Twists of Elliptic curves

Nayoung Kim

September 23, 2016
K, a number field
E / K, an elliptic curve over K, the one given by the equation

$$
y^{2}=x^{3}+a x+b \quad(a, b \in K)
$$

Definition

A twist of E / K is another elliptic curve which is isomorphic to E over \bar{K}.

We focus on quadratic twists and cubic twists:

- The quadratic twist of E by square-free $D \in K$ is :

$$
\begin{array}{ccc}
E: y^{2}=x^{3}+a x+b & \simeq & E^{D}: y^{2}=x^{3}+a D^{2} x+b D^{3}, \\
(x, y) & \mapsto & \left(\frac{x}{D}, \frac{y}{D \sqrt{D}}\right)
\end{array}
$$

- The cubic twist of E by cube-free $D \in K$ is :

$$
\begin{array}{ccc}
E: y^{2}=x^{3}+b & \simeq & E_{D}: y^{2}=x^{3}+b D^{2} \\
(x, y) & \mapsto & \left(\frac{x}{\sqrt[3]{D^{2}}}, \frac{y}{D}\right)
\end{array}
$$

Quadratic twists

Let $K=\mathbb{Q}$. The root number of E / \mathbb{Q} is

$$
\begin{cases}+1, & \text { if } E \text { has even analytic rank } \\ -1, & \text { if } E \text { has odd analytic rank. }\end{cases}
$$

Define

$$
S(X):=\{\text { square-free } D \in \mathbb{Z}:|D| \leq X\} .
$$

Quadratic twists

Let $K=\mathbb{Q}$. The root number of E / \mathbb{Q} is

$$
\begin{cases}+1, & \text { if } E \text { has even analytic rank } \\ -1, & \text { if } E \text { has odd analytic rank. }\end{cases}
$$

Define

$$
S(X):=\{\text { square-free } D \in \mathbb{Z}:|D| \leq X\} .
$$

It is known that

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{D \in S(X): \text { the root number of } E^{D} / \mathbb{Q} \text { is } 1\right\}}{\# S(X)}=\frac{1}{2} .
$$

The Parity Conjecture is a weak form of the BSD conjecture.
It says that the rank and the analytic rank of E have the same parity.

Assuming the Parity Conjecture, the above says that

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{D \in S(X): \text { the rank of } E^{D} / \mathbb{Q} \text { is even }\right\}}{\# S(X)}=\frac{1}{2}
$$

Thus the average rank of quadratic twists is at least $\frac{1}{2}$.

Quadratic twists: Goldfeld's conjecture

If E is an elliptic curve over \mathbb{Q}, then
Goldfeld's Conjecture, 1979

$$
\lim _{X \rightarrow \infty} \frac{\sum_{D \in S(X)} \operatorname{rank}\left(E^{D}(\mathbb{Q})\right)}{\# S(X)}=\frac{1}{2} .
$$

Assuming the Parity conjecture, Goldfeld's conjecture asserts that

$$
\operatorname{rank} E^{D} / \mathbb{Q}=0 \text { for } 50 \% \text { square-free } D \text { 's, }
$$

$$
\operatorname{rank} E^{D} / \mathbb{Q}=1 \quad \text { for } 50 \% \text { square-free } D ' s,
$$

$\operatorname{rank} E^{D} / \mathbb{Q} \geq 2$ for 0% square-free D 's.

Cubic twists

Consider the curves

$$
E_{m}: x^{3}+y^{3}=D \quad\left(\cong y^{2}=x^{3}-2^{4} 3^{3} D^{2}\right) .
$$

These are cubic twists of $E: x^{3}+y^{3}=1$. Let

$$
C(X):=\{\text { cube-free } D \in \mathbb{Z}:|D| \leq X\} .
$$

Cubic twists

Consider the curves

$$
E_{m}: x^{3}+y^{3}=D \quad\left(\cong y^{2}=x^{3}-2^{4} 3^{3} D^{2}\right) .
$$

These are cubic twists of $E: x^{3}+y^{3}=1$. Let

$$
C(X):=\{\text { cube-free } D \in \mathbb{Z}:|D| \leq X\} .
$$

Zagier and Kramarz's Conjecture, 1987

$$
\frac{\#\left\{D \in C(X): \text { analytic rank of } E_{D} / \mathbb{Q} \geq 2\right\}}{\# C(X)}>0 \quad \text { as } X \rightarrow \infty .
$$

Over number fields - Quadratic twists

Example

Let $K=\mathbb{Q}(i)$ and $E / K: y^{2}=x^{3}+x$. This is a CM curve,

$$
\operatorname{End}_{K} E \cong \mathbb{Z}[i], \quad[i](x, y)=(-x, i y)
$$

Thus every quadratic twists of E / K has even rank.

Theorem (Dokchitser-Dokchitser, 2009)
The root number of E^{D} / K is the root number of E / K for all D iff
(1) K is totally complex, and
(2) For all primes \mathfrak{p} of K the curve $E / K_{\mathfrak{p}}$ acquires good reduction over an abelian extension of $K_{\mathfrak{p}}$.

Over number fields - Cubic twists

Let E / K be the elliptie curve $y^{2}=x^{3}+b$.

Theorem (Byeon-K.)
The root number of E_{D} / K is the root number of E / K for all D iff K contains the primitive cube root of unity.

