
1 Functions, Limits and Differentiation

1.1 Introduction

Calculus is the mathematical tool used to analyze changes in physical quantities.
It was developed in the 17th century to study four major classes of scientific
and mathematical problems of the time:

• Find the tangent line to a curve at a point.
• Find the length of a curve, the area of a region, and the volume of a solid.
• Find minima, maxima of quantities , such as the distance of a planet from
sun

• Given a formula for the distance traveled by a body in any specified
amount of time, find the velocity and acceleration or velocity at any in-
stant, and vice versa.
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1.2 Functions

1.2.1 Definition, Range, Domain

The term function was first used by Leibniz in 1673 to denote the dependence
of one quantity on another. In general, if a quantity y depends on a quantity x
in such a way that each value of x determines exactly one value of y, then we
say that y is a “function” of x.
A function is a rule that assigns to each element in a nonempty set A one

and only one element in set B. (A is the domain of the function, while B is the
range of the function).

• Domain: the set in which the independent variable is restricted to lie.
Restrictions on the independent variable that affect the domain of the
function generally are due to: physical or geometric considerations, natural
restrictions that result from a formula used to define the function. and
artificial restrictions imposed by a problem solver.

• Range: the set of all images of points in the domain ( f(x), x∈A).
• The vertical line test : A curve in the xy-plane is the graph of y = f(x) for
some function f iff no vertical line intercepts the curve more than once.

• The horizontal line test : A curve in the xy-plane is the graph of x = f(y)
for some function f iff no horizontal line intercepts the curve more than
once.

• Explicit definition of a function: e.g.: y = ± 3
√
1− x

• Implicit definition of a function: e.g.: 1+ xy3− sin(x2y) = 0,one can not
define, by means of simple algebra, whether the y is explicitly defined by
x or vice versa.

1.2.2 Arithmetic Operations on functions

• Sum: (f + g)(x) = f(x) + g(x),domain: the intersection of the domains
of f and g.

• Difference: (f − g)(x) = f(x) − g(x),domain: the intersection of the
domains of f and g.

• Product: (f ∗ g)(x) = f(x) ∗ g(x),domain: the intersection of the domains
of f and g.

• Quotient: (f/g)(x) = f(x)/g(x),domain: the intersection of the domains
of f and g with the points where g(x) = 0 excluded.
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1.2.3 Composition of functions

• Composition of f with g : (f ◦g)(x) = f((g(x)),the domain of f ◦g consists

of all x in the domain of g for which g(x) is in the domain of f.

1.2.4 Classification of functions

• Constant functions: f(x) = c
• Polynomial functions:f(x) = a0 + a1x1 + · · ·+ an−1xn−1 + anxn
• Rational functions: ratio of polynomials functions,
f(x) = a0+a1x1+···+an−1xn−1+anxn

b0+b1x1+···+bn−1xn−1+bnxn

• Irrational functions: Root extractions,
f(x) = m

q
a0+a1x1+···+an−1xn−1+anxn
b0+b1x1+···+bn−1xn−1+bnxn

• Piece-wise functions.e.g. f(x) =| x− 1 |
• Transcendental: trigonometric expressions, exponentials and logarithms1.

1.2.5 One-to-one functions

• A function f is one-to-one if its graph is cut at most once by any horizontal
line, or if it does not have the same value at two distinct points in its
domain, or ∀x1,x2 ∈ D(f), x1 6= x2 =⇒ f(x1) 6= f(x2)

• Thus, a function has an inverse if it is one-to-one.

1.2.6 Monotone functions

• A function f defined on an interval, x1,x2 points in the interval is said to
be:

— increasing on the interval if f(x1) ≺ f(x2), whenever x1 ≺ x2
— decreasing on the interval if f(x1) Â f(x2), whenever x1 ≺ x2
— constant on the interval if f(x1) = f(x2),for all points x1, x2

1 see Appendix A
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1.2.7 Inverse functions

• Inverse: If the functions f and g satisfy the two conditions f(g(x)) =
x∀x ∈ D(g) and g(f(x)) = x∀x ∈ D(f),then f and g are inverse functions.

• Notation: f(f−1(x)) = x, and f−1(f(x)) = x
• Range of f−1 = domain of f and domain of f−1 = range of f
• If a function has an inverse then the graphs of y = f(x) and y = f−1(x)
are symmetric about the line y = x.

• The horizontal line test: a function f has an inverse, if and only if no
horizontal line intersects its graph more than once.

• If the domain of f is an interval if f is either an increasing or decreasing
function on that interval, then f has an inverse.
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1.3 Limits

The development of calculus was stimulated by two geometric problems: finding
areas of plane regions and finding tangent lines to curves. Both these problems
are related to the concept of “limit”. The portion of calculus arising from the
tangent problem is called differential calculus and that arising from the area
problem is called integral calculus.

1.3.1 Notation

One-sided limits of f(x) at x0 : lim
x→x0−

f(x) and lim
x→x0+

f(x): the limit of f(x) as

x approaches x0 from the left (right).
Two-sided limit of f(x) at x0 : lim

x→x0
f(x) = lim

x→x0−
f(x) = lim

x→x0+
f(x): the

limit of f(x) as x approaches x0 f.
Limits at infinity : lim

x→+∞ f(x), limx→−∞ f(x)

1.3.2 Computational techniques

• lim
x→x0

k = k, lim
x→+∞k = lim

x→−∞k = k

• lim
x→x0

x = x0, lim
x→+∞x = +∞, limx→−∞x = −∞,

• lim
x→+0+

1
x = +∞, limx→0−

1
x = −∞, limx→+∞

1
x = 0, limx→−∞

1
x = 0.

• lim [f(x) + g(x)] = lim f(x) + lim g(x)
• lim [f(x)− g(x)] = lim f(x)− lim g(x)
• lim [f(x) ∗ g(x)] = lim f(x) ∗ lim g(x)
• lim [f(x)/g(x)] = lim f(x)/ lim g(x),if lim g(x) 6= 0
• lim n

p
f(x) = n

p
lim f(x), lim f(x) º 0 if n is even.

• lim [f(x)]n = [lim f(x)]n

• lim
x→+∞x

n = +∞, lim
x→−∞x

n = +∞, if n = 2, 4, 6, · · ·, lim
x→−∞x

n = −∞, if
n = 1, 3, 5, · · ·

• lim
x→±∞

¡
a0 + a1x1 + · · ·+ an−1xn−1+

¢
= lim
x→±∞ (anxn)

• lim
x→±∞

³
a0+a1x1+···+an−1xn−1+anxn
b0+b1x1+···+bn−1xn−1+bnxn

´
= lim
x→±∞

³
anxn
bnxn

´
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1.3.3 Limits (a formal approach)

• Definition: lim
x→a f(x) = L, if ∀ε Â 0,∃δ (ε) Â 0 : |f(x)− L| ≺ ε,with

0 ≺ |x− a| ≺ δ

• We assume that an arbitrary positive number ε is given to us and then
we try to find a positive number δ dependent on ε such that the above
formula is satisfied. Once we find it, any δ1 ≺ δ satisfies it, too.

• Definition: lim
x→+∞ f(x) = L, if ∀ε Â 0,∃N Â 0 : |f(x)− L| ≺ ε,with

x Â N
• Definition: lim

x→−∞ f(x) = L, if ∀ε Â 0,∃N Â 0 : |f(x)− L| ≺ ε,with

x ≺ N
• Definition: lim

x→a f(x) = +∞, if ∀N Â 0 ∃δ Â 0 : f(x) Â N,with 0 ≺
|x− a| ≺ δ

• Definition: lim
x→a f(x) = −∞, if ∀N Â 0 ∃δ Â 0 : f(x) ≺ N,with 0 ≺

|x− a| ≺ δ

1.3.4 The Squeezing Theorem

Let f, g, h be functions satisfying g(x) ¹ f(x) ¹ h(x) for all x in some open
interval containing the point a. If lim

x→a g(x) = lim
x→ah(x) = L,then limx→a f(x) = L.

• — lim
x→0

sinx
x = 1

— lim
x→0

1−cosx
x = 0

— lim
x→0

tanx
x = 1
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1.4 Continuity

A moving physical object cannot vanish at some point and reappear someplace
else to continue its motion. The path of a moving object is a single, unbroken
curve without gaps, jumps or holes. Such curves are described as continuous.

1.4.1 Definitions

• A function f is said to be continuous at a point c if the following conditions
are satisfied:

— f(c) is defined

— lim
x→c f(x) exists

— lim
x→c f(x) = f (c) .

Examples: f(x) = x2 − x− 1 is a continuous function,
f (x) = x2−4

x−2 is not a continuous function at x = 2, because
it is not defined at this point.

f(x) = x2−4
x−2 , x 6= 2, and f(x) = 3, x = 2 is not a continuous

function because lim
x→2 f(x) 6= f (2) .

A function f is said to be continuous from the left at a point c if the following
conditions are satisfied:

• — f(c) is defined

— lim
x→c−

f(x) exists

— lim
x→c−

f(x) = f (c) .

A function f is said to be continuous from the right at a point c if the
following conditions are satisfied:

• — f(c) is defined

— lim
x→c+

f(x) exists

— lim
x→c+

f(x) = f (c) .

A function f is said to be continuous on a closed interval [a, b] if the following
conditions are satisfied:

• — f is continuous on (a, b)

— f is continuous from the right at a.

— f is continuous from the left at b.
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1.4.2 Properties

• Polynomials are continuous functions.
• Rational functions are continuous everywhere except at the points, where
the denominator is zero.

• lim f(g(x)) = f(lim(g(x)), if ∃ lim g(x) and if f(x) is continuous at lim g(x).
• If the function g is continuous at the point c and the function f is
continuous at the point g(c), then the composition f ◦ g is continuous at
c.

• If a function f is continuous and has an inverse, then f−1is also continuous.
• The functions sinx and cosx are continuous.
• The functions tanx, cotx, secx and cscx are continuous except at the
points that they are not defined, the denominator is zero.

1.4.3 The Intermediate value theorem

If f is continuous on a closed interval [a, b] and C ∈ [f(a), f(b)] , then ∃at least
one x ∈ (a, b) : f(x) = C.
• — If f is continuous on a closed interval [a, b], and if f(a), f(b) have

opposite signs, then there is at least one solution of the equation
f(x) = 0 in the interval (a, b) .
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1.5 Differentiation

Many physical phenomena involve changing quantities- the speed of a rocket, the
inflation of a currency, the number of bacteria in a culture, the shock intensity of
an earthquake , the voltage of an electric signals. A relationship exists between
tangent lines and rates of change.

1.5.1 Tangent lines and rates of change

Tangent versus secant line Slope of the secant line: msec =
f(x1)−f(x0)

x1−x0

Slope of the tangent line: mtan = lim
x1→x0

f(x1)−f(x0)
x1−x0 = lim

h→0
f(x0+h)−f(x0)

h

Tangent line: y − y0 = mtan(x1 − x0)
Average rate of change of y = f(x) with respect to x over the interval [x0, x1]

is the slope msec of the secant line joining the points (xo, f(x0)) and (x1, f(x1))
on the graph of f.
Instantaneous rate of change of y = f(x) with respect to x at the point x0

is the slope mtan of the tangent line to the graph of f at the point xo.

The Derivative The function f 0 = lim
h→0

f(x+h)−f(x)
h is called the derivative

with respect to x of the function f . The domain of f 0consists of all the points
for which the limit exists.
Geometric interpretation of the derivative: Slope of the tangent
Rate of change interpretation: function whose value at x is the instantaneous

rate of change of y with respect to x at the point x.

Existence of derivatives The most commonly encountered points of non-
differentiability can be classified as corners, vertical tangents, and points of
discontinuity.

Differentiability and continuity If a function is differentiable, then it is
continuous.
The opposite does not hold.

1.5.2 Techniques of differentiation

• If f is a constant function, f(x) = c, for all x, then f 0(x) = 0 or d
dx [c] = 0.

• If n positive integer, then for every real value of x, d
dx [x

n] = nxn−1.

• Let c be a constant. If f is differentiable at x,then so is cf, and d
dx [cf(x)] =

c ddx [f(x)]
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• If f and g are differentiable at x,then so is f ± g, and d
dx [f(x)± g(x)] =

d
dx [f(x)]± d

dx [g(x)]

• If f and g are differentiable at x,then so is f ∗ g, and d
dx [f(x) ∗ g(x)] =

f(x) ddx [g(x)] + g(x)
d
dx [f(x)]

• If f and g are differentiable at x,and g(x) 6= 0, then so is fg , and d
dx

h
f(x)
g(x)

i
=

g(x) d
dx [f(x)]−f(x) d

dx [g(x)]

[g(x)]2

• If g is differentiable at x,and g(x) 6= 0, then so is 1
g , and

d
dx

h
1

g(x)

i
=

− d
dx [g(x)]

[g(x)]2

• Higher derivatives: f (n)(x) = dn

dxn [f (x)]

• Trigonometric functions

— d
dx [sinx] = cosx

— d
dx [cosx] = − sinx

— d
dx [tanx] = sec

2 x

— d
dx [cotx] = − csc2 x

— d
dx [secx] = secx tanx

— d
dx [cscx] = − cscx cotx

• d
dx [ln(x)] =

1
x ,

d
du [ln(u)] =

1
u ∗ dudx

• d
dx [logb(x)] =

1
x logb(e)

• d
dx [exp(x)] = expx

• d
dx [b

x] = bx ln b

• Inverse function: If f has an inverse and the value of f−1(x) varies over
an interval on which f has a nonzero derivative, then f−1is differentiable
and the derivative is given by the formula: f−1(x) = 1

f 0(f−1(x))

• The Chain Rule
If g is differentiable at the point x and f is differentiable at the point g(x),
then the composition f ◦ g is differentiable at the point x.If y = f(g(x))
and u = g(x), then y = f(u) and dy

dx =
dy
du

du
dx

• Iimplicit differentiation
Example: Find dy

dx if 5y
2 + sin y = x2

d
dx

£
5y2 + sin y

¤
= d

dx

£
x2
¤⇒
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5
³
2y dydx

´
+ (cos y) dydx = 2x =⇒

(10y + cos y) dydx = 2x =⇒
dy
dx =

2x
10y+cosy

• ∆−notation; differentials
— Increments: ∆x = change in the value of x, ∆y = change in the value
of y, so dy

dx = lim
∆x→0

∆y
∆x . The increments (∆y) represent changes of

the curve (f(x)).

— The symbols dx, dy are called differentials and represent changes of
the tangent line.

— If dx = ∆x, ∆y represents the change in y that occurs when we
start at x and travel along the curve y = f(x) until we have moved
∆x(= dx) units in the x−direction, while dy represents the change
in y that occurs when we start at x and travel along the tangent line
until we have moved ∆x(= dx) units in the x−direction.

• Tangent line approximations:
f(x0 + ∆x) ≈ f(x0) + f

0
(x0)∆x. When ∆x → 0,this result is a good

(linear) approximation of f near x0.

— Example: Approximate 2
√
1.1, cos 62◦

• Error propagation: A measurement error ∆x propagates to produce an
error ∆y in the calculated value of y.

∆y ≈ f 0(x0)∆x.

— Example: estimate the possible error in the computed volume of a
sphere with radius measured ti be 50 cm with a possible measurement
error ± 0.02 cm (V = 4

3πr
3).

1.5.3 Applications of differentiation

Related rates problems In this kind of problem, one tries to find the rate
at which some quantity changes by relating it to other quantities whose rates
of change are known.

• Examples
— If a rocket is rising vertically at 880ft/ sec, when it is at 4000ft
up, how fast is the camera-to-rocket distance changing at that in-
stant?(horizontal distance between camera and rocket is 3000 ft).

— How fast should the camera elevation angle change at that instant to
keep the rocket in sight?
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— A 5-feet ladder, leaning against a wall slips so that its base moves
away from the wall at a rate of 2 ft/sec. How fast will the top of the
ladder be moving down the wall when the base is 4 ft from the wall?

Intervals of increase and decrease; concavity

• Let f be a function that is continuous on a closed interval [a, b] and dif-
ferentiable on the open interval (a, b).

— if f 0(x) Â 0 for every value of x in (a, b) , then f is increasing on
[a, b] .

— if f 0(x) ≺ 0 for every value of x in (a, b) , then f is decreasing on [a, b]
— if f 0(x) = 0 for every value of x in (a, b) , then f is constant on [a, b]

• Let f be a function that is differentiable on an interval.
— if f 0 is increasing on the interval, then f is concave up on the
interval..⇔ f 00 Â 0

— if f 0 is decreasing on the interval, then f is concave down on the
interval.⇔ f 00 ≺ 0

• Inflection point of f is the point that f changes direction of its concavity.(f 00 =
0)

Relative extrema

• A critical point for a function f is any value of x in the domain of f at
which f 0(x) = 0 or at which f is not differentiable; the critical values
where f

0
(x) = 0 are called stationary points of f .

• First derivative test: The relative extrema of a continuous nonconstant
function f if any occur at those critical points where f ’ changes sign.

• Second derivative test: Suppose f is twice differentiable at a stationary
point x0.

— If f 00(x0) Â 0, then f has a relative minimum at x0.

— If f 00(x0) ≺ 0, then f has a relative maximum at x0.

Optimization problems These are problems concerned with finding the best
way to perform a task. a large class of these problems can be reduced to finding
the largest and smallest value of a function and determining whether this value
occurs.

• Extreme value or absolute extremum is a maximum or minimum in the
whole domain of the function.
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• Extreme value theorem: if a function f is continuous on a closed interval
[a, b] , then f has both a maximum and a minimum value on [a, b] .

• If a function f has an extreme value (either a maximum and a minimum
value on (a, b)), then the extreme value occurs at a critical point of f .

Applied maximum and minimum problems

• Examples (continuous function over a closed interval)
— Find the dimensions of a rectangle with perimeter 100 ft whose area
is as large as possible.

— Find the radius and the height of the right circular cylinder of largest
volume that can be inscribed in a right-circular cone with radius 6cm
and height 10cm.(V=πr2h)

• Examples (continuous function over open or infinite intervals)
— A closed cylindrical can is to hold 1liter(1000cm3) of liquid. how
should we choose the height and radius to minimize the amount of
material needed to manufacture the can? (S = 2πr2h + 2πrh, V =
πr2h)

— Find a point on the curve y = x2 that is closest to the point(18,0)

Newton’s method This technique is an efficient method of approximating
the solution of an equation.
xn+1 = xn − f(xn)

f 0(xn)

Rolle’s Theorem, Mean-Value Theorem

• Rolle’s Theorem: Let f be differentiable on (a, b) and continuous on [a, b].
If f(a) = f(b) = 0,then there is at least one point c in (a, b) where f 0(c) =
0.(the tangent line to the curve is horizontal)

• Mean Value Theorem: Let f be differentiable on (a, b) and continuous on
[a, b]. Then there is at least one point c in (a, b)where f 0(c) = f(b)−f(a)

b−a .
(the tangent parallel to the secant line).

Motion along a line

• Instantaneous velocity: v(t) = s0(t) = ds
dt , where s(t) is the position func-

tion of a particle moving on a coordinate line.

• Instantaneous acceleration: a(t) = v0(t) = dv
dt = s

00(t) = d2s
dt2

• instantaneous speed: absolute velocity.
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Figure 1:

2 Integration
In this section we are concerned with finding areas: integral calculus, so we will
discuss techniques of finding areas.
The first real progress in finding areas was made by Archimedes who used

the method of exhaustion: He inscribed a succession of regular polygons in a
circle of radius r and allowed the number of sides n to increase indefinitely. As
n increases, the polygons exhaust the the region inside the circle and the areas
of polygons become better and better approximations to the exact area of the
circle.
We will also discuss the “Fundamental theorem of Calculus” that relates

the problem of finding tangent lines and areas. In fact, the distinction between
differential and integral calculus is often hard to discern.

2.1 The area problem

• Given a function f that is continuous and non-negative on an interval
[a, b], find the area between the graph of f and the interval [a, b] on the
x-axis.

• There are two basic methods of finding the area of a region as defined
above:

— The rectangle method, and
— The antiderivative method

2.1.1 The rectangle method

This method stems from the method of exhaustion that explicitly incorporates
the notion of a limit. It makes use of rectangles that tend to exhaust a region.
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We divide the interval [a,b] into n equal subintervals and construct a rectangle
that extends from x-axis to any point on the curve y = f(x) that is above
the subinterval. For each n the total area of the rectangles can be viewed
as an approximation to the exact area under the curve. As n increases these
approximations tend to get better and will approach the area as a limit.
Drawback: The limits involved can be evaluated directly only in special

cases.

2.1.2 The antiderivative method

This method came from Isaac barrow and Isaac Newton in Great Britain and
Leibniz in Germany. To find the area under a curve, one should first find the area
A(x) between the graph of f and the interval [a, x], x ∈ [a, b], then substituting
for x = b , we take the area. The derivative of the area function A(x) is the
function whose graph forms the upper boundary of the region.
The connection between the two methods is given by the Fundamental The-

orem of Calculus.

2.2 The indefinite integral; integral curves and direction
fields

• Definition: A function F is called an antiderivative of a function f on a
given interval I if F 0(x) = f(x) for all x in the interval.

• Notation: R f(x)dx = F (x) +C.R
f(x)dx: indefinite integral

f(x): integrand
dx: differential symbol that is used to identify the independent

variable.
C: constant of integration.

• Formulas:

R
dx = x+CR
xrdx = xr+1

r+1 +C (r 6= −1)R
cosxdx = sinx+CR
sinxdx = −cosx+CR
sec2 xdx = tanx+CR
csc2 xdx = −cotx+CR
secx tanxdx = secx+CR
cscx cotxdx = −cscx+C

• Theorem:
R
cf(x)dx = c

R
f(x)dxR

[f(x) + g(x)]dx =
R
f(x)dx+

R
g(x)dxR

[f(x)− g(x)]dx = R
f(x)dx− R g(x)dx

• Integral curves: Graphs of antiderivatives of a function f . (Example:
dy
dx = x

2 or y = x3

3 +C)
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Figure 2:

2.3 Area as a limit

• Definition (Area under a curve): if the function f is continuous on [a, b]
and if f(x) º 0 for all x ∈ [a, b] , then the area under the curve y = f(x)
over the interval [a, b] is defined by A = lim

n→+∞
Pn
k=1 f (x

∗
k)∆xk. We can

choose left endpoint approximation, right endpoint approximation or the
midpoint approximation.

• If f(x) takes both positive and negative values over the interval, we find
the integral by subtracting the negative “areas” from the positive ones.

2.4 Riemann sums and the definite integral

• A partition of the interval [a, b] is a collection of numbers a = xo ≺ x1 ≺
... ≺ xn−1 ≺ xn = b that divides [a, b] into n subintervals of lengths
∆x1 = x1 − xo, ...∆xn = xn − xn−1. The partition is said to be regular if
the subintervals have the same length ∆xk = b−a

n

• Definition(The Riemann Sum): A function f is said to be integrable on
a finite closed interval [a, b] if the limit lim

max∆xk→0
Pn
k=1 f (x

∗
k)∆xk exists

and does not depend on the choice of partitions or on the choice of the
numbers x∗k in the subintervals. When this is the case we denote the limit
by the symbol

R b
a
f(x)dx = lim

max∆xk→0
Pn
k=1 f (x

∗
k)∆xk which is called the

definite integral of f from a to b.

• If a function f is continuous on an interval [a, b] , then f is integrable on
[a, b] .

• Properties of the definite integral:

— If a is in the domain of f , we define
R a
a f(x)dx = 0

— If f is integrable on [a, b] , then we define
R b
a f(x)dx = −

R a
b f(x)dx
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— If f is integrable on a closed interval containing a, b, c, then
R b
a f(x)dx =R c

a
f(x)dx+

R b
c
f(x)dxno matter how the numbers are ordered.

— If f is integrable on [a, b] and f(x) º 0 for all x ∈ [a, b], thenR b
a f(x)dx º 0 .

— If f and g are integrable on [a, b] and f(x) º g(x) for all x ∈ [a, b],
then

R b
a
f(x)dx º R b

a
g(x)dx .

• Discontinuities and Integrability

— A function f that is defined on an interval I is said to be bounded
on I if there is a positive number M such that -M ¹ f (x) ¹M for
all x in the interval I. Geometrically this means that the graph of f
over the interval I lies between the lines y = −M and y =M.

— Let f be a function that is defined on the finite closed interval [a, b] .

∗ If f has finitely many discontinuities in [a, b] but is bounded on
[a, b] , then f is integrable on [a, b] .
∗ If f is not bounded on [a, b] , then f is not integrable on [a, b] .

2.5 The Fundamental theorem of Calculus

Its formulation by Newton and Liebniz is generally regarded to be the discovery
of calculus.
The first part of this theorem relates the rectangle and antiderivative meth-

ods for calculating areas and the second part provides a powerful method for
evaluating definite integrals using antiderivatives.

• Part 1: If f is continuous on [a, b] and F is any antiderivative of f on
[a, b], then

R b
a
f(x)dx = F (b)− F (a) Note: It stems from the Mean Value

Theorem, which holds for each term in the Riemann sum. We omit the
constant of integration.

• What kinds of functions have antiderivatives? All continuous functions.
• Part 2: If f is continuous on an interval I, then f has an antiderivative on
I .In particular, if a is any number in I, then the function F defined by
F (x) =

R x
a f(t)dt is an antiderivative of f on I; that is, F

0(x) = f(x)∀x ∈
I, or in an alternative notation d

dx

£R x
a
f(t)dt

¤
= f(x).

2.5.1 Mean Value Theorem for Integrals

If f is continuous on [a, b] , then there is at least one number x∗in [a, b] such
that

R b
a
f(x)dx = f(x∗)(b− a)
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2.6 Applications

2.6.1 Rectilinear motion revisited

• If the velocity of a partcle is known, then its position can be obtained by
s(t) =

R
v(t)dt provided that we know the position so of the particle at

time to in order to evaluate the constant of integration.

• Similarly, its velocity can be obtained by v(t) = R a(t)dt.
• Example: find the position of the particle with v(t) = R

cosπtdt (so =
4, to = 0).

2.6.2 Average value of a function

If f is continuous on [a, b] ,then the average value (or mean value )of f on [a, b]
is defined to be fave = 1

b−a
R b
a f(x)dx

2.6.3 Area between two curves

Other Applications:Volumes, Length of a plane curve,Area of a sur-
face of revolution, Work, Fluid pressure and Force

2.6.4 Functions defined by Integrals

• The natural logarithm of x is formally defines by ln(x) =
R x
1
1
t dt, t Â 0.

• the Error function: erf(x) = 2
2√π
R x
0 e
−t2dt

• Fresnel sine and cosine functions
— S(x) =

R x
0 sin(

πt2

2 )dt

— C(x) =
R x
0
cos(πt

2

2 )dt

18
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2.7 Formulas of antiderivatives

2.7.1 Constants, Powers and ExponentialsR
dx = x+CR
xrdx = xr+1

r+1 +C (r 6= −1)R
adx = ax+CR

1
xdx = ln |x|+CR
bxdx = bx

ln b +CR
exdx = ex +C

2.7.2 Trigonometric functionsR
cosxdx = sinx+CR
sinxdx = −cosx+CR
sec2 xdx = tanx+CR
csc2 xdx = −cotx+CR
secx tanxdx = secx+CR
cscx cotxdx = −cscx+CR
tanxdx = − ln |cosx|+CR
cotxdx = ln |sinx|+C

2.7.3 Hyperbolic functions

R
coshxdx = sinhx+CR
sinhxdx = coshx+CR
sech2xdx = tanhxdx+CR
csch2xdx = − cothx+CR
sechx tanhxdx = − sechx+ cR
s cschx cothxdx = − cschx+C

2.7.4 Algebraic functionsR
1

2√1−x2 dx = sin−1 x+CR
1

1+x2 dx = tan−1 x+CR
1

x 2√x2−1dx = sec−1 |x|+CR
1

2√a2−x2 dx = sin−1 xa + CR
1

a2+x2 dx =
1
a tan

−1 x
a +CR

1
x 2√x2−a2 dx =

1
a sec

−1 ¯̄x
a

¯̄
+C

· · · · · · · · ··
· · · · · · · · ··
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2.8 Techniques of integration

2.8.1 Integration by substitution

• It stems from the chain rule of the derivatives as follows:

d
dx [F (g(x))] = F

0(g(x))g0(x) =⇒R
F 0(g(x))g0(x)dx = F (g(x)) +C =⇒R
f(g(x))g0(x)dx = F (g(x)) +C =⇒R
f(u)du = F (u) +C (u = g(x) =⇒ du

dx = g
0(x) =⇒ du = g0(x)dx)

• If g0 is continuous on [a, b] and f is continuous on an interval containing
the values of g(x) for a ≤ x ≤ b, then R b

a
f (g(x)) g0(x)dx =

R g(b
g(a)

f(u)du

• Example: R dx
( 13x−8)5

= −34
¡
1
3x− 8

¢−4
+C

• Verify the following:

—
R
sin2 x cosxdx = sin3 x

3 +C (u = sinx)

—
R cos 2

√
x

2
√
x
dx = 2 sin 2

√
x+C (u = 2

√
x)

—
R
t4 3
√
3− 5t5dt = − 3

100

¡
3− 5t5¢ 43 +C

2.8.2 Integration by Parts

• R f(x)g(x)dx = f(x)G(x)− R f 0(x)G(x)dx
• Examples:R xexdx, R lnxdx, R ex cosxdx

2.8.3 Trigonometric Substitutions

• x = a sinu (−π2 ≤ u ≤ π
2 ) to evaluate expressions such as

√
a2 − x2

• x = a tanu (−π2 ≤ u ≤ π
2 ) to evaluate expressions such as

√
a2 + x2

• x = a secu (0 ≤ u ≤ π
2 if x ≥ a, π2 ≤ u ≤ π if x ≤ −a)) to evaluate

expressions such as
√
x2 − a2

• Examples: R dx
x2
√
4−x2 (x = 2 sinu)
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2.8.4 Rational functions by partial fractions

• We decompose proper rational functions (the degree of the numerator is
less than the degree of the denominator) into a sum of partial frections.

P (x)
Q(x) = F1(x)+F2(x)+ ...+Fn(x), where F1(x), F2(x), ..., Fn(x) are

rational functions of the form A
(ax+b)k ,

ax+B
(ax2+bx+c)k

• Examples: R dx
x2+x−2 ,

R
2x+4
x3−2x2 dx,

R
dx

x2+x−2 ,
R

x2+x−2
3x3−x2+3x−1dx
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2.9 Numerical integration

If an antiderivative of an integral can not be found we must find it using nu-
merical approximation for the integral.

2.9.1 Trapezoidal approximation

If we take the average of the left-hand and right-hand approximation endpoint
approximations, we ovtain trapezoidal approximation:R b

a
f(x)dx ≈ ¡ b−a2n ¢ [yo + 2y1 + ...+ 2yn−1 + yn] = Tn

2.9.2 Midpoint approximation (tangent approximation)

R b
a
f(x)dx ≈ ¡ b−an ¢ [ym1 + ym2 + ...+ ymn] =Mn

2.9.3 Simpson’s Rule

R b
a
f(x)dx = 1

3(2Mn + Tn) (It is like fitting a quadrating curve)

2.9.4 Evaluation of the three methods

Simpson’s Rule generally produces more accurate results.
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3 Infinite Series

Definition: Infinite series are sums that involve infinitely many terms. They are
used to approximate trigonometric functions and logarithms, to solve differential
equations, to evaluate difficult integrals, to create new functions and to construct
mathematical models of physical laws. Not all infinite series have a sum, so our
aim is to develop tools for determining which infinite series have sums and which
do not.

3.1 Sequences

• Definition: A sequence is a function whose domain is a set of integers.
Specifically, we will regard the expression {an}+∞n=1to be an alternative
expression for the function f(n) = an,n = 1, 2, 3, ...

Informally, the term “sequence” is used to denote a succession of numbers
whose order is determined by a rule or a function.

• Graphs of Sequences: Some examples
— an = 1

n , n = 1, 2, 3, ...

— an = n
n+1 , n = 1, 2, 3, ...

— an = 1 + (−12)n, n = 1, 2, 3, ...
— an = (2n + 3n)

1
n , n = 1, 2, 3, ..

• Definition: A sequence {an} is said to converge to the limit L if given
any ² Â 0, there is a positive integer N such that |an − L| ≺ ² for n º N
( lim
n→+∞an = L).

• Theorem: Suppose that the sequences {an} , {bn} converge to limits L1
and L2, respectively and c is a constant. Then,

— lim
n→+∞ c = c
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— lim
n→+∞ can = c lim

n→+∞an = cL1

— lim
n→+∞(an + bn) = lim

n→+∞an + lim
n→+∞ bn = L1+ L2,

— lim
n→+∞(an − bn) = lim

n→+∞an − lim
n→+∞ bn = L1− L2,

— lim
n→+∞(an ∗ bn) = lim

n→+∞an ∗ lim
n→+∞ bn = L1∗ L2,

— lim
n→+∞(an/bn) = lim

n→+∞an/ lim
n→+∞ bn = L1/ L2 (if L2 6= 0)

• Examples: lim
n→+∞

1
2n = 0, limn→+∞

n
en = 0, limn→+∞

n
√
n = 1

• Theorem: A sequence converges to a limit L if and only if the sequences
of even-numbered terms and odd-numbered terms both converge to L.

• Theorem: If lim
n→+∞ |an| = 0, then lim

n→+∞an = 0

• Definition: Recursion formulas: a1,an+1 = f(an)

3.2 Monotone sequences

• Definition: A sequence {an}+∞n=1 is called

— strictly increasing if a1 ≺ a2 ≺ ... ≺ an ≺ ...⇐⇒ an+1 − an Â 0⇐⇒
an+1
an

Â 1
— increasing if a1 ¹ a2 ¹ ... ¹ an ¹ ...⇐⇒ an+1 − an º 0⇐⇒ an+1

an
º

1

— strictly decreasing if a1 Â a2 Â ... Â an Â ...⇐⇒ an+1 − an ≺ 0⇐⇒
an+1
an
≺ 1

— decreasing if a1 º a2 º ... º an º ...⇐⇒ an+1 − an ¹ 0⇐⇒ an+1
an

¹
1

• Definition: If discarding finitely many terms from the beginning of a se-
quence produces a sequence with a certain property , then the original
sequence is said to have the property eventually.

• Example:©10nn! ª∞n=1 is eventually strictly decreasing.
• Theorem: If a sequence {an}is eventually increasing, then there are two
possibilities:

— there is a constant M,called an upper bound for the sequence, such
that an ¹ M for all n, in which case the sequence converges to a
limit L satisfying L ¹M.

— No upper bound exists, in which case lim
n→+∞an = +∞
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• Theorem: If a sequence {an}is eventually decreasing, then there are two
possibilities:

— there is a constant M,called a lower bound for the sequence, such
that an º M for all n, in which case the sequence converges to a
limit L satisfying L ºM.

— No lower bound exists, in which case lim
n→+∞an = −∞

• Example:©10nn! ª∞n=1 converges and its limit is 0.
3.3 Infinite series

• Definition: An infinite series is an expression that can be written in the
form

P∞
k=1 uk = u1 + ... + uk + ...The numbers u1, ..., uk are called the

terms of the series.

• Definition: The number sn =
Pn
k=1 uk is called the nth partial sum of the

series and the sequence {sn}+∞n=1 is called the sequence of partial sums.
• Note: a sequence is a succession, while a series is a sum.
• Definition: If the sequence {sn} converges to a limit S then the series is
said to converge to S, and S is called the sum of the series : S =

P∞
k=1 uk.

If the sequence of partial sums diverges, then the series is said to diverge.
a divergent series has no sum.

• Definition: A series of the formP∞k=0 ark = a+ar+ar2+...+ark+...(a 6=
0) is called a geometric series and the number r is called the ratio for the
series.

• Theorem: A geometric series converges if |r| ≺ 1 and diverges if |r| º 1.
if the series converges then the sum is

P∞
k=0 ar

k = a
1−r

3.4 Convergence tests

• The Divergence test:
— If lim

k→+∞
uk 6= 0, then the series

P
uk diverges.

— If lim
k→+∞

uk = 0, then the series
P
uk may either converge or diverge.

• Example: The following series both have the property lim
k→+∞

uk = 0.

1
2 +

1
22 + ...+

1
2k
+ ... and 1 + 1

2 +
1
3 + ....+

1
k + ...

The first is a convergent geometric series, while the second is a divergent
harmonic series.

• If the series Puk converges, then lim
k→+∞

uk = 0.
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• The Integral test:
Let

P
uk be a series with positive terms, and let f(x) be the function

that results when k is replaced by x in the general term of the series. If f
is decreasing and continuous on the interval [a,+∞] , then P∞k=1 uk andR +∞
a f(x)dx both converge or both diverge.

• Examples: P∞k=1 1k = +∞ and
R+∞
1

1
xdx = +∞, whileP∞

k=1
1
k2 = 1 and

R+∞
1

1
x2 dx = 1

• Convergence of p-series
A p-series or hyperharmonic series is a series of the form:P∞
k=1

1
kp = 1 +

1
2p +

1
3p + ...+

1
kp + ...

A p-series converges if p Â 1 and diverges if 0 ≺ p ¹ 1.
• A series with nonnegative terms converges if and only if its sequence of
partial sums is bounded above.

• The Comparison test
Let

P∞
k=1 ak and

P∞
k=1 bk be series with nonegative terms and suppose

that a1 ¹ b1, ...ak ¹ bk, ...

— if the bigger series
P∞
k=1 bk converges, then the smaller series

P∞
k=1 ak

also converges.

— if the smaller series
P∞
k=1 ak diverges, then the bigger series

P∞
k=1 bk

also diverges.

• Techniques:
— Constant summands in the denominator of uk can usually be deleted
without affecting the convergence or divergence of the series.
Example:

P∞
k=1

1
2√
k− 1

2

diverges as does the
P∞
k=1

1
2√
k

— If a polynomial in k appears as a factor in the numerator or denomi-
nator of uk , all but the leading term in the polynomial can usually
be discarded without affecting the convergence or divergence of the
series.
Example:

P∞
k=1

1
2k2+k converges as does the

P∞
k=1

1
2k2

• The limit comparison test
Let

P∞
k=1 ak and

P∞
k=1 bk be series with positive terms and suppose that

p = lim
k→+∞

ak
bk
. If p is finite and p Â 0, then the series both converge or

both diverge.

— Example:
P∞
k=1

3k3−2k2+4
k7−k3+2 (compare with

P∞
k=1

3
k4 )
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• The Ratio Test
Let

P∞
k=1 uk be a series with positive terms and suppose that p = lim

k→+∞
uk+1
uk

— if p ≺ 1, the series converges
— if p Â 1 or p = +∞, the series diverges
— if p = 1, another test must be tried.
Example:

P∞
k=1

1
k! ,
P∞
k=1

k
2k

• The Root Test
Let

P∞
k=1 uk be a series with positive terms and suppose that p = lim

k→+∞
k
√
uk

— if p ≺ 1, the series converges
— if p Â 1 or p = +∞, the series diverges
— if p = 1, another test must be tried.

Example:
P∞
k=1

³
4k−5
2k+1

´k
,
P∞
k=1

1
(ln(k+1))k

3.5 Alternating series; Conditional convergence

• Definition: Series whose terms alternate between positive and negative
are called alternating series. In general, an alternating series has one of
the following forms:

—
P∞
k=1(−1)k+1ak = a1 − a2 + a3 − ...

—
P∞
k=1(−1)kak = −a1 + a2 − a3 − ...

• Alternating series test
An alternating series converges if the following two conditions are satisfied:

— a1 º a2 º ... º ak º ...
— lim

k→+∞
ak = 0

Example:
P∞
k=1 (−1)k+1 1k ,

P∞
k=1 (−1)k+1 k+3

k(k+1)(the first series is called
alternating harmonic series)

• Absolute convergence
If the series

P∞
k=1 |uk| converges (absolutely), then the series

P∞
k=1 uk con-

verges.

• Conditional convergence
A series that converges, but diverges absolutely is said to converge condi-
tionally.

Example: Alternating harmonic series.

• The Ratio Test for Absolute Convergence
It holds as the ratio test for convergence.
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3.6 Sequences of functions

These sequences are sequences {fn} whose terms are real-valued or complex-
valued functions having a common domain on the real line R or in the complex
plane C. For each x in the domain set, we can form another sequence {fn(x)}
whose terms are the corresponding function values. Let S denote the set of x for
which this second sequence converges. the function f defined by the equation
f(x) = limn→∞ fn(x), if x ∈ S, is called the limit function of the sequence
{fn} , and we say that {fn} converges pointwise to f on the set S.
Pointwise convergence is usually not strong enough to transfer properties

such as continuity, differentiability, or integrability to the limit function. There-
fore we are led to study stronger methods of convergence that do preserve these
properties. the most important of these is uniform convergence.

• Example 1: A sequence of continuous functions with a discontinuous limit
function.

fn(x) =
x2n

1+x2n , x ∈ R,n = 1, 2, 3..., limn→∞ fn(x) exists for every real x,
and the limit function f is given by f(x) = 0, if |x| ≺ 1, f(x) = 1/2, if
|x| = 1,and f(x) = 1, if |x| Â 1. Each fn is continuous on R, but f is
discontinuous at x = ±1.

• Example 2: A sequence of differentiable functions {fn} with limit 0 for
which {f 0n}diverges.
fn(x) = (sinnx)/

√
n, x ∈ R,n = 1, 2, 3..., limn→∞ fn(x) = 0 ∀x. But

f 0n(x) =
√
n cosnx diverges. (see figures)

3.6.1 Uniform convergence of sequences

• Example: Consider the following sequence of functions: each function
fn(x) is given for 0 ≤ x ≤ 2, and the graph of y = fn(x) consists of
three line segments joining the four points (0, 0), (1/2n, 1), (1/n, 0), (2, 0).
For fixed n, the curve y = fn(x) has a triangular hump with its apex
at (1/2n, 1) but except for this hump, y = 0. As n increases, the hump
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moves farther to the left. If x is fixed and 0 ≤ x ≤ 2,then lim
n→+∞ sn(x) =

0,because eventually the hump is wholly to the left of x. the same condition
holds for x = 0, since in this case fn(x) = 0 for all n. Therefore, the
sequence converges to 0, although the maximum value of each function is
1, but it does not converge uniformly, that is the difference between fn(x)
and its limit can be made small for fixed x, by suitable choice of n,but it
can not be made uniformly small for all x simultaneously.

• Definition: A sequence {fn(x)} converges uniformly to f(x) in a given
interval [a, b] if ∀ ² Â 0 ∃N,independent of x, such that |fn(x)− f(x)| ≺
²,∀n Â N, a ≤ x ≤ b.

• Geometric intepretation: The graph of y = fn(x) lies in a strip of width
2² centered on the graph of y = f(x). No matter how narrow the strip
may be, this condition must hold for all sufficiently large n; otherwise the
convergence is not uniform.

3.6.2 Uniform Convergence of Series

Since the value of an infinite series is defined to be the limit of the sequence of
partial sums, we can extend the concept of uniform convergence to series.
Let

P
un(x) be a series of functions defined in a given interval [a, b] , with

partial sums sn(x) = u1(x)+u2(x)+ ...+un(x). If the sequence of partial sums
converges uniformly to a function s (x), then the series is said to be uniformly
convergent.
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Consider the remainder rn(x) after n terms rn(x) = s (x)−sn(x) = un+1(x)+
un+2(x) + ....
Since the series converges to s (x), then lim

n→+∞ rn(x) = 0, which means that

for any preassigned positive number ², however small, one can find a number N
such that |rn(x)| ≺ ²,∀∀n Â N. The magnitude of N depends not only on the
chice of ² but also on the value of x. If it is possible to find a single, fixed N,
for any preassigned positive ², which will serve for all values of x in the interval,
then the series is said to converge uniformly.

• Definition: The series Pun(x) converges uniformly to s(x) in a given
interval [a, b] if ∀ ² Â 0 ∃N, independent of x, such that the remainder
|rn(x)| ≺ ²,∀n Â N, a ≤ x ≤ b.

• Example 1: ( convergent but not uniformly convergent): consider the series
x+ (x− 1) ∗ x+ (x− 1) ∗ x2 + ....on the interval [0, 1)

• Example 2: ( uniformly convergent): consider the series Pxn on the
interval [−1/2, 1/2]

Uniform Convergence tests- Properties

• Any test of convergence becomes a test of uniform convergence provided
its conditions are satisfied uniformly, that is independently of x.

• Let Puk(x) be a series such that each uk(x) is a continuous function of
x in the interval [a, b] . If the series is uniformly convergent in [a, b] , then
the sum of the series is also a continuous function of x in [a, b] .

• If a series of continuous functions Pun(x) converges uniformly to s(x),
then

R β
α s(x)dx =

R β
α u1(x)dx +

R β
α u2(x)dx + ...

R β
α un(x)dx + ...,where

a ≤ α ≤ b and a ≤ β ≤ b
• Let Puk(x) be a series of differentiable functions that converges to s(x)
in the interval [a, b] . If the series

P
u0k(x)is uniformly convergent in [a, b] ,

then it converges to s0(x).

3.6.3 Mean Convergence

Let {fn}be a sequence of integrable functions defined on [a, b]. the sequence {fn}
is said to converge in the mean to f on [a, b] and we write l.i.m.n→∞fn = f on
[a, b] if limn→∞

R b
a |fn(x)− f(x)|2 dx = 0.

• If the inequality |fn(x)− f(x)| ≺ ² holds for every x in [a, b] , then we haveR b
a
|fn(x)− f(x)|2 dx ≤ ²2(b − a). Therefore uniform convergence implies

mean convergence, provided that f is integrable on [a, b] .

• Convergence in the mean does not imply pointwise convergence at any
point on the interval.
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3.6.4 The Big Oh and Little oh notation

Given two sequences {an} , {bn} such that bn ≥ 0 for all n.
We write an = O(bn),if there exists a constant M Â 0 : |an| ≤Mbn∀n., and
an = o(bn) as n→∞ if limn→∞ an

bn
= 0.

3.7 Power series

• One of the most useful types of infinite series is the power series: a0 +
a1x+ a2x2 + ...+ anxn + ... =

P∞
n=0 anx

n.

• The region of convergence is easily determined by the ratio test.
• Examples:

— The series
P
xnn! converges only for x = 0. The ratio of two succes-

sive terms leads to
¯̄̄

xnn!
xn−1(n−1)!

¯̄̄
= |xn| = |x|n −→∞, for x 6= 0.

— The series
P
xn(n!)−1 converges only for all x. The ratio of two

successive terms leads to
¯̄̄
xn(n−1)!
xn−1(n)!

¯̄̄
= |x| /n −→ 0

— The series
P
xn converges only for |x| ≺ 1.

• Every power series, without exception, behaves like one of the previous
examples.

• If a series converges for |x| ≺ r. The number r is called the radius of
convergence and the interval |x| ≺ r is the interval of convergence.

• Theorem 1: A power series may be differentiated or integrated term by
term in any interval interior to its interval of convergence. The resulting
series has the same interval of convergence as the original series and repre-
sents the derivative or integral of the function to which the original series
converges.

— Example: The geometric series (1 − x)−1 = 1 + x + x2 + ... + xn +
..., |x| ≺ 1. Differentiating this series term by term we obtain (1 −
x)−2 = 1+2x+3x2+...+nxn−1+.... This series converges for |x| ≺ 1
Integrating this series term by term from zero to x we have the fol-
lowing expansion: − log(1− x) = x+ x2

2 +
x3

3 + ...+
xn

n ,for |x| ≺ 1

• Theorem 2: If two power series converge to the same sum throughout an
interval, the corresponding coefficients are equal.

• Theorem 3: Two power series can be multiplied like polynomials for
values x which are interior to both intervals of convergence; that is,
(
P
anx

n) (
P
bnx

n) = (
P
cnx

n) , where cn = a0bn + a1bn−1 + a2bn−2 +
...+ anb0.
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• Theorem 4 (Abel’s theorem on the continuity of power series). Suppose the
power series

P
anx

n converges for x = x0, where x0 may be an end point
of the interval of convergence. then limx→x0

P
anx

n =
P
anx

n
0 provided

that x→ x0 through values interior to the interval of convergence.

— Example: − log(1 − x) = x + x2

2 +
x3

3 + ... +
xn

n ,for |x| ≺ 1. If x →−1,then − log 2 =P(−1)n/n, since the logarithm is continuous.

• Functions defined by power series (Bessel functions)

— J0(x) =
P (−1)kx2k

22k(k!)2
, which is a solution to the differential equation

xy0 + y0 + xy = 0 (Bessel equation of order zero) (see figures11,12)

— J1(x) =
P (−1)kx2k+1

22k+1(k!)(k+1)!which is a solution to the differential equa-
tion x2y00 + xy0 + (x2 − 1)y = 0 (Bessel equation of order one) (see
figures 13,14)

3.8 Maclaurin and Taylor Polynomial approximations

• Local linear approximation near the point of tangency is given by the
tangent line of a function: f(x) ' f(x0)+ f 0(x0)(x−x0). In this formula,
the approximating function p(x) = f(x0)+ f 0(x0)(x−x0) is a first degree
polynomial satisfying the following conditions: p(x0) = f(x0) and p0(x0) =
f 0(x0). The local linear approximation of f at x0 has the property that
its value and the values of its first derivatives match those of f at x0.
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• Maclaurin polynomial: If f can be differentiated n times at 0, then we
define the nth Maclaurin polynomial for f to be pn(x) = f(0)+f 0(x0)x+
f 0
0
(x0)
2! x2+ ...+ f(n)(x0)

n! xn. This polynomial has the property that its value
and the values of its first n derivatives match the values of f and its first
n derivatives at x = 0.

• Taylor polynomial: If f can be differentiated n times at x0, then we
define the nthMaclaurin polynomial for f to be pn(x) = f(x0)+f 0(x0)(x−
x0) +

f0
0
(x0)
2! (x − x0)2 + ... + f(n)(x0)

n! (x − x0)n. This polynomial has the
property that its value and the values of its first n derivatives match the
values of f and its first n derivatives at x = x0.

• The nth remainder: Rn(x) = f(x) − pn(x). Finding a bound for Rn(x)
gives an indication of the accuracy of the approximation f(x) ≈ pn(x).

• The remainder estimation theorem: If the function f can be differentiated
n + 1 times on an interval I containing the number x0, and if M is an
upper bound for

¯̄
f (n+1)(x)

¯̄
on I, that is

¯̄
f (n+1)(x)

¯̄ ≤ M for all x in I,
then |Rn(x)| ≤ M

(n+1)! |x− x0|n+1 for all x in I.
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3.8.1 Maclaurin and Taylor series

• Definition: If f has derivatives of all orders at x0, then we call the series∞P
k=0

f(k)(x0)
k! (x− x0)k = f(x0) + f 0(x0)(x− x0) + f 0

0
(x0)
2! (x− x0)2 + .....,the

Taylor series for f about x = x0.

In the special case that x0 = 0, the series becomes
∞P
k=0

f(k)(0)
k! (x)k = f(x0)+

f 0(x0)x+
f 0
0
(x0)
2! x2 + ..... and is called the Mclaurin series for f.

• Examples: The Mclaurin series for ex, sinx, cosx, 1
1−x .

— ex =
∞P
k=0

xk

k! = 1 + x+
x2

2! + ...

The figure shows the plot of expx together with the 4th partial sum of
the Maclaurin series.

3.8.2 Convergence of Taylor series; Computational methods

If Rn(x)→ 0,as n→∞,then f(x) =
∞P
k=0

f(k)(x0)
k! (x− x0)k.

• Example 1: Show that the Maclaurin series for ex converges to exfor all
x .

ex = 1 + x+ x2

2! +
x3

3! + ...+
xk

k + ...(−∞ ≺ x ≺∞)
f (n+1)(x) = ex. If x ≤ 0, that is c ∈ [x, 0], we have

¯̄
f (n+1)(c)

¯̄ ≤¯̄
f (n+1)(0)

¯̄
= e0 = 1. (M = 1).If x Â 0, that is c ∈ [0, x], we have¯̄

f (n+1)(c)
¯̄ ≤ ¯̄f (n+1)(x)¯̄ = ex (M = ex).

Rn(x)→ 0 in both cases.

• Example 2: Approximating π: tanh(x) = x− x3

3! +
x5

5! −... For x = 1, π4 =
tanh(1) = 1− 1

3 +
1
5 − 1

7 + ... =⇒ π = 4(1− 1
3 +

1
5 − 1

7 + ...)
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3.8.3 Differentiating power series

• Suppose that a function f is represented by a power series in x−x0 that has
a non-zero radius of convergence R. Then the function f is differentiable
on the interval (x0 −R,x0 +R) . If the power series representation for f is
differentiated term by term , then the resulting series has the same radius
of convergence R and converges to f 0 on the interval (x0 −R,x0 +R) ,
that is f 0(x) =

∞P
k=0

d
dx [ck(x− x0)k].

• If a function f can be represented by a power series in x − x0 with a
nonzero radius of convergence R, then f has derivatives of all orders on
the interval (x0 −R,x0 +R) .

3.8.4 Integrating power series

• Suppose that a function f is represented by a power series in x− x0 that
has a non-zero radius of convergence R.

— If the power series representation for f is integrated term by term ,
then the resulting series has the same radius of convergence R and
converges to an antiderivative for f(x) on the interval (x0 −R,x0 +R) ,
that is

R
f(x)dx =

∞P
k=0

[ ck+1k+1 (x− x0)k+1] +C, x0 −R ≺ x ≺ x0 +R

— If a and b are points on the interval (x0 −R,x0 +R) , and if the
power series representation of f is integrated term by term from a
to b , then the resulting series converges absolutely on the interval

(x0 −R,x0 +R) and
R b
a f(x)dx =

∞P
k=0

[
R b
a ck(x− x0)kdx].

• If a function f can be represented by a power series in x − x0 on some
open interval containing x0, then the power series is the taylor series for
f about x = x0.

• Example: Approximate the integral R 10 exp(−x2)dx.
Replace xwith−x2 in the Maclaurin series: R 1

0
exp(−x2)dx =

∞P
k=0

[ (−1)k
(2k+1)k! ]
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3.8.5 Maclaurin series for the most important functions

Maclaurin series interval of convergence
1

1−x =
∞P
k=0

xk = 1 + x+ x2 + x3 + ... −1 ≺ x ≺ 1
1

1+x2 =
∞P
k=0

(−1)kx2k = 1− x2 + x4 − ... −1 ≺ x ≺ 1

ex =
∞P
k=0

xk

k! = 1 + x+
x2

2! +
x3

3! + ... −∞ ≺ x ≺ ∞

sinx =
∞P
k=0

(−1)kx2k+1
(2k+1)! = x− x3

3! +
x5

5! − ... −∞ ≺ x ≺ ∞

cosx =
∞P
k=0

(−1)kx2k
(2k)! = 1− x2

2! +
x4

4! − ... −∞ ≺ x ≺ ∞

ln(1 + x) =
∞P
k=0

(−1)k+1xk
k = x− x2

2! +
x3

3! − ... −1 ≺ x ≤ 1

tan−1(x) =
∞P
k=0

(−1)kx2k+1
2k+1 = x− x3

3 +
x5

5 − ... −1 ≤ x ≤ 1

sinhx =
∞P
k=0

x2k+1

(2k+1)! = x+
x3

3! +
x5

5! + ... −∞ ≺ x ≺ ∞

coshx =
∞P
k=0

x2k

(2k)! = 1 +
x2

2! +
x4

4! + ... −∞ ≺ x ≺ ∞

(1 + x)m = 1 +
∞P
k=1

m(m−1)...(m−k+1)
k! xk 1 ≺ x ≺ 1, (m 6= 0, 1, 2, ..)

3.9 Fourier series

3.9.1 Introduction-Definitions

Fourier series are trigonometric series of the form f(x) = 1
2a0+

P∞
n=1(an cosnx+

bn sinnx). These series are required in the study of many physical phenomena
such as heat conduction, theory of sound, electric circuits, and mechanical vi-
brations. An important advantage of these series is that they can represent
discontinuous functions, whereas Taylor series can only represent functions taht
have derivatives of all orders.
The coefficients an,bn are given by the following (Euler-Fourier) formulas

for the interval (−π,π) an =
1
π

R π
−π f(x) cosnxdx

bn =
1
π

R π
−π f(x) sinnxdx

. f(x) should be absolutely

integrable.
The distinction between a convergent trigonometric series and a Fourier se-

ries is important. The trigonometric series
P∞
n=1

sinnx
log(1+n) is convergent for every

value of x, and yet this is not a Fourier series, because there is no absolutely in-
tegrable f(x) such that

R π
−π f(x) cosnxdx = 0 and

R π
−π f(x) sinnxdx =

π
log(1+n) .

On the other hand, a series may be a Fourier series for some function and
yet diverge. Such functions often arise in the theory of the Brownian motion,
the problems of filtering and noise etc. Even when divergent, the Fourier series
represents the main features of f(x).
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• Example: Calculate the Fourier series for f(x) = x.
an =

1
π

R π
−π x cosnxdx = 0, bn =

1
π

R π
−π x sinnxdx = − 2

n cosnπ =
2
n(−1)n+1 ⇒

x = 2(sinx− sin 2x
2 + sin 3x

3 − ...)
Figure 15 shows f(x) together with the four first partial sums of the
Fourier series for f(x). As the number of terms increases, the approx-
imating curves approach y = x for each fixed x on −π ≺ x ≺ π, but not
for x = ±π.

• If f(x) defined in the interval −π ≺ x ≺ π is even, the Fourier series has co-

sine terms only and the coefficients are given by
an =

2
π

R π
−π f(x) cosnxdx

bn = 0

• If f(x) defined in the interval−π ≺ x ≺ π is odd, the Fourier series has sine

terms only and the coefficients are given by
an = 0
bn =

2
π

R π
−π f(x) sinnxdx

3.9.2 Convergence

• Dirichlet’s theorem: For −π ≤ x ≺ π, suppose that f(x) is defined,
bounded, has a finite number of minima nad maxima and has only a
finite number of discontinuities. Let f(x) be defined for other values of
x by the periodicity condition f(x+ 2π) = f(x). Then the Fourier series
for f(x) converges to 1

2 [f(x
+) + f(x−)] at every value of x and hence it

converges to f(x) at points where f(x) is continuous.

• Example: f(x) = −π,−π ≺ x ≺ 0 and f(x) = x, 0 ≺ x ≺ π

3.9.3 Extension of the interval

To obtain an expansion valid on the interval (−l, l), change the variable from x
to lz/π.If f(x) satisfies the dirichlet conditions on (−l, l), the function f(lz/π)
can be developed in a Fourier series in z.
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3.9.4 Orthogonal and orthonormal functions

A sequence of functions θn(x)is said to be orthogonal on the interval (a, b) ifR b
a
θm(x)θn(x)dx = 0, for m 6= n and 6= 0 for m = n.( θn(x) = sinnx is or-

thogonal on (0,π). If for m = n,
R b
a ϕm(x)ϕn(x)dx = 1, then the functions form

an orthonormal set. Series analogous to Fourier series are formed by means of
any orthogonal set and are called generalised Fourier series. If

R b
a
θ2n(x)dx = An

then ϕn(x) =
√
Anθn(x). For example,

R 2π
0
sin2 nxdx = π,ϕn(x) = π

−1
2 sinx.

Let {ϕn(x)} be an orthonormal set of functions on (a, b) and f(x) is to be
expanded in the form f(x) = c1ϕ1(x)+...+cnϕn(x)+... (multiply by ϕn(x) and
integrate)=⇒ R b

a
f(x)ϕn(x)dx =

R b
a
cnϕ

2
n(x)dx = cn.. The coefficients obtained

are the Fourier coefficients with respect to {ϕn(x)} . Orthogonal sets of functions
are obtained in practice by solving differential equations.

3.9.5 Mean convergence of the Fourier series

When we try to approximate a function f(x) by means of another function pn(x),
the quantity |f(x)− pn(x)| or [f(x) − pn(x)]2 gives a measure of the error in
the approximation. These maesures are appropriate in the case of convergence
at any fixed point.
When we want a measure of error which applies to an interval we useR b

a |f(x)− pn(x)| dx or
R b
a [f(x) − pn(x)]2dx. These expressions are called the

mean error and mean-square error. (converge in mean-mean convergence)
The partial sums of the Fourier series c1ϕ1 + ... + cnϕn, ck=

R b
a
fϕk(x)dx

give the smaller mean square error
R b
a (f − pn)2dx than is given by any other

linear combination pn = a1ϕ1(x) + ...+ anϕn(x).
The Fourier coefficient cn =

R b
a
fϕndx tend to zero as n→∞.

3.9.6 The pointwise convergence of the Fourier series

If f(x) is periodic of period 2π , is piecewise smooth, and is defined at points
of discontinuity by the Dirichlet’s theorem, then the Fourier series for f(x)
converges to f(x) at every value of x.

3.9.7 Integration and differentiation of the Fourier series

Any fourier series (whether convergent or not) can be integrated term by term
between any limits. the integrated series converges to the integral of the periodic
function corresponding the original series.
There is not much hope of being able to differentiate a fourier series, unless

the periodic function generating the series is continuous at every value of x.

3.9.8 Integral transforms

Many functions in analysis can be expressed as improper Riemann integrals of
the form g(y) =

R+∞
−∞ K(x, y)f(x)dx. The function g defined by an equation of
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this sort is called an integral transform of f. The function K which appears
in the integrand is referred to as the kernel of the transform. They are espe-
cially useful in solving boundary value problems and certain types of integral
equations. the more commonly used transforms are the following:

Exponential Fourier transform
R+∞
−∞ e−ixyf(x)dx

Fourier cosine transform
R+∞
−∞ cosxyf(x)dx

Fourier sine transform
R+∞
−∞ sinxyf(x)dx

Laplace transform
R+∞
−∞ e−xyf(x)dx

Mellin transform
R+∞
−∞ xy−1f(x)dx
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4 Ordinary Differential Equations

4.1 Introduction

The power and effectiveness of mathematical methods in the study of natural
sciences stem, to a large extent, from the unambiguous language of mathe-
matics with the aid of which the laws governing natural phenomena can be
formulated. Many natural laws especially those concerned with rates of change,
can be phrased as equations involving derivatives or differentials. Whenever a
mathematical model involves the rate of change of one variable with respect to
another, a differential equation is apt to appear.
Differential equations arise in a variety of subject areas, including not only

the physical sciences, but also such diverse fields as economics, medicine, psy-
chology and operations research. The following examples provide evidence for
it:

• The study of an electrical circuit consisting of a resistor, an inductor,
and a capacitor driven by an electromotive force leads to the equation:
Ld

2q
dt2 +R

dq
dt +

1
C q = E(t) (application of Kirchhoff’s laws).

• The study of the gravitational equilibrium of a star, which is an application
of Newton’s law of gravity and of the Stefsn-Boltzmann law for gases leads
to the equilibrium equation: 1

r2
d
dr

³
r2

ρ
dP
dr

´
= −4πρG,where P is the sum

of the gas kinetic and radiation pressure, ris the distance from the center
of the star, ρ is the density and G is the gravitational constant.

• In psychology, a model of the learning of a task involves the equation
dy/dt

y
3
2 (1−y) 32

= 2ρ√
n
, where the variable y represents the learner’s skill level

as afunction of time t. The constants ρ and n depend on the individual
learner and the nature of the task.

4.2 Definitions

• A differential equation is an equation involving some of the derivatives
of a function.

• Differential equations are divided into two classes: ordinary and partial.
Ordinary differential equations contain only one independent variable
and derivatives with respect to it, while partial differential equations
contain more than one independent variable.

• The order of the highest derivative contained in a differential equation is
the order of the equation.

• A function y = y(x) is a solution of a differential equation on an open
interval I if the equation is satisfied identically on I when y and its deriva-
tives are substituted on the equation. For example, y = exp(2x) is a
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solution to the differential equation dy
dx − y = exp(2x) on the interval

I = (−∞,+∞). However, this is not the only solution on I.
• The function y = C exp(x) + exp(2x) is also a solution for every real
value of the constant C. On a given interval I, a solution of a differential
equation from which all solutions on I can be derived by substituting
values for arbitrary constants is called a general solution of the equation
on I.

• The general solution of an n-th order differential equation on an interval
will contain n arbitrary constants, because n integrations are needed to
recover a function from its n-th derivative, and each integration introduces
an arbitrary constant.

• The graph of a solution of a differential equation is called the integral
curve for the equation, so the general solution of a differential equation
produces a family of integral curves (see figure 15) corresponding to
the different possible choices for the arbitrary constants.

• When an applied problem leads to a differential equation, there are usually
conditions in the problem that determine specific values for the arbitrary
constants. For a first-order equation, the single arbitrary constant can be
determined by specifying the value of the unknown function y(x) at an
arbitrary x−value x0, say y(x0) = y0. This is called an initial condi-
tion and the problem of solving a first-order initial-value problem.
Geometrically, the initial condition y(x0) = y0 has the effect of isolating
the integral curve that passes through the point (x0, y0) from the family
of integral curves. For example y(0) = 3 in the previous example yields
C = 2.

4.3 Applications

• Newton’s second law: an object’s mass times its acceleration equals the
total force acting on it. In the case of free fall, an object is released from a
certain height above the ground and falls under the force of gravity. This
leads to the equation md2h

dt2 = −mg ⇒ d2h
dt2 = −g =⇒ dh

dt = −gt + c1 =⇒
h(t) = −gt2 + c1t+ c2.
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The constants of integration can be determined if we know the initial value
and the initial velocity of the object.

• Radioactive decay:We begin from the premise that the rate of decay is
proportional to the amount of radioactive substance present. This leads
to the equation dA

dt = −kA, k Â 0, where A is the unknown amount
of radioactive substance present at time t and k is the proportionality
constant.
dA
dt = −kA =⇒ 1

AdA = −kdt =⇒ R
1
AdA =

R −kdt =⇒ lnA + C1 =
−kt+C2 =⇒
A = A(t) = exp(lnA) = exp(−kt) exp(C2 −C1) = C exp(−kt). The value
of C is determined if the initial amount of the radioactive substance is
given.
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4.4 More definitions

• A first order equation dy
dx = f(x, y) specifies a slope at each point in the

xy−plane where f is defined. In other words, it gives the direction that
a solution to the equation must have at each point. a plot of short-line
segments drawn at various points in the xy−plane is called a direction
field for the equation.The direction field gives a flow of solutions and it
facilitates the drawing of any particular solution such as the solution to
an initial value problem.

• Equations of the form dy
dt = f(y), for which the independent variable t

does not appear explicitly are called autonomous.If t is interpreted as
time, such equations are self-governing in the sense that the derivative ý
is steered by a function f determined solely by the current state y, and
not by any external controller watching the clock. Equilibrium points
are easily identified by their horizontal direction fields, that is points y
where the slope f is zero: f(y1) = f(y2) = ... = 0. All solutions y(t) that
get sufficiently near an equilibrium point are compelled to approach it as
t→ +∞.

— Stable equilibrium:If the equilibrium solution is somehow per-
turbed, it will asymptotically return to it.

∗ Sink:solutions below the equilibrium are forced upwards,and so-
lutions above are forced downwards.

— Unstable equilibrium:If the equilibrium solution is somehow per-
turbed, it is driven away from it.

∗ Source: Unstable equilibrium points that reper all neighboring
solutions.
∗ Nodes: Equilibria which are neither sinks or sources.

• Phase line:line on which equilibria are sketched together with arrows
showing the sign of f (arrows point right if f(y) is positive,arrows point
right if f(y) is negative).
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4.5 Methods of solution

4.5.1 First- order linear differential equations

A first order linear differential equation generally takes the form:
dy
dx + P (x)y(x) = Q(x)

First- order linear differential equation with constant coefficient and
constant term.

• The homogenous case (reduced equation)
dy
dx + ay(x) = 0

General solution: y(x) = Ae−ax

Definite solution: y(x) = y(0)e−ax

Particular solution: substituting any value of A.

• The non-homogenous case (complete equation)
dy
dx + ay(x) = b

General solution: y(x) = yc + yp = Ae−ax + b
a

• — yc = Ae−ax is called the complementary function and is the solution
to the homogenous case (reduced equation). If x = t (time), yc
reveals the deviation of the time path y(t) from the equilibrium for
each point of time.

— yp = b
a is called the particular integral . The particular integral is

any particular solution of the complete equation and provides us with
the equilibrium value of the variable y. For example, if y is a constant
function (y = k), then dy

dx = 0 =⇒ ay(x) = b =⇒ y(x) = b
a . In this

case, the particular integral is yp = b
a .

Definite solution: y(x) = [y(0)− b
a ]e
−ax + b

a
Particular solution: substituting any value of A.

• Examples:

— dy
dx + 4y = 8, y(0) = 2

— dy
dx − 2y = 0, y(0) = 3

— dy
dx + 10y = 15, y(0) = 0

— 2dydx + 4y = 6, y(0) = 1

— 3dydx + 6y = 5, y(0) = 0
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First- order linear differential equation with variable coefficient and
variable term.

• The homogenous case (reduced equation)
dy
dx + P (x)y(x) = 0

General solution: y(x) = Ae−
R
P (x)dx

• The non-homogenous case (complete equation)
dy
dx + P (x)y(x) = Q(x)

Integrating factor: exp(
R
P (x)dx)

General solution: y(x) = e−
R
P (x)dx(c+

R
Q(x)e

R
P (x)dxdx)

• Examples:

— dy
dx + 2xy = x, y(0) = 3

2

— dy
dx + 2xy = 0, y(0) = 3

— 1
x
dy
dx − 2y

x2 = x cosx, x Â 0
— dy

dx +
4
xy = x

4
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4.5.2 Non-linear differential equations of the first order and first
degree

Exact Differential Equations

• The equation of the form M(x, y)dy + N(x, y)dx = 0 is an exact equa-
tion if there is a function F (x, y) such that ∂F

∂y (x, y) = M(x, y) and
∂F
∂x (x, y) = N(x, y) for all x, y, that is the total differential of F (x, y)
satisfies dF (x, y) =M(x, y)dy +N(x, y)dx = 0

The solution to M(x, y)dy +N(x, y)dx = 0 is given implicitly by

F (x, y) =
R
Mdy +

R
Ndx− R ¡ ∂

∂x

R
Mdy

¢
dx = c

• Examples:
— 2yxdy + y2dx = 0

— xdy + (y + 3x2)dx = 0

• Integrating factors: If the equation M(x, y)dy +N(x, y)dx = 0 is not
exact, but the equation µ(x, y)M(x, y)dx + µ(x, y)N(x, y)dy = 0, then
µ(x, y) is called an integrating factor of the equation.

• Example: consider the first order linear equation dy
dx + P (x)y = Q(x) =⇒

dy+[P (x)y−Q(x)]dx = 0 =⇒ e
R
P (x)dxdy+e

R
P (x)dx[P (x)y−Q(x)]dx = 0

is an exact equation and µ(x) = e
R
P (x)dx is the integrating factor.

• Method for finding integrating factors
If M(x, y)dy + N(x, y)dx = 0 is neither separable nor linear, compute
∂M
∂x ,

∂N
∂y . If

∂M
∂x =

∂N
∂y , the equation is exact. If the equation is not exact,

consider
∂N
∂y −∂M

∂x

M . If this is a function of x, then an integrating factor is

given by µ(x) = exp
R ∂N

∂y
−∂M

∂x

M dx. If not consider
∂M
∂x
−∂N

∂y

N .If this is a func-

tion of y, then an integrating factor is given by µ(y) = exp
R ∂M

∂x −∂N
∂y

N dx.

• Example:(2x2y + y)dx+ (x2y − x)dy = 0

Separable Variables Equations

• These equations take the form:
f(x)dx = g(y)dy ,
in which x alone occurs on one side of the equation and y alone on the other

side.
When f and g are continuous, a solution containing an arbitrary constant is

readily obtained by integration.
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• — Example:

dy + exydx = exy2dx =⇒
dy
y2−y = e

xdx, y 6= 0, y 6= 1 =⇒R
dy
y2−y =

R
exdx =⇒

ln
¯̄̄
y−1
y

¯̄̄
= ex + c....

— More Examples:
dy
dx =

x−5
y2

dy
dx =

y−1
x+3 , y(−1) = 0

• Equations reducible to separable form by change of variable.

The equation dy
dx = F (

y
x) suggests the substitution u =

y
x =⇒ y = xu =⇒

dy
dx = x

du
dx + u = F (u) =⇒ du

F (u)−u =
dx
x ,which is separated.

— Example: y2 + x2ý = xyý =⇒ dy
dx =

(y/x)2

y/x−1 =⇒ F (u) = u2

u−1 =⇒
u−1
u du = dx

x =⇒ R
u−1
u du =

R
dx
x =⇒ u − log |u| = log |x| + c =⇒

y
x − log |y| = c
=⇒ y = x log cy.

The equation dy
dx = F (a+ bx+ y) suggests the substitution u = a+ bx+

y =⇒ du
dx =

dy
dx + b = F (u) + b =⇒ du

F (u)+b = dx,which is separated.

— Example:
dy − dx = xdx + ydx =⇒ dy

dx = x + y + 1 =⇒ du
u+1 = dx where

u = x+ y + 1 =⇒ u+ 1 = cex =⇒ y = cex − x− 2.

Equations with linear coefficients

• Equations of the form:
(a1x+ b1y + c1)dx+ (a2x+ b2y + c2)dy = 0

Bernoulli Equations

• Equations of the form dy
dx + P (x)y = Q(x)y

n.

For n 6= 0, 1, the substitution u = y1−n transforms the Bernoulli equation
into linear as follows: dy

dx + P (x)y = Q(x)yn =⇒ y−n dydx + P (x)y
1−n =

Q(x). (Taking u = y1−n =⇒ du
dx = (1 − n)y−n dydx) =⇒ 1

1−n
du
dx + P (x)u =

Q(x)

• Example: dydx − 5y = −5/2xy3
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4.5.3 Second-order linear differential equations

Second-order linear differential equations with constant coefficients
and constant term. d2y

dx2 + a1
dy
dx + a2y = b ,where a1, a2, b are all constants.

• If the term b = 0, then homogeous.

• If the term b 6= 0, then non-homogenous.
• General solution of the complete equation: y(x) = yc(x) + yp(x) (comple-
mentary function + particular integral).

Homogenous case:

• Characteristic equation: r2 + a1r + a2 = 0 (or complete equation or aux-
illiary equation)

• Solve the characteristic equation and find two roots: r1,r2.
— Distinct real roots: yc = A1er1x +A2er2x.
— Repeated real roots: yc = A1erx +A2xerx.
— Complex roots: r1 = a+ ib, r2 = a− ib =⇒ yc = A1e

r1x+A2e
r2x =⇒

yc = B1eax cos bx+B2eax sin bx

(Euler formulas: eibx = cos bx+i sin bx and e−ibx = cos bx−i sin bx)
• Examples:

— ý́ − ý − 2y = 0
— ý́ + 4ý + 5y = 0
— ý́ − 3ý + 4y = 0
— ý́ + 4ý + 4y = 0

Non-homogenous case:(b 6= 0)
• The complementary solution is obtained by the homogenous equation.
• The particular integral is obtained as follows:

— yp = b
a2
(a2 6= 0)

— yp = b
a1
x (a2 = 0, a1 6= 0) : moving rather than stationary equilib-

rium

— yp = b
a2
x2 (a2 = 0, a1 = 0): moving rather than stationary equilib-

rium

• Examples:
— ý́ + ý − 2y = −10
— ý́ + ý = −10
— ý́ = −10
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4.5.4 n-order linear differential equations with constant coefficients
and constant term.

• dny
dxn + a1

dn−1y
dxn−1 + ...+ an−1

dy
dx + any = b ,where a1, a2, ..., an, b are all con-

stants.

Homogenous case:

• Characteristic equation: rn + a1rn−1 + ...+ an = 0
• Solve the characteristic equation and find n roots: r1,r2, ..., rn

— Distinct real and complex roots: yc = A1er1x+A2er2x+ ...+Anernx.

— Repeated real and complex roots: yc = A1e
rx + A2xerx + ....(The

form depends on the multiplicity of each root....)

• Examples:

— y(4) − 9ý́ − 20y = 0
— ý́́ − 6ý́ + 11ý − 6y = −10
— y(5) − y(4) − 2ý́́ + 2ý́ + ý − y = 0

Non-homogenous case:(b 6= 0)
• The complementary solution is obtained by the homogenous equation.
• The particular integral is obtained as follows:

— yp = b
an
(an 6= 0)

— yp = b
an−1

x (an = 0, an−1 6= 0) : moving rather than stationary
equilibrium

— yp = b
an−2

x2 (an−2 6= 0, an = 0, an−1 = 0): moving rather than
stationary equilibrium

— .................

• Examples:

— y(5) − y(4) − 2ý́́ + 2ý́ + ý − y = 24

n-order linear differential equations with constant coefficients and
variable term. dny

dxn + a1
dn−1y
dxn−1 + ...+ an−1

dy
dx + any = g(x) ,where a1, a2, ..., an

are all constants.

• The complementary solution is obtained by the homogenous equation.
• The particular integral is found by the following methods.
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Method of undetermined coefficients

• f(x) = Pn(x)(polynomial of order n),then yp = Anxn +An−1xn−1 + ...+
A1x+A0

• f(x) = eaxPn(x),then yp = eax(Anxn +An−1xn−1 + ...+A1x+A0)
• f(x) = eax sin bxPn(x),then yp = eax sin bx(Anxn+An−1xn−1+...+A1x+
A0) + eax cos bx(Bnxn +Bn−1xn−1 + ...+B1x+B0)

• f(x) = eax cos bxPn(x),then yp = eax sin bx(Anxn+An−1xn−1+...+A1x+
A0) + e

ax cos bx(Bnx
n +Bn−1xn−1 + ...+B1x+B0)

• Examples:

— ý́ − ý − 2y = 4x2
— ý́ − ý − 2y = e3x
— ý́́ − 6ý́ + 11ý − 6y = 2xe−x
— ý́ = 9x2 + 2x− 1

Method of variation of parameters (Lagrange) yp(x) = u1(x)y1(x)+
u2y2(x), where y1(x), y2(x) are the solutions of the homogenous equation.

• Determine u1(x), u2(x) by solving the system for u1́(x), u2́(x) :

y1ú1 + y2ú2 = 0

ý1ú1 + ý2ú2 = g

• u1(x) =
R −g(x)y2(x)
W [y1,y2](x)

dx and u2(x) =
R g(x)y1(x)
W [y1,y2](x)

dx, where W [y1,y2](x) is
the Wronskian of the differential equation (6= 0 : linear independence of
the solutions)

• Examples:
— ý́ + 4ý + 4y = e−2x lnx

— ý́ − 6ý + 9y = x−3e3x
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4.5.5 Systems of linear ordinary differential equations with constant
coefficients

• A system of n linear differential equations is in normal form if it is ex-
pressed as x´(t) = A(t)x(t) + f(t),where x(t) = col(x1(t).....xn(t)), f(t) =
col(f1(t).....fn(t)), A(t) = [aij(t)] is an nxn matrix.

• If f(t) = 0, the system is called homogenous; otherwise it is called non-
homogenous.

• When the elements of A are all constants the system is said to have con-
stant coefficients.

• The initial value problem for a system is the problem of finding a differ-
entiable vector function x(t) that satisfies the system on an interval and
satisfies the initial condition x(t0) = x0.

Homogenous linear system with constant coefficients

• Eigenvalues and eigenvectors: Let A(t) = [aij(t)] be an nxn constant
matrix. The eigenvalues of A are those real or complex numbers for which
(A− rI)u = 0 has at least one nontrivial solution u. The corresponding
nontrivial solutions are called the eigenvectors of A associated with r.

• If the nxn constant matrix A has n distinct eigenvalues r1,r2, ...rn and ui is
an eigenvector associated with ri,then {er1tu1, ..., erntun} is a fundamental
solution set for the homogenous system x́ = Ax.

• If the real matrix A has complex conjugate eigenvalues α ± iβ with cor-
responding eigenvectors a ± ib,then two linearly independent real vector
solutions to x́(t) = Ax(t) are eαt cosβta − eαt cosβtb and eαt cosβta +
eαt cosβtb.

• Examples:

— x´(t) = Ax(t), where A =
+2 −3
+1 −2

— x´(t) = Ax(t), where A =
+1 −2 +2
−2 +1 +2
+2 +2 +1

Nonhomogenous linear system with constant coefficients

Method of undetermined coefficients

• If f(t) = tg =⇒ xp(t) = ta+ b,where the constant vectors a and b are to
be determined.
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• If f(t) = col(1, t, sin t) =⇒ xp(t) = ta + b + (sin t) c + (cos t) d,where the
constant vectors a and b are to be determined.

• If f(t) = col(t, et, t2) =⇒ xp(t) = t2a + tb + c + etd,where the constant
vectors a, b, c and d are to be determined.

• Example: x´(t) = +1 −1
−1 +1

x(t) +
−3
+1

Method of variation of parameters

• If x´(t) = A(t)x(t) + f(t) =⇒ xp(t) = x(t)u(t) = x(t)
R
x−1(t)f(t)dt

and given the initial value problem:x(t0) = x0, then x(t) = xc(t)c +

x(t)
R t
t0
x−1(s)f(s)ds,where c = x(t)x−1(t0)x0.

• Example:x´(t) = +2 −3
+1 −2 x(t) +

e2t

+1
, x0 =

−1
0

.

The Matrix exponential function

• eAt = I +At+A2 t22! + ...+An t
n

n! + ....

• x´(t) = Ax(t) =⇒ x(t) = eAtK

• x´(t) = Ax(t) + f(t) =⇒ x(t) = eAtK + eAt
R
e−Atf(t)dt

• x´(t) = Ax(t) + f(t), x(t0) = c =⇒ x(t) = eA(t−t0)c+ eAt
R t
t0
e−Asf(s)ds

• A special case: when the characteristic polynomial for A has the form
p(r) = (r1 − r)n that is when A has an eigenvalue r1 of multiplicity n ,
(r1I −A)n = 0 (hence A− r1I is nilpotent)
and eAt = er1t

n
I + (A− r1I)t+ ...+ (A− r1I)n−1 tn−1

(n−1)!
o

• Example

— x́ = Ax,A =
2 1 1
1 2 1
−2 −2 −1
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4.5.6 Phase Plane Analysis - Stability of autonomous systems (linear
systems in the plane)

• An autonomous system in the plane has the form:
dx
dt = f(x, y)

dy
dt = g(x, y)

• Phase plane equation:dxdy = f(x,y)
g(x,y)

• A solution to the system is a pair of functions of t : (x(t), y(t)) that
satisfies the equations for all t in some interval I. If we plot the points
(x(t), y(t)) in the xy−plane as t varies, the resulting curve is known as the
trajectory of the solution pair (x(t), y(t)) and the xy−plane is called the
phase plane.

• A point (x0,y0) where f(x0,y0) = 0 and g(x0,y0) = 0 is called a critical
point or equilibrium point of the system, and the corresponding constant
solution x(t) = x0, y(t) = y0 is called an equilibrium solution. The set
of all critical points is called the critical point set.

• A linear autonomous system in the plane has the form:

x́(t) = a11x+ a12y + b1

ý(t) = a21x+ a22y + b2,where aij,bij are constants. We can always trans-
form a given linear system to the one of the form:

x́(t) = ax+ by

ý(t) = cx+dy, where the origin (0, 0) is now tha critical point. We analyse
this system under the assumption that ad− bc 6= 0, which makes (0, 0) an
isolated critical point.

• Characteristic equation: r2 − (a+ d)r + (ad− bc) = 0
• The asymptotic (long-term) behavior of the solutions is linked to the na-
ture of the roots r1,r2 of the characteristic equation.

— r1,r2 real , distinct and positive: x(t) = A1e
r1t + A2er2t, y(t) =

B1e
r1t + B2e

r2t. The origin is an unstable improper node (unstable
because the trajectories move away from the origin and improper
because almost all the trajectories have the same tangent line at the
origin ). Example: dxdt = x,

dy
dt = 3y

— r1,r2 real , distinct and negative: x(t) = A1e
r1t + A2er2t, y(t) =

B1e
r1t+B2er2t. The origin is an asymptotically stable improper node

(stable because the trajectories approach the origin and improper
because almost all the trajectories have the same tangent line at the
origin ).Example: dxdt = −2x, dydt = −y
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— r1,r2 real opposite signs: x(t) = A1e
r1t + A2er2t, y(t) = B1e

r1t +
B2e

r2t. The origin is an unstable saddle point (unstable because there
are trajectories that pass arbitrarily near the origin but then even-
tually move away). Example: dxdt = 5x− 4y, dydt = 4x− 3y

— r1 = r2 equal roots:dxdt = rx,
dy
dt = ry =⇒ x(t) = Aert, y(t) = Bert.

The trajectories lie on the integral curves y = (B/A)x.

∗ When r > 0, these trajectories move away from the origin, so
the origin is unstable.
∗ When r < 0, these trajectories approach the origin, so the origin
is stable.
∗ In either case, the trajectories lie on lines passing through the
origin. Because every direction through the origin defines a tra-
jectory, the origin is called a proper node.

— Complex roots r = a ± ib (a 6= 0, b 6= 0) x(t) = eat[A1 cos bt +
B1 sin bt], y(t) = e

at[A2 cos bt+B2 sin bt].

∗ When a > 0 the trajectories travel away from the origin and
the origin is an unstable one. The solution spiral away from the
origin.
∗ When a < 0 the trajectories approach the origin and the origin
is a stable one. The solution spirals in toward the origin.
∗ Example: dxdt = x− 4y, dydt = 4x+ y

— Pure imaginary roots r = ±ib x(t) = A1 cos bt + B1 sin bt, y(t) =
A2 cos bt+B2 sin bt.

The trajectories are concentric circles about the origin, the origin is
called a center and is a stable one. Example: dxdt = −by, dydt = bx.
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5 Appendix A

5.1 Trigonometric functions

5.1.1 Definitions

• Conversion of rads to o and vice versa: 1o = π
180rad & 1 rad =

¡
180
π

¢o
• Arc length: θ = s

r ⇒ s = θ ∗ r (θ measured in rads)
• Area of a sector: A = 1

2r
2 ∗ θ (θ measured in rads)

• Trigonometric functions (defined for a positive acute angle θ of a right
triangle)

sin θ = side opposite θ
hypotenuse = y

r

cos θ = side adjacent to θ
hypotenuse = x

r

tan θ = side opposite θ
side adjacent to θ = y

x

cot θ = side adjacent to θ
side opposite θ = x

y

sec θ = hypotenuse
side adjacent to θ = r

x

csc θ = hypotenuse
side opposite θ = r

y

5.1.2 Relationships:

csc θ = 1
sin θ sec ∂ = 1

cos θ cot θ = 1
tan θ

tan θ = sin θ
cos θ cot θ = cos θ

sin θ

5.1.3 Trigonometric identities

sin2 θ + cos2 θ = 1
tan2 θ + 1 = sec2 θ
1 + cot2 θ = csc2 θ

sin(π − θ) = sin θ
cos(π − θ) = − cos θ
tan(π − θ) = − tan θ
cot(π − θ) = − cot θ

sin(π + θ) = − sin θ
cos(π + θ) = − cos θ
tan(π + θ) = tan θ
cot(π + θ) = cot θ

sin(−θ) = − sin θ
cos(−θ) = cos θ
tan(−θ) = − tan θ
cot(−θ) = − cot θ

sin(π2 − θ) = cos θ
cos(π2 − θ) = sin θ
tan(π2 − θ) = cot θ

sin θ = sin(θ ± 2nπ), n = 0, 1, 2, · · ·
cos θ = cos(θ ± 2nπ), n = 0, 1, 2, · · ·
tan θ = tan(θ± nπ), n = 0, 1, 2, · · ·
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5.1.4 Law of cosines

If the sides of a triangle have lengths a, b, and c and if θ is the angle between
the sides with lengths a and b, then

c2 = a2 + b2 − 2ab cos θ

5.1.5 Formulas

• Addition formulas:
sin(a+ b) = sina cos b+ cos a sin b
cos(a+ b) = cosa cos b− sina sin b
sin(a− b) = sina cos b− cos a sin b
cos(a− b) = cosa cos b+ sina sin b

tan(a+ b) = tana+tan b
1−tana tan b

tan(a− b) = tana−tan b
1+tana tan b

• Double-angle formulas:
sin 2a = 2sina cos a
cos 2a = cos2 a− sin2 a
= 2cos2 a− 1
= 1− 2 sin2 a

tan 2a = 2 tana
1−tan2 a

• Half-angle formulas:
cos2 a2 =

1+cosa
2

sin2 a2 =
1−cos a

2

• Product-to-sum formulas:

sina cos b = 1
2 [sin(a− b) + sin (a+ b)]

sina sin b = 1
2 [cos(a− b) + cos (a+ b)]

cos a cos b = 1
2 [cos(a− b) + cos (a+ b)]

• Sum-to-product formulas:
sina+ sin b = 2sin a+b2 cos a−b2
sina− sin b = 2cos a+b2 sin a−b2
cos a+ cos b = 2 cos a+b2 cos a−b2
cos a− cos b = −2 sin a+b2 sin a−b2

5.1.6 Amplitude and period

• Periodic function: f(x+p) = f(p), p Â 0. The smallest value of p is called
the fundamental period of f.

• The functions a sin bx and a cos bx have fundamental period 2π/ |b| and
their graphs oscillate between −a and a. The number | a |
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is called the amplitude of a sin bx and a cos bx.The function tan bx has fun-
damental period π/ |b| .

5.2 Inverse trigonometric functions

The basic trigonometric functions are periodic, thus they can not have inverses,
but if we impose restrictions on their domains, we can have their inverses.

• Inverse sine: For each x in the interval [−1, 1], we define arcsinx to be
that number y in the interval

£−π
2 ,

π
2

¤
, such that sin y = x.

arcsin(sinx) = x x ∈ £−π
2 ,

π
2

¤
sin(arcsinx) = x x ∈ [−1, 1]

• Inverse cosine: For each x in the interval [−1, 1], we define arccosx to be
that number y in the interval [0,π] , such that cos y = x.

arccos(sinx) = x x ∈ [0,π]
cos(arccosx) = x x ∈ [−1, 1]

• Inverse tangent: For each x in the interval (−∞,+∞), we define arctanx
to be that number y in the interval

£−π
2 ,

π
2

¤
, such that tan y = x.

arctan(tanx) = x x ∈ £−π
2 ,

π
2

¤
tan(arctanx) = x x ∈ (−∞,+∞)

• Inverse cesant: For each x in the set (−∞,−1] + ∪[1,+∞), we define
arcsecx to be that number y in the set

£
0, π2

¤∪£π, 3π2 ¤ such that sec y = x.
arcsec(secx) = x x ∈ £0, π2 ¤ ∪ £π, 3π2 ¤
sec(arcsecx) = x x ∈ (−∞,−1] + ∪[1,+∞)

• The inverse cotangent and cosecant are of lesser importance.

5.2.1 Derivatives
d
dx [arcsin(x)] =

1
2√1−x2

d
dx [arccos(x)] = − 1

2√1−x2
d
dx [arctan(x)] =

1
1+x2

d
dx [arccot (x)] = − 1

1+x2
d
dx [arcsec (x)] =

1
x 2√x2−1

d
dx [arccsc (x)] = − 1

x 2√x2−1
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5.3 Exponentials

• f(x) = bx, b Â 0
• If b Â 1 then f(x) is an increasing function, while if 0 ≺ b ≺ 1 is a
decreasing and a constant one if b = 1 .

5.4 Logarithms

• f(x) = logb x, b Â 0, b 6= 1, x Â 0, represents that power to which b must
be raised in order to produce x.

• Properties of the logarithmic function
logb ln 1 = 0 logb ac = logb a+ logb c
logb

a
c = logb a− logb c logb a

r = r logb a
logb

1
c = − logb c logb b = 1

• Common logarithms: the ones that have base 10.
• Natural logarithms:the ones that have base e (e = lim

x→+∞
¡
1 + 1

x

¢x ⇐⇒
e = lim

x→0
(1 + x)

1
x ).

• Properties of the natural logarithm

—
ln 1 = 0 lnac = lna+ ln c
ln ac = lna− ln c lnar = r lna
ln 1c = − ln c

5.5 Hyperbolic functions

Hyperbolic functions are certain combinations of ex and e−x.They have many
applications in engineering and many properties in common with the trigono-
metric functions.

5.5.1 Definitions

hyperbolic sine sinhx = ex−e−x
2

hyperbolic cosine coshx = ex+e−x
2

hyperbolic tangent tanhx = sinhx
coshx

ex−e−x
ex+e−x

hyperbolic cotangent cothx = coshx
sinhx

ex+e−x
ex−e−x

hyperbolic cesant sechx = 1
coshx

2
ex+e−x

hyperbolic cosecant cschx = 1
sinhx

2
ex−e−x
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5.5.2 Hyperbolic identities

cosh2 x− sinh2 x = 1
1− tanh2 x = sech2x
coth2 x− 1 = csch2x

5.5.3 Why are they called hyperbolic?

For any real number t, the point (cosh t, sinh t) lies on the curve x2 − y2 = 1
(this curve is called hyperbola) because cosh2 t− sinh2 t = 1

5.5.4 Derivatives

d
dx [sinhx] = coshx
d
dx [coshx] = sinhx
d
dx [tanhx] = sech2x
d
dx [cothx] = − csch2x
d
dx [sechx] = − sechx tanhx
d
dx [cschx] = − cschx cothx

5.6 Inverse hyperbolic functions

They are particularly useful in integration.

5.6.1 Definitions

y = arcsinhx⇐⇒ x = sinh y for all x, y
y = arccoshx⇐⇒ x = cosh y x º 1, y º 0
y = arctanhx⇐⇒ x = tanh y −1 ≺ x ≺ 1, and−∞ ≺ x ≺ +∞
y = arccothx⇐⇒ x = coth y | x |Â 1, y 6= 0
y = arcsechx⇐⇒ x = sechy 0 ≺ x ¹ 1, y º 0
y = arccschx⇐⇒ x = cschy x 6= 0, y 6= 0

5.6.2 Formulas

arcsinhx = ln(x+ 2
√
x2 + 1) −∞ ≺ x ≺ ∞

arccoshx = ln(x+ 2
p
x2 − 1) x º 1

arctanhx = 1
2 ln

1+x
1−x −1 ≺ x ≺ 1

arccothx = 1
2 ln

x+1
x−1 |x| Â 1

arcsechx = ln(1+
2√1−x2
x ) 0 ≺ x ¹ 1

arccschx = ln( 1x +
2√1+x2
|x| ) x 6= 0
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5.6.3 Derivatives

d
dx [arcsinhx] =

1
2
√
x2+1)

−∞ ≺ x ≺ ∞
d
dx [arccoshx] =

1
2
√
x2−1) x Â 1

d
dx [arctanhx] =

1
1−x2 |x| ≺ 1

d
dx [arccothx] =

1
1−x2 |x| Â 1

d
dx [arcsechx] = − 1

x 2√1−x2 0 ≺ x ≺ 1
d
dx [arccschx] = − 1

|x| 2√1−x2 x 6= 0
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