then the number of points
of J in & circle of radius p is approximately the number of these translates
which are contained in the circle, and the latter number is approximately

ﬂp‘?fvol(F) . These estimates are good for large p. BSpecifically, let n (p)
denote the number of translates of F (centered at points of J) which are entirely
contained within a circle of radius p centered at 0, and n+{ﬂ} the number of
such trenslates which intersect the inside of the cilxcle. Then the number n(p)

of points of J inside the circle satisfies
n"(p) <nlp) <u'(p).

Moreover if we let © denote the length of the longer diagonal of the parallelo-

gram F, then it 1s cleer that

0" (p) <n"(p+8) forall p.

n+{p -8)<n(p) <n(p+8).
Multiplying by vol{F) and using cbvious estimates we cbtain

(p - 8)% < n(phvor(¥) < TM(p + 8)°,

n(p)vol F e + ¥(p)
where

[v(e)] < M(2ge + &) .
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Using
|U|ic{t) = n(/ ) - 1

(in which the -1 represents the fact that only nonzero points of J are to be

ﬂ.c{‘t-) = ‘IET"F%JW,%']{"F‘.)' + e(t)

with j(_-‘?l bounded a5 t + @. (Check the deteils.) In other words e(t) is
T

o(/ %) . Moreover from chapter 5 we have

vol(F) = vor(e/R)lal| = 3/ [atsc(®)] llafl .

Thus Theorem 39 holds feor imaginary quadratic flelds with

counted), we find that

vl [ateo(®)]

which simplifies to —jm==le—— except when K = Q[i] or L/ 3], én which

J lasse(®)]
cese there is an extra factor of 2 or 3 (resp.) in the denominator.

Returning now to the genersl case, we remind ourselves that ic(t) is equal
to the mumber of principel ideels (a) cJ with [[(@)]f < tljs]]. Ve can count
these ldeals by constructing a subset of R in which no two members differ by a
unit factor and each nonzero member of R has a unit multiple. We then simply
count elements of J in that set. BSuch a set 15 just & set of coset representa-
tives for the group U in the multiplicative semigroup R - (0} .

Actually it will be sufficient (snd easier) to construct a set of coset
representatives for a free abelisn subgroup Vo U having rank r + 8 = 1. Such
a V exlsts by Theorem 38, and U=W x V where W 1is the group of roots of 1

in K. V is not unique, but we fix one V.
Recall the mappings
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VCUCR - (0} » Ap - {0} =98 ., g'+S

defined in chapter 5. Under the composition, U maps onto & lattice

;\Ucncm”a where H is the hyperplane defined by y; + «es + ¥ 0.

r+s
The kernel of U+AU is W and the restriction V> Ay is en isomorphism.
Ap Wes defined as a subset of . If we replace RB° by R x € in
an cbvious way, we can consider Ap - {0} as a subset of (]R*)r x{m*}ﬁ. (R’
and € denote the multiplicative groups of R e&nd €.) Moreover the log

¥or ¥\
mapping cen be extended to 811 of (R )" x (€ )" in en cbvious way: -
loﬁ(xl, --o,xr,zl, ..."ZB) = (1°E|xl|, -..,2 lﬁglzll,-H) -

(The reason for the factor of 2 in the last s coordinates is easily seen by

looking &t the originel log mapping.) Thus we have
VCUCR - (0] — (B) x (€5 28, g'+e

where the sy‘?abol «— indicates that the mapping is an embedding. It is also a
multiplicative homomorphism. Specificelly each « € R - {0} goes to

(cl(ﬂ),...,(fr{a) 5 ‘rl{a), ...,'rs(cx)}

where the o3 are the embeddings of K in R and the 7, and thelr complex
conjugstes T; ere the non-resl embeddings of K in C. Under this embedding
the group V maps Lsomorphically onto @ swbgrowp V' of (B )* x (€9)°.

A set of coset representatives for V in R ~ {0} can be cbtalned from
a set of coset representatives for V' in the group {]R*)r % ({!*)E . This latter
set is called a fundementel domein for V'. Counting members of the ideal J in
the desired subset of R - {0} iz the same as counting members of the lattice Ay
in the fundamental domain. Moreover the condition

)] < tlisl
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ie equivalent to
Jn(x)| < tliall

where x is the image of a in (R)® x (€')° and N is the special norm

defined by
N(xl,stn,]ﬂr,ﬂl,--t,zg} = xl e xr'zlia smw EZBiE.

(Be sure you believe this.)
Summerizing what we have seid, our problem is as follows:

(1) Find a set D of coset representatives for V' in (R )* x (€)% ;

(2) Count elements x € A; ND having
[wCx)| < ] -

The mmber of x in (2) is essentially the mmber of principal ideals (a) cJ
having ||{@)|] < tllal] , except thet each such idesl has been counted w times,
where w is the mmber of roots of 1 in K. This comes from the fact that we
are using a fundemental domain for V rather than for U. Thus the muwber of x
in (2) is w-i.c(t] "

The construction of D is facllitated by

IEMMA 1: Iet f: G +G" be & homomorphism of abelian groups and let 5 be a
subgroup of G which is carried isomorphically onto a subgroup S'cCG'.
Suppose D' is a set of coset representatives for S' in G'. Then ite
total inverse image D = £(D') is & set of coset representstives for S

in G.

This generalizes to arbitrary groups if one comsiders only left or right
cosete. The proof 1s straightforward and is left as an exerclse.
Lerma 1 is applied to the homomorphism log: (Iﬂ*)r X ((t*}s + B2, e xnow

that V' maps isomorphieally onto the lattice Ay» BO We want & set D' of coset
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representatives for A, in B T®, Its total inverse image D will be the
degired fundamental domain.

The real quadratic case is instructive. r =2, s=0, and A, 15 & one-
dimensional lattice in the line x + ¥y = 0. D' can be teken to be the half-open
infinite strip shown in the diegram on the left, and its total inverse image D in

(:El*)e is shown on the right.

/////;}\ f{f”\\\l

\\\}} S
V1Y

In genersl, fix a fundsmental parallelotope F for Ny in the hyperplene H
and teke D' to be the direct sum F @ L where L is any line through the origin
not conteined in H. Equivelently, fix a vector v € K ' ° - H and teke

D'=F&® BRv. Then

D=[x€ (]Ei*)r ¥ (I!*)g: log x ¢ F& Rv)

ig a fundamental domein for V'.
Tt happens that there is one choice of v which is better than 811 the others,

namely

v = (1,101,1’2’000,2) -
i i | L

r 8

We will indicate this by just writing (1,...,2). (Thus in the real quadratic case
(1,.+.,2) really means (1,1).) With this choice of v, D becomes homogeneous:

D=aD foraell a € R, a# O. (Verify this.)
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Recell that we want to count the number of points x in Ay N'D heving
|w(x)| < tllsfl . For this purpose we define D, = {x € D: |n(x)| <&} and cbeerve

that
nr—

Tous our problem is reduced to counting the mmber of points in
a; 0 el o,

Specifically, we want an asymptotic estimate for this mmber as t +» =,
It is possible to obtain such an estimate under rather general conditions.
Iet A be en n-dimensional lattice in R" and let B be any bounded subset of

]Rn. We want an estimate for |.n.na.:3| 85 8 * @.

IEMMA 2: Tf B heas a sufficiently nice boundary (defined below) then
G - —YolB) .1, (e)

where vy(a) is o(a®~1).

To apply this we consider (:IR*)T X (a:*}s as being contained in ®" in en
obvious way. Assuming that Dl is bounded and has a sufficiently nice boundary

(which we will prove), we obtein

[Ay n% tf|a)) Dl[ = M t + 8(t)

wl(mn/AJ)
3.4
where ®(t) is O(t ™). The coefficient of t simplifies to
vol(Dl)
vol{mnfl\n)

Conbining everything we have said, we finally obtain

10(1;) =kt + e(t)
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1.3
where e(t) is oft ™) ana

vol(D,) 28vo1(D, )

K =w.vol(mn/n3) ) wid |aise(R)|

Thus it remains for us to define "sufficlently nice"; prove Lemma 2; and show

that D; is bounded and has a sufficiently nice boundary. ?&1(1}1} will be

computed later.
"Sufficiently nice" means (n - 1)-Lipschitz-paremetrizeble: This meens that

it is covered by (contained in the union of) the images of finitely many Lipschitz

funetions
I

£: (0,11 - R

vhere [0,11“'1 is the unit (n -1)-dimensional cube. ILipschitz means that the

ratio
J£(x) - £()] /= - ¥l

is bounded a8 x and y range over EO,l]n'l. The vertical bars indicate

lengthe in the appropriate space (R* o B l} .

Proof of Lemms 2: We begin by reducing the problem to the case A = b

There is a linear transformetion L of R" sending A onto Z® . Tt is clear
that Iipschitzness is preserved by composition with & linear transformation, so
B' = L(B) has a sufficlently nice boundary. Obviously

|anes| =|z" nas
so 1t is enough to show thet the lemms holds for %~ and thet

vol(B') = ,.E(EL
vol(E"/ A)

Tne latter comes from the well-known fact that e linear transformetion multiplies
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all volumes by the same factor; thus vol(B) and vol(B') are in the seme ratio
as (vol(R'/A) and vol(R"/z"). Since this last volume is just 1 we obtein
what we went.

We assume now that A = %~ . Consider translates of the wnit n-cube {0,.1]rl
whose centers are at points of #z" . Ve will refer to such & translate as simply
en "n-cube.” The mumber of n-cubes inside eB is approximately |Z" N aB| ana
it is also approximately wvol(aB). In both cases the difference is bounded by
the muber of n-cubes which intersect the boundary of aB. Hence if we can show
that this last number is O(a" '1) then it will follow that

| 2" n eB| = vol(eB) + v(a)

where y(a) is O(a" 'l) . Since vol(aB) = & 'vol(B), the proof of Lemms 2 will
be complete.
The boundary of B 1is covered by the sets f([0,1]“'1} for finitely many

Lipschitz functions £ ; thus the boundary of aB 1is covered by the sets

af([0,11" "1 .

Fixing any such £, it is enough to show that the number of n-cubes intersecting
af([0,11° 1) 1s o(e®"71).

The trick is to first subdivide (0,171 into [a]®” ' small cubes in the
cbvious way, where [a] denotes the greatest integer < a. We assume that a > 1.
Each small cube § has diasgonsl ,/n - L/[a], so the diemeter (largest possible
distance between any two points) of £(S) is st most A/n - 1/[a] where 1 is
the Lipschitz bound for f. Then eaf(S) has diemeter at most an/n - 1L /[al;
this is at most 2)/n -1 since a>1.

We now meke & gross estimate. Fix any point of af(S) and teke the n-
dimensional ball centered st the point and having redius 2)/n - 1. It is clear

that this ball contains af(S) and intersects at most

u,n(li-h,}n-—l + E)n
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of the n-cubes. Note that p d1s independent of a. It follows that the number
of n-cubes intersecting af([0,1]" '1} is at most p,{a.]"'l , since [a.]" -1 is
the number of small cubes £ . Finally, p,[a,]n_l is obviously D{an-l} .

That completes the proof of Lemms 2. [

How we verify that Dl has the requlred properties. Recall that D_.L conelsts

of all x = {xl,...,xr,zl,...,zﬂ} € (IE{*)r ¥ (I!*)B such that
log(x) = (1og|x1|,...,e 1ogf21|,...} EF @ R(1,...,2)

and |x1 vas xrzf .ee zii <1. This last conditicn is equivalent to saying that

log(x) has coordinate sun < O. It follows that

x €D iff log x € F & (~e,0](1,...,2)

1

where (-e,0] 18 the set of real mmbers < O.

From this it is essy to see that Dl is bounded: The fact that F is
bounded places bounds on &ll coordinates of points of F, hence the coordinates
of points of F & (-«,0](1,...,2) are bounded from ebove. Taking into account the
definition of the log mapping, we conclude that there is a bound on the coordinates
of points of D, . In other words, D, is bounded.

Here is a picture of Ill in the real quadratic case:

Tt is obvious that the boundary of D; is 1-Lipschitz parametrizeble, so the proof
is complete for real quadratic fields.
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Returning to the generel case, we Teplace D, by the subset D; consisting
of all points of by having HyseersX, 2 0. Dl has a sufficiently nice boundary
1ff D] does, and vol(p,) = 2%vol(n}) .

We will construct a Lipschitz parametrization for the boundary of D . First

establish the following notation: The fundamental parallelotope F has the form

r+s=-1
{ = twv:0<%_ <1}
k=1 k'k .%

for some Z-basis {vl,...,v } for the lattice Ay+ Foreach k, set

r+s8-~1

(1) (r+ B)) .

vk_=.{vk yenesVy

+
A point (xl,...,xr ’EIF""EB? of D, is then cheracterized by the

equetions

r+s=-1
- (1)
:I.og(xl) kfl b+ u

r+g=1

log(x_ ) = T t v(r) +u
T k=1 k'r

r+s-1
1
2 J_lexlr = kfl tkvl({r'F )_‘_ 2u
’ r+g=1
2 :LQEIZB' = kEl tkvl({r+5) + 2u

where the J%

(-=,0]. Setting ¢, = e’ and introducing polar coordinates (py>8;) for each

, we find that n; can be described as the set of all

are positive; the +_ range over [0,1); and u ranges over

J

i i%
(xl’v-',xr, ple ,-.-,pﬂe J

satisfying
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r+e-1
(1)
E v,
k=1 tk k

r+8-1 {r+3}
2 I Vie
k

o]

—

8 = 211"l"r+s-l-;]

with tr-;-s € (0,1] =end ell other %, € [0,1) . Tnis gives a parametrizetion of

I’I by & helf-open n-cube. Letting all %, teke on their boundary values, we

obtain a peremetrization of the closure ]3{; that is, we have a function
£: [0,1]" — B x¢°

mapping the n-cube ontoc D; . (7o see why the image is the closure, argue as
follows: EO,l’_In is compact and f is contimuous, hence the image is a compact,
hence closed, set conteining I.‘r;: ; on the other hand the half-open cube is dense in

—

the cube, hence D1 is dense in the image. Thus the image is exactly Iii.)

The closure n;‘_ is the dlsjoint union of the interior I and the boundery

B of E . We will show that the interior of the n-cube is mapped into I,
hence the boundary of the n-cube is mapped onto a set containing B. The boundary
of the n-cube is the union of 2n (n-1)-cubes, hence B is covered by the images
of ©n meppings from (n -1)-cubes. Each of these mappings is Iipschitz because f
i (see below), hence B is (n~1)-Lipschitz paremetrizeble. This is what we
wanted to show.

Tt is easy to see that f, defined on all of [0,1]", is Iipschitz. For
this it is enough to note that &ll of its partial derivatives exist and are
continuous, hence sll partial derivatives are bounded on [0,1]". (A continuous
function on & compact set is bounded.) This implies that £ is Lipschitz. (Why?

Notice that the Py and 93 are polar coordinates. Be sure you believe this

T
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argument. ) .

Finally we must verify thet the interior (0,1)" of [0,1]" 4s mapped into
the interior I of D;. Tnls requires a closer inspection of the mapping f .
We claim that the restriction

£: (0,1)"— BT xc®

is the composition of four mappings

£ £ £ £
(0,1)" —-+ R*—2, B -3 & x (0,m)° x B°—F— B x¢°

each of which preserves open sets; in particular then, (0,1)" is mapped onto an
cpen set by f, hence mapped inte I.
The £; are defined as follows:

fl{t1’°..’tn) Gl (tj_:---ylog{tr_'_s):r"utn} 3

where the log is applied only to the (r+s)th coordinate.
f, 1is the linear transformation

ACHITN ENCHOPNN

where M is the n x n matrix

LI N )
o

Vrig=1
l LE R RN N ] 2
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f3 is defined by applying the function e" to each of the first r
coordinates X %ex to each of the next & coordinates; and multiplying each

of the last s coordinates by 21.

Finally fh sends

(xl""’xr’ Pyr===2Pg s 91:"':95)

to

ip iﬁs
{xl,n.,xr,gle ,.-.,pse )-

We leave it to the reader to verify that £ 1is the composition of the fi .
It is clear thet £, £, end f, preserve cpen sets ‘(think sbout it), so it
remains only to prove that the linear transformaticn fe does. It is sufficient
to show that M has rank n. But this is cbvious since the v, and (1,...,2)
are linearly independent vectors in wEE.

That completes the proof of Theorem 39. [

We promised to give & formula for x . This requires calculating vo:l.(nlj :
which is Ervol(]i;-) . Using the standard formule for volume with respect to polar

coordinates, we have

VOCI.(]:I'I) =J+pl see Py eee X dpy we. dp ey ... GO .

D

Chenging coordinates, this integral becomes

I p:l. sew pEIJ(tl_'.oo’tnjldbl = &tin
[o,11"
where J(by,+..,t ) 1s the Jaccblan determinant of f and the vertical bars
indicate absoclute value.
J(tl,...,t n} 15 the determinant of the matrix having as its coordinates the

partial derivatives of the xs, pﬂ and aa with respect to the tk' If we
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dencte :1:1,.,...,:&,,|:;:I_,...._,,|:,&,'t-fil'.l_,,...\,ll-flE by wl’""wn respectively, then
J{tl,'-ﬂ't'n) has
o

3/ %

in the kth row, jth column. Computing the partial derivaetives, we have for

k<r+s8:

awjfatk=.1%v(3)w if r<j<r+s

and for k>r + 8,

ey if j=k
awjfatk =
0 othervise .
We leave it to the reader to verify this and to show that the determinant

J{'tl,...,‘t-n) is equal to

ﬂsxl e xrpl Tew pﬁ

tr-i- B8

det(M)

where M 1s the matrix occurring in the proof of Theorem 39. Thus we cbtain

2

2
x .. LN 3 p
vol(nij = ﬂsldet(bni)lj 1 trpl B aty ... @b




I7h

where the vertical bars indicate sbgolute value. Next we cbserve theat

xE 2 _ gh
xl Ty rpl . pﬂ— T+ 8

because each Vi has coordinate sum ©. Thus
+ 1
vol(n}) = & 1°|aet(m)] .

The quantity

%biet(hi} I

is called the regulstor of R (or of K), written as reg(R) . This is the same
as the sbeolute value of the (r + 8) x (r + &) determinant having

VseensVy e (the log vectors of a fundamental system of units) in the first

r+ 8 -1 zows, and (—1115,...,%) in the last row. This quantity does not depend on
the particular choice of the v, , a8 will become clear scon. Putting things

together we obtain
vol(Dlj = 2%1°reg(R) ,

hence we have proved

I P retn)
) w,.,li Idisc{R)l

where r ig the mmber of embeddings of K in R; & is helf the number

of non-reel embeddings of K in €; and w is the number of roots of 1

in K. O

Tt is easy to obtain some other characterizations of veg(R) by using this

observation:

IEMMA: Tet A be a square matrix, a1l of whose rows except the last have

coordinate sum O. Then the determinant remains unchanged when the last row
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ig replaced by any vector having. the seme coordinate sum.

Proof: ILet B dencte the new matrix. ]A' - IBl is equal to the determinant
of the matrix having the rows of A in all rows except the last, and the difference
between the old and new last rows in its last row. Then the columns of this metrix

add up to the zero vector, implying |4] = |B|. D

Recall that reg(R) is the absolute value of the determinant having

"‘rl"“’vr+s-_1 in ite first r+ & -1 rows and

112 2

%,...,n’n’...’n

L e I T |
r B

in its last row. The v; ere all in H, so the last row could be replaced by
any vector having coordinate sum 1 without affecting the result. There are a
few ocbvious choices, If we put 1 in one position and O in all others, we find

that reg(R) is the absclute value of an (r + & = 1) x (r + &8 = 1) subdetermi-

nant., And if we put 1/(r+s) everywhere along the last row we ocbtain a geometric

interpretation.
THEOREM L41: reg(R) = vnl{HfAU) IAETEY
also, if VyseeesVy, o1 15 any Z-basis for A; then reg(R) is the

sbsolute value of the determinant obtained by deleting any column from the

matrix having rows VyseensVo o q "

Proof: For the first part, we note that Teg(R) = vol(® ™ °/A), where A

iz the lattice having Z-basis

1 1
{vl’“"vr+s -1’{r + 8" ¢ s)l )

(This comes from putting ria everywhere elong the last row of the determinant

and epplying the lemma.) Since the lest basis vector is orthogonal to H, we find

that vol(®* T ®/A) is the product of vol(H/A;) end the length of
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(53— eeig=—) . Obviously the length is 1/JF 76 .

Thie shows, incidentally, that reg(R) is independent of the choice of the

vy : eny Z-basis for A; would give the same result. (This could have algo been
obtained from Theorem 40 or more directly.)

The rest of the theorem follews by putting 1 in one coordinate of the last
row, O in all others, and applying the lemma. D

We note that & Z-basis for AU is obtained by taking the log vectors of any
fundamental system of unite in R.

[ER

EXfMFIE: The real quadratic case. Iet u be the fundamental uwnit in R. Then
reg(R) = log(u)

where log(u) just represents the log of a real number, not the vector-valued log
function. Note thet w> 1 by definition, hence no sbsclute valuss are necessary.
Combining this with Theorem 4O, we obtain

e 2 105!11!
f discERi

L]

We note that in the imaginary quadratic case reg(R) is defined to be 1.

Then Theorem LO gives the correct value of k .

EXERCIEES

1. Fill in details in the proof of Theorem 39:
(a) Prove Lemme 1.
(b) Verify that D is homogeneous when v = (1,...,2).
(e) Be sure you believe that £ is Iipschite.

(d) Verify that f is the composition of the f; and that the £, preserve

open sets.
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2, Fill in details in the proof of Theorem 40:

(=)
(b)
(e)

Let

Verify that the awéfatk are as claimed.

Verify that & ('l;l,...,tn} is a8 cleimed.
2 2
Veriﬁr that xl Y xrpl sen pa=t§+s¢

Determine the value of x for Zlw], w= BETI'ifﬁ . (Bee exercise Uy,

chapter 5.)

Do the seme for Z[J2]. (See exercise 36, chapter 5.)

K be & mumber field, R=RA N K. A&nelement O € R 1s called totally

positive iff of0) > O for every reel embedding o: K> R. Let K’ denote

the set of all totally positive members of R. Define g relation &~ on the

nonzero ideals of R as follows:

(2)
(v)

(e)

(a)

Ity ife ar=p7

for some O,p € R .

Prove that this is an equivalence relation.

Prove that the eguivalence classes under this relation form a group e
in which the identity element is the class consisting of all prinecipal
ideals (o), o€ K'. (Use the fact that the ordinary ideal classes

form & group. Notice that oF € R' for every nonzero @ € R.)

Show that there is a group-homomorphism f: ¢t s , Where G 1is the

ideal class group of R.

Prove that the kernel of f has at most 2° elements, where r is the
nunber of embeddings K » R. Conclude that G' 1s finite.

Continuing the notation of exercise 4, assume that K has at least one real

embedding o: K+ IR. PFix this ¢ and let U be the group of wnits in R,

(2)

What can you ssy gbout the roots of 1 in RY
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6.

8.

9.

10.
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(continued)

(b) Show that U= {+ 1} x V, where V consists of those uw € U such that
ofu) > 0. Using Theorem 38, prove that V ie & free ebelian group of
rank v+ 8 -1 with » and s as usual.

(e) 1et U*uUnR"'. Then U"'cv, and clearly U" conteins
\’Eufvzzvé‘?}. Use this to prove thet vt is & free gbelian group
of renk r + 8 - 1. (See exercise 24, chapter 2.)

Modify the proof of Theorem 39 to yleld the following improvement: If € i=s
one of the equivalence classes in exercise L, then (with the cbvious notation)

wa have

ic{t) =x Tt + ec{t)

where k* 1s independent of € and ey(t) 1is ot~ /)y | (suggestion:

#* k] *
Replace V by U™ and replace (R )° x (€)° by (0,0)" x (€ )%.)
Explain why we do not necessarily have kt = x/Er .
Show that h+x+=h|<, where h' is the order of G .

Iet u be the fundamental unit in & real quadraetic field K.

() Show that u is totally positive ifrf Hg(u) =1. ILook st some examples

(see exercises 33 and 3k, chapter 5).

(b) Prove thet h' =2h if u is totally positive; otherwise h' =h.

Fix & nonzero ideal M in R =& N K and define a relation :..; on the set

of ideals of R which are relatively prime to M, as follows:
ILJ iff oI = g7 for some
M
a,p €RY, a=p =1 (nod M)

(a) Prove that this is an equivalence relation.
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10. (continued)
(b) Prove that the equivalence classes form a group G; in which the
identity element is the class consisting of all principsl ideals (),
@ € B, a=1(modM). (Hint: To show that a given class has an
inverse, fix I 1in the class and use the Chinese Remainder Theorem to
obtain ¢ €I, @ =1 (modM).) The equivalence classes are called

ray classes and G it called a ray class group.

(e) Show thet there is & group-homomorphism £ GM+ > @, where 67 is as

in exercise 4.

(@) Prove tnat the kernel of £ has at most |(R/M)"| elements, where
(RM)" 1is the mitiplicative group of the finite ring R/M. Conclude

that G;'l is finite.

11, Show that if R= Z and m is any nonzero integer, then G'Em) is

1somorphic to zz; ]

12, Iet 13: denote the group of totally positive units in R satisfying
u =1 (mod M).. Show that l:h'" is & free sbelisn group of rank = + 8 - 1.

(See exercise 5c.)

13. Modify the proof of Theorem 39 to yield the following Improvement: If C is
any rey class (equivalence clase under i) , then (with the obvious notation)
M

we have

+

1C(t) = “Mt + ec(t)
vhere H:'I is independent of C &nd gc(t) is 0('1:.1 —.{lfn)) « (&= in
exercise 6, replace (E*)r ® (E!*)IIE by (0,e) x (ﬂ!*)a; also replace V
by Ii « There ie a further complication now: The lattice Ay must be
replaced by an appropriaste translate of the lattice Mg » corresponding to
the solutions of x =1 (mod M) in J. (Necessarily J and M are
relatively prime, so the solutions from a congruence class mod JM.) Show
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ik,

15.
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(continued)
that Temme 2 is still valid when A is replaced by a translate of &

lattice.

Let ho ERRR A

-1 byany r+ & -1 units in a nwber ring R and let
G be the subgroup of U generated by all uy and by all yoote of 1 in R.
Iet Ay be the sublattice of My consisting of the log vectors of units

1n G -

(a) Prove that the factor groups UfG and AU,/AG are isomorphie.

(b) Prove that the log vectors of the w, are linearly independent over
R iff U/ ie finite.

(e) Define the regulator mg{ul,...,ur_'_sﬂl) to be the sbsolute value of
the determinant formed from the log vectors of the w elong with any
vector having coordinate sum 1. (The lemma for Theowem L1 shows that
any such vector results in the same value.) Show that U/G is finite
iff 1"@5(1.11,...,ur_l_‘EI __1) #0.

(d) Assuming that reg(ul,...,ur_'_s'_l) # 0, prove that

reg(uy,e.esu, 1) = |UfG|res(R) .

(See exercise 3, chepter 5, end Theorem 41.)

Iet p be an odd prime, -

Set K=TR Nelol = elo+ w1,
E=ANK= Zlw+ m'lff (see exercise 35, chapter 2), U the group of units
in R, n=[K:§] =(p-1)/2. Foreach k not divisible by p, we know

that

_ sin(kT
Y% = Tsin fe)

is a unit in R by exercise 48, chapter 5.

(a) For each J not divisible by p, let o denote the automorphism of
Qlw] sending ¢ to mj. o5 restricts to an automorphism of K (why?)
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(a)

()
(e)

181

(econtinued)
which we also call .31. thow that the Galoie group of K over §

econgiste of Tyr=vesCy, -
Show that o (uk) =+ l.lk'jfuj « (Use exércise 48, chepter 5.)

For cach k, set ) = log|sin | . Prove thet

reg(uy; ..o, ) = |% det(n)]| ,

where A is the n ¥ n mabrix

11 e ln

[ TR 1
N 2

having lk.j in row k and column Jj, and 1=L1+ SCTN i W Notice
A # O since all terms are negative. (Suggestion: Using the definition

in exercise llic, take the extra vector to be {111’1,...,111{1) .)



Chapter 7
The Dedekind zeta function and the class
number formula

We will use the results of chapter 6 to define and establish properties of
the Dedekind zeta function of & number ring R. This is & generalization of the
femiliar Riemann zeta function, which occurs when R = Z . Using this function
we will determine densities of certain sets of primes and establish a formula for
the number of ideel classes in an sbelian extension of §. :

To svoid conflicting notation we hereby discontinue the use of the letter n
for the degree of & number field K over €. ILikewise the letters r and s
will no longer have their previous meaning.

Some complex function theory will be necessary. The required material can be
found in Ahlfors, Complex Analysis, perticularly in chapter 5.

Consider Dirichlet serles

o

2
a’
n

()

[

n=1

in which the e are fixed complex numbers and & 1s a complex varisble. (n° is

defined to be e° 198" ) mhe notation s = x + iy will be used throughout this
chapter, x and y being real. We need the following convergence theorem:
LEMMA 1: Suppose E {t,,n is O(tr} for some real r > O. Then the series
n
(*) converges for all & = x + iy with x> r, and is an analytic

(= holomorphic) function of s on that half-plane.

& e
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Proof: Tt is enough to show that the series converges uniformly on every
compact subset of the half-plane. (See Ahlfors, p. L7k.)

For each & we estimate the sum I;l=mann"ﬁ. Setting A = E:_lan we have

N A, MOA Ay “m 1
- A p 2ot M kol E {—-
= n3 =m ns ME m An

M
= =
= n=m (n+1}

n

Hm]=fl

n=m m n

From the O(t") condition there is & nuber B such that |A | < Bn" for ell
n. Hence

M a r M 1
| & — < B( i + 2= 1) z nrl-is -t E!) .
|h[s| ] num n°  (n+1)

Writing & = x + iy and noticing that

we cbtain

v EL e LI

--<- x+l
which gives
M a M-1
1 = —-%|§B{Mr'x+mr *ils] = nT XLy,
n=m n n=m

Ietting m and M go to infinity, we find that thie expression goes to O for any

fixed & = x + iy in the half-plane x > r; this is because the last sum on the
right is bounded by

J" GFox=1 ﬂ[m——l}r'x

pmal X=-21

for eny m> 1. This implies convergence of the series Z:=1 z‘;».ﬂn"':'!l for x>r.

Moreover the convergence is uniform on compact subsets of the helf-plane x > r
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becsuse each such set is bounded (so that |s| < B' for some B') and bounded
awey from the line x = r (so that x - r > ¢ for some e>0). Thus we have
the uniform estimate

L & g
| & 5l <B3@™® 4+ -{E—;EQ—J

n=m In

and the proof is complete. [J

Temms 1 shows that the Riemann zeta function

t(s) = ¢ iﬁ
n=1ln

converges and is analytic on the half-plene x > 1. More generally the Dedekind

zeta function Ck of a muber field K is defined for x > 1 by

[N

o “n
kis) = = -
& n=1 n°

where j, denotes the mumber of idesls I of R=&NK with It =n. Theorem

39 shows that % _. J 1s 0(n) , hence (g converges and is enalytic on the

half-plane x > 1. This much could have been esteblished without Theorem 39 and
Lemme 1; however much more is true. We will show that (. can be extended (but
not by the sbove series!) to a mercmorphic function on the half-plane
x >1 - (1/[K:Q]), eanalybic everywhere except at & =1 where it has a simple
pole (pole of order 1); in other words (s - 1);K{s) is enalytic on the entire
helf-plane x> 1 - (1/[K:Q]) .

The first step in extending (. is to extend ( (which is ;Q}. This is
accomplished by first considering the series

1 1 1
f{s)nl“'a_s'l""';“—"‘ LR

3% L®

which converges to an enalytic function on the entire half-plane x > O by lemma

1. Tt is easy to see that
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£(s) = (1 - 22 " ®)(s)

for x> 1 {prove it), hence the formula

£(s)

-21-5
extends ( to a meromorphic function on the half-plene x > 0. Conceivebly, this
could have poles at pointe where 21"'E=1; howevezr thie doee not actually happsn
except when & = 1. In other words f(s) = O at the points

Bkﬂl""'i'.ei%, k=i1,12, ey

eancelling out the simple zero (zero of order 1) of the denominator. We prove
this in an indirect way by considering another series,

1 2 1 1 2
g(s»)l=:'i.+2—s—-E‘:—E+-;!-I.—&“!—-g—l:‘i*--gﬁ—l

+III
which converges to an analytic function for x > 0. We have
l1-8
a(s) = (1 - 377 V)ele)

for = > 1, hence the formuls

_&ls)
1 - 318

extends ( to a meromorphic function on the helf-plane X > O with possible poles
only when 3+~ 5 = 1. Tt is an easy exercise to show that these points include

none of the s k # 0, defined sbove. It follows that for each k # 0, (s)

k’

hae a finite limit as & + &

. from the right, where we have

o) = —2e) . _sle)

-21"5 1—3

This shows that £(s)/(L - 2 %) does not actuslly have poles at the 5, k£ 0,



and hence is analytic except &t 5 = 1. We teke this asg the definition of the

extension of (, which we &also call (.

1-8 yas & simple

zero there. (1 im not & Zero of the dsrivative of 1-21'5; in fact the

We note thet [ has a simple pole at & = 1, since 1 - 2

derivative has no zeros.) That this is actually & pole of ( can be seen from
the fact that f£(1) # 0.

Now we can extend (.. We have

@ J_ =-hg
:;K(s) = }:1 oL S —— + hx c(e)
ns= n

for x> 1, vhere h ig the mumber of idesl classes in R and rk is the muber
occurring in Theorem 39. It follows from Theorem 39 and Lemma 1 that the Dirichlet
series with coefficients 3:1 = hk converges to an analytic function on the half-

plane
1
x>1 - TK:-QT .

Combining this with the extension of (¢, we cbtain a mercmorphic extension of Ck
on the half-plane x > 1 - (1/[K:Q]), analytic everywhere except for a simple
pole at s =1.

The reader may have noticed that we have been manipulsting series in ways
that involve changing the order of summation. This occurs in the representation
of ((s) above and also in showing that £(s) = (1 - 2" "®)¢(s) . In both cases
this is justified by the fact that the series involved converge sbsolutely for
x>1l.

Absolube convergence alsgo justifies writing

L'Ks)=}: 1 for E>1

T ||z

where the sum is teken over all nongero idesls I of R. The order of summation
is unspecified since it does not matter.

This last representation of ‘;K suggests writing
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g, (8) =ﬂ(1+-—l—+ —Tl + aea)
K P I J=ee

where the product is teken over all primes of R. The idea is that when the
product is multiplied out formally, the resulting terms are exactly the [I||™,
with each I occurring exactly once. This follows from unique factorization of
idesls and the multiplicative property of || || (Theorem 228). Ignoring questions
of convergence temporarily, we note that each factor in the product is a geometric

series, hence we obtain

G_K(BJ =-lr|-{1- 1 )-l for x>1.
P

=l

The following lemma gives conditione under which this sort of thing is valid:

LEMMA 2: Iet a,8,,... €C, les] <1 vi, ana :’i“=1|ai1<u. Then
-]
- & E z
n(l-ai}l=1+ T E “11'”3'3;}
1”‘1 j=1 (!‘1,.4.,1'5)
where the inner sum is teken over all j-tuples of non-negetive integers with
3'521' Thus sum and product are both sbmolutely convergent, hence

independent of the order of the 8

Proof: The condition Zle;| < w and the fact that e, #1 v i imply that
the infinite product [I(1 - a;) converges sbsolutely to a finite nongezo limit
(see Ahlfors, p. 189-191); hence so does T[(:L - a-.i)"l . Tt is easy to see that

for each m,

m

m T. x
”(1-&1)"1=1+ T b3 all ven a.f
iﬂl a'=1 {Tl,-.-,rj)

with the inner sum as before. We know that the product on the left converges as
m -+ e, hence so does the sum on the right and the limits are equal. All that
remains to sliow is sbsolute convergence of the sum; this follows immedistely by

replacing &, by laii in the asbove remarks. [J
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To apply Lemms 2, we must verify that E|[|H[™| <= for x>1. We have

sfI=I®] = =™ < =™

and we know that the latter sum converges to I;K(x) for x> 1.

Summarizing our results, we have established

THEOREM L2: For any number field K, Cx is a meromorphie function on the

half-plane x > 1 - {1/[K:Q]), analytic everywhere except for a simple pole

at s=1l. For x>1 we have

(=) = z—--JT(l e

T I

where I runs through the ideels of R and P rune through the primes.

Moreover everything converges sbsclutely for x> 1. O

Ae an application of Theorem 42, we determine the densities of certain sets

of primes. Iet K be a mmber field, and let A be & set of primes of

Rﬂa n K.‘
Consider the funetion

1
5,0 = B T

where [A] denotes the semigroup of idesls genersted by A ; in other words

I ¢ [A] iff all of its prime divisors are in A. Applying Theorem 39 and

TLemma 1 agein, we find that the series for CK A converges to an enalytic function
2

everywhere on the half-plane x > 1. Moreover Lemms 2 shows that

1
) = 1 G-
€A IIPH
for x> 1. If it heppens that some power C;A can be extended to a meromorphie
. -]
function in & neighborhood of & = 1, having & pole of order m at s = 1, then

we define the polar density of A tobe m/n. (When defined, this is the same
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as Dirichlet density; see exercise 7. For our purposes, however, polar density
is more convenient to work with.) At the extremes, it is clear that a finite set
has polar density O and & set containing all but finitely many of the primes of
R has polar density 1.

Tt is useful to note that if A contains no primes P for which [|B| is a
prime in %, then A has polar density 0. In fact ';K,A is en analytie

function on ’c-hal- entire half-plane x > 1/2. To see this, we write

1 =1

(= N a--2y

%A pea i

and observe that each |P] involved here is a power, at least the square, of a

prime p € % ; morecver each p € % ocecurs in at most [K:§] factors. This

allows us to write ;K A as 8 product of at most [K:§] sub-producte, each of
s &

which has factors involving distinet primes p € Z. Each of these factors is -

expressible as a Dirichlet series whose partisl sums Eh <t B BTe bounded by those

of ((2s) and are consequently o(tlfg) . (Think about it.) Thus by Lemma 1 each
factor is an anelytic function on the entive half-plane x > 1/2, hence so is the
full preoduct §K, p+ Ve note slso that CK, p 18 nonzero everywhere on the half-
_plane since it is an sbsolutely convergent infinite product.

An immediate consequence of this is that if two sets of primes of K differ
only by primes P for which ||B|| is not prime, then the polar density of one set
existe iff that of the other does, and they are equal. This is because the
corresponding (~functions differ by a factor which is enalytic and nonzerc in a
nelghborhood of &8 = 1.

Using the sbove cbeervation along with Theorem 42, we cbtain the following
basic result about primes which split completely in a normal extension:

THECREM 43: Iet L &nd K be number fields, and assume that 1L is & normal
extension of K. Then the set of primes in K which split completely in L
has polar density 1/[L:K]. (We slready knew that this set is infinite; see
exercise 30, chapter 3.)
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Proof: Iet A denote this set of primes, and let B denote the set of
primes in L vhich lie over primes in A. Then ||Q] = |[B] whenever Q€ B,

PeA, and Q 1lies over P. (Why?) Moreover for each P € A there are [L:K]
primes Q € B which lie over P. Thus

[L:K] _
A CL,B

end it remains only to show that QL’maapoleoforﬁerla'b BE=1. Todo
this we note thet B contains every prime @ of L for which [|Q)] is prime,
except possibly for finitely many which are remified over K. Thus CI.,B differs
from (. by a factor which is asnalytic and nonzero in a neighborhood of & =1,

end the proof is complete. O

COROLLARY 1: Iet K and L be &8 sbove, except drop the normality
assumption and let M be the nommal closure of L over K. Then the set
of primes of K which split completely in L has polar density 1/[M:K].

Proof: A prime of K splits completely in I iff it splits completely in

M. (Corcllary, Theorem 31.) D
Combining thie with Theorem 27, we cobtaln a further density statement:

COROLLARY 2: Iet K be a number fleld and let f be a monic irreduclble
polynomiel over R=A NK. Iet A denote the set of primes P of R
such that £ splits into linear factors over Rf/P. Then A has polar
density 1/[L:K], where L is the splitting field of f over K.

Proof: Fix any vroot ¢ of F and consider how primes of XK split in X[o].

For all but finitely many primes P, P eplits completely in K[o] iff £
splits into linear factors over R/P; this follows from Theorem 27. Since finitely
many primes are hermless and L 1is the normal closure of K[x] over K, the

result follows from Corollary 1. O

A speciel case of Theorem 43 ylelds
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COROLLARY 3: Let H be a subgroup of m:. Then
(primes p € Z: p € H}

hes polar density |H| /¢(m), where D denotes the congruence class of

p mod m.

Proof: Identify %, With the Galois group of the mth cyclotomic fleld in
the usual wey and let L be the fixed fleld of H. Then for p not dividing
m, p splits completely in L iff p € H. (See exercise 12, chapter L.) O

More generally, we have

COROLIARY 4: Iet L be & normel extension of K with Galois group G, and

let H be a normal subgroup of G. Then the set of primes P of K such that

#(Q|P) € H for some (equivelently, for every) prime Q of L Ilying over

P, hes polaer density |H|/|¢|.

Proof: We note first that if ¢(Q|P) € # for some @ over P then the seme
is true for any other Q' over P becawse ¢(Q'|P) is a conjugate of @(q|P)
texamiﬁa 10b, chapter k) and H is normel in G. Assuming P is unremified in
'L, the first part of Theorem 29 shows that this condition is equivalent to P
eplitting completely in the flxed field of H. The result follows., O

In chapter 8 we will see that H can be replaced by a single conjugate class
in G, with a gimiler density result. (When G is sgbelian this reduces to a
single element.) However this result will be based on something else which is
beyond the scope of this bocok.

The next result shows thet a normal extension of a nunber field K 1=
uniquely characterized by the set of primes of K which split completely in it.

COROLLARY 5; Iet K be & number fleld. There is & one-to-one inelusion-

veversing correspondence bebween normel extensions L of K and certain
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sets of primes of K; the set of primes corresponding to & given L
coneists of those which split completely in L.

Proof: The only question is whether two distinet normal extensions can
correspond to the seme set of primes. ILet L and L' be two normal extensions
of K and suppose that both correspond to the same set A of primes in K. Thus
A ie the set of primes eplitting completely in L, and gimilarly for L'. If
we let M denote the composition LL', then Theorem 31 shows that A is slso
the set of primes splitting completely in M. Then Theorem 43 ElhO’N‘El. that M, L,

and L' all have the same degree over K. This implies that L =1L'. [,

Unfortunately there is no known intrinsic characterization of those sets of
primes which are involved in this correspondence. If there were, we would have a
classification of the normal extensions of K enbirely in terms of the internal
structure of ¥X. However such & clessification is possible if we restrict our-
selves only to sbelian extensions. In other words, we can describe the sete of

primes vwhich correspond to sbellen extensions of K. This will be discussed in

chapter 8.

THE CLASS NUMBER FORMULA

We cen use the Dedeking zeta function to obtain a formuwls for the num;oer of

idepl classes in a mumber ring. BReecall the formuls

w J - hy (
¢le) = T ———3nhx g(s)
K n=1 n®
where h is the nuber of idesl classes in R =A NKj; &k is the nuber ceccurring
in Theorem 39; and J  is the number of ideals I in R with ||If| =n. The
Dirichlet series converges everywhere on the half-plane x > 1 - (1/[K:§]), hence

in particular at & = 1. It follows that h = pk , where

L e
sy o
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The valus of x is given in Theorem 40; hence vwhat we need now is a way of
calevlating p without first knowing h.

We will cbtain e formula for p wunder the assumption that K is an asbelien
extension of @. Egulvalently, by the Kronecker-Weber Theorem (chapter k
exercises) K is comtained in a cyclotomic field @[w]l, w= eszm + Moreover
exercise 38 of chapter 4 shows that we can assume that every prime divisor of m
is ramified in K. Thus the primes of % which are ramified in K are exactly
those which divide m. {Why can't any others be ramified?)

For each prime p of Z, let rp denote the nuber of primes P of R
lying over p. The inertial degree f(P|p) depends only on p, so dall it £,
Then we have

() =M@ - °
P p?
for & in the half-plane x> 1.

We will now define certain Dirichlet series called "L-geries" and show how
GK caen be expressed in terms of them. This will provide a formula for the limit
[

A charecter modm is o multiplicative homomorphism X from Z, into the

unit cirele in €. TFor each such y we can then define x(n) for n€ % in
a naturel way; If n is relatively prime to m, then x(n) = x(n), vhere n
denotes the congruence class of n mod m; if n  is not relatively prime to m,

then x(n) = 0. We then define the series

-1
L(s,x) = = KLEJ-
n=1 n
and cbserve that it converges to an analytic function on the half-plane x> 1 by
Temma 1 for Theorem L42. We will see that this can be improved to x > O except
when % 4is the trivial character 1 (neaning that % is the constant function 1
on m:; on %, ¥ ‘tekes the values O and 1).

Temma 2 shows that L(s,y) can be expressed as a product
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L{s,x) = n (1 - 3'%)-)‘-1

pym P

for x>1. Thus in particular for the triviel character we have

Ws,1) = ¢(e) | (-3,
plm P

At this point it is necessary to sey a few words sbout the characters of a
finite ebellan group G ; these are the homomorphisms of G into the unlt circle.
They form a group G under the cbvious pointwise multiplicetion, and in fact &
is (pon-canonically) isomorphic to G (see exercise 15). In particular this shows
that |G| = || .

Now fix an element g € G and let x run through G. Then %(g) runs
through various fth roots of 1 in €, where f is the order of g, and in fact
x(g) rune through all fth rocts of 1 and tekes on each value equally many times.
To see why this is true, consider the homomorphism from G to the unit circle given
by evaluation at g ; the kernel consists of those x which send g tc 1. This
is the seme as the character group of G/{g), where (g) is the subgroup of G
denerated by g, and hence the kernel of the evaluation map has order |G|/f .

It follows that the imege has order f and hence must consist of all of the fth
roots of 1. Finally "equally many times" follows immedistely from the fact that
the evaluation mep is a homomorphism.

We apply this result to the charascters of the Galois group G of K over §.
If we identify m’.; with the Galeis group of @Q[p] over ® in the usual wey, then
G is & homomorphic image of m:. Characters c¢f G can then be regarded as
cheracters mod m (why?). Thus we consider G to be a subgroup of % !

Fix a prime p not dividing m and let X run through G. Then x(p)
runs through the fth rcots of 1, where f is the order of the image of f under
the canonical homomorphism E: + G, and tekes on each value |G]/f ‘times.
Exercise 12, chapter 4, shows thet £ =f . Thus X(p) tekes on each value (the

b

%t_grmtsofl)exacﬂy T times a8 % rTuns through G. Using this we obtain
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n (1 _.ELP).) . (1__l...)r:9 )
xEG Ps pfps

f f =
(Verify this. Suggestion: Factor the polynomial x ¥ - (1/p P ) into linear

factors and set x = 1.) This gives

for & in the half-plsne x > 1. (Notice that the factors get rearranged, and
that this is justified by sbsolute convergence.) Hence we have

g(s) = Ma- -%;)-TP M 18,9

pln p xeé
from which it follows that
Cx(s) m 1 3 F£E
-Ja-2a--2 2 [ e
) ol 25 BT xed
x# 1

We will show that for each % # 1, the series for L(s,X) converges to an
analytic function everywhere on the half-plane x > 0. Thus we can cbtain a
formila for p by setting = = 1 in the expression ebove.

We claim that for x # 1

t xeg) =0.
g€G

In generael if ¥ is a nontrivial character of & finite abelian group G, fix

g, € G such that x(go)#l; then

£ xe) = £ x(gg) = x(e,) T x(e),
BEG g g

implying that ¥ x(g) = O. This shows that for x # 1 the coefficients x(n) of
&
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the series for L(s,%) have bounded partial sums. The dsgired convergence result

then follows by Lemma 1.
We have proved

THEOREM U4: h = p/k , where k is the muber cccurring in Theorem 39 and

=ﬁ(1—&(1-—1—“r9n1,(1, . O
P ol P) fp) g *)

XFL

The problem now is to evaluste L(1,%) for nontriviel characters mod m.

THEOREM 45: ILet ¥ be = nontriviel character mod m. Then

g m-1 -k
L(L,x) = - = RElTk{x) log(l - w )

vwhere g = eaﬂiﬁ" . -rk{x) is the "Gaussian sum"
ak
£ wade

aEZm
end log{l - z) is given by the power series

Iﬂzll

—E e
n=21 -

for g1l z with |z| <1 and also for those z on the unit circle for

which the Series converges. (Lemme 1 shows that the series converges for
every nontrivial root of 1, hence in particular for all g™.)

Proof: {For s in the half-plane x>1, we have

'}

7 m=-1

: N % T w(a-n)k
=0
Lax) = T 4xe) T E= 5,xe) r —F
a €& n=a n ack n=1 n
m m
n>1
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(Absolute convergence justifies mll changes in the order of summation.) We have
T(x): b x(a)=ﬂ,
© BEZ

m

hence consider only 1<k<m~-1; for such k, the Dirichlet series

o -nk
e o
n=1 n

converges to an analytic function everywhere on the half-plane x > 0 (again,
Lemma 1), .hence in particular it is continuous at = = 1. Moveover its value at
s =1 is -log(l - ). Finally, the theorem is esteblished by teking limits
a8 & approaches 1 from the right. O

Conbining Theorems 44 and 45, we obtain an expression for h involving no
limiting processes other than those which are implicit in the trigonometric and
logarithmic functions. Since h is obviously en integer, its value could be
determined by meking sufficiently good approximations to the various values
involved in the expression. We note however that the value of x depends on the
value of reg(R), which in turn depends upon the units of R.

It is possible to simplify the expression for L(1,%) still further. We

will do this.

LEFINITION: Suppose %' is a character mod 4 for some d|m such that

this diagram commutes

E*
mw
i ¢
*/
Ed 'H'.'
where the vertical mapping is reduction mod d. Then we will say that '

induces ¥%.
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It is easy to see that if ' induces %, then

L{1,%) = ” (1 - xléﬂ)L(l,x'} .
plm
p4d

If % is not induced by any X' # %X, then X is called a primitive character
mod m. Using the ebove formula we can calcwlate L(1,%) for any % if we can do
it for all primitive characters. Thus assume from now cn thet ¥ is a primitive

character mod m > 3.
The following lemms leads to a simplification of the formula for L(1,y%).

IEMMA: Tet % be & primitive charecter mod m. Then

X(E)T(x) if (km) =1
'I'k hd
0 if (km)>1

where T = Ty and the bar denotes complex conjugation.

Proof: The first part is obvious end has nothing to do with ¥ being

primitive: as & runs through z:, so does ek if (k,m) = 1.
For the second part we need the following fact:

SUEBLEMMA: Iet G be & finite sbelian group, H a subgroup. Then every
character of H extends to |[G/H| characters of G.

Proof: Just count cheracters. BEvery character of H extends to at most
|a/H] characters of G. To see this, let Npseres¥, be eny r such extensions;
then the x;lxi give r distinet characters of GfH. On the other hand, every
one of the |G| characters of G restricts to one of the |H| charecters cf H.

The result follows. O

Using the sublemma, we show that for each d|m, d#m, ¥ is nontrivial on

“-the kernel of the mapping
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£ 3 £ 3
T, * By

defined by reduction meod d: If it were trivlal op thls kernel, then 1t would
determine & character of the imsge H of Z, in Z,, which would then extend
to a character ¥' of E.;; but then lx‘ would induce ¥, which is impossible
gince ¥ is primitive.

Applying this with a = n/(k,m), we £ind that x(b) #1 for some b € Z,
such that b =1 (mod d). Tt is easy to show that bk =k mod m, hence

*
wbk=mk. Moreover sb runs through ﬂh ag & does. Then

(%) = £ x(ab)u™* = x(b)7, (%),
a8
implying that 'rk(x) =0. O
Using the lemms we cbtaein

1,0 = - B8 B v Xeet - o)

= - MU g (k)20 - o)
kci

(Replace k by -k for the last step. Notice that x(-1) =+ 1.) Now use

exercise LBa, chapter 5, to show that
k1
log(1 - &) = log 2 + log sin T+ (X - Py
for 0 <k <mj; hence

L{1,%) = - M%ﬂﬁ T 4 x(k)(log sin %ﬂ' + I—‘E—i) .
kam
(Note: The other terms vanish because EX(k) = 0.)

We can do even better if we separste cases: It ls easy to show that
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w(-1) = 1= TH(k)k =0

¥(-1) = =1 = ©X%(k) logsin qu =0.

(see exercise 16 if necessery.) A cheracter X is called even if x(-1) =1 end

odd if x(-1) = -1. Thus

o200 ¢ k) logsin Bl ir x is even

™

 kem,
k<m/2
1-(1,'.5() =4
T T, XKk if x is odd.
m ke

Some further simplification is possible. First of all, we note that for our
purposes &ll we need is |L(1,X)| since p = hk > 0O; hence it would be nice to

know |1(x)| for primitive charvacters X . We show that it is just ,Jm:

[7(0 P = (T = ::‘ﬂ; x(a)X(b)a® =P

a,be

-5 xele TR
b,cEEm

.ﬂ.
Moreover for beﬁ’h we have

T, x(e)u(® 1P w"b'rb('x) =0,
CEﬂh
hence
-1
2 » -
17O = £ xe) z Wl
CER b=0
Finally, ot iz a nontrivial mth root of 1 for ¢ # 1, hence the inner sum

venishes for ¢ # 1 and we cbtain [-r{x)|2=m.
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We are still not finished simplifying the expression. For odd % we can

prove that
T oy Mk =—2— 5 _ xk)
KER, x(2) - 2 kezzh
k<m/2

where %K(2) =0 if m is even. Tnls will be done in exercises 17 and 18, Putting
things together, then, we obtain

THECREM 46: Iet X be & primitive charecter mod m > 3. Then

(2
_.__| *x(k)lngsin-——l if x is even
7=

1:<mf_2

II’{]-:K)I = 1

——— £ XK)| if is D
|2 - x(e)lﬁlkezmx PFERS

k<m/2

EXAMPLE: THE QUADRATIC CASE

Iet K=@[/dl, @& squarefree, R=ANK, and set m = |disc(R)|. (Tnus
m=|d] if =1 (moa k), |4a] otherwise.) We know p is remified in K iff
plm (Theorem 25) end X is contained in the mth cyclotomic field (exercise 8,
chepter 2). From Thecrem ki we have p = L(1,x) where. X is the unique nontrivial
character mod m which corresponds to a character of the Galois group of K over
@ . Referring to exercise 12¢, chapter 4, we find that for odd primes p not
dividing m we have

1 if a4 is a square mod p
d
Xp) = &) -
-1 otherwise

(convince yourself of this); and if 24m, then
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1 if da =1 (mod 8)
w2) =
-1 if d=5 (mod 8) .

(If 24m then necessarily a =1 (mod L).) X(n) is then defined for all
positive integers n which are relatively prime to m by extending multiplica-

tively. For cdd n have
xm) = &),

the Jacobi symbol defined in exercise 4, chapter L. Clearly %(n) depends only
on the congruence class of p mod m, so X is a character mod ni:.

It happens that X is a.primitive charecter mod m (see exercise 20), hence
Theorem 46 epplies. Moreover X is even if d > 0, odd if d <0 (exercise 22).
Combining this with Theorem 44 and the value for x for quadratic fields, we

cbtain the quadratic class number formula:

THEOREM 47: ILet R =& ngl/ ], & squarefree, and set m = |disc(R)]| .
Then the muber of ideal classes in R is given by

1 .31}
h:m[ké‘,m* ¥(k) log sin > | if a>o0
™
k<m/2

wherse u is the fundamentel unit in R and ¥ is the character defined

above; and

1
h=m|kgﬂ*x(k)[ if a<0, a#-1, -3. O
m

k<m/2

We leave it to the reeder to verify that this is correct. Recall that the
value of k is T//m in the imaginary quadratic case except when d = -1 or -3
(see the proof of Tnecrem 39); and 2 log(uw)//m in the real guadratic case, where
u is the fundemental unit (vemarks immediately following the proof of Theorem 41).
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are some examples:

VWhen d=-2,
h=—|x{1)+'x(3JI=1
When ﬂ:-‘j,
h=5|x(1) + x(3) + x(7) + Xo)| =2 .
When ﬁ=2,
R Jx(1) 1og sin g + %(3) log sin Eﬂll
log(1l + o,/ 2)
Eing)
1cg(1+J"')
Equivalently,
{1+,J’_) sin%
sing

But the expression on the right is clearly less than 3.

Since we know h is an

integer, the only possibility ie h =1,

1.

S8imilar estimstes work for d =3, 5, end 6.

(a)

Show that

]l =

for x>1.

"3

2

+

2

3

EXERCISES

2

i

Fill in deteils in the proof of Theorem L2:

Foaee = (1 - 227 5)¢(s)
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3§

20k

{continued)

l=-8

(b) Verify that 1 -2 has a simple zero at 5 =-1.

Thie exercise disposes of a technical difficulty in the definition of polar

density. Iet A be a set of primes of a number field. ©Show that if

-nlk

£e) = 1l (@-—)
ped  |IF°

has an extension in & neighborhood of & = 1 having a pole of order mk at

g =1, then

Mma- 13)-:1
pea =

has an exbension with a pole of order m. Thus A has polar density nik /i
1ff 8 has polar density m/n. (Suggestion: Use the fact thet if a function
g(s) }is gnalytic and nonzero in a neighborhood of & point then its kth root
can be defined in that neighborhood in such a way that it is elso analytie

and nonzero. Apply this with g(s) = (s - 1)™(s) .)

Iet & and B be disjoint sets of primes in a number field. Show that
a(a u B) = a(a) + a(B)

if all of these polar densities exist, and that if any two of them exist then

so dees the third.

Let m be & positive integer. Prove that the set of primes p € % such
that p = -1 (mod m) has polar density 1/¢p(m) . (See Covollary 3 of Thecrem

L3.)

Prove that the primes in Z are evenly distributed mod 2L in the sense that
for each a € E:]{_, the set of p € & such that p = a (mod 24) has polar

density 1/8.
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6. ILet H be & proper subgroup of 2?.:1 . Give an elementary proof, using
nothing more than the Chinese Remainder Theorem (in order words, don't use
Corollary 3), that there are infinitely meny primes p € % such that

pgH.

7. Let A be & set of primes having polar density m/n in a number field K.

(a) Show that

e T a--2y
e e

extends to & nonzerc snalytic function in & neighborhocod of s =1.

(b) Prove that

1 1
n & -m E
pea H° =11 [lp°

extends to a nonzero analytic function in a neighborhood of s =1.
(Suggestion: Express .gx(s) as & product and apply the log function,

using

2
n

log(l-2)=- ¢

n=1

If you are skepticel about this argument ancther approach, based on the

exponential funetion, is contained in the proof of Theorem 48,)

(e) Prove that the ratio
1

b
rea |pl®

5 1
a1l P fi°

approaches m/m as s+ 1, & real, s >1. (This limit is called the
Dirichlet density of A.)

8. Use corollary 2 of Theorem L3 to determine the density of the set of primes
p € Z such that
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(continued)

(a) 2 is & square mod p;
(b) 2 is a cube mod p;
(e) 2 4is & fourth power mod p .

(Note: Tf p #1 (mod 3) then everything is a cube mod p; however x> - 2
does not split completely mod p unless p =1 (mod 3) and 2 is a cube
mod p. Similar remarks hold for fourth powers.)

Use a caleulstor to verify that

(a) 31, 43, 109, 127, and 157 are the first five primes p =1 (mod 3) such
that 2 is acube mod p. (2 is a cube mod p iff E(P'l}ﬂ =1
(mod p) .)

(b) 73, 89, and 113 are the first three primes p =1 (mod %) such that 2

is a fourth power mod p.

(e¢) 151 end 251 are the first two primes p =1 (mod 5) such that 2 is a
fifth power mod p.

Iet L be a normal extension of K with cyelic Galois group G of order n.
For each divisor 4 of n, let Ay be the set of primes P of K which
are unramified in L and such that ¢(Q|P) has order d for some prime Q
of L 1ying over P. Equivalently, this holds for all @ over P (why?).
Prove that A, has polar density p(a)/m . (Buggestion: Prove it by
induction on 4. Use the fact that @(d) is the number of elements of order

d, and the elements of order dividing a form a subgroup of order d.)

Iet I be a normel exbtension of K with cyelie Galois group. Prove that
infinitely many primes of K remain prime in L. Vhat is the density of

the set of primes of K which split into a given number of primes in L7

Iet L be & normal extension of K with Galois group G; let ¢ be an
element of ¢ and let K' be the fixed field of g. Iet n denote the

order of o.



1=.

207

(continued)

(a)

()

(e)

(a)

Iet A' be the set of primes P' of K' satisfying
(1) P' is woramified in L end unramified over P = P' N K}
(2) Jlp'll is & prime;
(3) plaler) = ak for some prime § of L 1lying over P and some
k relatively prime to n.
Prove that A' has polar density ¢(n)/n. (Use exercise 10 and see the

remarks preceding Theorem 43.)

Iet A be the set of primes P of K sabtisfying

(1) P is unramified in L

(2) ||l 1is e prime;

(3) ¢(&|P}=ak for some prime Q of L lying over P and some k
relatively prime to n.,

Prove that A' is mapped onto A by sending each P' %0 P=P' K.

(Suggestion: See exercise lla, chapter L; why must f£(P'|P) =12 To

prove that the mapping is onto, fix § over P satisfying condition

(3) and set P' = QN K'., Then use Theorem 28 to show that P' € A'.

Iet H be the subgroup of G generated by ¢ and let e denocte the
nurber of distinct conjugates wHr L of H, T€G. Fora fixed prime
P € A, prove that the nunber of primes @ of L satisfying condition
(3) in (b) is exactly [K':Kl/e. (Suggestion: Show that there are
[K':K] primes @ of L lying over P and that the resulting Frobenius
automorphisms ¢(Q|P) are distrubuted equally emong the ¢ groups. Use
exercise 10b, chapter L. Note that it is necessery to show that while
the conjugates of H way intersect nontrivially, each element of the

form t'r L, k relatively prime to n, occurs in only one of them,)

For a fized P € A, prove thet the primes § of L satisfying
condition (3) in (b) are in one-to-one correspondence with the primes

P' € A" which go to P. Conclude that the mapping A' + A is m~to-one,
where m = [K':K]/c. (Suggestion: Use Theorem 28 to show thet @ is
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(a)

(e)

(£)

Let
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{continued)

the only prime of I 1lying over P" =@Q NK'.)

Show that 4 has polar density

EE!H!=C n
mr

L:K] °

Show that the set of primes P of K which are unremified in I and

such that t:»(Q]P):crk for some prime Q of L lying over P eand
for some k relatively prime to n, has polar density c(n)/[L:K] .
Also show that ce(n) 1is the number of elements of the form 61—,
T €G, k relatively prime to n. (This result is known as the

Frobenius Density Theorem. A stronger version, in which k is removed,

is the Tcheboterev Density Theorem. See exercise 6, chapter 8.)

K be a nunber field and let g be a moniec irreducible polynomial over

ANK. Iet M be the splitting field of g over K and let L = K[a]

for some oot o of g

(2)

()

(c)

Prove that for all but finitely meny primes P of K, the following
are equivalent:

g has a roob mod P

£(Q]P) = 1 for some prime Q of L lying over Pj

¢(U|P) fixes L for some prime U of M lying over P.
(Suggestion: Use Theorem 27 and the first part of Theorem 29.

Alternatively, Theorem 33 cen be used.)

Show that a finite group G cannot be the union of the conjugates of a
proper subgroup H. (Hint: The number of conjugates is the index of

the normelizer, which is at most the index of H.)

Prove that there are infinitely meny primes P of K such that g has
no roots mod P. (Hint: Iet H be the Galois group of M over L.

Use the Frobenius Density Theorem. )}



1k, Let

1.5 -

16.

(2)

(v)

(2)

(v)

(e)
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K, I, M, and g be as in exercise 13.

Prove that for all but finitely meny primes P of K, the following
are equivalent:

g is irreducible mod P;

P is inert in L

£(Q|P) 1is equal to the degree of g for some prime Q@ of L

lying over P.

Prove that if g has prime degree p, then g dis irreducible mod P
for infinitely many primes P of K. (Hint: The Galois group of M
over L has an element of order p. Use this to get infinitely meny
P such that £(U|P) = p for some prime U of M. Moreover show that
[M:L] is not aivisible by p, hence £(U|Q) # p where Q=UNL.)

Iet G be a eyclic group of order n. Show that the character group
@ is also cyclic of order n.

Iest G and H be finite ebelian groups. Bhow that there is an
isomorphism

@xﬁ*G,:{\H.

Iet G be a finite sbelian group. Prove that ¢ is isomorphic te G.

(Hint: G is a direct product of cyclic groups.)

Frove that for a nontriviel even character mod m

2, M)k =0,
I

m

and for an odd character

% 4 %K) log sin & -0,
€m

(Hint: %(m - k) = ®(-1)x(k) . For even %, compare the sum with

z x(E&)(m - x).)
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Iet m be even, m > 3, and suppose X is a primitive character mod m.

Set n=m/2.
(a) Show that n must be even.

(b) Show that {n+1)2;1{modm}, aﬁdforodd k,
(n+1)k=n+k (mod m) .

(e) Prove that Xn + 1) = -1. (Use (b) and the fact that % is primitive.)
(4) Prove that %(n + k) = -%(k) for odd k. (This also holds for even k

trivially, since both values are 0.)

Let X be a primitive odd character mod m > 3. Set

u= ¥ %r)k v = B *(k)k W= 3 k) .
1<k<n ’ 1<k<n/2 ’ 1<k<mfe

(e) Show thet u=2v - nw.

(v) Suppose m is odd. Show that
u= Lyl - mx(2)w.
(Suggestion: Replace odd values of k by m -k, k even.)

(¢) Show that if m is odd, then

in
u=_w.

wWe) -2

(@) Now suppose m is even. Use exercise 17d to show that

[

i

]
g =]

)

Conclude that the formula in (e¢) holds in all cases.

Convince yourself that the character % occurring in the quadratic class
nunber formula is what we have clalmed it is.
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Iet ¥ be the charecter in exercise 19. Write |a| =2k, x odd.

Necesserily r =0 or 1 and k is sguarefree.

(a) Show that in order to prove that X 4is a primitive character mod m,
it is enough to show that for each prime plm there existe n € E;

such that n =1 (mod m/p) and X(n) = -1.

(b) Suppose p is an odd divisor of m. (Then p|k.) Show that there
exists a positive integer n sabisfying the conditions
n =1 (mod 8)

n =1 (mod k/p)

Lo = =, .
{P} = -1
(e) with p and n as in (b), prove that %(n) = -1. (Use exercise k,

chepter 4. Don't overloock the case 4 < 0.)

(@) Suppose d =2 (mod 4). Fix a positive integer n satisfying

n=1(mdk), n=5 (mod 8)., Prove that %(n) = -1.

(e) Suppose d =3 {mod k). Fix a positive integer n satisfying
n=1(mdk), n=3 (mod L). Prove that *{(n) = -1. (Suggestion:

Separate cases d >0 and d<0.)
(£) Verify that the condition in part (a) is satisfied.

let d be squerefree, d =1 (mod k), m= |a|. Prove that for all n

relatively prime to m we have

*x(n) = (ﬁ)

where % is the character occcurring in the guadratic class onurber formils.
(Suggestion: Verify thet it holds for odd positive n &and for n =2, hence
for all positive n by mdtiplicativity. Finally it must hold for negetive

values because ¥(~1) = X{m - 1).)

Iet % be the character occurring in the quadratic class nunber formida. We

claim that ¥ is even if d> 0, odd if 4 < 0.
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(continued)
(a) Use exercise 21 to prove it when d =1 (mod 4).

(b) Wow suppose d #1 (mod k). Then m = [hd] and

K1) = X - 1) = (2p) = (2

beceuse m - 1 is odd and pogitive. Complete the argument.

Find h for various values of 4 < 0. Compare results with those obtained

in chapter 5.

Prove for squarefree 4 < -3 :

h<d E  (m - 2K) = 90) -2 5, k.
KEZ ke
k<m/f2 k<m/2

(Suggestion: Use the fact that

| "
(1, %)) T | ké:zz: *(k)k|

for & primitive odd character. See the proof of Theorem L6.)

Prove for squarefree 4 < -3 :
d -
h<-y if d=1 (modh)

of a=2 or 3 (modlk).

] =2

h<-
(Suggestion: Consider the sums

P (m - 2k) and T (m - 2x).)
1<k<n/2 1<k<m/f2
k odd
Iest m be even, m >3, and let ¥ be a primitive even character mod m.

Prove that X{n - k) = -x(k) for &11 k, where n=m/2. (See exercise 17.)
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27. Show that in the real quadratic case the class nunber formula can be expressed

in the form

vhere u is the fundamental unit and

v o= H N (sin%x(k).
kEﬂm

k<n/?
In other words, v and -1 generaste a subgroup of index h in the unit group
of @[/dl.

28, Show that h =1 when d=3, 5, or 6. BSee exercises 33 and 3k, chapter 5,
for the fundamental unit.

29, Show that for d # 1 (mod k), the real quadretic class number formule can

be written as

1 il
Toaay | Ezm*x(k)lostanm | -

m
k<m/l

In exercises 30-41, p is an odd prime, n= (p-1)/2, end w= am/e

We let h, k, and p denote the number of ideal classes, the nunber cccurring in

Toheorem 39, and the mmber occurring in Theorem 4 for Z[w]. The corresponding

things for E[w-s-w_l] are dencted by h , «

0, O, and p'l:l"

30. (a) Show thet reg( Z[wl) = 2" . reg{ Zlw + m']"]} . (8ee exercise L6,
chapter 5.)
(b) Show that
x N
KO jpn

(Bee exercise 35, chapter 2, and remarks following Theorem 8 for the
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32.

(b)

(=)

)

Iet

(a)

(v)

21k

(continued)

discriminants. )

Show that
2. T %
Po ¥ odd

with the product taken over all odd charecters mod p. (Suggestion:
Show that the Galois group of Qlw + w1l over @ is Z:/[i 1} . The
charscter group of this consists of all even characters mod p. (Why?))

Show that

(See Tneorem k6. Why are the characters primitive?) Conclude that

n
ho__p_ T T
— = -
by, en”loaaac‘e"‘tgjl

d be the order of 2 in the group E:/{il}.

Show that

M (-x@)=e*- v/,

even ¥

(Suggestion: Show that %(2) runs through the dth roots of 1, hitting

esch one equally many times. See remarks preceding Theorem 44.)

Show that
(1;'3'L . :l,)n/d 1# 2% = -1 (mod p)

T (2-x2) =
all % @2 - 1)/ gp 2%= 1 (mod p).

Conclude that
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32. (b) (conbinued)
T (2-x@) = (22 + 1)7/2
odd %

with the + sign iff 2% = -1 (mod p) .

*
33. Fix a generator g for EP and for l<r<n=-1, set

1 ir g <ple
-1 if ¢ > pfe
where gr is reduced mod p, so that it lies between O and p. Form the

polyncmisl

f(x)} = 1+a1:c+ a212+ Do +a.n_1xn"1.

(a) Show that if X is en odd character mod p then

g k) = £(x(g)) .
k=1

(b) Show that as X runs through the odd cherscters mod p, %(g) runs
through the roots of % + 1.

(¢) Suppose ¥ + 1 splits into m irreducible factors over §. For
each one of these, fix & root o, end let K, = Q,[ai] . Show that

- K
M zxw-T N (2(y)) -
odd ¥ k=1 i=1

(a) Conclude that m
Ny
U g (£ley))]

hO 211 -1(2d i l)njd

with d as in exercise 32 and with the sign chosen so that the
denominator is divisible by p.
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Use 33(d) to show that h =h,  when p=3, 5, or 7. (We slready knew that
h = ho = 1 for these values of p. See exercise 17, chapter 5, for the

case PI'T‘)

Prove that h=h, When p=11 or 13. (2 is & generator for m: in
both cases. In factoring x° + 1 keep in mind the fact that all of its roots
ave roots of 1, and one of them is eE‘rFif{p—l]' In particular x + 1 has
an irreducible factor of degree @(p - 1).) Using the result of exercise 18,
chapter 5, conclude that h =h =1 in these cases.

Prove that h =hj when p=17. (3 is a generator for m; 3 its first

Eeven powers are
3, 9, 10, 13, 5, 15, 11.
Suggestion: Show that

#(0) = 22 ((1 + Lo - 1),

where O = e"ifa . Use the method of exercise 28b, chapter 2, to calculate
Ngta - 1), where K = Q[a]. Use Theorem 5 to calculate Nﬁ{(i-}l}a- 1).)

Prove that h=h0 when p=19. (2 is & generator for mig; its first

eight powers are

2, 4, 8, 16, 13, 7, 14, 9.)

Prove that h 1s dlvisible by 3 when p=23. (5 is a generator for E;B;
its first ten powers are

5, 2, 10, k4, 20, 8, 17, 16, 11, 9.

Actuslly we already knew from exercises 16 and 17, chepter 3, that h is

aivisible by 3.)

Let xl,.u,xh be the even characters mod p, x1=l, end let X Dbe the

n ¥ n metrix
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(continued)

% (1) vee % ()

(E R ERE R EEENN YN

% (1) -er %, (n)

having xi(k) in row 1 -a,nd column k. Prove that det(X) # 0.
(Suggestion: Use the fact that m: is cyclic to trensform this into &
Vandermonde determinant; see exercise 19, chapter 2. Altermnatively, generslize
exercise 15, chapter 4, to show that distinct characters sre linearly indepen-

dent.)

For each k set 'Aknlog[sin%[ and for each 1 consider the sum

Yy o= % (A + eee w gl
() Show that if j 4is not divisible by p then
v = % @0 AN+ %@y + o+ % (00) -

(b) Let A be the matrix in exercise 15, chapter 6, having Mg in row k

and column J . Show that
det(¥A) = vy ... ».,andetixi

where the bar denotes complex conjugetion.
For each k, let

sini KIT,
Y% = s m/ip) °

Toen Us,...,U - are units in Zfw + W],

(a) sShow that

reg(uy, e eeyt) = vy «or
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(continued)

with y, as in exercise 4O. BSee exercise 15, chapter 6.

Show that
-1
reg(u +e,9y) = (’ZQEJn po = h ree( Zlw + W) .

Conclude that Ugyee oW end -1 genersbe s subgroup of index hn in
the wnit group of Zlw + u.f'l} . (Bee Theorem L6 and exercise 1hq,
chapter 6. This result shows in particular that u,,...,u isa
fundamental system of wnits in Zlw + w1 if Zlw + w ] isa
principal ideal domein. Note that we have showm this is the case for all
p<13. It is elso true for p =17 end 19. Tt is conjectured that

h, is never divisible by p.)

21 /m

42. Iet m=p , p &aprime, n=qgm)/2, w=c¢ . If p=2 we assume
r>2.
() Generalize exercise 15, chapter 6, teking only the u  with l<k<mf

(b)

(e)

and p}k, end only the oy with 1<j<mf2 and ptj. Verify that
all results hold with the cbvious modifications. (A is still an n xn
matrix consisting of 7"kj’ but k and J§ ere no longer the row and

column numbers. )

Cenerslize exercise 39, letting Kpreees¥y be the even characters mod m
with %, =1. X is en n xn metrix consisting of )c,l(k) i

k )
1<i<n, 1<k<mn@, plk. (Note: Z  1is cyclic for odd p,
P

and E.*rf[i 1} is cyclic. See appendix 3.)
2

Generalize exercise LO with

k3 15k€:mﬁ xi(k)lk
ptk

for 1<i<n.
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(continued)
(d) Show that
reg{uk: l1<k<nf2, p-{'k} = I‘VE SO0 ""'nl .
Iet m be any positive integer and let d be & divisor of m. Set
w= Eeﬂifm .
(a) Show that for any k € Zy 5

()

(e)

(a)

(2)

Tr (R—wh)nxm/d-wwd.

heZ
h=k (meda)

Using (&) end exercise 48a, chapter 5, show that

T 2 ein(ui/m) = 2 ein(i/a) .
heZ

h =k(mod d)

Suppose ¥ is & nontrivial even character mod m which is induced by a
charecter mod 4. Assume morecver that every prime divisor of m also
divides d. (This sssumption is not really necessary at this point, bub
it mekes things simpler and it is enough for our purposes. In particular

it mekes Y% & charscter mod d.) Prove that

2 4 %K) log sin(km/m) = £ , x(k) log sin(xT/a) .
ke keZ
d
Buppose further that ¥ is & primitive charscter mod 4. Show that the

sum in (c) has sbsolute velue equal to

Ja |n(1,%)] .

Iet &, denote the number of primitive even cheracters mod p°, where

t
p is & prime. Show that for odd p,
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L. (a) (continued)
s = 252

N CESS S gy
5 z2;
and for p=2,
By =8y =0
8, =2""3 for v23.
(b) Show by induction that the sum & + 2a, + ... + T8 is

L M ep-r-1) -2
5

when p is odd, and
o¥"2(r _1) -1
mn P=2 &nd r_}_E-

45. With notation as in exercise L2, prove that

&
reg(uy, : 1<k<nfe, plkl =2n-1 P

where & 18 the sum in exercise Llb end Po is the obvious thing.

46. Iet @ be as in exercise 42. Show that
r-1
atsc(w) = + p° R mFol)

if p 1s odd, and

r-1
dise(w) = 1-_22 (x-1)

if p=2. Use this to show that in all cases



46. (continued)
dise(w + w-l) = pa

vhere & 1s the sum in exercise Wib. (See exercise 35g, chapter 2, and the
caleulation of dise{w) for the case r =1 immediately following Theorem
8.)

b7. With notetion &s in exercise 42, show that
regly : 1 <k< n/f2, ptk} = horeg( Zlw + wdll)

where ho is the nmumber of ideal classes in Z[w + m-l] . Conclude that
the u and -1 generste & subgroup of index hc- in the wnit group of

Zlw + wﬂl] -

4L8. Using exercise 46 and the method of chapter 5, prove that Z[w + u;.-l] is =
principel ideel domain when m = 93 do the same for m = 16. Conclude that

in both cases the w  and -1 generste the unit group.

b9, Iet w=e2/39 k. gw+wl]. We know from exercise 48, chapter 5, that

the

gin( kT
Y% = sin(1/39
are units in K for k relatively prime to 39. However we will show that

they do not generate a subgroup of finite index in the unit group.

¥*

(8) Let o, § € Zugy, be the automorpnism of Glw] sending  to o .
Show that 017 Oy Cyor Oy T16 and 97 restrict to distinet aubo-
morphisms of K, forming & subgroup H of the Galols group. (It helps

to notice that the squeres in E;E) are 1, 4, 10, 16, 22, end 25.)

(b) Show that @[,/ 13] is the unique quadretic subfield of K. Conclude

that this is the fixed field of H.
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49. (continued)
(c) Verify that

for j € ﬂ.;g . (Bee exercise 48, chapter 5, If necessary.)

(a) Prove that

u = n 2 W(jﬂf:ﬂg}
§=1,4,10,14,16,17

is & unit in Q[/13]. Verify (or believe) that 1/3<u<3.
(e) Prove that u =1. (What is the fundemental unit?)

(f) Prove that

Yo Yo Yk e My TR % Y Y8 Yar Yag

(g) Prove that the u_ 4o not generste a subgroup of finite index In the

uit group of K.

It can be shown that the units

_ sin{kT, sinikn/13) sinlk
Vg T sin(Tr§39§ BEEH?%E sinl'(rr?3;
for k€ ﬂ.;g , 2<k<19, generate & subgroup of finite index. More generally,

for arbltrary m the units

_ sinlkm/d
d

v, =
k" (a,mfa)=1 SR

generate & subgroup of finite index, where the product extends over all divisors
d of m, d>1, with the property that d is relatively prime to m/d. See
K. Remachandra, On the units of cyclotomic fields, Acte Arithmetica XIT (1966)
165-173.



Chapter 8
The distribution of primes and an introduction
to class field theory

We will consider several situations in which the primes of a number field are
mepped in a nabural way into & finite sbelian group. In each case they turn out
to be distributed uniformly (in scme sense) emong the members of the group; in
particular each group element is the imege of infinitely many primes. Except in
certain special cases, however, the proof of this depends upon facts from class
field theory which will not be proved in this book. Thus this chepber provides an
imtroduction and motivation for class field theory, which is the study of the
abelisn extensions of & nmurber fileld, by showing how the existence of certain

extensions leads to uniform distribution results.
Consider the following mappings:

(1) Pix m € Z end map the primes p € Z, pfm, into H; in the
cbvious way, each prime going to its congruence class mod m .

(2) Iet K be & nmber field and mep the primes of K into the ideal class
group of K din the cbvious way, each prime going to its ideal class.

(3) Iet K and L be number fields, L an sbelian extension of K. Map
the primes of K which are wnramified in L inbo the Galois group G
of L over K via the Frobenius sutomorphism: P goes to ¢(Q|P) for
eny prime Q of L 1lying over P. ¢(Q|P) is the same for all such

Q because G is gbelisn.
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We have seen in chapter b that (1) cen be regarded as the special case of (3)
in which K = @ end L is the mth cyclotemic field. It is this cbservation that
will provide the crucial step in the proof that the primes are uniformly distributed
in Z' . Tois is of course the famous theorem of Dirichlet on primes in aritimetic
progressions.

Although it is far from obvious, (2) is also a special caese of (3). The

connection is based on the Hilbert class field, which is an extension of a given

K having wonderful properties. We will show how it follows that the primes are
uniformly distributed in the ideal class group.

It is convenient to put these three situations into en ebstract context and
establish general sufficient conditions for things to be uniformly distributed in

& Finite abelian group.
Iet X be a countebly infinite set and let G bhe a finite sbelian group.

p: X+ 0

be a function, and for each P € X assign & real number [[B| >1. The menbers
of X will be called "primes." We will establish sufficient conditions for the
primes to be uniformly distributed in G.

Define T +o0 be the free sbelian semigroup genersted by X. I consists of

all formal products

M ek

PeX

where the &, &are non-negetive integers, zero for all but finitely meny P.

P
Multiplication is defined in an obvious wey (add corresponding exponents) and the
identity element iz the one with all ap = 0. Members of I will be called
"ideals" for obvious reasons.

Tn the three concrete examples sbove it is clear what X, G, and ¢ should be.
lell is |B/P] is examples (2) and (3), and |lp|| = p in example (1). I

consists of the positive integers relatively prime to m in example (1); all non-
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zero ideals in example (2); and all idesals which are not divisible by any remified
prime in example (3). (Such ideals will be called unremified ideals.)

We can define @¢(I) ana [|z}] for 211 I € I by extending multiplicatively
from the primes. This yields familiar concepts in our three concrete exemples
(What are they?) except for the extension of ¢ in example (3): This amounts to
extending the concept of the Frobenius automorphism to all unramified idemls. Thus
for each such I there is an element ¢(I) in the Galois group. The mepping
¢: I+ G 4is’'called the Artin map.

How we form some Dirichlet-type series. For this purpose we essume thatb

b H ls‘im
PeX |=|

for 2l]l real 8 > 1. This guarantees that the series

g —=
Tex x|

converges for all complex 8 = x + yi in the half plane x > 1; moreover it is

equal to

-1
(1 -—1)

pex B’

for all such s, and convergence is absolute in this half plane. (AlL of this
follows from Lemma 2 immedistely preceding Theorem 42.)

More generally let X be any character of G, as defined in chapter 7. We
define the L-series

Ks) - p AL
Iex ||z

for complex & in the half plane x >1, where X(I) is an sbbrevistion for
¥(@(I)) . Again we have & product representation

s, x) = J[ @@ - Z.(El)'l
PEX T |®®
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and convergence is ebsolute.

Tn example (1) the L(s,Xx) are the same I-series occurring in chapter 7. In
example (2) L(s,1) is the Dedekind zete function (, and in (3) it is almost
Cx+ (How does it differ?)

We will prove

THEOREM 48 (ABSTRACT DISTRIBUTION THEOREM): With all notation as ebove,
and essuning that T]F]™ < ® for all real s >1, suppose further that
all I(s,%) have meromorphic extensions in a neighborhood of & =1 such
thet L(s,1) hes a pole at s = 1 while all other L(s,%) have finite non-

zero values at & = 1. Then for each acG

T —l—--é g —=
o(®) =a [ 1°T aad # |7

hes & finite limit as s decreases to 1, s real.

Tt follows immedistely that the primes mapping to & fixed member of G have
Dirichlet density 1/]6] :

COROLLARY: The conditions of the theorem imply thet

ﬁ!P!:& Hgls . 1
5 ..._.15 TeT
a11 P |||
as 8 decreases to 1, & real. In particular ¢(P) = a for infinitely

many P E€X.

The c;orollawfollwsbecause the denominstor goes to o as s = 1; this
must heppen since otherwise L(s,1) would be bounded for &>1, 8 real.

But L(s,1) has apoleat s =1. O

Proof of Theorem U8: Fixing a € G, we have for all s in the half-plane

x>1
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. x(a % (p))
g wel) ¢ XB_ 5 xe6

p
%ed pex |Io)®  Pex lI=) ®

with the change in the order of summstion justified by absclute convergence. We

claim that the sum in the numerator on the right is O except when @(P) = a.
Recell that we have shown that for & fixed g € G having order d, %(g)

runs through the dth roots of 1, hitting each one equally many times, as ¥

rans through G. (See remarks preceding Theorem 44.) It follows immediately that

0 if g#1
z, %) =
xeb lo] if g=1
(vecell thet |G| = |6]). Thus we obtain
E =4 xe™) = I‘-@l=|(}| b3 .
pex o wdr pex [P o(8) =a B

To complete the proof we show that each of the series

M(s,X) = T XB) oy g
Pex |#°
hes & finite limit as & decreases to 1. This is usually done by showing that
M(s,X) @iffers from log L(s,x) by & function which is analytic in a neighborhood
of 1. The reader is invited to £ill in the details of this argument. However we
prefer to proceed via the expenentlial function, as follows:

Fizxing X # 1, we note that M(s,%) is the sum of a uniformly convergent
series of enalytic functions on any compact subset of the half-plane x> 1.
(Why?) Tt follows that the sum is enalytic on that half-plane. (See Ahlfors,
Complex Analysis, p. 17%-5,) In particular, then, M(s,x) is comtinuous to the
right of 1. Moreover if f is any continuous complex-valued function defined

on an interval (1, 1+ e), then f(x) has a finite limit at 1 iff

o)
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has & finite nonzero limit at 1. (Exercise: FProve this.) Thus it is enough to
show that for % # 1
(e, %)

has a Pinite nonzero limit as s decreases to 1.

For complex S in the half-plane x> 1 we have

Mo LT < xge, 0 TT (@2 - 2(s,2))e*( )

z(s,P) = X(E) .
2|

Since by assumpbtion I(s,%) has a finite nonzero limit at s = 1, it remains to

prove the same for the product at the right. If we write the product as
M@ - ws,)
P
where
w(s,P) =1 - (1 = z{a,P))eZ(s’P) .
then it is enough to show that the sum

X IW(E; PJ!
P

is uniformly convergent in a neighborhood of & = 1. (See Ahlfors, p. 191 and
17h. )

We claim that for each P,

(s, B)| < Blals,B)|?

for all s in the half-plane x > 0, where B is an absolute constant independent
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of &8 and P. This will imply what we want because

2(s, .
|z(s,P)| =

where x is the resl part of s, and it is clear that

1
z
x
P 2|
is uniformly convergent for x>1/2 + e, forany e>0.
Finally, then, fix s and P and write w=w(s,P), =z =z(s,P). lNote

thet |z| <1 eand
w=1-(1—z)ez.

To show that lwl < B]z]e , consider the meromorphie function of =

1-.(1 - 2)”
g{z)=h_.a£._=2_.££;

this is actuslly analytic everywhere because the numerator has a double zero at

z = 0 (prove this). Thus g(z) is continuous, hence bounded on any compact set.
In particular |g(z)| <B for |z| <1 for some B. Clearly B is independent
of 8 &and P.

That completes the proof of Theorem 8. O

Our problem now is to show that the conditions of Theovem L8 are satisfied in
the three concrete examples described at the beginning of the chepter. This is
easy in the Dirichlet (mod m) situation: The characters X are just the
characters mod m which were considered in chapter 7. We have already shown (Just
before Theorem 44) that the corresponding series . L(s,%) converge to analytic
functions everywhere on the half-plane x >0 for all X # 1, while L(s,1)
differs from the Riemann zeta function by the factor

-3
pln P
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which is analytic on the half-plane x > 0. Thus L(s,1) hes a simple pole at
s = 1. Tt remsing only to show that L(1,X) # 0 for X #1. But this is
obviocus from Theorem b, which applies to any ebelian extension K of @: Teking

K to be the mth cyclotomic field we have

Mauwn=pll - L7 - —i.-)rp
XEZ, plm P pP
x#1

which is cbviously nonzero since p =hk >0, Thus Dirichlet's theorem is com-

pletely proved:

THEOREM 49: For each & € m:
1 1 1
p L-cEy 5
p=& (modm) P Plm allp p°

has & Finite 1imit as & decremses to 0, =& real. [J

The crucisl step in the proof was the verification that the IL{(1,%) are non-
zero for X # 1, and we want to examine this more closely. Instead of appealing

to Theorem 44 it is more instructive to go back to the formula

-r
Mawe- 1T -5 P
xEZm ™

P p

established before Theorem bk, Here £, is the order of p in Z, , and

r = :p{m))fp. The formula 1s velid at least for & in the half-plane x > 1.

if any L{s,y) venishes at & = 1, then the product on the left could be extended
to an analytic function on the entire half-plane x >0 ; this is because the zero
would cancel out the simple pole of L(s,1) &t & =1. In particular, then, the
product on the right would have a finite limit as & decreases to 1, & real.
A1l factors in the product are real numbers greater then 1 for real & > 1, hence

aeny of the factors can be removed without disturbing the finiteness of the limit
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at 1. Removing all factors with p # 1 (mod m), we find that

p= J.]Ellmodm] = '].f-}
hes a finite limit as s decreases to 1, & real. Bub this contradicts the fach
thet the set of primes p = L (mod m) hes positive polar density, as shown in
Corollary 3 of Theorem 43. Notice that what enabled us to prove this last density
statement was the fact that these are the primes which split completely in the mth
cyclotomic field.

Wow consider the idesl class group situastion (example 2). We elready know
thet E|[B]™ < ®» for resl s> 1 since this is bounded by the Dedekind zete
funetion ;K(s) . Moreover gK(s} = L(s,1) 3 thus L{s,1) has a meromorphic
extension on the half-plane x > 1 - (1/[K:Q]) with a pole at 8 = 1 as required

(Theorem 42). By combining Theorem 39 with the fact that

r x(g) =0
gEG

for any nontrivial character of an abelian group G, wWe find that for A #1,

L(s,%) is a Dirichlet series Eann'ﬁ

whose coefficient sums A‘nﬂa‘l"' eee kB
are o(nl's} where ¢ = 1/[K:Q]. Thus Lemma 1 for Theorem L2 shows that L(s,%)
corverges to an analytic function on the ha.lf-pla.n‘e x>1 - (1/[K:@]) .

Finally we must show that L(1,X) # 0 for % # 1. Imitating the argument
given sbove for the mod m situstion, we consider the product of the L(s,X) .

This is

=¥

M e =Ta-—39 F
v €6 P 1=

where G 1is the idesl class group of K and for each prime P, fP denctes the
order of P in G and rP=hffP, h=|G]. We leave it to the reader to verify
that this formule is velid for & in the half-plane x > 1. (See the argument

preceding Theorem 44 if necessery.) If eny IL(s,X) wvsnishes at 1 then the product
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on the left extende to an analytic function on the entire half-plane
x>1 - (1/[K:q]) . (As before the zero cancels out the simple pole of L(s,1) .)
Then the product on the right has a finite limit as s decreases to 1, s Teul.

Removing factors as before, we find that

i .b

N a--3

principel P [|g]°
has a Finite limit as & decreases to 1, s real. This says that in a certain
sense there are very few principel primes. In particular, the set of principal
primes cannot have positive polar density. (It is not difficult to show that in
fact the principsl primes would have polar density O. This is because the factors
which heve been removed from the product form & function which is nonzerc and
enalytic on the half-plane x > 1/2. However, we do not need this stronger
statement.) Recalling Theorem 43, we find that basically all we know sbout
densities of sebts of primes is that the primes which split completely in an
extension of K heve positive polar density. Suppose there were an extension of
K in which every prime that splits completely is principal; then we would have
enough principal primes to provide a contradiction in the argument above, showing
that the IL(s,X) do not vanish at 1 and hence complebting the proof that the
primes of K are uniformly distributed in the ideal class group in the sense of
Theorem 48.

Such extensions exist; in particular there is the Hilbert class field (over K)

in which primes of K aplit completely iff they are principal in K. TIts
existence is one of the central thecrems of class fleld theory and wlll not be
proved here. We will discuss some of its properties and indicate how it fits into
the general theory of class fields. Further uniform distribution results will fall
out along the way.

The Hilbert class Ffield H over K is actuslly an sbelian extension of K
in which sll primes of K are unramified. Consequently the Artin mep is defined

on the set T of 8ll nonzero idesls of K, taking values in the Galois group of
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H over K. The kernel of this mapping is called the Artin kernel. Clearly a
prime of K splits completely in H iff it is in the Artin kernel; thus a prime
is in the Artin kernel iff it is principal. More generally, this is true for all
ideals of K. This is the basic property of the Hilbert class field.

Ve will use the symbol T %o indicate results which are to be taken on faith.

T FACT 1: For every number field K there is an unremified sbelian extension

H of K for which the Artin kernel consists of the nonzero principal ideals

of K.

Here "unremified" means that all primes of K are unramified in H. From
this we can deduce the further property that the Galois group Gel(H|K) is
isomorphic to the ideal class group G of K: There is an cbvious homomorphism
G + Gal(H|K) defined by choosing eny ideal I in a given class € and sending
C to ¢{(I). The fact that the Artin kernel consists of the principal ideals
shows that this is well-defined and in fact one-to-one. Moreover Corcllary b of
Theorem 43 shows that the Arbtin map ¢: I - Gal(H[K) is onto: The primes which
are sent into a given subgroup of index r have polar density 1/r. From this
we conclude that the homomorphism from G to Gal(E|K) is actually an isomorphism.

This isomorphism leads to another uniform distribution result: The primes of
K are mapped wniformly (in the sense of Theorem 48) into Gal(H|K) via the

Frobenius automorphism. This is because the composition
I > G » Gal(H|K)

is just the Artin map. Thus we have established uniform distribution for a special
case of example (3) described at the beginning of the chapter: when I 1is the
Hilbert class field over K.

At this point we should give some examples of the Hilbert class field. Tts
degree over K 1s the class number of R =& N K, so when R is a principal
ideal domain it is just K. The Hilbert class field over @[,/ -5] must have
degree 2 over @[/ -5] since %[,/ -5] has two ideal classes (proved after
Corcllary 2 of Theorem 35). Looking around for an unramified extension of degree
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o over Q[ =5], we find that €[/ -5,1] is one. This cen be seen by consider-
ing the primes of % vhich ramify in each of the fields QL[ 5], @[i], and
Q[/51: they are, vespectively, 2 and 5; only 2; and only 5. Hence only 2
and 5 are ramified in @[/ =5,1]. It follows that only primes of @[/ -5]
lying over 2 and 5 cen possibly ramify in g,/ -5 ,1] . If some such pr;.me were
remified in @[y =5,1], then 2 or 5 would be totally ramified in @[/ -5,il;
but this is clearly not the case since 5 is unramified in @fi] and 2 is
unramified in @[/ 51. This proves that @[/ -5,1] is unremified over Q[/5].
Does that necessarily make it the Hilbert class field over Q[/~5]1% It would if
we knew that @[,/ -5] has only one unramified abelian extension. We will see that
this is true.

In general, what can we sey ebout the unremified sbelian extensions of a
number field? Certainly every subfield of the Hilbert class field is such an
extension, but there may be others. For example, Z[/ 3] is a principal ideal
domain so @[/ 3] is its own Hilbert class field. Yet @[/3 ,1] is an
unremified sbelian extension. (Verify this.)

Recsll that a normal exbtension I, of a mmber field K 1s uniguely determined
by the set of primes of K which split completely in L (Corollary 5 of Theorem
43), Tt follows in particular that an unremified sbelian extension is uniquely
determined by its Artin kernel. Clearly, then, it muldwhe helpful to know which
sete of idesls are Artin kernels for unramified sbelian extensions of a given K.
8o far all we know is that the principal ideals form such a set. Obvlously any
Artin kexrnel 8§ is & semlgroup in T (closed under multiplication) and has the
further property that if § conteins two ideals I and IJ, then § also
conbains J. We will call a semigroup in T closed iff it has this latter
property.

The question now is which closed semigroups in I are Artin kernels? The
enswer is surprisingly simple:

‘]' FACT 2: Iet T be the semigroup of nonzerc ideals of a number field K,

and let 5 be a closed semlgroup in T . Then § i the Artin kernel for
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some unremified abelien extension of K iff & contains all principal ideals

having totally positive generstors.

We remind ourselves that an element o € K is totally positive iff ofx) > 0
for every enbedding o: K » R. If we let B" denote the set of all principal
ideals (@) for totally positive @ € R=@ K, then ' is the Artin kernel
for some unramified sbelisn extension H' of K, which we will call the Eilbert’
class field over K. (Exercise: Verify that P is closed.) H' comtains all
other unramified abeliasn extensions of X gsince the correspondence between sbelian
extensions and Artin kernels is inclusion-reversing. In particular H' “contains
H with equality holding iff A , the set of pﬁmipal ideals. Equaiity
holds, for example, when K i1is en imaginary quadratic field sinee everything in
K is totally positive by vacuity. (K *has no embeddings in JR.) Thus in thie
case the Hilbert class field is the largest unramified sbelisn extension of K.
This shows that @[/ <5 ,1] is the Hilbert class field over g/ -5]. (Why?)

From the above we see that the unremified sbelian extensions of a given K
are the intermediate fields between K and a fized extension H' ; hence they
eorrespond to subgroups of the Galois group Gal{H*lE) . Imitating the argument
given before in which we showed that Gal(H|K) is isomorphic to the ideal class
group of K, we easily show that Gal{H+|K) is isomorphic to the group G of
ideal classes under the equivalence relation & , where I &J iff ol = gJ for
gome totally positive @ and £ in R. (See exercise 4, chapter 6.) Thus the
unramified sbelian extensions of K are in one-to-one correspondence with the
subgroups of G .

When K =.§, G dis triviel since % is a principsl ideal domein in which
every ideal has a totally positive generator. Thus § has no unramified sbelian
extensions. Of course we already knew more than that: ¢ has no wranmified
extensions of any kind by Theorem 34 and Corollary 3 of Theorem 37.

Returning to the example K = §[,/3], we find that G has order 2 because
all ideals are principal and the fundamentsal unit is 2 + J_j:] , Which is tobelly
positive. (See exercise 9, chapter 6.) Consequently the Hilbert' class field has

degree 2 over K. Using what we showed before, we conclude that it must be
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ely/3,4l.

The existence of H' leads to uniform distribution of primes in G': Using
exercise 6, chapter 6, along with Lemma 1 for Theorem L2, we find that the lL-serles
converge to analytic functions on the half-plane x> 1 - (1/(K:q]) for all non-
trivial character; of GY. B&s in the ideal class group case, the IL(s,X) do not
venish at & = 1 becsuse there are enough prineipal primes with totally positive
generators: These are the primes which split completely in B . Thus all
conditions of Theoven 48 are sstisfied for the mapping of primes into G' .

A further consequence of this is that the primes of K are distributed
uniformly in the Galols group Ga.l{H+|K) via the Frobenius automorphism (because
the composition I - at Ga.l(H"'|K) is the Artin map). Moreover, since every
unvemified sbelien extension of K is contdined in H' , it follows that the
primes of K are distributed uniformly in Gal(L|K) via Frobenius for eny
unramified sbelien extension I of K. (Exercise 1lb, chapter L, is needed here.)

What ebout arbitrary sbelisn extensions of & number field, not necesserily
unramified? We will ingiicate how everything generalizes.

Tt is helpful to lock first at the situstion over §. Iet L be an abelian
extension of @ eand let T be the set of primes of % vhich are ramified in L.
The Artin map can be defined on the set IIII of ideals in # which are not
divisible by eny prime in T, and we want to consider what its kernel can be. We
know that L is comtained in some cyclotomic field &fw], w = eQﬂ‘ifm, and in
fact m can be chosen so that ite prime divisors are exactly the primes in T.
(See exercise 38, chapter 4.) Q[w] is unramified outside of T, so the Artin

map for @Qfw] is also defined on T Tts kernmel consists of all ideals (n)

T -
with n>0 and n =1 (mod m); call this set B, . The Artin kemel for L is
a closed semigroup in ]]:T conteining IP;: . Comversely, every closed semigroup &
in ]IT containing P; is the Artin kernel for scme subfield L of Qlw]:

Nemely, teke L to be the fixed field of the image of § under the Artin wmap

I, - Gai(elwl]a).
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(See exercises 2 and 3.) L is unramified outside of T but not necessarily
ramified at every prime of T. This suggests class=ifying abelisn extensions of
€& in terms of Artin kernels as follows:

Fix & finite set T of:n*imesolf Z and ecall a mumber field T-ramified iff

it is unremified outside of T. TIet 8 be a closed semigroup in [ Then &

Tt
is the Artin kernel of scme T-remified sbelien extension of @ iff S contains
1::1 for some m whose set of prime divisors is T.

Something should be pointed out here: If an abelian extension of § is
ramified at a proper subbet of T, then the corresponding Artin map can be defined
on more than just XI,. The resulting kernel is not contained in Lp. Thus in
the sbove statement "Artin kernel" refers to the kernel of the restriction to L,
of the full Artin map. This ralses the question of whether a T-ramified abelian
extension of € is uniquely determined by its Artin kernel in III.Il . The answer
is yes, since if two such fields have the same Artin kernel in T ‘then the sets
of primes which split completely in each can differ only by members of T, which
is finite. The proof of Corcllary 5 of Theorem 43 can then be modified %o show
thet the two fields must be the same; in fact the same conclusion holds whenever
the sets of primes which split completely differ by a set of density O (exercise
1).

After all of this it is almost impossible not to guess the correct generalize-
tion of Fact 2. let K be an arbitrary number field and fix a finite set T of
primes of K ; we consider the T-ramified sbelian extensions of K. For each -
such extension L, the corresponding Artin map can be defined on ]IT , ‘the set of
ideals of R =@ N K which are not divisible by any prime dn T. The extensions
I, are in one-to-cne correspondence with their Artin kernels in I, (agein,
because if two fields have the same kernel then the sets of primes of R which
split completely in each field differ by a finite set), and these Artin kernels

ere obvicusly closed semigroups in I ALl that is missing is a characterization

T -
of those semigroups which actually occur. To stabe the result we introduce the

notation Wy , where M is an ideal in R, to indicate the set of all principel
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ideals () such that o is a totally positive member of R and o =1 (mod M) .

+

Notice that 19:1 is the identity cless of the group G, defined in exercige 10,

chapter 6.

T FACT 3: Tet § be a closed semigroup in Iy . Then 8 is the Artin
kernel for some T-remified sbelien extension of K iff & contains P;'l

for some ideal M in R vwhose set of prime divisors is T.

In perticular ]P;I is an Avtin kernel for each M. (Show that it is closed.)

The corresponding extension H; of K is called a ray class field over K. Thus

Fact 3 shows that every abelian extension of K is contained in a ray class field

over K. Note that H;I is & generalization of both the Hilbert® class field over

K (which cccurs when M = R, the trivial ideal) and the cyclotomic extensions of

Q.

For fixed M the intermediate fields between K and H;I correspond to stb-

groups of the Galols group Ga.l(H;[K) . Generalizing what we did before, we obtain

an igomorphism

e - Gal(Hy|K) .

(Fill in the details.) The composition

Ty Gy > Cely]K)

is the Artin map for Hl: over K.

Finally, we generalize the uniform distribution results. First consider how

the primes of K (outside of T) are distributed in [};. The series IL(s,1)

differs from the Dedekind zeta function (. by the factor

(-

T
rer |7l

which is enalytic and nonzero on the half-plane x > O3 thus by Theorem L2

L(s,1) has an extension with a simple pole et 1. Using exercise 13, chapter 6,

we obtain (as in the unramified case) that the I-series converge on the half-plane
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x >1 - (1/[K:@]) for all nontrivial charecters of G . The nonvanishing at 1
follows from the existence of Hy : There are enough priumes in ]P; because these
are the primes which split completely in H:i . (We leave it to the reader to fill
in the details of this argument.) Thus all conditions of Theorem 4B ave satisfied
and we obtain wniform distribution of primes in G; .

As before, this immedistely implies uniform distribution of primes in
Gal(H|K) via Frobenius, beceuse the composition I, — GM"’ > Gal(HM*]x} is the
Artin map for H;: over K. This in turn implies uniform distribution of primes
in Gal(L|K) for any intermediate field L between K and H;; . (Why?) Finally,
since every gbelian extension of K iz contained in scme H;; s Wwe have uniform
distribution of primes in Gal(L|K) via Frobenius for every sbelian extension L
of K.

A generalization to normal extensions is given in exercise €.

EXERCISES

1. Iet L &nd L' be two finite normal extensions of & number field K and
let A and A' be the sets of primes of K which split completely in L
and L', respectively. BSuppose A and A' differ by aiset of polar density

O; show that L =L'. (See the proof of Corollary 5, Theorem 43.)

2. et X be a number field, T any set of primes of K having polar density
0, and L & finite sbelian extension of K which is unramified ocutside of

T. Prove that the Artin map

I,, - Gal(L|K)

T
is onto. (See Corollary 4, Theorem 43.)

3. let © be a free gbelian semlgroup and let f: I + G be a homomorphism onto
a finite ebelien group G . FShow that the kernel of f i& a closed semigroup

in T, and that there is a one-to-one correspondence between the subgroups of



240

3. (continued)
G and the closed semigroups in I which contain the kernel. (Suggestion:
Show that each closed semigroup & maps onto & subgroup of G . (Note that
this would not necessarily be true if © were infinite.) Then use the fact

that § is closed to show that it is the total inverse image of that sub-

group. )

k. Iet K be a number field, M & nonzero ideal in AN K, and H; the
corresponding ray class field. Iet T be the set of prime divisors of M

and let L be an extension of K contained in Hi;

(2) Prove that the Artin kernel in X for L over K is the smallest
closed semigroup in I, conteining IE’;'[ and all primes outside-of T
wnich split completely in L. (Use the fact that every class of G;;
contains primes.)

(b) Show that the kernel in part (&) contains all norms N;E{I) of ideals
of I whose prime factors lie over primes outside of T. (See exercise
1L, chapter 3. Prove it first for primes.) Conclude that the kernel is

the closed semigroup genersted by P;'[ and these norms.

5. Fill in the details in the argument that the primes outside of T are

uniformly distributed in [',; , and that GM“” is isomorphic to Ga.l(H;un) .

6. Let K be a number field, L & finite normal extension of K with Galois
group G, and fix ¢ € G. Prove Tchebotarev's Density Theorem: The set of
primes P of K which are unramified in L and such that ¢(Q|P) = o for
some prime § of L lying over P, has Dirichlet density c¢/[I:K], vhere
¢ is the number of conjugates of ¢ in G. (Use the uniform distribution
result already esteblished for the abelian case and imitate the proof in

exercise 12, chapter 7.)

7. In the situation of Theorem 48, assume further thet the pole of IL(s,1) at
g8 =1 is simple. Let A be the set of primes mapping to a fixed element

a €0G.



7. (econtinued)
(a) sShow that the function

le]

1
z 8
#s) =e FPEA I

differs from L(s,1) by a factor which is analytic end nonzero in a
neighborhood of & = 1. Conclude that £(s) has a meromorphic extension

in a neighborhcod of & =1 with a simple pole at = = 1.

(b) Show that the function in (a) differs from

_ 1yl
pea  [l#°®

by & factor which is analytic end nonzero in & neighborhood of = = 1.

Conclude thet A has polar demsity 1/|¢] .

a2
fl:s} = "-E
n

e

n=21

be @ Dirichlet series with non-negative real coefficients s . Suppose there
ig a real number « > O such that the series converges for all real s > o,
but not for s <. We claim that f cannot be extended to an snalytic
function in & neighborhood of .

Suppose such an extension exists. Fix any real p >3 then f exbtends
to an analytic function everywhere on some open dise D centersd at g and

containing «. Then £ is represented by a convergent Taylor series
[==]

£ b(s-p)"
m=0 - !

everyvhere on D. (See Ahlfors, p. 177 .) Moreover b = f(m)(ﬁ.)fm.‘ vhere
£®) 5g tne mth derivative of f£.

(a) Pix any real ¥ <& such that ¥ € D. Show that
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10.

2he

(a) (continued)

® e (B - v)"(1og n)m&n
fly) = & b3 .
n=0 n=1 mi rt‘3

(b) Obtain the contradiction

@

a I
n=1 nY

(Suggestion: Reverse the order of summstion in (a); this is valid

because all terms are non-negative real numbers.)
Let

[ -]
fls) = ¥
n=1

HMISP

be & Dirichlet series with non-negative real coefficients a - Suppose the
series converges on & half-plane x > x, and extends to a mercmorphic function
with no real poles on a half-plane x>x0 for some xﬁfle. Use exercise
8 to show that in fact the series converges for all x > Xq -

Recall that in the proof that the primes of a mmber field are uniformly
distributed in the ideal cless group, the crucial step was provided by the
fact thet the principal primes have positive polar density. ©Show that 1t

would be encugh to know that the sum

Z
prineipal P w

is infinite. (Apply exercise & with

f(s) = naL(s,x) .)

XE

let everything be as in Theorem 48, except drop the assumption that the

L(1,%) are nonzero and instead assume that all IL(s,x) have meromorphic
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(continued)

extensions on the entire half-plane x > 0 such that L(s,1) has a simple
pole at & =1 and no other real poles; and the L(s,X), X # 1, have no
real poles, Assume morveover that all ||P|| are integers. (This is not really
necessary, but convenlent here since exercise 9 has only been stated for
Dirvichlet series z:ann'“ 2)

(a) Show that for s din the half-plane x> 1,

m’::sﬂn

-n- L(B:x) i ;
xed

n=1n

with all a_ >0.
(b) Show that the Dirichlet series in (a) diverges at s = 1/|a| .

(e) Use exercise 9 to prove that L(1,%) #0 for all % # 1.

Iet F be a finlte field with gq elements, and fix & monic polynomial
n{x) € F[x]. Iet X be the set of monic irreducible polynomials over F
which do not divide m. Then X generates the free gbelian semigroup 1T
consisting of all monic polynomisls f over F which are relatively prime
to m. Iet G be the group of units in the factor ring

F[x]/(m)

and consider the obvious mapping
p: L+ G.

For each f € I of degree d over F, set i
el = o

(a) M that
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(a) (continued)

Ks,1) = (1 - =27 -2
q

Plm IEl°

-

whare the product is teken over all monic irreducible divisors P of m,
and verify that I(s,1) is a mervomorphic function on the half-plane
x >0 with a simple pole at & = 1 and no other real poles.

(b) Fix a nontrivial character ¥ of G. Show that for each integer

d > degree of m,

r xp(£)) = 0.
feET
deg(f) =d

(Buggestion: Write

£(x) = q(x)m(x) + r(x)

where g(x) and r(x) are the obvious quotient and remainder, and show
that as f runs through the polynomials in T of degree d, each
remainder relatively prime to m oceurs equally many times.)

{(c) Show that for each nontrivial character ¥ of G, L(s,x) is analytic
on the entire half-plane x > 0. (Use (b) to show that there are only
finitely many terms.) Conclude via exercise 11 that all L(1,%) are
nonzero. Finally, conclude that the monic irreducible polynemials over

F are uniformly distributed in G in the sense of Theorem L8.

This is a refinement of exercise 12. ILet everything be as before and fix an
integer n>2. Iet H be the multiplicative group consisting of those

menbers of the factor ring
Flx1/(x")

which correspond to polynomisls with constant term 1.



25

13. (continued)
(a) sShow that there is a multiplicative homomorphism

I+H
obtained by reversing the first n coefficients of f:

d d-1
flx) = x + 8yX e by

goes to

148X+ was + a.n_lxn'l.

(b) Replace ¢ by the mapping

IT-GxH

defined in the cbvious way. Bhow that the result in exercise 12b still

holds for all sufficiently large d.

(c) Conclude that the monic irreducible polynomisls over F are uniformly

distributed in G x H in the sense of Theorem LB8.

. Iet F be a finite field and fix an integer m. Map the monic polynomials
f over F into the additive group Z«’h by reducing the degree of £ mod m.

Iet ||f]] be as in exercise 12.
(a) Bhow that for each nontrivial cherascter y of A

m-1 n
nfﬂ Eln 5-1
L(ﬂsx} = T .

1- quE -15

Verify that this is a meromorphic function on the half-plane x > 0 with
no real poles. (Why isn't there a pole at s =11%)
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(continued)
(b) Coneclude thet the monic irreducible polynomisls over F are uniformly

distributed in Em in the sense of Theorem L.

(¢) Tt is well known that the number of monlc irreducible polynomials over
F having degree n is given by the formula

% 2 & W)
djn

where p is the MObius function. Combine this with the result in (b)

for m=2 +to yleld the fact that
o
p B gegr - (1) ¢t
d=1
approaches a finite limit as & decreases to 1.

Iet m be & squarefree integer and let d be a divisor of m, d#1, m.
Assume morveover that d or m/d =1 (mod 4). Prove that @[/ m,,/d] is

an unremified extension of @[/ m].

Let K = Q [/m], m squarefree, |m| > 3. Prove that bt is even
except possibly when m=1 (mod 4) and im| is a prime. Moreover
prove that if m has at least two distinct odd prime divisors p
and g, then ¢t maps homomorphically onto the Klein four group
except possibly when m = 1 (mod 4) and |m| = pq.

Determine H and i over Q,Lf—rﬁ] for all squerefree m, 2<m<I10.
(See exercises 6 and 7, chapter 5, for the value of h; use the method of
exercise 33, chapter 5, to determine the fundamental unit whenever necessary.

lote exercise 9, chapter 6.)
Show that [,/ 173] has no abelian extensions.

Show that h' = 6 for @Q[J223]. (See exercise 8, chapter 5, and exercise

16 sbove.)
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20, Determine the Hilbert class field over @[/ m] for m = -6, -10, -21, and
~30 . {See exercises 11 and 1%, chapter 5.)

21. Iet P be & prime in @[,/ -5] lying over p € Z. Show that P is
principal iff p#2 and p#3 or 7 (mod 20). (Suggestion: First
consider how primes p split in @[/ 51, @[i], and Q[J—';} in order to
determine which primes P split completely in @[/ -5,i].)

22, Iet P be & prime in @[/ 3] lying over p € Z. Show that P has a
totally positive generator iff p#2 or 3, and p # 1l (mod 12) . (See

the hint for exercise 21.)
23. Iet L be a cubic extension of § having a squarefree discriminant d.
(a) Show that L[,/ d] is the normal closure of L over §.

(b) Iet P be a prime of @,/ d), @ a prime of L[,/ d] lying over P.
let Q lieover U in L and over p € #%. Show that e(Q]P) = 1
or 3 and e(QU) =1 or 2. (Hint: L[/ d] is normal over every

subfield. )
(¢) Prove that e(Ulp) =1 or 2. (See exercise 21, chapter 3.)
(d) conclude that e(Q|P) =1. Since P and Q were arbitrary, this

shows that L[,/ d] is en unremified extension of @[,/ d].

24h. (a) Prove that the Hilbert class field over @[,/ -23] is obtained by
adjoining a root of 30 - x + 1. (See exercise 28, chapter 2, and
exercise 12, chapter 5.)

(b) Prove that the Hilvert class field over [,/ —31] is obtained by
adjoining & root of X0 + X + 1.

(e) Prove that the Hilbert class field over @[/ -139] is nhtain::d by

adjoining a root of X - Bx + 9.

25. Iet KCL be mumber fields, L normal over K, and let H' denote the

Hilbert+ class field over L. Prove that H+ is & normsl extension of XK.
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26.

ET‘

28.

(continued)

(Suggestion: Use the fact that K" 4s the largest unramified abelian

extension of L.)

With K and L as in exercise 25, let H be the Hilbert class field over
L. Prove that H is & normal extension of K. (Hint: The Artin keymel

for H over L remains unchanged under autcmorphisms.)

Tet Kc L be mmber fields. Iet H'(K) and H'(L) dencte the Hilbert"

class fields over K and L, respectively.

(a) Prove that IH (K) is an unramified sbelian extension of L. (See
exercise 10c, chapter 4.) Conclude that IH (K) c H'(L).

(b) Suppose L AH(K) = K. Iet G'(K) denote the group defined in
exercise b, chapter 6, for ideals in K, and G'(L) the corresponding
thing for L. Prove that G (K) is a homomorphic imsge of G (L).
(Hint: These are isomorphic to Galois groups.)

Iet Kc L be mmber fields. Iet H(K) and H(L) denote the Hilbert
class fields over K and L, respectively.

(a) Iet pSII:(KJ denote the Artin map

{ideals in K} » Gal(H(K)|x)

LH(K)
and let ¢-L denote the Artin map

{ideels in L} + Gal(IB(K)|L) .

Prove that for each ideal I of L, the restriction to H(K) of the

aubomorphism

IIISLH{I{)

L @

is just
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30.

2hg

{a) (continued)
H(K)
b (R(D))

where NI'K{I) is the norm defined in exercise 1}, chapter 3. (Suggestion:
Prove it first for prime idesls and extend multiplicatively. See

exercise 14, chapter 3, and exercise 10e, chapter L4.)

v

(b) Prove that IH(X) c H(L). (Suggestion: Show that the corresponding
Artin kernels in L satisfy the reverse containment. Use part (a)
and exercise 1lhe, chapter 3.)

(c) Suppose LNH(EK) =K. Iet &(K) and G(L) denote the ideal class
groups of K and L, respectively. Prove that G(K) is a homomorphic
image of G(L).

Iet K<L be number fields and suppose some prime of K is tobtally remified
in L. Prove that G(K) is a homomorphic image of G(L), and G'(K) is

& homomorphic imege of G (L) .

{a) Iet L be the mth cyclotomic field, where m is a power of a prime.
Show that every subfield X conbains & prime which is totally remified

in L.
(b) TIn the notation of exercises 30 -Ll, chapter 7, show that h/h s en

integer.

(e) Show that h is divisible by 3 when m = 31.

Iet K ©bve the mth cyclotomle field and let L be the nth eyclotomic field,
vhere m|n. Prove that G(K) is a homomorphic image of G{L). (Sug-
gestion: Construct a sequence of intermediate fields to which exercise 29

can be applied.)

Prove that the number of idesl classes in §] ,.,,} -5, ,,? 23] is divisible by

6.
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33. Prove that the number of ideal classes in @[/ 5, /-23,,/-103] is
divisible by 30. (See exercise 15, chapter 5.)



Appendix 1
Commutative rings and ideals

By a ring we will always mean a commutative ring with a multiplicative identity
1. An ideal in & ring R 1is an additive subgroup I c R such that

ra €I YreR, ac€l.

Considering R and I as additive groups we form the factor group R/I which is
actually a ring: There is an obvious way to define multiplication, and the result-
ing structure is & ring. (Verify this. Particularly note how the fact that I is
an ideal mekes the multiplication well-defined. What would go wrong if I were
just an additive subgroup, not an idesl?) The elements of R/I can be x.‘\eg&rdeﬂ

as equivalence classes for the congruence relation on R defined by
a=b (mod I} iff a-beI.
What are the ideals in the ring Z 7 What are the factor rings?

DEFINITIONS: An ideal of the form (a) = aR = {ar: r € R} is called &
principal ideal. An ideal # R which is not contained in any other ideal

# R is talled a maximal ideal. An ideal # R with the property

s €l=r or s€I Vr,s€R
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is called & prime ideal.

What are the maximal ideals in % ¢ What are the prime ideals? Find a

prime idesl which is not maximal.
Define addition of ideals in the cbvious way:

I+J={a+bta€l,bedl.

(Show that this is an ideal.)

It is easy to show that every maximal ideal is a prime ideal: If r,e g1,
I meximal, then the ideels I + rR and I + sR are both strictly larger than
I, hence both must be R. In particular both contain 1. Write 1 =a + b
and 1 =c+ sd with a,¢c €I and b,d € R and miltiply the two equations
together. If rs € I, we obtein the contradiction 1 € I. (Note that for an
jdeal I, I#R iff 1 §1I.)

Each idesl I # R is contained in some maximal idesl. The proof requires
Zorn's lemma, one version of which says that if a family of sets is closed under
teking nested unions, then each member of thet family is contained in some maximal
member. Applying this to the family of ideals # R, we find that all we have to
ghow is that & nested union of ideals # R is another ideal # R. It is easy
to see that it is an idesl, and it must be # R because none of the ideals contain
i.

An idesl I is maximal iff R/I has no ideals other than the whole ring
and the zero ideal. Tne latter condition implies that R/I is a field since each
nonzero element generates a nonzero principal ideal which necessarily must be the
whole wing. Since it contains 1, the element has an inverse. Conversely, if R/I
is a field then it has no nontrivial idesls. Thus we have proved that I 1is
maximal iff R/I is a field.

An integral domain is a ring with no zero divisors: If xs =0 then r or
§ = 0. We leave it to the reader to show that I is & prime idesl iff R/I is

an integrel domein. (Note that this gives another way of seeing that maximal ideals
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are prime.)
Two ideals I and J are called relatively prime iff I +J=R. If I

is relatively prime to each of Jl’""Jn then I is relatively prime to the
intersection J of the J; : For each i we can write a; +Db; =1 with a; €1
and b, €4J; . Multiplying all of these equations together gives a + {ble‘“bn} =
1 for some a € I} the result follows since the product is in J.

Note that two members of % are relatively prime in the usu.&l sense 1ff they
generate relatively prime ideals.

CHINESE FEMAINDER THECREM: Tet Il,...,I be peirwise relatively prime

n
ideals in a ring R. Then the cdbvious mapping

n
R,!if;.lxi -+ RfIl X oese X R/In

ig an isomorphism.

Proof: We will prove this for the case n =2. The general case will then
follow by induction since I, is relatively prime to I, N ... NL . (P11l in
the details.)

Thus assume n = 2. The kernel of the mapping is cbviously trivial. To show
that the mapping is onto, fix any ry and rEER: we must show that there exists

r € R such that
T =Ty (modll)
r=x, (moﬂIe).

This is easy: Write a.l+92=1 with a’J.EI.’L and E‘EEI:&’ then set
r o= 8T, + 85T . It works. 0O

The product of two ideals I and J consists of all finite sums of products
ab,a € I, b € J . This is the smellest ideal containing all products ab. We
leave it to the Teader to prove that the product of two relatively prime ideals is

just their intersection. By induction this is true for any finite number of pair-
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wise relatively prime ideals. Thus the Chinese Remainder Theorem could have been
stated with the product of the I, rather than the intersection.

An integral domain in which every ideal is principal is called & nei
idesl domein (PID). Thus % is a PID. 8o ig the polynomial ring F[x] over
any field F. (Prove this by considering a polynomial of minimel degree in a
given ideal.)

In a PID, every nonzero prime jdeel is maximel. Let IcJcR, I prime,
and write I = (&), -J=- (b). Then a =be for some ¢ €R, and hence by
primeness I must contein either b or c. If b €I then J=I. If c€l
then ¢ = ad for some d € R and then by cancellation (valid in any integral
domain) bd =1. Toen b is a unit and J=R. This shows that I 1is maximal.

If o is slgebraic (a root of some nonzero polynomiel) over F, then the
polynomials over F having < as a roob form & nonzero ideal I in Flx]. Tt
is easy to see that I is a prime ideal, hence I is in fact maximal (because
F[x] is a PID). Also, I is principal; a generator f is a polynomiel of
smallest degree having o as a root. Necessarily £ is en irreducible polynomial.

Tow map
F(x]) + Fla]

in the obvious way, where F[a] is the ring consisting of all polynomisl expres-
sions in @ . The mepping sends & polynomial to its value at 0. The kernel of
this mapping is the ideal I discussed above, hence F[ct] is iscmorphic to the
factor ring F[x]/I. Since I 1s meximal We conclude that Fla] is a field
whenever © is algebraic over F. Thus we employ the notation Flo] for the
field generated by an algebralc element <& ovex F, rather than the more common

F(z) . Note that Flo] consists of all linear combinations of the powers
1, 0, ) cee, 71

with coefficients in F, where n dis the degree of f. These powers are linearly

independent over F (why?), hence F[a] is a vector space of dimension n over F.
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A unigue factorization domain (UFD) is an integral domain in which each non-

zero element factore into a product of irweducible elements (which we define to be
those elements p such that if p = &b then either a or b is a unit) and the
factorization is unique up to unit miltiples and the order of the factors.

It cen be shown that if R iz a UFD then so is the polynomial ring R[x] .
Then by induction so is the polynomial ring in any finite number of commubing
variables. We will not need this result.

We claim that every PID is a UFD. Teo show that each nonzero element can be
factored into irreducible elements it is sufficient to show that there cennot be

an infinite sequence

81, By By ees

such that each a, is diwvisible by % .1 but does not differ from it by a unit
factor. (Keep factoring a given element until all factors are irreducible; if this
does not happen after finitely many steps then such a sequence would result.) Thus
assume such a sequence exlsts. Then the By generate infinitely many distinct

principal ideals (ai) , which are nested upward:

(a)) € (8,) caue

The union of these ideals is again a principel ideal, say (a). But the element
a must be in some (an), implying that in fact all (a.i) = (an) for i>n.
This is & contradiction.

It remains for us to prove uniqueness. Each irreducible element p generates
& meximal ideal (p): If (p)c(a) cR then p =ab for some b € R, hence
either & or b is a unit, hence either (a) = (p) or (a) =R. Thus R/(p)
is a field.

Now suppose a member of R has two factorizations into irreducible elements

Pl saw pr = ql sea qE -
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Considering the principal ideals (pi) and (qi] , select one which is minimal
(does not properly contain eny other). This is clearly possible since we are
considering only finitely many ideals. Without loss of generelity, assume (pl)
is minimal among the (p;) end {qi) .

Ve claim that (p,) must be equal to some (q;): If not, then (py) would.
not contain any q,, hence ell q; would be in nonzero congruence classes
mod (p;) « But then reducing mod (p;) would yield a contradiction.

Thus without loss of generality we can assume {pl} = {ql) . Then p; =ug

for some unit w. Cancelling & » we get

Up, ese P = Gy eor Qg

Notice that wup, is irreducible. Continuing in this way (or by just applying

induction) we conclude that the two factorizations are essentially the seame. O

Thus in perticular if F is a field then F[x] is a UFD since it is a FID.

This result has the following important application.
EISENSTEDN'S CRITERION: Let M be a maximal idesl in a ring R and let
n
:t‘(x):s.nx + eee + By (n>1)

be a polynomisl over R such that a fM, a; €M forall i<n, and

aoﬂﬂz. Then £ is irrveducible over R.

Proof: Suppose f = gh Where g end h &are non-constant pol;,rnom;.a.ls over
R. Reducing all coefficients mod M and denoting the corresponding polynomials
over BM by T, g and h, We have T=gh. RM is a field, so (RM)[x]
is a UFD. T 4s just ax  where & is & nonzero member of R/M, so by unique
factorization in (R/M)[x] We conclude that g and h are also monomials:

g=nd", B=ex™®
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where b =nd c are nongero members of R/M and 1 <m<n. (Note that nonzero
members of R/M are units in the UFD (R/M)[x], while x is an irreducible
element.) This implies that g and h bobth have constant texms in M. Bub

that is a contrediction since a, ¢ . O

In perticular we can apply this result with R= Z and M= (p), p =
prime in %, to prove that certain polynomiels are irreducible over Z.

Together with exercise B8(¢), chepter 3, this provides a sufficient condition for
irreducibillity over 4.



Appendix 2
Galois theory for subfields of C

Throughout this section K and I are assumed to be subfields of € with
Kcl. Moreover we assume that the degree [L:K] of L over K is finite.
(This is the dimension of L as vector space over K .) All results can be
generslized to arbitrary finite separable field extensions; the interested reader
is invited to do this.

A polynomisl f over K &5 called irreducible (over K ) iff whenever
f = gh for some g,h € K[x], either g or h is constant. Every G ¢ L is a
root of some irreducible polynomiasl £ over K; moreover f can be taken to be
monic {leeding coefficient = 1). Then f is uniquely determined. The ring
K[c] consisting of all polynomisl expressions in O over K is & field and its
degree over K is equal to the degree of f. (See appendix 1.) The roots of £
are called the conjugates of O over K. The number of these roots is the same
as the degree of f, as we show below.

A monic irreducible polynomial f of degree n over K gplits into n mopic
linesr Pactors over €. We claim that these factors are distinet: Any repeated
factor would also be a factor of the derivative f£' (prove this). But this is
impossible because £ end f' generate all of K[x] as an ideal (vhy? BSee
appendix 1) hence 1 is a lineer combination of f and f' with coefficlents in
K[x]. (Why is that a contradiction?) Tt follows from this that f has n

distinet roots in €.
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We are interested in embeddings of L in € which fix K polntwlise. Clearly

such an enbedding sends each @ € I, to one of its conjugates over K.

THEOREM 1: Every embedding of K in € extends to exactly [L:K]

erbeddings of L in €.

Proof (Induction on [L:K]): This 1s trivial if I = K, so assume otherwise.

Iet ¢ be an enbedding of X in €. Teke any € L ~ K and let £ be the
monic irreducible polynomial for @ over K. ILet g be the polynomlal cbbtained
from f by applying o to all coefficients. Then g dis irreducible over the

field OK. For every root B of g, there is an isomorphism
K[o] - oK[g]

which restricts to © on K and which sends ¢ to B. (Supply the details.

Tote that K[o] is isomorphic to the factor ring K[x]/(£).) Hence O can be
extended to an embedding of K[l in € sending o to B. There are n choices
for B, where n is the degree of f; so © has n extensions to K[a].
(Clearly there are no more than this since an embedding of K[a] is completely
determined by its values on K and at «.) By inductive hypothesis each of these
n enmbeddings of XK[a] extends to [L:K[ct]] euwbeddings of L in €. This gives

[L:E[a]]n = [L:k[o]l[K[o]:K] = [L:K]

distinct embeddings of L in € extending ©. Moreover every extension of ©

to L must be one of these. (Why?) O

~ CORCLLARY: There are exactly [L:K] embeddings of L in € which fix X

pointwise. O

THEOREM 2: I = K[c] for some .

Proof (Induction on [L:X1): This is trivial if L = K so assume otherwise.

Fix any ¢ € L - K. Then by inductive hypothesis L = K[o,p] for some p. We
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will ehow that in fect L = K[o + aB] for all but finitely many elements a € K.
Suppose a € K, K[+ ap]l # L. Then « + ap has fewer than n = [L:K]
conjugates over K. We know that L has n enbeddings in € fixing K point-
wisge, so two of these must send o + 88 to the same conjugate. Cell them © end

T 3 then

(Verify this. Show thet the denominator is nonzero.) Finally, this restricts a
to & finite set because there are only finitely many possibilities for ofa), 7(0),

olp) and 7(p). DO

DEFINITION: L 4is normal over K iIff L is closed under teklng conjugates

over K.

THECREM 3: L is normal over K iff every embedding of L in € fixing
K pointwise is actually en automorphism; equivelently, L has exactly [L:K]
automorphisms fixing K polntwlse.

Proof: If L is normsl over K then every such ewbedding sends L into
itself since it sends each element to one of its conjugates. L must in fact be
mapped onto itself because the image hes the same degree over K. (Convince your-
self.) So every such embedding is an automorphism.

Conversely, if every such embedding is an automorphism, fix o € L and let
P be a conjugate of « over K. As in the proof of Theorem 1 there is an embed-
ding © of L in € fixing K pointwise and sending o to p; then p €L
since © 1is an automorphism. Thus T is normal over K.

The equivalence of the condition on the number of automorphisms follows

impediately from the corollary to Theorem 1. 0O

THEOREM L4: If L = K[cxl,...,ctn] gnd L contains the conjugates of all of

the ¢, , then L ig normal over K.
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Proof: ILet ¢ be an embedding of L in € fixing K pointwise., T

congigte of all polynomial expressions
O = f(G’l, LR ._,C!-'n)

in the o, with coefficients in K, and it is clear that ¢ sends o to

£(oay,..., oa ) -

The oo, are conjugates of the 0,, so ©0Q €L. This shows that ¢ sends L
into itself, hence onto itself as in the proof of Theorem 3. Thus © is an auto-

morphism of L and we are finished. [

COROLLARY: If I is any finite extension of K (finite degree over K ) then
there is a finite extension M of L which is normal over K. Any such M

ig also normal over L.

Proof: By Theorem 2, L = K[o]; let «

12 ee=,0 e the conjugates of o

and set
M= K[al,...,an] .

Then M dis normsl over K by Theorem k.
The second part is triviel since every embedding of M in € fixing L

pointwise also fixes K pointwize and hence is an aubomorphism of M. O

GALOIS GROUFS AND FIXED FIELDS

We define the Galois group Gal(L/K) of L over K to be the group of
automorphisme of L which fix K pointwise. The group operation is composition.
Thus L 4is normal over K iff Gal(L/K) has order [L:K]. If H is any sub-

group of Gal(L/K), define the fixed field of H to be

fa €l: ofct) =cx ¥ o € H}.
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(Verify that this is actuslly a field.)

THEOREM 5: Suppose L is normel over K and let G = Gal(L/K). Tnen K

is the fixed field of G, and K is not the fixed field of any proper sub-
group of G.

Proof: Set n = [L:K] = |G| . Iet F be the fixed field of G. If K#F

then [ has too many automorphisms fixing F pointwise.
Now let H be any subgroup of G and suppose that K ig the fixed field of

B. Tet @ €L be such that L = K[0] end consider the polynomial

£(x) = N - oa).
o €H

Tt is easy to see that the coefficients of f are fixed by H, hence f has

coefficients in K. Moreover o is & root of f£. If H # G then the degree

of £ is too small. O

THE GALOIS CORRESPONDENCE

Iet L be normal over K and set G = Gal(L/K). Define mappings
{ﬁelﬂs F) =+ f{groups H,
KcFclkL < HcoG
by sending each field F to Gal(L/F) and each group H to its fixed fleld.

THEOREM 6 (Fundamentsal Theovem of Gelois Theory): The meppings above are
inverses of each other; thus they provide a one-to-cne correspondence between
the two sets. Moreover if F + H under this correspondence then F is normel

over K iff H is a normel subgroup of G. In this case there is an

iscomorphism

61 + cal(¥F/K)

obtained by restricting automorphisms to F.
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Proof: For eech F, let F' be the fixed field of Gal(L/F). Applying
Theorem 5 in the right way, we obtein F' = F. (How do we know that L is normal
over F?)

Wow let H be a subgroup of G and let F be the fixed field of H.

Setting H' = Gal(L/F), we claim that H=H': Clearly HcCH', and by
Theorem 5, F is not the fixed field of a proper subgroup of H'.

This shows that the two mappings are inverses of each other, establishing a
one-to-one correspondence between fields F and groups H.

To prove the normality assertion, let F correspond to H and notice that
for each o € G the field OF corresponds to the group oo~ . F 1is normel
over K iff oF = F for each embedding of F in € fixing K pointwise, and
gince each such embedding extends to an embedding of L which is necessarily =

member of G, the condition for normality is equivalent to

cF=F VOoEG.

1

since oF corresponds to oHg ~ , this condition is equivelent to

oHo L =H Vo €G;

in other words, H is a normal subgroup of G.

Finally, assuming the normel case, we have & homomorphism
¢ » Gal(F/K)
whose kernel is H. This gives an embedding
G/H + Gal(F/x)
which must be onto since both groups have the same order. (Fill in the details.) O

THREOREM 7: Iet L be normel over K and let E be any extension of K in

€. Then the composite field EL is normal over E and Gal(EL/E) is
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embedded in Gel(L/K) by restricting eutomorphisms to L. Moreover the

embedding is an isomorphism iff ENL =K.

Proof: Tet L = K[o]. Then

EL = E[0]

which is normal over E because the conjugetes of « over E sre smong the

conjugates of o over K (why?), ell of which are in L.
There is & homomorphism

Gal(EL/E) - Gal(L/X)

cbteined by restricting sutomorphisms to L, and the kernel is easlly seen to be
triviel. (If o fixes both E and L pointwise then it fixes EL pointwlse.)
Finally consider the image H of Cal(EL/E) in Gal(L/K): TIts fixed field is
£ nL (because the fixed field of CGal(EL/E) is E), so by the Galois

correspondence H must be Gal(L/E NL)). Thus H = Gal(L/K) iff ENL=K. O



Appendix 3
Finite fields and rings

Iet ¥ be a finite field. The additive subgroup generated by the multiplica-
tive ldentity 1 is in fact a svbring isomorphic to Z, , the ring of integers
mod m, for scme m. Moreover m must be a prime because F contains no zerd
divisors. Thus F cont&insl Ep for some prime p. Then F contains pn
elements, vhere n = [F:Ep] -

The multiplicative group F = F - (0} must be cyclic because if we represent

it as a direet product of cyclie groups

¥ % %

Tay X Ha, Xovr X Mg

with allael -+ |4, (every finite abelian group can be represented this way),
then each member of ¥ satisfies x° =1 wiere d =d_. Tuen the polynonial
x¥ -1 nas p" -1 rootsin P, implying a>p° - 1= |F|. This shows that
F  1s just z, .
F has an sutomorphism o which sends each member of F to its pth power.

(Verify thet this is reelly an automorphism. Use the binomlal theorem to show that
it is en additive homomorphism. Show that it is onto by first showing that it is

‘one-to-one.) From the fact that F  is cyclic of order p° - 1 we find that o

is the identity mapping but no lower power of o is; in other words ¢ generates

& cyclic group of order n.
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Teking © %o be a generator of F* we can write F = zzp[cc]. This shows
that o is a root of an nth degree irreducible polynomial over ZZ:P. Moreover
an subomorphism of F 1is completely determined by its value at o, which 1s
necessarily a conjugete of « over ZE.P . This ghows that there are at most n
such automorphisms, hence the group generated by o is the full Galois group of
F over EP . All resulte from appendix 2 are still true in this situstion; in
particular subgroups of the Galois group correspond to intermediate fields. Thus
there is a unigue intermediate fleld of degree d over Bﬁ; for each divisor d
of n.

I
Every menber of F is a root of the polynomial *® - x. This shows that

IL
x® - x splits into linear factors over F. Then so does each of its irreducible

factors over EP . The degree of such a factor must be & divisor of n because
if one of its roots « 4is adjocined to zzp then the resulting field R.P[ccl is

g subfield of F. Conversely, if f 1is an irrveducible polynomiel over %P of

n
degree d dividing n, then £ divides ¥ - x. To see thie, consider the
field Ep[x]f(f) . This has degree d over zp and conteins a root @ of f.

d
By the previocus argument every member of this field is a root of *F -x, 8o f

a d n
divides »® - x. Finally, ¥® - x divides x° - x.

The ebove shows that £ x is the product of all monic irreducible
polyncmials over EP having degree dividing n.

This result can be used to prove the irreducibility of certain polynomials.
For example to prove that x° + X° + 1 is irzeducible over Z, 1t is encugh to
show that it has no irreducible factors of degree 1 or 2; such a factor would

y

also be a divisor of x - x, so it is enough to show that P+x2+1 and

’
xh-x are relatively prime. BReduecing mod xh—x we have xhzx, hence
xﬁsxe, hence x5+x2+1.=.1. That proves it.

As another example we prove that x‘j-x-l is irreducible over 263. It is
enough to show that it is relstively prime to ¥’ - x. Reducing mod ¥ - x - 1

we have sz+1, hence x9535+xj+5xh+x+l, hence xg—xth-t-l.
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The greetest common diviscr of xg-x and x5-x-1 iz the same as that of

xh+1 and xf'-x—l- Reducing modxu+l we have th-ol, hence x55-x,

hence x -x-lzx-1. Finally it is cbvious that x - 1 is relatively prime

to xh+l beecauze 1 is not a root of :Lh+l.

'ﬂ{ﬁﬂnﬁ}ﬂh

Consider the ring % of integers modm for m > 2. The Chinese Remainder

Theorem shows that ?z.m is isomorphie to the direct produect of the rings = r
el

for sll prime powers p° exasctly dividing m (which means that pr+1of‘m). Thus

it is enough to examine the structure of the Z ..+ In perticular we are

D
interested in the multiplicative group za*r .
P
We will show that E*r is eyclic if p 1is odd (we already knew this for
P
r=1) and thet Z . is elmost cyclic when T >3, in the sense that it has a

2
cyclic subgroup of index 2.

More specifically, Z . 1s the direct product
2

{+ 1) x {1, 5, 9, +us, 27 - 3}.

We claim that the group on the right is cyclic, generamted by 5. Since this group
has order 21‘-2, it is enough to show that 5 has the same order.

o a+2
LEMMA: For each 4 >0, 52 = 1 is exactly divisible by 2 .

Froof: This is cbvious for d = 0. For d >0, write

—

a d=1 d=1
52 -1= (52 -1 +1)

and epply the inductive hypothesis. Note that the second factor is =2 (mod 4). O

a

Apply the lemms with 2 equal to the order of 5. (It is clear that this

order is a power of 2 since the order of the group is a power of 2.) We have
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a
52 =1 (mod 2¥) , so the lemma shows that r <d + 2. Equivalently, the order
of 5 is at least 21"2. That completes the proof. [

Now let p be an odd prime and r > 1. We claim first that if ge & is

any generator for z.; then either g or g+ p is a generator for EZ*E. To
b

*
see why this is true, note that % , has order (p=1)p end both g end g + p
o]

have orders @ivisible by p -1 in Zp. (This is because both have order p - 1
P

in zz;.) Thus, to show that at least one of g and g+ p is a generator for

¥
', ,
v
gruent to 1 (mod p°) . We do this by showing that they ere not congruent to each

it is sufficient to show that g -1 and (g + p)® =1 are not both con-

other. From the binomisl theorem we get
-1 -1 -2 2
(e+0)P "= "4 (p- 1) "p (moa 1),
which proves what we want. O

Finally we clain that eny g € % which generates %, also generates
P

Z', forall r>1.

P
IEMMA: Tet p be an odd prime and suppose that a - 1 is exactly divisible
d

aF d+1

by p. Then for each 4> 0, - 1 is exactly divisible by p -

Proof: This holds by assumption for d = 0. For d =1 write

ap—1=(a-l}(1+&+a2+...+a.P“1}

(@ -21)(p+(a-1)+ (8 -1) + .. + (@1 - 1))

il

(& - 1)(p + (a - 1)8)
where 8 1s the sum

l+(a+l)+(a2+a+1)+...+{a. "2+...+l).
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Since a =1 (mod p) we have & = p{p - 1)/2 = 0 (mod p) . From this we obtain

the fact that ef - 1 1is exactly dlvisible by 1= .

d-1
Tow let 4 >2 end assume thet o - 1 is exsotly divisible by p°.

Writing

a a-1 a-1 a - d-1__
e? -1 = (o - 1)(1 + &P + (& 1J2+...+(lap s 1}

we find that it is enough to show that the factor on the right is exactly divisible

a-1
bty p. But this is cbvious: e =1 (mod p), hence the factor on the right

is =p (mod p%). Since d>2, we ave finished. [I

Now assume g € % generates E*E and let » >2. The order of g in
P

*

%, is divisible by p(p - 1) (becawse g has order p(p - 1) in Z',) end
P P

ig a divisor of pr"l{p ~ 1), which is the order of E*r‘ Thus the order of

)
g has the form p(p - 1) for some @>1. Set & =gP ) and note that & - 1

d
is exectly divisible by p (why?). Moreover & =1 (mod p’). Applying the

*
lepma, we Obtain » < d + 1; equivalently, the order of g in % r is at least
P

p* "Mp - 1), which is the order of the whole group. That completes the proof. [



Appendix 4
Two pages of primes

163 9 613 859 1109 1:09 1657 1951
167 383 617 863 1117 1423 1663 1973
173 389 619 817 1123 1ke7 1667 1979
179 397 631 861 1129 1429 1669 1987
181 Lol 6hl 883 1151 1433 1693 1993
151 ho9 643 887 1153 1439 1697 1997
193 419 647 90T 1163 7 16899 1999
197 be1 653 911 1171 151 1709 2003
199 431 659 919 1181 1453 1721 2011
21l 433 661 929 1187 1159 1723 2017

ee3 439 673 937 1193 7 1733 2027
227 L3 677 ghl 1201 1k 17k 2029
229 Ly 683 gl 1213 1483 17k 2039
233 h5T 691 953 1217 187 1753 2053
2 % L6l 701 967 1223 1489 1759 2063
2

251 Lé7 719 977 1231 1499 1783 2081
257 %? 727 983 1237 1511 1787 2083
263 ;

269 ol 739 997 1259 1531

2
3
5
T
11
13
17
15
23
£9
31
37
b1
43
k7
53
59
67
1
3 271 499 743 1009 1277 1543 1811 2099
79 277 503 751 1013 1279 1549 1823 2111
83 281 509 757 1019 1283 1553 1831 2113
89 283 521 761 1001 1289 1559 187 2129
91 293 523 169 1031 1291 1567 1861 2131
101 307 541 713 1033 1297 1571 1867 2137
103 31
107
109
113
127
131
137
139
149
151
157

313 557 7 1049 1303 1583 1873 21h3
317 563 09 1051 1307 1597 1877 2153
331 569 811 1061 1319 1601 1879 2161

337 571 821 1063 1321 1607 1869 2179
3b7 577 823 1069 1327 1609 1901 2203
349 587 827 1087 1361 1613 1507 2207
353 593 | 829 1091 1367 1619 1913 2213
359 599 839 1093 Ji%i 1621 1931 epol
367 601 853 1097 1627 1933 2237
373 607 857 1103 1399 1637 19h9 2239



k621
4637
4639

16LS
1651

4663
h679

k03
=R
Yre3
Ype9
4733
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sbelian extension 4O
absolute different 96
algebraic element 254
algebraic integer 13
analytic function 182
Artin kernel 233

Artin map 225
biquadratic field L6
character of a group 194
charactey modm 193
Chinese Remainder Theorem 253
class number 5

cless number formula 192
closed semlgroup 234
composite field 33
conjugate elements 258
eyclotomice field 12
decomposition field 99
decomposition group 98
Dedekind &

Dedekind domain 55
Dedekind zeta function 184

degree of an extension 12
different 73, 93
diseriminant of an element 27
diseriminant of an n-tuple 2h
Dirichlet density 205, 226
Dirichlet series 182
Dirichlet's Theorem 224, 230
dual beasis 93

Eisenstein's criterion 256
even character 200

factor ring 251

Fermat 2

field of fractions 55

finite field 6L, 243, 265
fixed field 261

fractional ideal 91

free sbelian group 28

free ebelien semigroup 92, 224
Frobenius automorphism 108
Frobenius Density Theorem 208
fundamentel domain 162
fundamentel parallelotope 13k



fundamentel system of units 142
fundemental unit 141
Galois correspondence 262
Gelois group 261

Gauss 5

Gauss’ Iemms 83

Gaussian integers 1, T
Gaussisn sum 196

ged of ideals 60

Hilbert LO

Hilbert class field 224, 232
Hilbert' class field 235
Hilbert's formuls 124, 128
homogeneous 16k

ideal 251

idesl class 5

ideal class group 5, 130
independence mod P 87
induced character 197
ipert 102

inertia field 99

inertia group 98

inertial degree 6k
integral basis 30
integrel domein 11, 252
integrally closed 55
irreducible element L
irreducible polynomial 258
Jacobi symbol 11k
Jacobian determinant 172

Klein four group 116

27k

Kronecker-Weber Theocrem 125
Kummer 3
L-serles 193, 225

lattice 13k, 143

lem of idesls 60

Legendre symbol 105

lies over (or under) 63
Lipschitz funetion 166
Lipechitz parsmetrizable 166
log mapping 142
logarithmic space 143
maximal ideal 251

monic polynomial 258
Minkowski 137

Minkowski's constent 136
Noetherian ring 56

norm of an element 20, 23
norm of en idesl 8L

normal closure 108

normal extension 260
numher field 1, 12

number ring 16

odd character 200

PID 254

polar demsity 188

prime idesl 252

primitive character 198 N
primitive Pythagorean triple
principal idesl 251
product of ideals 253
pure cubic field 38
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gquadratic field 13 unremified extension 233
Quedratic Reciprocity Lew 106 wnremified ideal 225
Remachandre 222 Vendermonde determinent 26, L2

remificetion groups 121
ramification index 64
remified prime 71

ray class 179

ray class field 238

ray class group 179
regular prime 5

regulator 17k

reletive discriminant 43
relative norm 23

relative trace 23
relatively prime ideals 253
residue field 6k

Riemann zeta function 184
ring 251

simple pole 184

simple zero 185

splits completely 105
stark 148

Stickelberger's criterion 43
T-ramified extension 237
Tchebotarev Density Theorem 240
totaelly remified 88
totally poeitive 177

trace 20, 23

transitivity 2L

UFD 4, 255

unit group 14l
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INDEX OF THEOREMS

25 T
26 T6
g 79
100
ple} 104
30 106
31 107
32 109
33 111
3L 112
35 130
36 134
37 135
38 L2
39 158
Lo 17k
L1 175
Lo
43 189
L 196
s 196
Lg 201
I 202
N 226
L9 230
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LIST CF SYMBOLS

integers

rational numbers’

real numbers

complex numbers
algebraic integers in ¢

= {0,1,...,m -1} integers mod m
=k € Z;: (k,m) = 1} multiplicative group mod m

greatest common divisor of m and n
mumber of elements in 33;:
Frobenius sutomorphism; Artin map
mmber fields

number rings; R=RANK, S=8NL
prime ideals

ideals

degree of L over K

index of I (page 65)

Gelois group of L over K

lattice

root of unity

Riemenn zeta function

Dedekind zeta funchion
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Cm see pege 188

L(s, %) L-series

M(s,%) see page 227

() norn

IE( ) trace

aise( ) discriminent

aiee( ) different

reg( ) regulator

of ) big Oh (page 158)

i(t), 1 c(t) idesl-counting functions (page 158)

D decomposition group
E inertia group
'P‘m ranification groups
Ly decomposition field
Lp inertia field
| divides or lies over
[ | sbsolute value; determinant; number of elements
ey ramification indices
f:l. inertisl degrees
(ﬁ) Legendre symbol
%) Jacobl symbol
R[x] polynomial ring over R
R[] ring genersted by @ over R
<, D containment, not necessarily proper
‘ﬂ' product
z sum

s =x+ iy complex variable; x,y € R
o, B, Y algebraic integers
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(1]

(%), 7 (%)
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complex conjugete of o
ideel class of I
automcrphisms
character

Goussian sune

charscter group of G
see page 92

see pages 177-178
class number

see page 158

see page 192
polyncmisals

groups

ideal class group
Hilbert class field
ray class groups

ray class fields

free sbelian semigroups
semigroup in I or ]IT
semig;;rmtps of principal ideals

for every
there exlsts



