Introduction to Evolutionary Computing

Contents

- Positioning of EC and the basic EC metaphor
- Historical perspective
- Biological inspiration:
 - Darwinian evolution theory (simplified!)
 - Genetics (simplified!)
- Motivation for EC
- What can EC do: examples of application areas

Different Views of EC/EA/GA/EP

- The techniques and technology that is discussed in this course can be viewed as:
- An approach to *computational intelligence* and for *soft computing*
- A search paradigm
- As an approach for *machine learning*
- As a method to *simulate biological systems*
- As a subfield of artificial life
- As generators for new ideas, new designs and for music and computer art

EC as Search

EC as Machine Learning

Machine Learning

Learning from Examples Reinforcement Learning Classifier Systems

EC as Randomized Algorithms

Positioning of EC

- EC is part of computer science
- EC is not part of life sciences/biology
- Biology delivered inspiration and terminology
- EC can be applied in biological research

The Main Evolutionary Computing Metaphor

EVOLUTION

PROBLEM SOLVING

Fitness \rightarrow chances for survival and reproduction

Quality \rightarrow chance for seeding new solutions

Adaptive landscape metaphor (Wright, 1932)

- Can envisage population with *n* traits as existing in a *n*+1-dimensional space (landscape) with height corresponding to fitness
- Each different individual (phenotype) represents a single point on the landscape
- Population is therefore a "cloud" of points, moving on the landscape over time as it evolves adaptation

Example with two traits

Natural Genetics

- The information required to build a living organism is coded in the DNA of that organism
- Genotype (DNA inside) determines phenotype
- Genes → phenotypic traits is a complex mapping
 - One gene may affect many traits (pleiotropy)
 - Many genes may affect one trait (polygeny)
- Small changes in the genotype lead to small changes in the organism (e.g., height, hair colour)

Evolutionary Computing Systems

Motivations for EC: 1

- Nature has always served as a source of inspiration for engineers and scientists
- The best problem solver known in nature is:
 - the (human) brain that created "the wheel, New York, wars and so on" (after Douglas Adams' Hitch-Hikers Guide)
 - the evolution mechanism that created the human brain (after Darwin's Origin of Species)
- Answer $1 \rightarrow$ neurocomputing
- Answer 2 \rightarrow evolutionary computing

Motivations for EC: 2

- Developing, analyzing, applying problem solving methods a.k.a. algorithms is a central theme in mathematics and computer science
- Time for thorough problem analysis decreases
- Complexity of problems to be solved increases
- Consequence: Robust problem solving technology needed

Problem type 1 : Optimization

 We have a model of our system and seek inputs that give us a specified goal

- time tables for university, call center, or hospital
- design specifications, etc etc

Optimisation example 2: Satellite structure

Optimized satellite designs for NASA to maximize vibration isolation

Evolving: design structures

Fitness: vibration resistance

Evolutionary "creativity"

Problem types 2: Modelling

 We have corresponding sets of inputs & outputs and seek model that delivers correct output for every known input

• Evolutionary machine learning

Modelling example: loan applicant creditibility

British bank evolved creditability model to predict loan paying behavior of new applicants

Evolving: prediction models

Fitness: model accuracy on historical data

Problem type 3: Simulation

• We have a given model and wish to know the outputs that arise under different input conditions

- Often used to answer "what-if" questions in evolving dynamic environments
- e.g. Evolutionary economics, Artificial Life

Problem type 4: Building Systems that Adapt

• We have a model and want to adapt it based reactions of the environment

Example Problem type 4:

- Poker Systems that Play Poker
- ...