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Preface

Over the last two or three decades, elliptic curves have been playing an in-
creasingly important role both in number theory and in related fields such as
cryptography. For example, in the 1980s, elliptic curves started being used
in cryptography and elliptic curve techniques were developed for factorization
and primality testing. In the 1980s and 1990s, elliptic curves played an impor-
tant role in the proof of Fermat’s Last Theorem. The goal of the present book
is to develop the theory of elliptic curves assuming only modest backgrounds
in elementary number theory and in groups and fields, approximately what
would be covered in a strong undergraduate or beginning graduate abstract
algebra course. In particular, we do not assume the reader has seen any al-
gebraic geometry. Except for a few isolated sections, which can be omitted
if desired, we do not assume the reader knows Galois theory. We implicitly
use Galois theory for finite fields, but in this case everything can be done
explicitly in terms of the Frobenius map so the general theory is not needed.
The relevant facts are explained in an appendix.

The book provides an introduction to both the cryptographic side and the
number theoretic side of elliptic curves. For this reason, we treat elliptic curves
over finite fields early in the book, namely in Chapter 4. This immediately
leads into the discrete logarithm problem and cryptography in Chapters 5, 6,
and 7. The reader only interested in cryptography can subsequently skip to
Chapters 11 and 13, where the Weil and Tate-Lichtenbaum pairings and hy-
perelliptic curves are discussed. But surely anyone who becomes an expert in
cryptographic applications will have a little curiosity as to how elliptic curves
are used in number theory. Similarly, a non-applications oriented reader could
skip Chapters 5, 6, and 7 and jump straight into the number theory in Chap-
ters 8 and beyond. But the cryptographic applications are interesting and
provide examples for how the theory can be used.

There are several fine books on elliptic curves already in the literature. This
book in no way is intended to replace Silverman’s excellent two volumes [109],
[111], which are the standard references for the number theoretic aspects of
elliptic curves. Instead, the present book covers some of the same material,
plus applications to cryptography, from a more elementary viewpoint. It is
hoped that readers of this book will subsequently find Silverman’s books more
accessible and will appreciate their slightly more advanced approach. The
books by Knapp [61] and Koblitz [64] should be consulted for an approach to
the arithmetic of elliptic curves that is more analytic than either this book or
[109]. For the cryptographic aspects of elliptic curves, there is the recent book
of Blake et al. [12], which gives more details on several algorithms than the

ix
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x

present book, but contains few proofs. It should be consulted by serious stu-
dents of elliptic curve cryptography. We hope that the present book provides
a good introduction to and explanation of the mathematics used in that book.
The books by Enge [38], Koblitz [66], [65], and Menezes [82] also treat elliptic
curves from a cryptographic viewpoint and can be profitably consulted.

Notation. The symbols Z, Fq, Q, R, C denote the integers, the finite
field with q elements, the rationals, the reals, and the complex numbers,
respectively. We have used Zn (rather than Z/nZ) to denote the integers
mod n. However, when p is a prime and we are working with Zp as a field,
rather than as a group or ring, we use Fp in order to remain consistent with
the notation Fq. Note that Zp does not denote the p-adic integers. This
choice was made for typographic reasons since the integers mod p are used
frequently, while a symbol for the p-adic integers is used only in a few examples
in Chapter 13 (where we use Op). The p-adic rationals are denoted by Qp.
If K is a field, then K denotes an algebraic closure of K. If R is a ring, then
R× denotes the invertible elements of R. When K is a field, K× is therefore
the multiplicative group of nonzero elements of K. Throughout the book,
the letters K and E are generally used to denote a field and an elliptic curve
(except in Chapter 9, where K is used a few times for an elliptic integral).

Acknowledgments. The author thanks Bob Stern of CRC Press for
suggesting that this book be written and for his encouragement, and the
editorial staff at CRC Press for their help during the preparation of the book.
Ed Eikenberg, Jim Owings, Susan Schmoyer, Brian Conrad, and Sam Wagstaff
made many suggestions that greatly improved the manuscript. Of course,
there is always room for more improvement. Please send suggestions and
corrections to the author (lcw@math.umd.edu). Corrections will be listed on
the web site for the book (www.math.umd.edu/∼lcw/ellipticcurves.html).
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Preface to the Second Edition

The main question asked by the reader of a preface to a second edition is
“What is new?” The main additions are the following:

1. A chapter on isogenies.

2. A chapter on hyperelliptic curves, which are becoming prominent in
many situations, especially in cryptography.

3. A discussion of alternative coordinate systems (projective coordinates,
Jacobian coordinates, Edwards coordinates) and related computational
issues.

4. A more complete treatment of the Weil and Tate-Lichtenbaum pairings,
including an elementary definition of the Tate-Lichtenbaum pairing, a
proof of its nondegeneracy, and a proof of the equality of two common
definitions of the Weil pairing.

5. Doud’s analytic method for computing torsion on elliptic curves over Q.

6. Some additional techniques for determining the group of points for an
elliptic curve over a finite field.

7. A discussion of how to do computations with elliptic curves in some
popular computer algebra systems.

8. Several more exercises.

Thanks are due to many people, especially Susan Schmoyer, Juliana Belding,
Tsz Wo Nicholas Sze, Enver Ozdemir, Qiao Zhang,and Koichiro Harada for
helpful suggestions. Several people sent comments and corrections for the first
edition, and we are very thankful for their input. We have incorporated most
of these into the present edition. Of course, we welcome comments and correc-
tions for the present edition (lcw@math.umd.edu). Corrections will be listed
on the web site for the book (www.math.umd.edu/∼lcw/ellipticcurves.html).
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Suggestions to the Reader

This book is intended for at least two audiences. One is computer scientists
and cryptographers who want to learn about elliptic curves. The other is for
mathematicians who want to learn about the number theory and geometry of
elliptic curves. Of course, there is some overlap between the two groups. The
author of course hopes the reader wants to read the whole book. However, for
those who want to start with only some of the chapters, we make the following
suggestions.

Everyone: A basic introduction to the subject is contained in Chapters 1,
2, 3, 4. Everyone should read these.

I. Cryptographic Track: Continue with Chapters 5, 6, 7. Then go to
Chapters 11 and 13.

II. Number Theory Track: Read Chapters 8, 9, 10, 11, 12, 14, 15. Then
go back and read the chapters you skipped since you should know how the
subject is being used in applications.

III. Complex Track: Read Chapters 9 and 10, plus Section 12.1.

xiii
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Chapter 1
Introduction

Suppose a collection of cannonballs is piled in a square pyramid with one ball
on the top layer, four on the second layer, nine on the third layer, etc. If the
pile collapses, is it possible to rearrange the balls into a square array?

Figure 1.1

A Pyramid of Cannonballs

If the pyramid has three layers, then this cannot be done since there are
1 + 4 + 9 = 14 balls, which is not a perfect square. Of course, if there is only
one ball, it forms a height one pyramid and also a one-by-one square. If there
are no cannonballs, we have a height zero pyramid and a zero-by-zero square.
Besides theses trivial cases, are there any others? We propose to find another
example, using a method that goes back to Diophantus (around 250 A.D.).

If the pyramid has height x, then there are

12 + 22 + 32 + · · · + x2 =
x(x + 1)(2x + 1)

6

balls (see Exercise 1.1). We want this to be a perfect square, which means
that we want to find a solution to

y2 =
x(x + 1)(2x + 1)

6

1
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2 CHAPTER 1 INTRODUCTION

Figure 1.2

y2 = x(x + 1)(2x + 1)/6

in positive integers x, y. An equation of this type represents an elliptic curve.
The graph is given in Figure 1.2.

The method of Diophantus uses the points we already know to produce new
points. Let’s start with the points (0,0) and (1,1). The line through these two
points is y = x. Intersecting with the curve gives the equation

x2 =
x(x + 1)(2x + 1)

6
=

1
3
x3 +

1
2
x2 +

1
6
x.

Rearranging yields

x3 − 3
2
x2 +

1
2
x = 0.

Fortunately, we already know two roots of this equation: x = 0 and x = 1.
This is because the roots are the x-coordinates of the intersections between
the line and the curve. We could factor the polynomial to find the third root,
but there is a better way. Note that for any numbers a, b, c, we have

(x − a)(x − b)(x − c) = x3 − (a + b + c)x2 + (ab + ac + bc)x − abc.

Therefore, when the coefficient of x3 is 1, the negative of the coefficient of x2

is the sum of the roots.
In our case, we have roots 0, 1, and x, so

0 + 1 + x =
3
2
.

Therefore, x = 1/2. Since the line was y = x, we have y = 1/2, too. It’s hard
to say what this means in terms of piles of cannonballs, but at least we have
found another point on the curve. In fact, we automatically have even one
more point, namely (1/2,−1/2), because of the symmetry of the curve.
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INTRODUCTION 3

Let’s repeat the above procedure using the points (1/2,−1/2) and (1, 1).
Why do we use these points? We are looking for a point of intersection
somewhere in the first quadrant, and the line through these two points seems
to be the best choice. The line is easily seen to be y = 3x − 2. Intersecting
with the curve yields

(3x − 2)2 =
x(x + 1)(2x + 1)

6
.

This can be rearranged to obtain

x3 − 51
2

x2 + · · · = 0.

(By the above trick, we will not need the lower terms.) We already know the
roots 1/2 and 1, so we obtain

1
2

+ 1 + x =
51
2

,

or x = 24. Since y = 3x − 2, we find that y = 70. This means that

12 + 22 + 32 + · · · + 242 = 702.

If we have 4900 cannonballs, we can arrange them in a pyramid of height 24,
or put them in a 70-by-70 square. If we keep repeating the above procedure,
for example, using the point just found as one of our points, we’ll obtain
infinitely many rational solutions to our equation. However, it can be shown
that (24, 70) is the only solution to our problem in positive integers other than
the trivial solution with x = 1. This requires more sophisticated techniques
and we omit the details. See [5].

Here is another example of Diophantus’s method. Is there a right triangle
with rational sides with area equal to 5? The smallest Pythagorean triple
(3,4,5) yields a triangle with area 6, so we see that we cannot restrict our
attention to integers. Now look at the triangle with sides (8, 15, 17). This
yields a triangle with area 60. If we divide the sides by 2, we end up with
a triangle with sides (4, 15/2, 17/2) and area 15. So it is possible to have
nonintegral sides but integral area.

Let the triangle we are looking for have sides a, b, c, as in Figure 1.3. Since
the area is ab/2 = 5, we are looking for rational numbers a, b, c such that

a2 + b2 = c2, ab = 10.

A little manipulation yields(
a + b

2

)2

=
a2 + 2ab + b2

4
=

c2 + 20
4

=
( c

2

)2

+ 5,

(
a − b

2

)2

=
a2 − 2ab + b2

4
=

c2 − 20
4

=
( c

2

)2

− 5.
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4 CHAPTER 1 INTRODUCTION

a

b
c

Figure 1.3

Let x = (c/2)2. Then we have

x − 5 = ((a − b)/2)2 and x + 5 = ((a + b)/2)2.

We are therefore looking for a rational number x such that

x − 5, x, x + 5

are simultaneously squares of rational numbers. Another way to say this
is that we want three squares of rational numbers to be in an arithmetical
progression with difference 5.

Suppose we have such a number x. Then the product (x − 5)(x)(x + 5) =
x3 − 25x must also be a square, so we need a rational solution to

y2 = x3 − 25x.

As above, this is the equation of an elliptic curve. Of course, if we have such
a rational solution, we are not guaranteed that there will be a corresponding
rational triangle (see Exercise 1.2). However, once we have a rational solution
with y �= 0, we can use it to obtain another solution that does correspond to
a rational triangle (see Exercise 1.2). This is what we’ll do below.

For future use, we record that

x =
( c

2

)2

, y = ((x − 5)(x)(x + 5))1/2 =
(a − b)(c)(a + b)

8
=

(a2 − b2)c
8

.

There are three “obvious” points on the curve: (−5, 0), (0, 0), (5, 0). These
do not help us much. They do not yield triangles and the line through any
two of them intersects the curve in the remaining point. A small search yields
the point (−4, 6). The line through this point and any one of the three other
points yields nothing useful. The only remaining possibility is to take the
line through (−4, 6) and itself, namely, the tangent line to the curve at the
(−4, 6). Implicit differentiation yields

2yy′ = 3x2 − 25, y′ =
3x2 − 25

2y
=

23
12

.
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The tangent line is therefore

y =
23
12

x +
41
3

.

Intersecting with the curve yields(
23
12

x +
41
3

)2

= x3 − 25x,

which implies

x3 −
(

23
12

)2

x2 + · · · = 0.

Since the line is tangent to the curve at (−4, 6), the root x = −4 is a double
root. Therefore the sum of the roots is

−4 − 4 + x =
(

23
12

)2

.

We obtain x = 1681/144 = (41/12)2. The equation of the line yields y =
62279/1728.

Since x = (c/2)2, we obtain c = 41/6. Therefore,

62279
1728

= y =
(a2 − b2)c

8
=

41(a2 − b2)
48

.

This yields

a2 − b2 =
1519
36

.

Since
a2 + b2 = c2 = (41/6)2,

we solve to obtain a2 = 400/9 and b2 = 9/4. We obtain a triangle (see
Figure 1.4) with

a =
20
3

, b =
3
2
, c =

41
6

,

which has area 5. This is, of course, the (40, 9, 41) triangle rescaled by a factor
of 6.

There are infinitely many other solutions. These can be obtained by suc-
cessively repeating the above procedure, for example, starting with the point
just found (see Exercise 1.4).

The question of which integers n can occur as areas of right triangles with
rational sides is known as the congruent number problem. Another for-
mulation, as we saw above, is whether there are three rational squares in
arithmetic progression with difference n. It appears in Arab manuscripts
around 900 A.D. A conjectural answer to the problem was proved by Tunnell
in the 1980s [122]. Recall that an integer n is called squarefree if n is not
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20
�������
3

3
����
2

41
�������
6

Figure 1.4

a multiple of any perfect square other than 1. For example, 5 and 15 are
squarefree, while 24 and 75 are not.

CONJECTURE 1.1
Letn be an odd,squarefree,positive integer.Then n can be expressed asthe
area ofa righttriangle with rationalsidesifand only ifthe num berofinteger
solutionsto

2x2 + y2 + 8z2 = n

with z even equalsthe num ber ofsolutionswith z odd.
Letn = 2m with m odd,squarefree,and positive. Then n can be expressed

asthe area ofa righttriangle with rationalsidesifand only ifthe num berof
integer solutionsto

4x2 + y2 + 8z2 = m

with z even equalsthe num ber ofinteger solutionswith z odd.

Tunnell [122] proved that if there is a triangle with area n, then the number
of odd solutions equals the number of even solutions. However, the proof of
the converse, namely that the condition on the number of solutions implies the
existence of a triangle of area n, uses the Conjecture of Birch and Swinnerton-
Dyer, which is not yet proved (see Chapter 14).

For example, consider n = 5. There are no solutions to 2x2 + y2 + 8z2 = 5.
Since 0 = 0, the condition is trivially satisfied and the existence of a triangle
of area 5 is predicted. Now consider n = 1. The solutions to 2x2+y2+8z2 = 1
are (x, y, z) = (0, 1, 0) and (0,−1, 0), and both have z even. Since 2 �= 0, there
is no rational right triangle of area 1. This was first proved by Fermat by his
method of descent (see Chapter 8).

For a nontrivial example, consider n = 41. The solutions to 2x2+y2+8z2 =
41 are

(±4,±3, 0), (±4,±1,±1), (±2,±5,±1), (±2,±1,±2), (0,±3,±2)
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(all possible combinations of plus and minus signs are allowed). There are
32 solutions in all. There are 16 solutions with z even and 16 with z odd.
Therefore, we expect a triangle with area 41. The same method as above,
using the tangent line at the point (−9, 120) to the curve y2 = x3 − 412x,
yields the triangle with sides (40/3, 123/20, 881/60) and area 41.

For much more on the congruent number problem, see [64].
Finally, let’s consider the quartic Fermat equation. We want to show that

a4 + b4 = c4 (1.1)

has no solutions in nonzero integers a, b, c. This equation represents the easiest
case of Fermat’s Last Theorem, which asserts that the sum of two nonzero
nth powers of integers cannot be a nonzero nth power when n ≥ 3. This
general result was proved by Wiles (using work of Frey, Ribet, Serre, Mazur,
Taylor, ...) in 1994 using properties of elliptic curves. We’ll discuss some of
these ideas in Chapter 15, but, for the moment, we restrict our attention to
the much easier case of n = 4. The first proof in this case was due to Fermat.

Suppose a4 + b4 = c4 with a �= 0. Let

x = 2
b2 + c2

a2
, y = 4

b(b2 + c2)
a3

(see Example 2.2). A straightforward calculation shows that

y2 = x3 − 4x.

In Chapter 8 we’ll show that the only rational solutions to this equation are

(x, y) = (0, 0), (2, 0), (−2, 0).

These all correspond to b = 0, so there are no nontrivial integer solutions of
(1.1).

The cubic Fermat equation also can be changed to an elliptic curve. Suppose
that a3 + b3 = c3 and abc �= 0. Since a3 + b3 = (a + b)(a2 − ab + b2), we must
have a + b �= 0. Let

x = 12
c

a + b
, y = 36

a − b

a + b
.

Then
y2 = x3 − 432.

(Where did this change of variables come from? See Section 2.5.2.) It can be
shown (but this is not easy) that the only rational solutions to this equation
are (x, y) = (12,±36). The case y = 36 yields a−b = a+b, so b = 0. Similarly,
y = −36 yields a = 0. Therefore, there are no solutions to a3 + b3 = c3 when
abc �= 0.
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Exercises

1.1 Use induction to show that

12 + 22 + 32 + · · · + x2 =
x(x + 1)(2x + 1)

6

for all integers x ≥ 0.

1.2 (a) Show that if x, y are rational numbers satisfying y2 = x3−25x and
x is a square of a rational number, then this does not imply that
x + 5 and x − 5 are squares. (Hint:Let x = 25/4.)

(b) Let n be an integer. Show that if x, y are rational numbers sat-
isfying y2 = x3 − n2x, and x �= 0, ±n, then the tangent line to
this curve at (x, y) intersects the curve in a point (x1, y1) such that
x1, x1 − n, x1 + n are squares of rational numbers. (For a more
general statement, see Theorem 8.14.) This shows that the method
used in the text is guaranteed to produce a triangle of area n if we
can find a starting point with x �= 0, ±n.

1.3 Diophantus did not work with analytic geometry and certainly did not
know how to use implicit differentiation to find the slope of the tangent
line. Here is how he could find the tangent to y2 = x3 − 25x at the
point (−4, 6). It appears that Diophantus regarded this simply as an
algebraic trick. Newton seems to have been the first to recognize the
connection with finding tangent lines.

(a) Let x = −4 + t, y = 6 + mt. Substitute into y2 = x3 − 25x. This
yields a cubic equation in t that has t = 0 as a root.

(b) Show that choosing m = 23/12 makes t = 0 a double root.

(c) Find the nonzero root t of the cubic and use this to produce x =
1681/144 and y = 62279/1728.

1.4 Use the tangent line at (x, y) = (1681/144, 62279/1728) to find another
right triangle with area 5.

1.5 Show that the change of variables x1 = 12x + 6, y1 = 72y changes the
curve y2

1 = x3
1 − 36x1 to y2 = x(x + 1)(2x + 1)/6.
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Chapter 2
The Basic Theory

2.1 Weierstrass Equations

For most situations in this book, an elliptic curve E is the graph of an
equation of the form

y2 = x3 + Ax + B,

where A and B are constants. This will be referred to as the Weierstrass
equation for an elliptic curve. We will need to specify what set A, B, x, and
y belong to. Usually, they will be taken to be elements of a field, for example,
the real numbers R, the complex numbers C, the rational numbers Q, one of
the finite fields Fp (= Zp) for a prime p, or one of the finite fields Fq, where
q = pk with k ≥ 1. In fact, for almost all of this book, the reader who is
not familiar with fields may assume that a field means one of the fields just
listed. If K is a field with A,B ∈ K, then we say that E is defined over
K. Throughout this book, E and K will implicitly be assumed to denote an
elliptic curve and a field over which E is defined.

If we want to consider points with coordinates in some field L ⊇ K, we
write E(L). By definition, this set always contains the point ∞ defined later
in this section:

E(L) = {∞} ∪ {
(x, y) ∈ L × L | y2 = x3 + Ax + B

}
.

It is not possible to draw meaningful pictures of elliptic curves over most
fields. However, for intuition, it is useful to think in terms of graphs over the
real numbers. These have two basic forms, depicted in Figure 2.1.

The cubic y2 = x3 − x in the first case has three distinct real roots. In the
second case, the cubic y2 = x3 + x has only one real root.

What happens if there is a multiple root? We don’t allow this. Namely, we
assume that

4A3 + 27B2 �= 0.

If the roots of the cubic are r1, r2, r3, then it can be shown that the discrimi-
nant of the cubic is

((r1 − r2)(r1 − r3)(r2 − r3))
2 = −(4A3 + 27B2).

9
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10 CHAPTER 2 THE BASIC THEORY

(a) y2 = x3 − x (b) y2 = x3 + x

Figure 2.1

Therefore, the roots of the cubic must be distinct. However, the case where the
roots are not distinct is still interesting and will be discussed in Section 2.10.

In order to have a little more flexibility, we also allow somewhat more
general equations of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (2.1)

where a1, . . . , a6 are constants. This more general form (we’ll call it the gen-
eralized Weierstrass equation) is useful when working with fields of char-
acteristic 2 and characteristic 3. If the characteristic of the field is not 2, then
we can divide by 2 and complete the square:(

y +
a1x

2
+

a3

2

)2

= x3 +
(

a2 +
a2
1

4

)
x2 +

(
a4 +

a1a3

2

)
x +

(
a2
3

4
+ a6

)
,

which can be written as

y2
1 = x3 + a′

2x
2 + a′

4x + a′
6,

with y1 = y + a1x/2 + a3/2 and with some constants a′
2, a

′
4, a

′
6. If the charac-

teristic is also not 3, then we can let x1 = x + a′
2/3 and obtain

y2
1 = x3

1 + Ax1 + B,

for some constants A,B.
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SECTION 2.1 WEIERSTRASS EQUATIONS 11

In most of this book, we will develop the theory using the Weierstrass
equation, occasionally pointing out what modifications need to be made in
characteristics 2 and 3. In Section 2.8, we discuss the case of characteristic 2 in
more detail, since the formulas for the (nongeneralized) Weierstrass equation
do not apply. In contrast, these formulas are correct in characteristic 3 for
curves of the form y2 = x3 + Ax + B, but there are curves that are not of
this form. The general case for characteristic 3 can be obtained by using the
present methods to treat curves of the form y2 = x3 + Cx2 + Ax + B.

Finally, suppose we start with an equation

cy2 = dx3 + ax + b

with c, d �= 0. Multiply both sides of the equation by c3d2 to obtain

(c2dy)2 = (cdx)3 + (ac2d)(cdx) + (bc3d2).

The change of variables

y1 = c2dy, x1 = cdx

yields an equation in Weierstrass form.
Later in this chapter, we will meet other types of equations that can be

transformed into Weierstrass equations for elliptic curves. These will be useful
in certain contexts.

For technical reasons, it is useful to add a point at infinity to an elliptic
curve. In Section 2.3, this concept will be made rigorous. However, it is
easiest to regard it as a point (∞,∞), usually denoted simply by ∞, sitting
at the top of the y-axis. For computational purposes, it will be a formal
symbol satisfying certain computational rules. For example, a line is said to
pass through ∞ exactly when this line is vertical (i.e., x =constant). The
point ∞ might seem a little unnatural, but we will see that including it has
very useful consequences.

We now make one more convention regarding ∞. It not only is at the top of
the y-axis, it is also at the bottom of the y-axis. Namely, we think of the ends
of the y-axis as wrapping around and meeting (perhaps somewhere in the back
behind the page) in the point ∞. This might seem a little strange. However,
if we are working with a field other than the real numbers, for example, a
finite field, then there might not be any meaningful ordering of the elements
and therefore distinguishing a top and a bottom of the y-axis might not make
sense. In fact, in this situation, the ends of the y-axis do not have meaning
until we introduce projective coordinates in Section 2.3. This is why it is best
to regard ∞ as a formal symbol satisfying certain properties. Also, we have
arranged that two vertical lines meet at ∞. By symmetry, if they meet at the
top of the y-axis, they should also meet at the bottom. But two lines should
intersect in only one point, so the “top ∞” and the “bottom ∞” need to be
the same. In any case, this will be a useful property of ∞.
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12 CHAPTER 2 THE BASIC THEORY

2.2 The Group Law

As we saw in Chapter 1, we could start with two points, or even one point,
on an elliptic curve, and produce another point. We now examine this process
in more detail.

P1

P2

P3

P3’

Figure 2.2

Adding Points on an Elliptic Curve

Start with two points

P1 = (x1, y1), P2 = (x2, y2)

on an elliptic curve E given by the equation y2 = x3 + Ax + B. Define a new
point P3 as follows. Draw the line L through P1 and P2. We’ll see below that
L intersects E in a third point P ′

3. Reflect P ′
3 across the x-axis (i.e., change

the sign of the y-coordinate) to obtain P3. We define

P1 + P2 = P3.

Examples below will show that this is not the same as adding coordinates of
the points. It might be better to denote this operation by P1 +E P2, but we
opt for the simpler notation since we will never be adding points by adding
coordinates.

Assume first that P1 �= P2 and that neither point is ∞. Draw the line L
through P1 and P2. Its slope is

m =
y2 − y1

x2 − x1
.
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SECTION 2.2 THE GROUP LAW 13

If x1 = x2, then L is vertical. We’ll treat this case later, so let’s assume that
x1 �= x2. The equation of L is then

y = m(x − x1) + y1.

To find the intersection with E, substitute to get

(m(x − x1) + y1)
2 = x3 + Ax + B.

This can be rearranged to the form

0 = x3 − m2x2 + · · · .

The three roots of this cubic correspond to the three points of intersection of
L with E. Generally, solving a cubic is not easy, but in the present case we
already know two of the roots, namely x1 and x2, since P1 and P2 are points
on both L and E. Therefore, we could factor the cubic to obtain the third
value of x. But there is an easier way. As in Chapter 1, if we have a cubic
polynomial x3 + ax2 + bx + c with roots r, s, t, then

x3 + ax2 + bx + c = (x − r)(x − s)(x − t) = x3 − (r + s + t)x2 + · · · .

Therefore,
r + s + t = −a.

If we know two roots r, s, then we can recover the third as t = −a − r − s.
In our case, we obtain

x = m2 − x1 − x2

and
y = m(x − x1) + y1.

Now, reflect across the x-axis to obtain the point P3 = (x3, y3):

x3 = m2 − x1 − x2, y3 = m(x1 − x3) − y1.

In the case that x1 = x2 but y1 �= y2, the line through P1 and P2 is a vertical
line, which therefore intersects E in ∞. Reflecting ∞ across the x-axis yields
the same point ∞ (this is why we put ∞ at both the top and the bottom of
the y-axis). Therefore, in this case P1 + P2 = ∞.

Now consider the case where P1 = P2 = (x1, y1). When two points on
a curve are very close to each other, the line through them approximates a
tangent line. Therefore, when the two points coincide, we take the line L
through them to be the tangent line. Implicit differentiation allows us to find
the slope m of L:

2y
dy

dx
= 3x2 + A, so m =

dy

dx
=

3x2
1 + A

2y1
.
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14 CHAPTER 2 THE BASIC THEORY

If y1 = 0 then the line is vertical and we set P1+P2 = ∞, as before. (Technical
point: if y1 = 0, then the numerator 3x2

1+A �= 0. See Exercise 2.5.) Therefore,
assume that y1 �= 0. The equation of L is

y = m(x − x1) + y1,

as before. We obtain the cubic equation

0 = x3 − m2x2 + · · · .

This time, we know only one root, namely x1, but it is a double root since L
is tangent to E at P1. Therefore, proceeding as before, we obtain

x3 = m2 − 2x1, y3 = m(x1 − x3) − y1.

Finally, suppose P2 = ∞. The line through P1 and ∞ is a vertical line
that intersects E in the point P ′

1 that is the reflection of P1 across the x-axis.
When we reflect P ′

1 across the x-axis to get P3 = P1 + P2, we are back at P1.
Therefore

P1 + ∞ = P1

for all points P1 on E. Of course, we extend this to include ∞ + ∞ = ∞.
Let’s summarize the above discussion:

GROUP LAW
LetE bean ellipticcurvedefined by y2 = x3 +Ax+B.LetP1 = (x1, y1) and
P2 = (x2, y2) bepointson E with P1, P2 �= ∞.DefineP1 +P2 = P3 = (x3, y3)
asfollows:

1. Ifx1 �= x2,then

x3 = m2 − x1 − x2, y3 = m(x1 − x3) − y1, wherem =
y2 − y1

x2 − x1
.

2. Ifx1 = x2 buty1 �= y2,then P1 + P2 = ∞.

3. IfP1 = P2 and y1 �= 0,then

x3 = m2 − 2x1, y3 = m(x1 − x3) − y1, wherem =
3x2

1 + A

2y1
.

4. IfP1 = P2 and y1 = 0,then P1 + P2 = ∞.

M oreover,define
P + ∞ = P

forallpointsP on E.
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SECTION 2.2 THE GROUP LAW 15

Note that when P1 and P2 have coordinates in a field L that contains A and
B, then P1 + P2 also has coordinates in L. Therefore E(L) is closed under
the above addition of points.

This addition of points might seem a little unnatural. Later (in Chapters 9
and 11), we’ll interpret it as corresponding to some very natural operations,
but, for the present, let’s show that it has some nice properties.

THEOREM 2.1
Theaddition ofpointson an ellipticcurveE satisfiesthefollowingproperties:

1. (com m utativity)P1 + P2 = P2 + P1 forallP1, P2 on E.

2. (existence ofidentity)P + ∞ = P forallpointsP on E.

3. (existenceofinverses)Given P on E,thereexistsP ′ on E withP +P ′ =
∞.ThispointP ′ willusually be denoted −P.

4. (associativity) (P1 + P2) + P3 = P1 + (P2 + P3) forallP1, P2, P3 on E.

In otherwords,the pointson E form an additive abelian group with∞ asthe
identity elem ent.

PROOF The commutativity is obvious, either from the formulas or from
the fact that the line through P1 and P2 is the same as the line through P2

and P1. The identity property of ∞ holds by definition. For inverses, let P ′

be the reflection of P across the x-axis. Then P + P ′ = ∞.
Finally, we need to prove associativity. This is by far the most subtle and

nonobvious property of the addition of points on E. It is possible to define
many laws of composition satisfying (1), (2), (3) for points on E, either simpler
or more complicated than the one being considered. But it is very unlikely
that such a law will be associative. In fact, it is rather surprising that the
law of composition that we have defined is associative. After all, we start
with two points P1 and P2 and perform a certain procedure to obtain a third
point P1 + P2. Then we repeat the procedure with P1 + P2 and P3 to obtain
(P1 + P2) + P3. If we instead start by adding P2 and P3, then computing
P1 + (P2 + P3), there seems to be no obvious reason that this should give the
same point as the other computation.

The associative law can be verified by calculation with the formulas. There
are several cases, depending on whether or not P1 = P2, and whether or not
P3 = (P1 + P2), etc., and this makes the proof rather messy. However, we
prefer a different approach, which we give in Section 2.4.

Warning: For the Weierstrass equation, if P = (x, y), then −P = (x,−y).
For the generalized Weierstrass equation (2.1), this is no longer the case. If
P = (x, y) is on the curve described by (2.1), then (see Exercise 2.9)

−P = (x, −a1x − a3 − y).
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16 CHAPTER 2 THE BASIC THEORY

Example 2.1
The calculations of Chapter 1 can now be interpreted as adding points on

elliptic curves. On the curve

y2 =
x(x + 1)(2x + 1)

6
,

we have

(0, 0) + (1, 1) = (
1
2
,−1

2
), (

1
2
,−1

2
) + (1, 1) = (24,−70).

On the curve
y2 = x3 − 25x,

we have

2(−4, 6) = (−4, 6) + (−4, 6) =
(

1681
144

, −62279
1728

)
.

We also have

(0, 0) + (−5, 0) = (5, 0), 2(0, 0) = 2(−5, 0) = 2(5, 0) = ∞.

The fact that the points on an elliptic curve form an abelian group is be-
hind most of the interesting properties and applications. The question arises:
what can we say about the groups of points that we obtain? Here are some
examples.

1. An elliptic curve over a finite field has only finitely many points with
coordinates in that finite field. Therefore, we obtain a finite abelian
group in this case. Properties of such groups, and applications to cryp-
tography, will be discussed in later chapters.

2. If E is an elliptic curve defined over Q, then E(Q) is a finitely generated
abelian group. This is the Mordell-Weil theorem, which we prove in
Chapter 8. Such a group is isomorphic to Zr ⊕ F for some r ≥ 0
and some finite group F . The integer r is called the rank of E(Q).
Determining r is fairly difficult in general. It is not known whether r
can be arbitrarily large. At present, there are elliptic curves known with
rank at least 28. The finite group F is easy to compute using the Lutz-
Nagell theorem of Chapter 8. Moreover, a deep theorem of Mazur says
that there are only finitely many possibilities for F , as E ranges over all
elliptic curves defined over Q.

3. An elliptic curve over the complex numbers C is isomorphic to a torus.
This will be proved in Chapter 9. The usual way to obtain a torus is as
C/L, where L is a lattice in C. The usual addition of complex numbers
induces a group law on C/L that corresponds to the group law on the
elliptic curve under the isomorphism between the torus and the elliptic
curve.
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Figure 2.3

An Elliptic Curve over C

4. If E is defined over R, then E(R) is isomorphic to the unit circle S1

or to S1 ⊕ Z2. The first case corresponds to the case where the cubic
polynomial x3 +Ax+B has only one real root (think of the ends of the
graph in Figure 2.1(b) as being hitched together at the point ∞ to get a
loop). The second case corresponds to the case where the cubic has three
real roots. The closed loop in Figure 2.1(a) is the set S1⊕{1}, while the
open-ended loop can be closed up using ∞ to obtain the set S1 ⊕ {0}.
If we have an elliptic curve E defined over R, then we can consider its
complex points E(C). These form a torus, as in (3) above. The real
points E(R) are obtained by intersecting the torus with a plane. If the
plane passes through the hole in the middle, we obtain a curve as in
Figure 2.1(a). If it does not pass through the hole, we obtain a curve as
in Figure 2.1(b) (see Section 9.3).

If P is a point on an elliptic curve and k is a positive integer, then kP
denotes P + P + · · · + P (with k summands). If k < 0, then kP = (−P ) +
(−P )+ · · · (−P ), with |k| summands. To compute kP for a large integer k, it
is inefficient to add P to itself repeatedly. It is much faster to use successive
doubling. For example, to compute 19P , we compute

2P, 4P = 2P+2P, 8P = 4P+4P, 16P = 8P+8P, 19P = 16P+2P+P.

This method allows us to compute kP for very large k, say of several hundred
digits, very quickly. The only difficulty is that the size of the coordinates of
the points increases very rapidly if we are working over the rational numbers
(see Theorem 8.18). However, when we are working over a finite field, for
example Fp, this is not a problem because we can continually reduce mod p
and thus keep the numbers involved relatively small. Note that the associative
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law allows us to make these computations without worrying about what order
we use to combine the summands.

The method of successive doubling can be stated in general as follows:

INTEGER TIMES A POINT
Let k be a positive integer and letP be a pointon an elliptic curve. The
following procedure com putes kP.

1. Startwith a = k, B = ∞, C = P.

2. Ifa iseven,leta = a/2,and letB = B, C = 2C.

3. Ifa isodd,leta = a − 1,and letB = B + C, C = C.

4. Ifa �= 0,go to step 2.

5. OutputB.

The outputB is kP (see Exercise 2.8).

On the other hand, if we are working over a large finite field and are given
points P and kP , it is very difficult to determine the value of k. This is called
the discrete logarithm problem for elliptic curves and is the basis for the
cryptographic applications that will be discussed in Chapter 6.

2.3 Projective Space and the Point at Infinity

We all know that parallel lines meet at infinity. Projective space allows us
to make sense out of this statement and also to interpret the point at infinity
on an elliptic curve.

Let K be a field. Two-dimensional projective space P2
K over K is given by

equivalence classes of triples (x, y, z) with x, y, z ∈ K and at least one of x, y, z
nonzero. Two triples (x1, y1, z1) and (x2, y2, z2) are said to be equivalent if
there exists a nonzero element λ ∈ K such that

(x1, y1, z1) = (λx2, λy2, λz2).

We write (x1, y1, z1) ∼ (x2, y2, z2). The equivalence class of a triple only
depends on the ratios of x to y to z. Therefore, the equivalence class of
(x, y, z) is denoted (x : y : z).

If (x : y : z) is a point with z �= 0, then (x : y : z) = (x/z : y/z : 1). These
are the “finite” points in P2

K . However, if z = 0 then dividing by z should
be thought of as giving ∞ in either the x or y coordinate, and therefore the
points (x : y : 0) are called the “points at infinity” in P2

K . The point at
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infinity on an elliptic curve will soon be identified with one of these points at
infinity in P2

K .
The two-dimensional affine plane over K is often denoted

A2
K = {(x, y) ∈ K × K}.

We have an inclusion
A2

K ↪→ P2
K

given by
(x, y) �→ (x : y : 1).

In this way, the affine plane is identified with the finite points in P2
K . Adding

the points at infinity to obtain P2
K can be viewed as a way of “compactifying”

the plane (see Exercise 2.10).
A polynomial is homogeneous of degree n if it is a sum of terms of the

form axiyjzk with a ∈ K and i + j + k = n. For example, F (x, y, z) =
2x3 − 5xyz + 7yz2 is homogeneous of degree 3. If a polynomial F is homoge-
neous of degree n then F (λx, λy, λz) = λnF (x, y, z) for all λ ∈ K. It follows
that if F is homogeneous of some degree, and (x1, y1, z1) ∼ (x2, y2, z2), then
F (x1, y1, z1) = 0 if and only if F (x2, y2, z2) = 0. Therefore, a zero of F in P2

K

does not depend on the choice of representative for the equivalence class, so
the set of zeros of F in P2

K is well defined.
If F (x, y, z) is an arbitrary polynomial in x, y, z, then we cannot talk about

a point in P2
K where F (x, y, z) = 0 since this depends on the representative

(x, y, z) of the equivalence class. For example, let F (x, y, z) = x2 + 2y − 3z.
Then F (1, 1, 1) = 0, so we might be tempted to say that F vanishes at (1 : 1 :
1). But F (2, 2, 2) = 2 and (1 : 1 : 1) = (2 : 2 : 2). To avoid this problem, we
need to work with homogeneous polynomials.

If f(x, y) is a polynomial in x and y, then we can make it homogeneous by
inserting appropriate powers of z. For example, if f(x, y) = y2−x3−Ax−B,
then we obtain the homogeneous polynomial F (x, y, z) = y2z − x3 − Axz2 −
Bz3. If F is homogeneous of degree n then

F (x, y, z) = znf(
x

z
,
y

z
)

and
f(x, y) = F (x, y, 1).

We can now see what it means for two parallel lines to meet at infinity. Let

y = mx + b1, y = mx + b2

be two nonvertical parallel lines with b1 �= b2. They have the homogeneous
forms

y = mx + b1z, y = mx + b2z.
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(The preceding discussion considered only equations of the form f(x, y) = 0
and F (x, y, z) = 0; however, there is nothing wrong with rearranging these
equations to the form “homogeneous of degree n = homogeneous of degree
n.”) When we solve the simultaneous equations to find their intersection, we
obtain

z = 0 and y = mx.

Since we cannot have all of x, y, z being 0, we must have x �= 0. Therefore, we
can rescale by dividing by x and find that the intersection of the two lines is

(x : mx : 0) = (1 : m : 0).

Similarly, if x = c1 and x = c2 are two vertical lines, they intersect in the
point (0 : 1 : 0). This is one of the points at infinity in P2

K .
Now let’s look at the elliptic curve E given by y2 = x3 + Ax + B. Its

homogeneous form is y2z = x3 + Axz2 + Bz3. The points (x, y) on the
original curve correspond to the points (x : y : 1) in the projective version. To
see what points on E lie at infinity, set z = 0 and obtain 0 = x3. Therefore
x = 0, and y can be any nonzero number (recall that (0 : 0 : 0) is not allowed).
Rescale by y to find that (0 : y : 0) = (0 : 1 : 0) is the only point at infinity on
E. As we saw above, (0 : 1 : 0) lies on every vertical line, so every vertical line
intersects E at this point at infinity. Moreover, since (0 : 1 : 0) = (0 : −1 : 0),
the “top” and the “bottom” of the y-axis are the same.

There are situations where using projective coordinates speeds up compu-
tations on elliptic curves (see Section 2.6). However, in this book we almost
always work in affine (nonprojective) coordinates and treat the point at infin-
ity as a special case when needed. An exception is the proof of associativity
of the group law given in Section 2.4, where it will be convenient to have the
point at infinity treated like any other point (x : y : z).

2.4 Proof of Associativity

In this section, we prove the associativity of addition of points on an elliptic
curve. The reader who is willing to believe this result may skip this section
without missing anything that is needed in the rest of the book. However,
as corollaries of the proof, we will obtain two results, namely the theorems of
Pappus and Pascal, that are not about elliptic curves but which are interesting
in their own right.

The basic idea is the following. Start with an elliptic curve E and points
P,Q,R on E. To compute − ((P + Q) + R) we need to form the lines �1 =
PQ, m2 = ∞, P + Q, and �3 = R,P + Q, and see where they intersect E.
To compute − ((P + (Q + R)) we need to form the lines m1 = QR, �2 =
∞, Q + R, and m3 = P,Q + R. It is easy to see that the points Pij = �i ∩mj
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lie on E, except possibly for P33. We show in Theorem 2.6 that having the
eight points Pij �= P33 on E forces P33 to be on E. Since �3 intersects E at
the points R,P + Q,− ((P + Q) + R), we must have − ((P + Q) + R) = P33.
Similarly, − (P + (Q + R)) = P33, so

− ((P + Q) + R) = − (P + (Q + R)) ,

which implies the desired associativity.
There are three main technicalities that must be treated. First, some of

the points Pij could be at infinity, so we need to use projective coordinates.
Second, a line could be tangent to E, which means that two Pij could be
equal. Therefore, we need a careful definition of the order to which a line
intersects a curve. Third, two of the lines could be equal. Dealing with these
technicalities takes up most of our attention during the proof.

First, we need to discuss lines in P2
K . The standard way to describe a line

is by a linear equation: ax + by + cz = 0. Sometimes it is useful to give a
parametric description:

x = a1u + b1v

y = a2u + b2v (2.2)
z = a3u + b3v

where u, v run through K, and at least one of u, v is nonzero. For example, if
a �= 0, the line

ax + by + cz = 0

can be described by

x = −(b/a)u − (c/a)v, y = u, z = v.

Suppose all the vectors (ai, bi) are multiples of each other, say (ai, bi) =
λi(a1, b1). Then (x, y, z) = x(1, λ2, λ3) for all u, v such that x �= 0. So we get
a point, rather than a line, in projective space. Therefore, we need a condition
on the coefficients a1, . . . , b3 that ensure that we actually get a line. It is not
hard to see that we must require the matrix⎛⎝a1 b1

a2 b2

a3 b3

⎞⎠
to have rank 2 (cf. Exercise 2.12).

If (u1, v1) = λ(u2, v2) for some λ ∈ K×, then (u1, v1) and (u2, v2) yield
equivalent triples (x, y, z). Therefore, we can regard (u, v) as running through
points (u : v) in 1-dimensional projective space P1

K . Consequently, a line
corresponds to a copy of the projective line P1

K embedded in the projective
plane.
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We need to quantify the order to which a line intersects a curve at a point.
The following gets us started.

LEMMA 2.2
LetG(u, v) be a nonzero hom ogeneous polynom ialand let (u0 : v0) ∈ P1

K.
Then thereexistsan integerk ≥ 0 and a polynom ialH(u, v) withH(u0, v0) �=
0 such that

G(u, v) = (v0u − u0v)kH(u, v).

PROOF Suppose v0 �= 0. Let m be the degree of G. Let g(u) = G(u, v0).
By factoring out as large a power of u − u0 as possible, we can write g(u) =
(u − u0)kh(u) for some k and for some polynomial h of degree m − k with
h(u0) �= 0. Let H(u, v) = (vm−k/vm

0 )h(uv0/v), so H(u, v) is homogeneous of
degree m − k. Then

G(u, v) =
(

v

v0

)m

g
(uv0

v

)
=

vm−k

vm
0

(v0u − u0v)k
h
(uv0

v

)
=(v0u − u0v)kH(u, v),

as desired.
If v0 = 0, then u0 �= 0. Reversing the roles of u and v yields the proof in

this case.

Let f(x, y) = 0 (where f is a polynomial) describe a curve C in the affine
plane and let

x = a1t + b1, y = a2t + b2

be a line L written in terms of the parameter t. Let

f̃(t) = f(a1t + b1, a2t + b2).

Then L intersects C when t = t0 if f̃(t0) = 0. If (t − t0)2 divides f̃(t),
then L is tangent to C (if the point corresponding to t0 is nonsingular. See
Lemma 2.5). More generally, we say that L intersects C to order n at the
point (x, y) corresponding to t = t0 if (t− t0)n is the highest power of (t− t0)
that divides f̃(t).

The homogeneous version of the above is the following. Let F (x, y, z) be a
homogeneous polynomial, so F = 0 describes a curve C in P2

K . Let L be a
line given parametrically by (2.2) and let

F̃ (u, v) = F (a1u + b1v, a2u + b2v, a3u + b3v).

We say that L intersects C to order n at the point P = (x0 : y0 : z0)
corresponding to (u : v) = (u0 : v0) if (v0u − u0v)n is the highest power of
(v0u − u0v) dividing F̃ (u, v). We denote this by

ordL,P (F ) = n.
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If F̃ is identically 0, then we let ordL,P (F ) = ∞. It is not hard to show that
ordL,P (F ) is independent of the choice of parameterization of the line L. Note
that v = v0 = 1 corresponds to the nonhomogeneous situation above, and the
definitions coincide (at least when z �= 0). The advantage of the homogeneous
formulation is that it allows us to treat the points at infinity along with the
finite points in a uniform manner.

LEMMA 2.3
Let L1 and L2 be lines intersecting in a point P, and, for i = 1, 2, let

Li(x, y, z) be a linear polynom ialdefining Li. Then ordL1,P (L2) = 1 unless
L1(x, y, z) = αL2(x, y, z) for som e constantα,in which case ordL1,P (L2) =
∞.

PROOF When we substitute the parameterization for L1 into L2(x, y, z),
we obtain L̃2, which is a linear expression in u, v. Let P correspond to (u0 :
v0). Since L̃2(u0, v0) = 0, it follows that L̃2(u, v) = β(v0u − u0v) for some
constant β. If β �= 0, then ordL1,P (L2) = 1. If β = 0, then all points on
L1 lie on L2. Since two points in P2

K determine a line, and L1 has at least
three points (P1

K always contains the points (1 : 0), (0 : 1), (1 : 1)), it follows
that L1 and L2 are the same line. Therefore L1(x, y, z) is proportional to
L2(x, y, z).

Usually, a line that intersects a curve to order at least 2 is tangent to the
curve. However, consider the curve C defined by

F (x, y, z) = y2z − x3 = 0.

Let
x = au, y = bu, z = v

be a line through the point P = (0 : 0 : 1). Note that P corresponds to
(u : v) = (0 : 1). We have F̃ (u, v) = u2(b2v − a3u), so every line through P
intersects C to order at least 2. The line with b = 0, which is the best choice
for the tangent at P , intersects C to order 3. The affine part of C is the curve
y2 = x3, which is pictured in Figure 2.7. The point (0, 0) is a singularity of
the curve, which is why the intersections at P have higher orders than might
be expected. This is a situation we usually want to avoid.

DEFINITION 2.4 A curveC in P2
K defined byF (x, y, z) = 0 issaid to be

nonsingular ata pointP ifatleastone ofthe partialderivativesFx, Fy, Fz

isnonzero atP.

For example, consider an elliptic curve defined by F (x, y, z) = y2z − x3 −
Axz2 − Bz3 = 0, and assume the characteristic of our field K is not 2 or 3.
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We have

Fx = −3x2 − Az2, Fy = 2yz, Fz = y2 − 2Axz − 3Bz2.

Suppose P = (x : y : z) is a singular point. If z = 0, then Fx = 0 implies
x = 0 and Fz = 0 implies y = 0, so P = (0 : 0 : 0), which is impossible.
Therefore z �= 0, so we may take z = 1 (and therefore ignore it). If Fy = 0,
then y = 0. Since (x : y : 1) lies on the curve, x must satisfy x3 +Ax+B = 0.
If Fx = −(3x2 + A) = 0, then x is a root of a polynomial and a root of its
derivative, hence a double root. Since we assumed that the cubic polynomial
has no multiple roots, we have a contradiction. Therefore an elliptic curve has
no singular points. Note that this is true even if we are considering points with
coordinates in K (= algebraic closure of K). In general, by a nonsingular
curve we mean a curve with no singular points in K.

If we allow the cubic polynomial to have a multiple root x, then it is easy to
see that the curve has a singularity at (x : 0 : 1). This case will be discussed
in Section 2.10.

If P is a nonsingular point of a curve F (x, y, z) = 0, then the tangent line
at P is

Fx(P )x + Fy(P )y + Fz(P )z = 0.

For example, if F (x, y, z) = y2z − x3 − Axz2 − Bz3 = 0, then the tangent
line at (x0 : y0 : z0) is

(−3x2
0 − Az2

0)x + 2y0z0y + (y2
0 − 2Ax0z0 − 3Bz2

0)z = 0.

If we set z0 = z = 1, then we obtain

(−3x2
0 − A)x + 2y0y + (y2

0 − 2Ax0 − 3B) = 0.

Using the fact that y2
0 = x3

0 + Ax0 + B, we can rewrite this as

(−3x2
0 − A)(x − x0) + 2y0(y − y0) = 0.

This is the tangent line in affine coordinates that we used in obtaining the
formulas for adding a point to itself on an elliptic curve. Now let’s look at
the point at infinity on this curve. We have (x0 : y0 : z0) = (0 : 1 : 0). The
tangent line is given by 0x + 0y + z = 0, which is the “line at infinity” in P2

K .
It intersects the elliptic curve only in the point (0 : 1 : 0). This corresponds
to the fact that ∞ + ∞ = ∞ on an elliptic curve.

LEMMA 2.5
LetF (x, y, z) = 0 define a curve C. IfP is a nonsingular pointofC,then
there isexactly one line in P2

K thatintersectsC to orderatleast2,and itis
the tangentto C atP.

PROOF Let L be a line intersecting C to order k ≥ 1. Parameterize L
by (2.2) and substitute into F . This yields F̃ (u, v). Let (u0 : v0) correspond
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to P . Then F̃ = (v0u − u0v)kH(u, v) for some H(u, v) with H(u0, v0) �= 0.
Therefore,

F̃u(u, v) = kv0(v0u − u0v)k−1H(u, v) + (v0u − u0v)kHu(u, v)

and

F̃v(u, v) = −ku0(v0u − u0v)k−1H(u, v) + (v0u − u0v)kHv(u, v).

It follows that k ≥ 2 if and only if F̃u(u0, v0) = F̃v(u0, v0) = 0.
Suppose k ≥ 2. The chain rule yields

F̃u = a1Fx + a2Fy + a3Fz = 0, F̃v = b1Fx + b2Fy + b3Fz = 0 (2.3)

at P . Recall that since the parameterization (2.2) yields a line, the vectors
(a1, a2, a3) and (b1, b2, b3) must be linearly independent.

Suppose L′ is another line that intersects C to order at least 2. Then we
obtain another set of equations

a′
1Fx + a′

2Fy + a′
3Fz = 0, b′1Fx + b′2Fy + b′3Fz = 0

at P .
If the vectors a′ = (a′

1, a
′
2, a

′
3) and b′ = (b′1, b

′
2, b

′
3) span the same plane in

K3 as a = (a1, a2, a3) and b = (b1, b2, b3), then

a′ = αa + βb, b′ = γa + δb

for some invertible matrix
(

α β
γ δ

)
. Therefore,

ua′ + vb′ = (uα + vγ)a + (uβ + vδ)b = u1a + v1b

for a new choice of parameters u1, v1. This means that L and L′ are the same
line.

If L and L′ are different lines, then a,b and a′,b′ span different planes, so
the vectors a,b,a′,b′ must span all of K3. Since (Fx, Fy, Fz) has dot product
0 with these vectors, it must be the 0 vector. This means that P is a singular
point, contrary to our assumption.

Finally, we need to show that the tangent line intersects the curve to order
at least 2. Suppose, for example, that Fx �= 0 at P . The cases where Fy �= 0
and Fz �= 0 are similar. The tangent line can be given the parameterization

x = −(Fy/Fx)u − (Fz/Fx)v, y = u, z = v,

so
a1 = −Fy/Fx, b1 = −Fz/Fx, a2 = 1, b2 = 0, a3 = 0, b3 = 1

in the notation of (2.2). Substitute into (2.3) to obtain

F̃u = (−Fy/Fx)Fx + Fy = 0, F̃v = (−Fz/Fx)Fx + Fz = 0.
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By the discussion at the beginning of the proof, this means that the tangent
line intersects the curve to order k ≥ 2.

The associativity of elliptic curve addition will follow easily from the next
result. The proof can be simplified if the points Pij are assumed to be distinct.
The cases where points are equal correspond to situations where tangent lines
are used in the definition of the group law. Correspondingly, this is where
it is more difficult to verify the associativity by direct calculation with the
formulas for the group law.

THEOREM 2.6
LetC(x, y, z) be a hom ogeneouscubic polynom ial,and letC be the curve in
P2

K described by C(x, y, z) = 0. Let�1, �2, �3 and m1,m2,m3 be lines in P2
K

such that �i �= mj for alli, j. LetPij be the pointofintersection of�i and
mj. Suppose Pij isa nonsingular pointon the curve C for all(i, j) �= (3, 3).
In addition, we require that if, for som e i, there are k ≥ 2 of the points
Pi1, Pi2, Pi3 equalto the sam e point,then �i intersectsC to order atleastk
atthis point. Also,if,for som e j,there are k ≥ 2 ofthe pointsP1j , P2j , P3j

equalto the sam e point,then mj intersectsC to orderatleastk atthispoint.
Then P33 also lieson the curve C.

PROOF Express �1 in the parametric form (2.2). Then C(x, y, z) becomes
C̃(u, v). The line �1 passes through P11, P12, P13. Let (u1 : v1), (u2 : v2), (u3 :
v3) be the parameters on �1 for these points. Since these points lie on C, we
have C̃(ui, vi) = 0 for i = 1, 2, 3.

Let mj have equation mj(x, y, z) = ajx + bjy + cjz = 0. Substituting
the parameterization for �1 yields m̃j(u, v). Since Pij lies on mj , we have
m̃j(uj , vj) = 0 for j = 1, 2, 3. Since �1 �= mj and since the zeros of m̃j yield the
intersections of �1 and mj , the function m̃j(u, v) vanishes only at P1j , so the
linear form m̃j is nonzero. Therefore, the product m̃1(u, v)m̃2(u, v)m̃3(u, v)
is a nonzero cubic homogeneous polynomial. We need to relate this product
to C̃.

LEMMA 2.7
LetR(u, v) and S(u, v) be hom ogeneouspolynom ialsofdegree 3,with S(u, v)
notidentically 0,and suppose there are three points (ui : vi), i = 1, 2, 3,at
which R and S vanish. M oreover,ifk ofthese points are equalto the sam e
point,we require thatR and S vanish to order atleastk atthis point(that
is,(viu − uiv)k dividesR and S). Then there isa constantα ∈ K such that
R = αS.

PROOF First, observe that a nonzero cubic homogeneous polynomial
S(u, v) can have at most 3 zeros (u : v) in P1

K (counting multiplicities).
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This can be proved as follows. Factor off the highest possible power of v, say
vk. Then S(u, v) vanishes to order k at (1 : 0), and S(u, v) = vkS0(u, v) with
S0(1, 0) �= 0. Since S0(u, 1) is a polynomial of degree 3 − k, the polynomial
S0(u, 1) can have at most 3 − k zeros, counting multiplicities (it has exactly
3 − k if K is algebraically closed). All points (u : v) �= (1 : 0) can be written
in the form (u : 1), so S0(u, v) has at most 3− k zeros. Therefore, S(u, v) has
at most k + (3 − k) = 3 zeros in P1

K .
It follows easily that the condition that S(u, v) vanish to order at least k

could be replaced by the condition that S(u, v) vanish to order exactly k.
However, it is easier to check “at least” than “exactly.” Since we are allowing
the possibility that R(u, v) is identically 0, this remark does not apply to R.

Let (u0, : v0) be any point in P1
K not equal to any of the (ui : vi). (Technical

point: If K has only two elements, then P1
K has only three elements. In this

case, enlarge K to GF (4). The α we obtain is forced to be in K since it is the
ratio of a coefficient of R and a coefficient of S, both of which are in K.) Since
S can have at most three zeros, S(u0, v0) �= 0. Let α = R(u0, v0)/S(u0, v0).
Then R(u, v) − αS(u, v) is a cubic homogeneous polynomial that vanishes at
the four points (ui : vi), i = 0, 1, 2, 3. Therefore R − αS must be identically
zero.

Returning to the proof of the theorem, we note that C̃ and m̃1m̃2m̃3 vanish
at the points (ui : vi), i = 1, 2, 3. Moreover, if k of the points P1j are the
same point, then k of the linear functions vanish at this point, so the product
m̃1(u, v)m̃2(u, v)m̃3(u, v) vanishes to order at least k. By assumption, C̃
vanishes to order at least k in this situation. By the lemma, there exists a
constant α such that

C̃ = αm̃1m̃2m̃3.

Let
C1(x, y, z) = C(x, y, z) − αm1(x, y, z)m2(x, y, z)m3(x, y, z).

The line �1 can be described by a linear equation �1(x, y, z) = ax+by+cz =
0. At least one coefficient is nonzero, so let’s assume a �= 0. The other cases
are similar. The parameterization of the line �1 can be taken to be

x = −(b/a)u − (c/a)v, y = u, z = v. (2.4)

Then C̃1(u, v) = C1(−(b/a)u− (c/a)v, u, v). Write C1(x, y, z) as a polynomial
in x with polynomials in y, z as coefficients. Writing

xn = (1/an) ((ax + by + cz) − (by + cz))n = (1/an) ((ax + by + cz)n + · · · ) ,

we can rearrange C1(x, y, z) to be a polynomial in ax + by + cz whose coeffi-
cients are polynomials in y, z:

C1(x, y, z) = a3(y, z)(ax + by + cz)3 + · · · + a0(y, z). (2.5)
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Substituting (2.4) into (2.5) yields

0 = C̃1(u, v) = a0(u, v),

since ax+by+cz vanishes identically when x, y, z are written in terms of u, v.
Therefore a0(y, z) = a0(u, v) is the zero polynomial. It follows from (2.5) that
C1(x, y, z) is a multiple of �1(x, y, z) = ax + by + cz.

Similarly, there exists a constant β such that C(x, y, z) − β�1�2�3 is a mul-
tiple of m1.

Let

D(x, y, z) = C − αm1m2m3 − β�1�2�3.

Then D(x, y, z) is a multiple of �1 and a multiple of m1.

LEMMA 2.8
D(x, y, z) isa m ultiple of�1(x, y, z)m1(x, y, z).

PROOF Write D = m1D1. We need to show that �1 divides D1. We
could quote some result about unique factorization, but instead we proceed
as follows. Parameterize the line �1 via (2.4) (again, we are considering the
case a �= 0). Substituting this into the relation D = m1D1 yields D̃ = m̃1D̃1.
Since �1 divides D, we have D̃ = 0. Since m1 �= �1, we have m̃1 �= 0. Therefore
D̃1(u, v) is the zero polynomial. As above, this implies that D1(x, y, z) is a
multiple of �1, as desired.

By the lemma,
D(x, y, z) = �1m1�,

where �(x, y, z) is linear. By assumption, C = 0 at P22, P23, P32. Also, �1�2�3
and m1m2m3 vanish at these points. Therefore, D(x, y, z) vanishes at these
points. Our goal is to show that D is identically 0.

LEMMA 2.9
�(P22) = �(P23) = �(P32) = 0.

PROOF First suppose that P13 �= P23. If �1(P23) = 0, then P23 is on
the line �1 and also on �2 and m3 by definition. Therefore, P23 equals the
intersection P13 of �1 and m3. Since P23 and P13 are for the moment assumed
to be distinct, this is a contradiction. Therefore �1(P23) �= 0. Since D(P23) =
0, it follows that m1(P23)�(P23) = 0.

Suppose now that P13 = P23. Then, by the assumption in the theo-
rem, m3 is tangent to C at P23, so ordm3,P23(C) ≥ 2. Since P13 = P23

and P23 lies on m3, we have ordm3,P23(�1) = ordm3,P23(�2) = 1. There-
fore, ordm3,P23(α�1�2�3) ≥ 2. Also, ordm3,P23(βm1m2m3) = ∞. Therefore,

© 2008 by Taylor & Francis Group, LLC



SECTION 2.4 PROOF OF ASSOCIATIVITY 29

ordm3,P23(D) ≥ 2, since D is a sum of terms, each of which vanishes to order
at least 2. But ordm3,P23(�1) = 1, so we have

ordm3,P23(m1�) = ordm3,P23(D) − ordm3,P23(�1) ≥ 1.

Therefore m1(P23)�(P23) = 0.
In both cases, we have m1(P23)�(P23) = 0.
If m1(P23) �= 0, then �(P23) = 0, as desired.
If m1(P23) = 0, then P23 lies on m1, and also on �2 and m3, by definition.

Therefore, P23 = P21, since �2 and m1 intersect in a unique point. By as-
sumption, �2 is therefore tangent to C at P23. Therefore, ord�2,P23(C) ≥ 2.
As above, ord�2,P23(D) ≥ 2, so

ord�2,P23(�1�) ≥ 1.

If in this case we have �1(P23) = 0, then P23 lies on �1, �2,m3. Therefore
P13 = P23. By assumption, the line m3 is tangent to C at P23. Since P23 is a
nonsingular point of C, Lemma 2.5 says that �2 = m3, contrary to hypothesis.
Therefore, �1(P23) �= 0, so �(P23) = 0.

Similarly, �(P22) = �(P32) = 0.

If �(x, y, z) is identically 0, then D is identically 0. Therefore, assume that
�(x, y, z) is not zero and hence it defines a line �.

First suppose that P23, P22, P32 are distinct. Then � and �2 are lines through
P23 and P22. Therefore � = �2. Similarly, � = m2. Therefore �2 = m2,
contradiction.

Now suppose that P32 = P22. Then m2 is tangent to C at P22. As before,

ordm2,P22(�1m1�) ≥ 2.

We want to show that this forces � to be the same line as m2.
If m1(P22) = 0, then P22 lies on m1,m2, �2. Therefore, P21 = P22. This

means that �2 is tangent to C at P22. By Lemma 2.5, �2 = m2, contradiction.
Therefore, m1(P22) �= 0.

If �1(P22) �= 0, then ordm2,P22(�) ≥ 2. This means that � is the same line as
m2.

If �1(P22) = 0, then P22 = P32 lies on �1, �2, �3,m2, so P12 = P22 =
P32. Therefore ordm2,P22(C) ≥ 3. By the reasoning above, we now have
ordm2,P22(�1m1�) ≥ 3. Since we have proved that m1(P22) �= 0, we have
ordm2,P22(�) ≥ 2. This means that � is the same line as m2.

So now we have proved, under the assumption that P32 = P22, that � is the
same line as m2. By Lemma 2.9, P23 lies on �, and therefore on m2. It also
lies on �2 and m3. Therefore, P22 = P23. This means that �2 is tangent to C
at P22. Since P32 = P22 means that m2 is also tangent to C at P22, we have
�2 = m2, contradiction. Therefore, P32 �= P22 (under the assumption that
� �= 0).
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Similarly, P23 �= P22.
Finally, suppose P23 = P32. Then P23 lies on �2, �3,m2,m3. This forces

P22 = P32, which we have just shown is impossible.
Therefore, all possibilities lead to contradictions. It follows that �(x, y, z)

must be identically 0. Therefore D = 0, so

C = α�1�2�3 + βm1m2m3.

Since �3 and m3 vanish at P33, we have C(P33) = 0, as desired. This completes
the proof of Theorem 2.6.

REMARK 2.10 Note that we proved the stronger result that

C = α�1�2�3 + βm1m2m3

for some constants α, β. Since there are 10 coefficients in an arbitrary ho-
mogeneous cubic polynomial in three variables and we have required that C
vanish at eight points (when the Pij are distinct), it is not surprising that the
set of possible polynomials is a two-parameter family. When the Pij are not
distinct, the tangency conditions add enough restrictions that we still obtain
a two-parameter family.

We can now prove the associativity of addition for an elliptic curve. Let
P,Q,R be points on E. Define the lines

�1 = PQ, �2 = ∞, Q + R, �3 = R,P + Q

m1 = QR, m2 = ∞, P + Q, m3 = P,Q + R.

We have the following intersections:

�1 �2 �3

m1 Q −(Q + R) R
m2 −(P + Q) ∞ P + Q
m3 P Q + R X

Assume for the moment that the hypotheses of the theorem are satisfied.
Then all the points in the table, including X, lie on E. The line �3 has three
points of intersection with E, namely R,P + Q, and X. By the definition of
addition, X = −((P + Q) + R). Similarly, m3 intersects C in 3 points, which
means that X = −(P +(Q+R)). Therefore, after reflecting across the x-axis,
we obtain (P + Q) + R = P + (Q + R), as desired.

It remains to verify the hypotheses of the theorem, namely that the orders
of intersection are correct and that the lines �i are distinct from the lines mj .

First we want to dispense with cases where ∞ occurs. The problem is that
we treated ∞ as a special case in the definition of the group law. However,
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as pointed out earlier, the tangent line at ∞ intersects the curve only at ∞
(and intersects to order 3 at ∞). It follows that if two of the entries in a row
or column of the above table of intersections are equal to ∞, then so is the
third, and the line intersects the curve to order 3. Therefore, this hypothesis
is satisfied.

It is also possible to treat directly the cases where some of the intersection
points P,Q,R,±(P + Q),±(Q + R) are ∞. In the cases where at least one of
P,Q,R is ∞, associativity is trivial.

If P + Q = ∞, then (P + Q) + R = ∞ + R = R. On the other hand,
the sum Q + R is computed by first drawing the line L through Q and R,
which intersects E in −(Q + R). Since P + Q = ∞, the reflection of Q across
the x-axis is P . Therefore, the reflection L′ of L passes through P , −R, and
Q + R. The sum P + (Q + R) is found by drawing the line through P and
Q+R, which is L′. We have just observed that the third point of intersection
of L′ with E is −R. Reflecting yields P +(Q+R) = R, so associativity holds
in this case.

Similarly, associativity holds when Q + R = ∞.
Finally, we need to consider what happens if some line �i equals some line

mj , since then Theorem 2.6 does not apply.
First, observe that if P,Q,R are collinear, then associativity is easily verified

directly.
Second, suppose that P,Q,Q + R are collinear. Then P + (Q + R) = −Q.

Also, P + Q = −(Q + R), so (P + Q) + R = −(Q + R) + R. The second
equation of the following shows that associativity holds in this case.

LEMMA 2.11
LetP1, P2 be points on an elliptic curve. Then (P1 + P2) − P2 = P1 and
−(P1 + P2) + P2 = −P1.

PROOF The two relations are reflections of each other, so it suffices to
prove the second one. The line L through P1 and P2 intersects the elliptic
curve in −(P1 + P2). Regarding L as the line through −(P1 + P2) and P2

yields −(P1 + P2) + P2 = −P1, as claimed.

Suppose that �i = mj for some i, j. We consider the various cases. By the
above discussion, we may assume that all points in the table of intersections
are finite, except for ∞ and possibly X. Note that each �i and each mj meets
E in three points (counting multiplicity), one of which is Pij . If the two lines
coincide, then the other two points must coincide in some order.

1. �1 = m1: Then P,Q,R are collinear, and associativity follows.

2. �1 = m2: In this case, P,Q,∞ are collinear, so P +Q = ∞; associativity
follows by the direct calculation made above.
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3. �2 = m1: Similar to the previous case.

4. �1 = m3: Then P,Q,Q+R are collinear; associativity was proved above.

5. �3 = m1: Similar to the previous case.

6. �2 = m2: Then P + Q must be ±(Q + R). If P + Q = Q + R, then
commutativity plus the above lemma yields

P = (P + Q) − Q = (Q + R) − Q = R.

Therefore,

(P +Q)+R = R+(P +Q) = P +(P +Q) = P +(R+Q) = P +(Q+R).

If P + Q = −(Q + R), then

(P + Q) + R = −(Q + R) + R = −Q

and
P + (Q + R) = P − (P + Q) = −Q,

so associativity holds.

7. �2 = m3: In this case, the line m3 through P and (Q + R) intersects E
in ∞, so P = −(Q + R). Since −(Q + R), Q, R are collinear, we have
that P,Q,R are collinear and associativity holds.

8. �3 = m2: Similar to the previous case.

9. �3 = m3: Since �3 cannot intersect E in 4 points (counting multiplici-
ties), it is easy to see that P = R or P = P + Q or Q + R = P + Q or
Q + R = R. The case P = R was treated in the case �2 = m2. Assume
P = P + Q. Adding −P and applying Lemma 2.11 yields ∞ = Q, in
which case associativity immediately follows. The case Q + R = R is
similar. If Q + R = P + Q, then adding −Q and applying Lemma 2.11
yields P = R, which we have already treated.

If �i �= mj for all i, j, then the hypotheses of the theorem are satisfied, so
the addition is associative, as proved above. This completes the proof of the
associativity of elliptic curve addition.

REMARK 2.12 Note that for most of the proof, we did not use the
Weierstrass equation for the elliptic curve. In fact, any nonsingular cubic
curve would suffice. The identity O for the group law needs to be a point
whose tangent line intersects to order 3. Three points sum to 0 if they lie
on a straight line. Negation of a point P is accomplished by taking the line
through O and P . The third point of intersection is then −P . Associativity
of this group law follows just as in the Weierstrass case.
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2.4.1 The Theorems of Pappus and Pascal

Theorem 2.6 has two other nice applications outside the realm of elliptic
curves.

THEOREM 2.13 (Pascal’s Theorem)
LetABCDEF be a hexagon inscribed in a conic section (ellipse,parabola,
or hyperbola),where A,B,C,D,E, F are distinctpoints in the a ne plane.
LetX betheintersection ofAB andDE,letY betheintersection ofBC and
EF,and letZ be the intersection ofCD and FA.Then X,Y, Z are collinear
(see Figure 2.4).

Figure 2.4

Pascal’s Theorem

REMARK 2.14 (1) A conic is given by an equation q(x, y) = ax2 + bxy +
cy2+dx+ey+f = 0 with at least one of a, b, c nonzero. Usually, it is assumed
that b2−4ac �= 0; otherwise, the conic degenerates into a product of two linear
factors, and the graph is the union of two lines. The present theorem holds
even in this case, as long as the points A,C,E lie on one of the lines, B,D,F
lie on the other, and none is the intersection of the two lines.

(2) Possibly AB and DE are parallel, for example. Then X is an infinite
point in P2

K .
(3) Note that X,Y, Z will always be distinct. This is easily seen as follows:

First observe that X,Y, Z cannot lie on the conic since a line can intersect
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the conic in at most two points; the points A,B,C,D,E, F are assumed to
be distinct and therefore exhaust all possible intersections. If X = Y , then
AB and BC meet in both B and Y , and therefore the lines are equal. But
this means that A = C, contradiction. Similarly, X �= Z and Y �= Z.

PROOF Define the following lines:

�1 = EF, �2 = AB, �3 = CD, m1 = BC, m2 = DE, m3 = FA.

We have the following table of intersections:

�1 �2 �3

m1 Y B C
m2 E X D
m3 F A Z

Let q(x, y) = 0 be the affine equation of the conic. In order to apply The-
orem 2.6, we change q(x, y) to its homogeneous form Q(x, y, z). Let �(x, y, z)
be a linear form giving the line through X and Y . Then

C(x, y, z) = Q(x, y, z)�(x, y, z)

is a homogeneous cubic polynomial. The curve C = 0 contains all of the
points in the table, with the possible exception of Z. It is easily checked that
the only singular points of C are the points of intersection of Q = 0 and
� = 0, and the intersection of the two lines comprising Q = 0 in the case
of a degenerate conic. Since none of these points occur among the points
we are considering, the hypotheses of Theorem 2.6 are satisfied. Therefore,
C(Z) = 0. Since Q(Z) �= 0, we must have �(Z) = 0, so Z lies on the line
through X and Y . Therefore, X, Y , Z are collinear. This completes the proof
of Pascal’s theorem.

COROLLARY 2.15 (Pappus’s Theorem)

Let� and m be two distinctlinesin the plane.LetA,B,C be distinctpoints
of � and letA′, B′, C ′ be distinct points ofm. Assum e that none ofthese
points is the intersection of� and m. LetX be the intersection ofAB′ and
A′B,letY be the intersection ofB′C and BC ′,and letZ be the intersection
ofCA′ and C ′A.Then X,Y, Z are collinear (see Figure 2.5).

PROOF This is the case of a degenerate conic in Theorem 2.13. The
“hexagon” is AB′CA′BC ′.
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A
B

C

A’ B’
C’

Figure 2.5

Pappus’s Theorem

2.5 Other Equations for Elliptic Curves

In this book, we are mainly using the Weierstrass equation for an elliptic
curve. However, elliptic curves arise in various other guises, and it is worth-
while to discuss these briefly.

2.5.1 Legendre Equation

This is a variant on the Weierstrass equation. Its advantage is that it
allows us to express all elliptic curves over an algebraically closed field (of
characteristic not 2) in terms of one parameter.

PROPOSITION 2.16

LetK be a field ofcharacteristic not2 and let

y2 = x3 + ax2 + bx + c = (x − e1)(x − e2)(x − e3)

be an elliptic curveE overK with e1, e2, e3 ∈ K.Let

x1 = (e2 − e1)−1(x − e1), y1 = (e2 − e1)−3/2y, λ =
e3 − e1

e2 − e1
.

Then λ �= 0, 1 and

y2
1 = x1(x1 − 1)(x1 − λ).

PROOF This is a straightforward calculation.
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The parameter λ for E is not unique. In fact, each of

{λ,
1
λ

, 1 − λ,
1

1 − λ
,

λ

λ − 1
,
λ − 1

λ
}

yields a Legendre equation for E. They correspond to the six permutations
of the roots e1, e2, e3. It can be shown that these are the only values of
λ corresponding to E, so the map λ �→ E is six-to-one, except where λ =
−1, 1/2, 2, or λ2 − λ + 1 = 0 (in these situations, the above set collapses; see
Exercise 2.13).

2.5.2 Cubic Equations

It is possible to start with a cubic equation C(x, y) = 0, over a field K of
characteristic not 2 or 3, that has a point with x, y ∈ K and find an invertible
change of variables that transforms the equation to Weierstrass form (although
possibly 4A3 + 27B2 = 0). The procedure is fairly complicated (see [25], [28],
or [84]), so we restrict our attention to a specific example.

Consider the cubic Fermat equation

x3 + y3 + z3 = 0.

The fact that this equation has no rational solutions with xyz �= 0 was conjec-
tured by the Arabs in the 900s and represents a special case of Fermat’s Last
Theorem, which asserts that the sum of two nonzero nth powers of integers
cannot be a nonzero nth power when n ≥ 3. The first proof in the case n = 3
was probably due to Fermat. We’ll discuss some of the ideas for the proof in
the general case in Chapter 15.

Suppose that x3 + y3 + z3 = 0 and xyz �= 0. Since x3 + y3 = (x + y)(x2 −
xy + y2), we must have x + y �= 0. Write

x

z
= u + v,

y

z
= u − v.

Then (u + v)3 + (u − v)3 + 1 = 0, so 2u3 + 6uv2 + 1 = 0. Divide by u3 (since
x + y �= 0, we have u �= 0) and rearrange to obtain

6(v/u)2 = −(1/u)3 − 2.

Let
x1 =

−6
u

= −12
z

x + y
, y1 =

36v

u
= 36

x − y

x + y
.

Then
y2
1 = x3

1 − 432.

It can be shown (this is somewhat nontrivial) that the only rational solutions
to this equation are (x1, y1) = (12,±36), and ∞. The case y1 = 36 yields
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x − y = x + y, so y = 0. Similarly, y1 = −36 yields x = 0. The point with
(x1, y1) = ∞ corresponds to x = −y, which means that z = 0. Therefore,
there are no solutions to x3 + y3 + z3 = 0 when xyz �= 0.

2.5.3 Quartic Equations

Occasionally, we will meet curves defined by equations of the form

v2 = au4 + bu3 + cu2 + du + e, (2.6)

with a �= 0. If we have a point (p, q) lying on the curve with p, q ∈ K, then
the equation (when it is nonsingular) can be transformed into a Weierstrass
equation by an invertible change of variables that uses rational functions with
coefficients in the field K. Note that an elliptic curve E defined over a field K
always has a point in E(K), namely ∞ (whose projective coordinates (0 : 1 : 0)
certainly lie in K). Therefore, if we are going to transform a curve C into
Weierstrass form in such a way that all coefficients of the rational functions
describing the transformation lie in K, then we need to start with a point on
C that has coordinates in K.

There are curves of the form (2.6) that do not have points with coordinates
in K. This phenomenon will be discussed in more detail in Chapter 8.

Suppose we have a curve defined by an equation (2.6) and suppose we have
a point (p, q) lying on the curve. By changing u to u + p, we may assume
p = 0, so the point has the form (0, q).

First, suppose q = 0. If d = 0, then the curve has a singularity at (u, v) =
(0, 0). Therefore, assume d �= 0. Then

(
v

u2
)2 = d(

1
u

)3 + c(
1
u

)2 + b(
1
u

) + a.

This can be easily transformed into a Weierstrass equation in d/u and dv/u2.
The harder case is when q �= 0. We have the following result.

THEOREM 2.17
LetK be a field ofcharacteristic not2.Considerthe equation

v2 = au4 + bu3 + cu2 + du + q2

with a, b, c, d, q ∈ K.Let

x =
2q(v + q) + du

u2
, y =

4q2(v + q) + 2q(du + cu2) − (d2u2/2q)
u3

.

Define

a1 = d/q, a2 = c − (d2/4q2), a3 = 2qb, a4 = −4q2a, a6 = a2a4.
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Then
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6.

The inverse transform ation is

u =
2q(x + c) − (d2/2q)

y
, v = −q +

u(ux − d)
2q

.

The point (u, v) = (0, q) corresponds to the point (x, y) = ∞ and (u, v) =
(0,−q) correspondsto (x, y) = (−a2, a1a2 − a3).

PROOF Most of the proof is a “straightforward” calculation that we omit.
For the image of the point (0,−q), see [28].

Example 2.2
Consider the equation

v2 = u4 + 1. (2.7)

Then a = 1, b = c = d = 0, and q = 1. If

x =
2(v + 1)

u2
, y =

4(v + 1)
u3

,

then we obtain the elliptic curve E given by

y2 = x3 − 4x.

The inverse transformation is

u = 2x/y, v = −1 + (2x3/y2).

The point (u, v) = (0, 1) corresponds to ∞ on E, and (u, v) = (0,−1) corre-
sponds to (0, 0). We will show in Chapter 8 that

E(Q) = {∞, (0, 0), (2, 0), (−2, 0)}.
These correspond to (u, v) = (0, 1), (0,−1), and points at infinity. Therefore,
the only finite rational points on the quartic curve are (u, v) = (0,±1). It is
easy to deduce from this that the only integer solutions to

a4 + b4 = c2

satisfy ab = 0. This yields Fermat’s Last Theorem for exponent 4. We will
discuss this in more detail in Chapter 8.

It is worth considering briefly the situation at infinity in u, v. If we make
the equation (2.7) homogeneous, we obtain

F (u, v, w) = v2w2 − u4 − w4 = 0.
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The points at infinity have w = 0. To find them, we set w = 0 and get 0 = u4,
which means u = 0. We thus find only the point (u : v : w) = (0 : 1 : 0). But
we have two points, namely (2, 0) and (−2, 0) in the corresponding Weierstrass
model. The problem is that (u : v : w) = (0 : 1 : 0) is a singular point in the
quartic model. At this point we have

Fu = Fv = Fw = 0.

What is happening is that the curve intersects itself at the point (u : v :
w) = (0 : 1 : 0). One branch of the curve is v = +u2

√
1 + (1/u)4 and the

other is v = −u2
√

1 + (1/u)4. For simplicity, let’s work with real or complex
numbers. If we substitute the second of these expressions into x = 2(v+1)/u2

and take the limit as u → ∞, we obtain

x =
2(v + 1)

u2
=

2(1 − u2
√

1 + (1/u)4)
u2

→ −2.

If we use the other branch, we find x → +2. So the transformation that
changes the quartic equation into the Weierstrass equation has pulled apart
the two branches (the technical term is “resolved the singularities”) at the
singular point.

2.5.4 Intersection of Two Quadratic Surfaces

The intersection of two quadratic surfaces in three-dimensional space, along
with a point on this intersection, is usually an elliptic curve. Rather than work
in full generality, we’ll consider pairs of equations of the form

au2 + bv2 = e, cu2 + dw2 = f,

where a, b, c, d, e, f are nonzero elements of a field K of characteristic not 2.
Each separate equation may be regarded as a surface in uvw-space, and they
intersect in a curve. We’ll show that if we have a point P in the intersection,
then we can transform this curve into an elliptic curve in Weierstrass form.

Before analyzing the intersection of these two surfaces, let’s consider the
first equation by itself. It can be regarded as giving a curve C in the uv-
plane. Let P = (u0, v0) be a point on C. Let L be the line through P with
slope m:

u = u0 + t, v = v0 + mt.

We want to find the other point where L intersects C. See Figure 2.6.
Substitute into the equation for C and use the fact that au2

0 + bv2
0 = e to

obtain
a(2u0t + t2) + b(2v0mt + m2t2) = 0.
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C

�u0,v0�

L

�u,v�

Figure 2.6

Since t = 0 corresponds to (u0, v0), we factor out t and obtain

t = −2au0 + 2bv0m

a + bm2
.

Therefore,

u = u0 − 2au0 + 2bv0m

a + bm2
, v = v0 − 2amu0 + 2bv0m

2

a + bm2
.

We make the convention that m = ∞ yields (u0,−v0), which is what we get
if we are working with real numbers and let m → ∞. Also, possibly the
denominator a+bm2 vanishes, in which case we get points “at infinity” in the
uv-projective plane (see Exercise 2.14).

Note that if (u, v) is any point on C with coordinates in K, then the slope
m of the line through (u, v) and P is in K (or is infinite). We have there-
fore obtained a bijection, modulo a few technicalities, between values of m
(including ∞) and points on C (including points at infinity). The main point
is that we have obtained a parameterization of the points on C. A similar
procedure works for any conic section containing a point with coordinates in
K.

Which value of m corresponds to the original point (u0, v0)? Let m be the
slope of the tangent line at (u0, v0). The second point of intersection of the
tangent line with the curve is again the point (u0, v0), so this slope is the
desired value of m. The value m = 0 yields the point (−u0, v0). This can be
seen from the formulas, or from the fact that the line through (−u0, v0) and
(u0, v0) has slope 0.

We now want to intersect C, regarded as a “cylinder” in uvw-space, with
the surface cu2 + dw2 = f . Substitute the expression just obtained for u to
obtain

dw2 = f − c

(
u0 − 2au0 + 2bv0m

a + bm2

)2

.
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This may be rewritten as

d(w(a + bm2))2 = (a + bm2)2f − c(bu0m
2 − 2bv0m − au0)2

= (b2f − cb2u2
0)m

4 + · · · .

This may now be changed to Weierstrass form by the procedure given ear-
lier. Note that the leading coefficient b2f − cb2u2

0 equals b2dw2
0. If w0 = 0,

then fourth degree polynomial becomes a cubic polynomial, so the equation
just obtained is easily put into Weierstrass form. The leading term of this
cubic polynomial vanishes if and only if v0 = 0. But in this case, the point
(u0, v0, w0) = (u0, 0, 0) is a singular point of the uvw curve – a situation that
we should avoid (see Exercise 2.15).

The procedure for changing “square = degree four polynomial” into Weier-
strass form requires a point satisfying this equation. We could let m be the
slope of the tangent line at (u0, v0), which corresponds to the point (u0, v0).
The formula of Theorem 2.17 then requires that we shift the value of m to
obtain m = 0. Instead, it’s easier to use m = 0 directly, since this value
corresponds to (−u0, v0), as pointed out above.

Example 2.3
Consider the intersection

u2 + v2 = 2, u2 + 4w2 = 5.

Let (u0, v0, w0) = (1, 1, 1). First, we parameterize the solutions to u2+v2 = 2.
Let u = 1 + t, v = 1 + mt. This yields

(1 + t)2 + (1 + mt)2 = 2,

which yields t(2 + 2m) + t2(1 + m2) = 0. Discarding the solution t = 0, we
obtain t = −(2 + 2m)/(1 + m2), hence

u = 1 − 2 + 2m
1 + m2

=
m2 − 2m − 1

1 + m2
, v = 1 − m

2 + 2m
1 + m2

=
1 − 2m − m2

1 + m2
.

Note that m = −1 corresponds to (u, v) = (1, 1) (this is because the tangent
at this point has slope m = −1). Substituting into u2 + 4w2 = 5 yields

4(w(1 + m2))2 = 5(1 + m2)2 − (m2 − 2m− 1)2 = 4m4 + 4m3 + 8m2 − 4m + 4.

Letting r = w(1 + m2) yields

r2 = m4 + m3 + 2m2 − m + 1.

In Theorem 2.17, we use q = 1. The formulas then change this curve to the
generalized Weierstrass equation

y2 − xy + 2y = x3 +
7
4
x2 − 4x − 7.
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Completing the square yields

y2
1 = x3 + 2x2 − 5x − 6,

where y1 = y + 1 − 1
2x.

2.6 Other Coordinate Systems

The formulas for adding two points on an elliptic curve in Weierstrass form
require 2 multiplications, 1 squaring, and 1 inversion in the field. Although
finding inverses is fast, it is much slower than multiplication. In [27, p. 282],
it is estimated that inversion takes between 9 and 40 times as long as multi-
plication. Moreover, squaring takes about 0.8 the time of multiplication. In
many situations, this distinction makes no difference. However, if a central
computer needs to verify many signatures in a second, such distinctions can
become relevant. Therefore, it is sometimes advantageous to avoid inversion
in the formulas for point addition. In this section, we discuss a few alternative
formulas where this can be done.

2.6.1 Projective Coordinates

A natural method is to write all the points as points (x : y : z) in projective
space. By clearing denominators in the standard formulas for addition, we
obtain the following:

Let Pi = (xi : yi : zi), i = 1, 2, be points on the elliptic curve y2z =
x3 + Axz2 + Bz3. Then

(x1 : y1 : z1) + (x2 : y2 : z2) = (x3 : y3 : z3),

where x3, y3, z3 are computed as follows: When P1 �= ±P2,

u = y2z1 − y1z2, v = x2z1 − x1z2, w = u2z1z2 − v3 − 2v2x1z2,

x3 = vw, y3 = u(v2x1z2 − w) − v3y1z2, z3 = v3z1z2.

When P1 = P2,

t = Az2
1 + 3x2

1, u = y1z1, v = ux1y1, w = t2 − 8v,

x3 = 2uw, y3 = t(4v − w) − 8y2
1u2, z3 = 8u3.

When P1 = −P2, we have P1 + P2 = ∞.
Point addition takes 12 multiplications and 2 squarings, while point dou-

bling takes 7 multiplications and 5 squarings. No inversions are needed. Since
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addition and subtraction are much faster than multiplication, we do not con-
sider them in our analysis. Similarly, multiplication by a constant is not
included.

2.6.2 Jacobian Coordinates

A modification of projective coordinates leads to a faster doubling proce-
dure. Let (x : y : z) represent the affine point (x/z2, y/z3). This is somewhat
natural since, as we’ll see in Chapter 11, the function x has a double pole at ∞
and the function y has a triple pole at ∞. The elliptic curve y2 = x3 +Ax+B
becomes

y2 = x3 + Axz4 + Bz6.

The point at infinity now has the coordinates ∞ = (1 : 1 : 0).
Let Pi = (xi : yi : zi), i = 1, 2, be points on the elliptic curve y2 =

x3 + Axz4 + Bz6. Then

(x1 : y1 : z1) + (x2 : y2 : z2) = (x3 : y3 : z3),

where x3, y3, z3 are computed as follows: When P1 �= ±P2,

r = x1z
2
2 , s = x2z

2
1 , t = y1z

3
2 , u = y2z

3
1 , v = s − r, w = u − t,

x3 = −v3 − 2rv2 + w2, y3 = −tv3 + (rv2 − x3)w, z3 = vz1z2.

When P1 = P2,

v = 4x1y
2
1 , w = 3x2

1 + Az4
1 ,

x3 = −2v + w2, y3 = −8y4
1 + (v − x3)w, z3 = 2y1z1.

When P1 = −P2, we have P1 + P2 = ∞.
Addition of points takes 12 multiplications and 4 squarings. Doubling takes

3 multiplications and 6 squarings. There are no inversions.
When A = −3, a further speed-up is possible in doubling: we have w =

3(x2
1 − z4

1) = 3(x1 + z2
1)(x1 − z2

1), which can be computed in one squaring and
one multiplication, rather than in 3 squarings. Therefore, doubling takes only
4 multiplications and 4 squarings in this case. The elliptic curves in NIST’s
list of curves over fields Fp ([86], [48, p. 262]) have A = −3 for this reason.

There are also situations where a point in one coordinate system can be
efficiently added to a point in another coordinate system. For example, it takes
only 8 multiplications and 3 squarings to add a point in Jacobian coordinates
to one in affine coordinates. For much more on other choices for coordinates
and on efficient point addition, see [48, Sections 3.2, 3.3] and [27, Sections
13.2, 13.3].
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2.6.3 Edwards Coordinates

In [36], Harold Edwards describes a form for elliptic curves that has certain
computational advantages. The case with c = 1, d = −1 occurs in work of
Euler and Gauss. Edwards restricts to the case d = 1. The more general form
has subsequently been discussed by Bernstein and Lange [11].

PROPOSITION 2.18
LetK be a field ofcharacteristic not2.Letc, d ∈ K with c, d �= 0 and d not
a square in K.The curve

C : u2 + v2 = c2(1 + du2v2)

isisom orphic to the elliptic curve

E : y2 = (x − c4d − 1)(x2 − 4c4d)

via the change ofvariables

x =
−2c(w − c)

u2
, y =

4c2(w − c) + 2c(c4d + 1)u2

u3
,

where w = (c2du2 − 1)v.
The point(0, c) isthe identity forthe group law on C,and the addition law

is

(u1, v1) + (u2, v2) =
(

u1v2 + u2v1

c(1 + du1u2v1v2)
,

v1v2 − u1u2

c(1 − du1u2v1v2)

)
forallpoints (ui, vi) ∈ C(K).The negative ofa pointis−(u, v) = (−u, v).

PROOF Write the equation of the curve as

u2 − c2 =
(
c2du2 − 1

)
v2 =

w2

c2du2 − 1
.

This yields the curve

w2 = c2du4 − (c4d + 1)u2 + c2.

The formulas in Section 2.5.3 then change this curve to Weierstrass form. The
formula for the addition law can be obtained by a straightforward computa-
tion.

It remains to show that the addition law is defined for all points in C(K).
In other words, we need to show that the denominators are nonzero. Suppose

© 2008 by Taylor & Francis Group, LLC



SECTION 2.7 THE j-INVARIANT 45

du1v1u2v2 = −1. Then ui, vi �= 0 and u1v1 = −1/du2v2. Substituting into
the formula for C yields

u2
1 + v2

1 = c2

(
1 +

1
du2

2v
2
2

)
=

u2
2 + v2

2

du2
2v

2
2

.

Therefore,

(u1 + v1)
2 = u2

1 + v2
1 + 2u1v1

=
1
d

(
u2

2 + v2
2 − 2u2v2

u2
2v

2
2

)
=

1
d

(u2 − v2)
2

(u2v2)
2 .

Since d is not a square, this must reduce to 0 = 0, so u1 + v1 = 0.
Similarly,

(u1 − v1)
2 =

1
d

(u2 + v2)
2

(u2v2)
2 ,

which implies that u1 − v1 = 0. Therefore, u1 = v1 = 0, which is a contradic-
tion.

The case where du1v1u2v2 = 1 similarly produces a contradiction. There-
fore, the addition formula is always defined for points in C(K).

An interesting feature is that there are not separate formulas for 2P and
P1 + P2 when P1 �= P2.

The formula for adding points can be written in projective coordinates. The
resulting computation takes 10 multiplications and 1 squaring for both point
addition and point doubling.

Although any elliptic curve can be put into the form of the proposition over
an algebraically closed field, this often cannot be done over the base field. An
easy way to see this is that there is a point of order 2. In fact, the point (c, 0)
on C has order 4 (Exercise 2.7), so a curve that can be put into Edwards form
over a field must have a point of order 4 defined over that field.

2.7 The j-invariant

Let E be the elliptic curve given by y2 = x3 + Ax + B, where A,B are
elements of a field K of characteristic not 2 or 3. If we let

x1 = μ2x, y1 = μ3y, (2.8)

with μ ∈ K
×

, then we obtain

y2
1 = x3

1 + A1x1 + B1,
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with
A1 = μ4A,B1 = μ6B.

(In the generalized Weierstrass equation y2 + a1xy + a3y = x3 + a2x
2 + a4x+

a6, this change of variables yields new coefficients μiai. This explains the
numbering of the coefficients.)

Define the j-invariant of E to be

j = j(E) = 1728
4A3

4A3 + 27B2
.

Note that the denominator is the negative of the discriminant of the cubic,
hence is nonzero by assumption. The change of variables (2.8) leaves j un-
changed. The converse is true, too.

THEOREM 2.19
Lety2

1 = x3
1 +A1x1 +B1 and y2

2 = x3
2 +A2x2 +B2 be two elliptic curveswith

j-invariants j1 and j2,respectively. Ifj1 = j2,then there exists μ �= 0 in K
(= algebraic closure ofK)such that

A2 = μ4A1, B2 = μ6B1.

The transform ation
x2 = μ2x1, y2 = μ3y1

takesone equation to the other.

PROOF First, assume that A1 �= 0. Since this is equivalent to j1 �= 0, we
also have A2 �= 0. Choose μ such that A2 = μ4A1. Then

4A3
2

4A3
2 + 27B2

2

=
4A3

1

4A3
1 + 27B2

1

=
4μ−12A3

2

4μ−12A3
2 + 27B2

1

=
4A3

2

4A3
2 + 27μ12B2

1

,

which implies that
B2

2 = (μ6B1)2.

Therefore B2 = ±μ6B1. If B2 = μ6B1, we’re done. If B2 = −μ6B1, then
change μ to iμ (where i2 = −1). This preserves the relation A2 = μ4A1 and
also yields B2 = μ6B1.

If A1 = 0, then A2 = 0. Since 4A3
i +27B2

i �= 0, we have B1, B2 �= 0. Choose
μ such that B2 = μ6B1.

There are two special values of j that arise quite often:

1. j = 0: In this case, the elliptic curve E has the form y2 = x3 + B.

2. j = 1728: In this case, the elliptic curve has the form y2 = x3 + Ax.
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The first one, with B = −432, was obtained in Section 2.5.2 from the Fermat
equation x3 + y3 + z3 = 0. The second curve, once with A = −25 and once
with A = −4, appeared in Chapter 1.

The curves with j = 0 and with j = 1728 have automorphisms (bijective
group homomorphisms from the curve to itself) other than the one defined by
(x, y) �→ (x,−y), which is an automorphism for any elliptic curve in Weier-
strass form.

1. y2 = x3 + B has the automorphism (x, y) �→ (ζx,−y), where ζ is a
nontrivial cube root of 1.

2. y2 = x3 + Ax has the automorphism (x, y) �→ (−x, iy), where i2 = −1.

(See Exercise 2.17.)
Note that the j-invariant tells us when two curves are isomorphic over an

algebraically closed field. However, if we are working with a nonalgebraically
closed field K, then it is possible to have two curves with the same j-invariant
that cannot be transformed into each other using rational functions with co-
efficients in K. For example, both y2 = x3 − 25x and y2 = x3 − 4x have
j = 1728. The first curve has infinitely points with coordinates in Q, for
example, all integer multiples of (−4, 6) (see Section 8.4). The only rational
points on the second curve are ∞, (2, 0), (−2, 0), and (0, 0) (see Section 8.4).
Therefore, we cannot change one curve into the other using only rational func-
tions defined over Q. Of course, we can use the field Q(

√
10) to change one

curve to the other via (x, y) �→ (μ2x, μ3y), where μ =
√

10/2.
If two different elliptic curves defined over a field K have the same j-

invariant, then we say that the two curves are twists of each other.
Finally, we note that j is the j-invariant of

y2 = x3 +
3j

1728 − j
x +

2j

1728 − j
(2.9)

when j �= 0, 1728. Since y2 = x3 + 1 and y2 = x3 + x have j-invariants 0
and 1728, we find the j-invariant gives a bijection between elements of K and
K-isomorphism classes of elliptic curves defined over K (that is, each j ∈ K
corresponds to an elliptic curve defined over K, and any two elliptic curves
defined over K and with the same j-invariant can be transformed into each
other by a change of variables (2.8) defined over K).

If the characteristic of K is 2 or 3, the j-invariant can also be defined, and
results similar to the above one hold. See Section 2.8 and Exercise 2.18.

2.8 Elliptic Curves in Characteristic 2

Since we have been using the Weierstrass equation rather than the gener-
alized Weierstrass equation in most of the preceding sections, the formulas
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given do not apply when the field K has characteristic 2. In this section, we
sketch what happens in this case.

Note that the Weierstrass equation is singular. Let f(x, y) = y2 − x3 −
Ax − B. Then fy = 2y = 0, since 2 = 0 in characteristic 2. Let x0 be a
root (possibly in some extension of K) of fx = −3x2 − A = 0 and let y0

be the square root of x3
0 + Ax0 + B. Then (x0, y0) lies on the curve and

fx(x0, y0) = fy(x0, y0) = 0.
Therefore, we work with the generalized Weierstrass equation for an elliptic

curve E:
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6.

If a1 �= 0, then the change of variables

x = a2
1x1 + (a3/a1), y = a3

1y1 + a−3
1 (a2

1a4 + a2
3)

changes the equation to the form

y2
1 + x1y1 = x3

1 + a′
2x

2
1 + a′

6.

This curve is nonsingular if and only if a′
6 �= 0. The j-invariant in this case

is defined to be 1/a′
6 (more precisely, there are formulas for the j-invariant of

the generalized Weierstrass form, and these yield 1/a′
6 in this case).

If a1 = 0, we let x = x1 + a2, y = y1 to obtain an equation of the form

y2
1 + a′

3y1 = x3
1 + a′

4x1 + a′
6.

This curve is nonsingular if and only if a′
3 �= 0. The j-invariant is defined to

be 0.
Let’s return to the generalized Weierstrass equation and look for points at

infinity. Make the equation homogeneous:

y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3.

Now set z = 0 to obtain 0 = x3. Therefore, ∞ = (0 : 1 : 0) is the only point
at infinity on E, just as with the standard Weierstrass equation. A line L
through (x0, y0) and ∞ is a vertical line x = x0. If (x0, y0) lies on E then the
other point of intersection of L and E is (x0, −a1x0 − a3 − y0). See Exercise
2.9.

We can now describe addition of points. Of course, P + ∞ = P , for all
points P . Three points P,Q,R add to ∞ if and only if they are collinear. The
negation of a point is given by

−(x, y) = (x, −a1x − a3 − y).

To add two points P1 and P2, we therefore proceed as follows. Draw the line
L through P1 and P2 (take the tangent if P1 = P2). It will intersect E in a
third point P ′

3. Now compute P3 = −P ′
3 by the formula just given (do not

simply reflect across the x-axis). Then P1 + P2 = P3.
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The proof that this addition law is associative is the same as that given in
Section 2.4. The points on E, including ∞, therefore form an abelian group.

Since we will need it later, let’s look at the formula for doubling a point in
characteristic 2. To keep the formulas from becoming too lengthy, we’ll treat
separately the two cases obtained above.

1. y2 + xy = x3 + a2x
2 + a6. Rewrite this as y2 + xy + x3 + a2x

2 + a6 = 0
(remember, we are in characteristic 2). Implicit differentiation yields

xy′ + (y + x2) = 0

(since 2 = 0 and 3 = 1). Therefore the slope of the line L through
P = (x0, y0) is m = (y0 + x2

0)/x0. The line is

y = m(x − x0) + y0 = mx + b

for some b. Substitute to find the intersection (x1, y1) of L and E:

0 = (mx+b)2 +x(mx+b)+x3 +a2x
2 +a6 = x3 +(m2 +m+a2)x2 + · · · .

The sum x0 + x0 + x1 of the roots is (m2 + m + a2), so we obtain

x1 = m2 + m + a2 =
y2
0 + x4

0 + x0y0 + x3
0 + a2x

2
0

x2
0

=
x4

0 + a6

x2
0

(since y2
0 = x0y0 +x3

0 + a2x
2
0 + a6). The y-coordinate of the intersection

is y1 = m(x1 − x0) + y0. The point (x1, y1) equals −2P . Therefore
2P = (x2, y2), with

x2 = (x4
0 + a6)/x2

0, y2 = −x1 − y1 = x1 + y1.

2. y2 + a3y = x3 + a4x + a6. Rewrite this as y2 + a3y +x3 + a4x+ a6 = 0.
Implicit differentiation yields

a3y
′ + (x2 + a4) = 0.

Therefore the tangent line L is

y = m(x − x0) + y0, with m =
x2

0 + a4

a3
.

Substituting and solving, as before, finds the point of intersection (x1, y1)
of L and E, where

x1 = m2 =
x4

0 + a2
4

a2
3

and y1 = m(x1 − x0) + y0. Therefore, 2P = (x2, y2) with

x2 = (x4
0 + a2

4)/a2
3, y2 = a3 + y1.
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2.9 Endomorphisms

The main purpose of this section is to prove Proposition 2.21, which will
be used in the proof of Hasse’s theorem in Chapter 4. We’ll also prove a few
technical results on separable endomorphisms. The reader willing to believe
that every endomorphism used in this book is separable, except for powers
of the Frobenius map and multiplication by multiples of p in characteristic p,
can safely omit the technical parts of this section.

By an endomorphism of E, we mean a homomorphism α : E(K) → E(K)
that is given by rational functions. In other words, α(P1+P2) = α(P1)+α(P2),
and there are rational functions (quotients of polynomials) R1(x, y), R2(x, y)
with coefficients in K such that

α(x, y) = (R1(x, y), R2(x, y))

for all (x, y) ∈ E(K). There are a few technicalities when the rational func-
tions are not defined at a point. These will be dealt with below. Of course,
since α is a homomorphism, we have α(∞) = ∞. We will also assume that
α is nontrivial; that is, there exists some (x, y) such that α(x, y) �= ∞. The
trivial endomorphism that maps every point to ∞ will be denoted by 0.

Example 2.4

Let E be given by y2 = x3 + Ax + B and let α(P ) = 2P . Then α is a
homomorphism and

α(x, y) = (R1(x, y), R2(x, y)) ,

where

R1(x, y) =
(

3x2 + A

2y

)2

− 2x

R2(x, y) =
(

3x2 + A

2y

)(
3x −

(
3x2 + A

2y

)2
)

− y.

Since α is a homomorphism given by rational functions it is an endomorphism
of E.

It will be useful to have a standard form for the rational functions describing
an endomorphism. For simplicity, we assume that our elliptic curve is given in
Weierstrass form. Let R(x, y) be any rational function. Since y2 = x3+Ax+B
for all (x, y) ∈ E(K), we can replace any even power of y by a polynomial in
x and replace any odd power of y by y times a polynomial in x and obtain a
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rational function that gives the same function as R(x, y) on points in E(K).
Therefore, we may assume that

R(x, y) =
p1(x) + p2(x)y
p3(x) + p4(x)y

.

Moreover, we can rationalize the denominator by multiplying the numerator
and denominator by p3 − p4y and then replacing y2 by x3 + Ax + B. This
yields

R(x, y) =
q1(x) + q2(x)y

q3(x)
. (2.10)

Consider an endomorphism given by

α(x, y) = (R1(x, y), R2(x, y)),

as above. Since α is a homomorphism,

α(x,−y) = α(−(x, y)) = −α(x, y).

This means that

R1(x,−y) = R1(x, y) and R2(x,−y) = −R2(x, y).

Therefore, if R1 is written in the form (2.10), then q2(x) = 0, and if R2 is
written in the form (2.10), then the corresponding q1(x) = 0. Therefore, we
may assume that

α(x, y) = (r1(x), r2(x)y)

with rational functions r1(x), r2(x).
We can now say what happens when one of the rational functions is not

defined at a point. Write

r1(x) = p(x)/q(x)

with polynomials p(x) and q(x) that do not have a common factor. If q(x) = 0
for some point (x, y), then we assume that α(x, y) = ∞. If q(x) �= 0, then
Exercise 2.19 shows that r2(x) is defined; hence the rational functions defining
α are defined.

We define the degree of α to be

deg(α) = Max{deg p(x), deg q(x)}

if α is nontrivial. When α = 0, let deg(0) = 0. Define α �= 0 to be a
separable endomorphism if the derivative r′1(x) is not identically zero. This
is equivalent to saying that at least one of p′(x) and q′(x) is not identically
zero. See Exercise 2.22. (In characteristic 0, a nonconstant polynomial will
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have nonzero derivative. In characteristic p > 0, the polynomials with zero
derivative are exactly those of the form g(xp).)

Example 2.5
We continue with the previous example, where α(P ) = 2P . We have

R1(x, y) =
(

3x2 + A

2y

)2

− 2x.

The fact that y2 = x3 + Ax + B, plus a little algebraic manipulation, yields

r1(x) =
x4 − 2Ax2 − 8Bx + A2

4(x3 + Ax + B)
.

(This is the same as the expression in terms of division polynomials that will
be given in Section 3.2.) Therefore, deg(α) = 4. The polynomial q′(x) =
4(3x2 + A) is not zero (including in characteristic 3, since if A = 0 then
x3 +B has multiple roots, contrary to assumption). Therefore α is separable.

Example 2.6
Let’s repeat the previous example, but in characteristic 2. We’ll use the

formulas from Section 2.8 for doubling a point. First, let’s look at y2 + xy =
x3 + a2x

2 + a6. We have

α(x, y) = (r1(x), R2(x, y))

with r1(x) = (x4 + a6)/x2. Therefore deg(α) = 4. Since p′(x) = 4x3 = 0 and
q′(x) = 2x = 0, the endomorphism α is not separable.

Similarly, in the case y2+a3y = x3+a4x+a6, we have r1(x) = (x4+a2
4)/a2

3.
Therefore, deg(α) = 4, but α is not separable.

In general, in characteristic p, the map α(Q) = pQ has degree p2 and is not
separable. The statement about the degree is Corollary 3.7. The fact that α
is not separable is proved in Proposition 2.28.

An important example of an endomorphism is the Frobenius map. Sup-
pose E is defined over the finite field Fq. Let

φq(x, y) = (xq, yq).

The Frobenius map φq plays a crucial role in the theory of elliptic curves over
Fq.

LEMMA 2.20
LetE be defined over Fq. Then φq is an endom orphism ofE ofdegree q,
and φq isnotseparable.
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PROOF Since φq(x, y) = (xq, yq), the map is given by rational functions
(in fact, by polynomials) and the degree is q. The main point is that φq :
E(Fq) → E(Fq) is a homomorphism. Let (x1, y1), (x2, y2) ∈ E(Fq) with
x1 �= x2. The sum is (x3, y3), with

x3 = m2 − x1 − x2, y3 = m(x1 − x3) − y1, where m =
y2 − y1

x2 − x1

(we are working with the Weierstrass form here; the proof for the generalized
Weierstrass form is essentially the same). Raise everything to the qth power
to obtain

xq
3 = m′2 − xq

1 − xq
2, yq

3 = m′(xq
1 − xq

3) − yq
1, where m′ =

yq
2 − yq

1

xq
2 − xq

1

.

This says that
φq(x3, y3) = φq(x1, y1) + φq(x2, y2).

The cases where x1 = x2 or where one of the points is ∞ are checked similarly.
However, there is one subtlety that arises when adding a point to itself. The
formula says that 2(x1, y1) = (x3, y3), with

x3 = m2 − 2x1, y3 = m(x1 − x3) − y1, where m =
3x2

1 + A

2y1
.

When this is raised to the qth power, we obtain

xq
3 = m′2 − 2xq

1, yq
3 = m′(xq

1 − xq
3) − yq

1, where m′ =
3q(xq

1)
2 + Aq

2qyq
1

.

Since 2, 3, A ∈ Fq, we have 2q = 2, 3q = 3, Aq = A. This means that we
obtain the formula for doubling the point (xq

1, y
q
1) on E (if Aq didn’t equal A,

we would be working on a new elliptic curve with Aq in place of A).
Since φq is a homomorphism given by rational functions, it is an endo-

morphism of E. Since q = 0 in Fq, the derivative of xq is identically zero.
Therefore, φq is not separable.

The following result will be crucial in the proof of Hasse’s theorem in Chap-
ter 4 and in the proof of Theorem 3.2.

PROPOSITION 2.21
Letα �= 0 be a separable endom orphism ofan elliptic curveE.Then

deg α = #Ker(α),

where Ker(α) isthe kernelofthe hom om orphism α : E(K) → E(K).
Ifα �= 0 isnotseparable,then

deg α > #Ker(α).
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PROOF Write α(x, y) = (r1(x), yr2(x)) with r1(x) = p(x)/q(x), as above.
Then r′1 �= 0, so p′q − pq′ is not the zero polynomial.

Let S be the set of x ∈ K such that (pq′−p′q)(x) q(x) = 0. Let (a, b) ∈ E(K)
be such that

1. a �= 0, b �= 0, (a, b) �= ∞,

2. deg (p(x) − aq(x)) = Max{deg(p),deg(q)} = deg(α),

3. a �∈ r1(S), and

4. (a, b) ∈ α(E(K)).

Since pq′−p′q is not the zero polynomial, S is a finite set, hence its image under
α is finite. The function r1(x) is easily seen to take on infinitely many distinct
values as x runs through K. Since, for each x, there is a point (x, y) ∈ E(K),
we see that α(E(K)) is an infinite set. Therefore, such an (a, b) exists.

We claim that there are exactly deg(α) points (x1, y1) ∈ E(K) such that
α(x1, y1) = (a, b). For such a point, we have

p(x1)
q(x1)

= a, y1r2(x1) = b.

Since (a, b) �= ∞, we must have q(x1) �= 0. By Exercise 2.19, r2(x1) is defined.
Since b �= 0 and y1r2(x1) = b, we must have y1 = b/r2(x1). Therefore, x1

determines y1 in this case, so we only need to count values of x1.
By assumption (2), p(x)− aq(x) = 0 has deg(α) roots, counting multiplici-

ties. We therefore must show that p−aq has no multiple roots. Suppose that
x0 is a multiple root. Then

p(x0) − aq(x0) = 0 and p′(x0) − aq′(x0) = 0.

Multiplying the equations p = aq and aq′ = p′ yields

ap(x0)q′(x0) = ap′(x0)q(x0).

Since a �= 0, this implies that x0 is a root of pq′ − p′q, so x0 ∈ S. Therefore,
a = r1(x0) ∈ r1(S), contrary to assumption. It follows that p − aq has no
multiple roots, and therefore has deg(α) distinct roots.

Since there are exactly deg(α) points (x1, y1) with α(x1, y1) = (a, b), the
kernel of α has deg(α) elements.

Of course, since α is a homomorphism, for each (a, b) ∈ α(E(K)), there are
exactly deg(α) points (x1, y1) with α(x1, y1) = (a, b). The assumptions on
(a, b) were made during the proof to obtain this result for at least one point,
which suffices.

If α is not separable, then the steps of the above proof hold, except that
p′−aq′ is always the zero polynomial, so p(x)−aq(x) = 0 always has multiple
roots and therefore has fewer than deg(α) solutions.
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THEOREM 2.22

LetE be an elliptic curve defined over a field K.Letα �= 0 be an endom or-
phism ofE.Then α : E(K) → E(K) issurjective.

REMARK 2.23 We definitely need to be working with K instead of K in
the theorem. For example, the Mordell-Weil theorem (Theorem 8.17) implies
that multiplication by 2 cannot be surjective on E(Q) if there is a point in
E(Q) of infinite order. Intuitively, working with an algebraically closed field
allows us to solve the equations defining α in order to find the inverse image
of a point.

PROOF Let (a, b) ∈ E(K). Since α(∞) = ∞, we may assume that
(a, b) �= ∞. Let r1(x) = p(x)/q(x) be as above. If p(x) − aq(x) is not a
constant polynomial, then it has a root x0. Since p and q have no common
roots, q(x0) �= 0. Choose y0 ∈ K to be either square root of x3

0 + Ax0 + B.
Then α(x0, y0) is defined (Exercise 2.19) and equals (a, b′) for some b′. Since
b′2 = a3 + Aa + B = b2, we have b = ±b′. If b′ = b, we’re done. If b′ = −b,
then α(x0,−y0) = (a,−b′) = (a, b).

We now need to consider the case when p − aq is constant. Since E(K) is
infinite and the kernel of α is finite, only finitely many points of E(K) can
map to a point with a given x-coordinate. Therefore, either p(x) or q(x) is not
constant. If p and q are two nonconstant polynomials, then there is at most
one constant a such that p−aq is constant (if a′ is another such number, then
(a′−a)q = (p−aq)−(p−a′q) is constant and (a′−a)p = a′(p−aq)−a(p−a′q)
is constant, which implies that p and q are constant). Therefore, there are at
most two points, (a, b) and (a,−b) for some b, that are not in the image of
α. Let (a1, b1) be any other point. Then α(P1) = (a1, b1) for some P1. We
can choose (a1, b1) such that (a1, b1)+(a, b) �= (a,±b), so there exists P2 with
α(P2) = (a1, b1) + (a, b). Then α(P2 −P1) = (a, b), and α(P1 −P2) = (a,−b).
Therefore, α is surjective.

For later applications, we need a convenient criterion for separability. If
(x, y) is a variable point on y2 = x3 + Ax + B, then we can differentiate y
with respect to x:

2yy′ = 3x2 + A.

Similarly, we can differentiate a rational function f(x, y) with respect to x:

d

dx
f(x, y) = fx(x, y) + fy(x, y)y′,

where fx and fy denote the partial derivatives.
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LEMMA 2.24
LetE be the elliptic curve y2 = x3 +Ax+B.Fix a point(u, v) on E.W rite

(x, y) + (u, v) = (f(x, y), g(x, y)),

where f(x, y) and g(x, y) arerationalfunctionsofx, y (thecoe cientsdepend
on (u, v)) and y is regarded as a function of x satisfying dy/dx = (3x2 +
A)/(2y).Then

d
dxf(x, y)
g(x, y)

=
1
y
.

PROOF The addition formulas give

f(x, y) =
(

y − v

x − u

)2

− x − u

g(x, y) =
−(y − v)3 + x(y − v)(x − u)2 + 2u(y − v)(x − u)2 − v(x − u)3

(x − u)3

d

dx
f(x, y) =

2y′(y − v)(x − u) − 2(y − v)2 − (x − u)3

(x − u)3
.

A straightforward but lengthy calculation, using the fact that 2yy′ = 3x2 +A,
yields

(x − u)3(y
d

dx
f(x, y) − g(x, y))

= v(Au + u3 − v2 − Ax − x3 + y2) + y(−Au − u3 + v2 + Ax + x3 − y2).

Since (u, v) and (x, y) are on E, we have v2 = u3+Au+B and y2 = x3+Ax+B.
Therefore, the above expression becomes

v(−B + B) + y(B − B) = 0.

Therefore, y d
dxf(x, y) = g(x, y).

REMARK 2.25 Lemma 2.24 is perhaps better stated in terms of differ-
entials. It says that the differential dx/y is translation invariant. In fact, it
is the unique translation invariant differential, up to scalar multiples, for E.
See [109].

LEMMA 2.26
Letα1, α2, α3 benonzeroendom orphism sofan ellipticcurveE withα1+α2 =
α3.W rite

αj(x, y) = (Rαj
(x), ySαj

(x)).
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Suppose there are constants cα1 , cα2 such that

R′
α1

(x)
Sα1(x)

= cα1 ,
R′

α2
(x)

Sα2(x)
= cα2 .

Then
R′

α3
(x)

Sα3(x)
= cα1 + cα2 .

PROOF Let (x1, y1) and (x2, y2) be variable points on E. Write

(x3, y3) = (x1, y1) + (x2, y2),

where
(x1, y1) = α1(x, y), (x2, y2) = α2(x, y).

Then x3 and y3 are rational functions of x1, y1, x2, y2, which in turn are
rational functions of x, y. By Lemma 2.24, with (u, v) = (x2, y2),

∂x3

∂x1
+

∂x3

∂y1

dy1

dx1
=

y3

y1
.

Similarly,
∂x3

∂x2
+

∂x3

∂y2

dy2

dx2
=

y3

y2
.

By assumption,
dxj

dx
= cαj

yj

y

for j = 1, 2. By the chain rule,

dx3

dx
=

∂x3

∂x1

dx1

dx
+

∂x3

∂y1

dy1

dx1

dx1

dx
+

∂x3

∂x2

dx2

dx
+

∂x3

∂y2

dy2

dx2

dx2

dx

=
y3

y1

y1

y
cα1 +

y3

y2

y2

y
cα2

= (cα1 + cα2)
y3

y
.

Dividing by y3/y yields the result.

REMARK 2.27 In terms of differentials (see the previous Remark), we
have (dx/y)◦α is a translation-invariant differential on E. Therefore it must be
a scalar multiple cαdx/y of dx/y. It follows that every nonzero endomorphism
α satisfies the hypotheses of Lemma 2.26.
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PROPOSITION 2.28
LetE be an elliptic curve defined over a field K, and let n be a nonzero
integer.Suppose thatm ultiplication by n on E isgiven by

n(x, y) = (Rn(x), ySn(x))

forall(x, y) ∈ E(K),whereRn and Sn are rationalfunctions.Then

R′
n(x)

Sn(x)
= n.

Therefore,m ultiplication by n is separable ifand only ifn is nota m ultiple
ofthe characteristic p ofthe field.

PROOF Since R−n = Rn and S−n = −Sn, we have R′
−n/S−n = −R′

n/Sn.
Therefore, the result for positive n implies the result for negative n.

Note that the first part of the proposition is trivially true for n = 1. If it
is true for n, then Lemma 2.26 implies that it is true for n + 1, which is the
sum of n and 1. Therefore, R′

n(x)
S(x) = n for all n.

We have R′
n(x) �= 0 if and only if n = R′

n(x)/Sn(x) �= 0, which is equivalent
to p not dividing n. Since the definition of separability is that R′

n �= 0, this
proves the second part of the proposition.

Finally, we use Lemma 2.26 to prove a result that will be needed in Sec-
tions 3.2 and 4.2. Let E be an elliptic curve defined over a finite field Fq.
The Frobenius endomorphism φq is defined by φq(x, y) = (xq, yq). It is an
endomorphism of E by Lemma 2.20.

PROPOSITION 2.29
LetE bean ellipticcurvedefined overFq,where q isa poweroftheprim e p.
Letr and s be integers,notboth 0.The endom orphism rφq + s isseparable if
and only ifp � s.

PROOF Write the multiplication by r endomorphism as

r(x, y) = (Rr(x), ySr(x)).

Then

(Rrφq
(x), ySrφq

(x)) = (φqr)(x, y) = (Rq
r(x), yqSq

r (x))

=
(
Rq

r(x), y(x3 + Ax + B)(q−1)/2Sq
r (x)

)
.

Therefore,
crφq

= R′
rφq

/Srφq
= qRq−1

r R′
r/Srφq

= 0.
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Also, cs = R′
s/Ss = s by Proposition 2.28. By Lemma 2.26,

R′
rφq+s/Srφq+s = crφq+s = crφq

+ cs = 0 + s = s.

Therefore, R′
rφq+s �= 0 if and only if p � s.

2.10 Singular Curves

We have been working with y2 = x3 + Ax + B under the assumption that
x3 +Ax+B has distinct roots. However, it is interesting to see what happens
when there are multiple roots. It will turn out that elliptic curve addition
becomes either addition of elements in K or multiplication of elements in K×

or in a quadratic extension of K. This means that an algorithm for a group
E(K) arising from elliptic curves, such as one to solve a discrete logarithm
problem (see Chapter 5), will probably also apply to these more familiar
situations. See also Chapter 7. Moreover, as we’ll discuss briefly at the end of
this section, singular curves arise naturally when elliptic curves defined over
the integers are reduced modulo various primes.

We first consider the case where x3 + Ax + B has a triple root at x = 0, so
the curve has the equation

y2 = x3.

The point (0, 0) is the only singular point on the curve (see Figure 2.7). Since

Figure 2.7

y2 = x3

any line through this point intersects the curve in at most one other point,
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(0, 0) causes problems if we try to include it in our group. So we leave it out.
The remaining points, which we denote Ens(K), form a group, with the group
law defined in the same manner as when the cubic has distinct roots. The
only thing that needs to be checked is that the sum of two points cannot be
(0, 0). But since a line through (0, 0) has at most one other intersection point
with the curve, a line through two nonsingular points cannot pass through
(0, 0) (this will also follow from the proof of the theorem below).

THEOREM 2.30
LetE be the curve y2 = x3 and letEns(K) be the nonsingularpointson this
curve with coordinatesin K,including the point∞ = (0 : 1 : 0).The m ap

Ens(K) → K, (x, y) �→ x

y
, ∞ �→ 0

isa group isom orphism between Ens(K) andK,regarded asan additivegroup.

PROOF Let t = x/y. Then x = (y/x)2 = 1/t2 and y = x/t = 1/t3.
Therefore we can express all of the points in Ens(K) in terms of the parameter
t. Let t = 0 correspond to (x, y) = ∞. It follows that the map of the theorem
is a bijection. (Note that 1/t is the slope of the line through (0, 0) and (x, y),
so this parameterization is obtained similarly to the one obtained for quadratic
curves in Section 2.5.4.)

Suppose (x1, y1) + (x2, y2) = (x3, y3). We must show that t1 + t2 = t3,
where ti = xi/yi. If (x1, y1) �= (x2, y2), the addition formulas say that

x3 =
(

y2 − y1

x2 − x1

)2

− x1 − x2.

Substituting xi = 1/t2i and yi = 1/t3i yields

t−2
3 =

(
t−3
2 − t−3

1

t−2
2 − t−2

1

)2

− t−2
1 − t−2

2 .

A straightforward calculation simplifies this to

t−2
3 = (t1 + t2)−2.

Similarly,

−y3 =
(

y2 − y1

x2 − x1

)
(x3 − x1) + y1

may be rewritten in terms of the ti to yield

t−3
3 = (t1 + t2)−3.
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Taking the ratio of the expressions for t−2
3 and t−3

3 gives

t3 = t1 + t2,

as desired.
If (x1, y1) = (x2, y2), the proof is similar. Finally, the cases where one or

more of the points (xi, yi) = ∞ are easily checked.

Figure 2.8

y2 = x3 + x2

We now consider the case where x3 + Ax + B has a double root. By trans-
lating x, we may assume that this root is 0 and the curve E has the equation

y2 = x2(x + a)

for some a �= 0. The point (0, 0) is the only singularity (see Figure 2.8). Let
Ens(K) be the nonsingular points on E with coordinates in K, including the
point ∞. Let α2 = a (so α might lie in an extension of K). The equation for
E may be rewritten as (y

x

)2

= a + x.

When x is near 0, the right side of this equation is approximately a. Therefore,
E is approximated by (y/x)2 = a, or y/x = ±α near x = 0. This means that
the two “tangents” to E at (0, 0) are

y = αx and y = −αx

(for a different way to obtain these tangents, see Exercise 2.20).
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THEOREM 2.31
LetE be the curve y2 = x2(x + a) with 0 �= a ∈ K. LetEns(K) be the
nonsingular points on E with coordinates in K. Letα2 = a. Consider the
m ap

ψ : (x, y) �→ y + αx

y − αx
, ∞ �→ 1.

1. Ifα ∈ K,then ψ givesan isom orphism from Ens(K) toK×,considered
asa m ultiplicative group.

2. Ifα �∈ K,then ψ givesan isom orphism

Ens(K) � {u + αv |u, v ∈ K, u2 − av2 = 1},

where the righthand side isa group under m ultiplication.

PROOF Let
t =

y + αx

y − αx
.

This may be solved for y/x to obtain

y

x
= α

t + 1
t − 1

.

Since x + a = (y/x)2, we obtain

x =
4α2t

(t − 1)2
and y =

4α3t(t + 1)
(t − 1)3

(the second is obtained from the first using y = x(y/x)). Therefore, (x, y)
determines t and t determines (x, y), so the map ψ is injective, and is a
bijection in case (1).

In case (2), rationalize the denominator by multiplying the numerator and
denominator of (y + αx)/(y − αx) by y + αx to obtain an expression of the
form u + αv:

(y + αx)
(y − αx)

= u + αv.

We can change the sign of α throughout this equation and preserve the equal-
ity. Now multiply the resulting expression by the original to obtain

u2 − av2 = (u + αv)(u − αv) =
(y + αx)
(y − αx)

(y − αx)
(y + αx)

= 1.

Conversely, suppose u2 − av2 = 1. Let

x =
(

u + 1
v

)2

− a, y =
(

u + 1
v

)
x.
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Then (x, y) is on the curve E and

ψ(x, y) =
(y/x) + α

(y/x) − α
=

u + 1 + αv

u + 1 − αv
= u + αv

(the last equality uses the fact that u2 − av2 = 1). Therefore, ψ is surjective,
hence is a bijection in case (2), too.

It remains to show that ψ is a homomorphism. Suppose (x1, y1)+(x2, y2) =
(x3, y3). Let

ti =
yi + αxi

yi − αxi
.

We must show that t1t2 = t3.
When (x1, y1) �= (x2, y2), we have

x3 =
(

y2 − y1

x2 − x1

)2

− a − x1 − x2.

Substituting xi =
4α2ti

(ti − 1)2
and yi =

4α3ti(ti + 1)
(ti − 1)3

and simplifying yields

4t3
(t3 − 1)2

=
4t1t2

(t1t2 − 1)2
. (2.11)

Similarly,

−y3 =
(

y2 − y1

x2 − x1

)
(x3 − x1) + y1

yields
4α3t3(t3 + 1)

(t3 − 1)3
=

4α3t1t2(t1t2 + 1)
(t1t2 − 1)3

.

The ratio of this equation and (2.11) yields

t3 − 1
t3 + 1

=
t1t2 − 1
t1t2 + 1

.

This simplifies to yield
t1t2 = t3,

as desired.
The case where (x1, y1) = (x2, y2) is similar, and the cases where one or

more of the points is ∞ are trivial. This completes the proof.

One situation where the above singular curves arise naturally is when we
are working with curves with integral coefficients and reduce modulo various
primes. For example, let E be y2 = x(x + 35)(x − 55). Then we have

E mod 5 : y2 ≡ x3,

E mod 7 : y2 ≡ x2(x + 1),
E mod 11 : y2 ≡ x2(x + 2).
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The first case is treated in Theorem 2.30 and is called additive reduction.
The second case is split multiplicative reduction and is covered by The-
orem 2.31(1). In the third case, α �∈ F11, so we are in the situation of The-
orem 2.31(2). This is called nonsplit multiplicative reduction. For all
primes p ≥ 13, the cubic polynomial has distinct roots mod p, so E mod p is
nonsingular. This situation is called good reduction.

2.11 Elliptic Curves mod n

In a few situations, we’ll need to work with elliptic curves mod n, where n
is composite. We’ll also need to take elliptic curves over Q and reduce them
mod n, where n is an integer. Both situations are somewhat subtle, as the
following three examples show.

Example 2.7
Let E be given by

y2 = x3 − x + 1 (mod 52).

Suppose we want to compute (1, 1) + (21, 4). The slope of the line through
the two points is 3/20. The denominator is not zero mod 25, but it is also
not invertible. Therefore the slope is neither infinite nor finite mod 25. If we
compute the sum using the formulas for the group law, the x-coordinate of
the sum is (

3
20

)2

− 1 − 21 ≡ ∞ (mod 25).

But (1, 1) + (1, 24) = ∞, so we cannot also have (1, 1) + (21, 4) = ∞.

Example 2.8
Let E be given by

y2 = x3 − x + 1 (mod 35).

Suppose we want to compute (1, 1) + (26, 24). The slope is 23/25, which is
infinite mod 5 but finite mod 7. Therefore, the formulas for the sum yield a
point that is ∞ mod 5 but is finite mod 7. In a sense, the point is partially
at ∞. We cannot express it in affine coordinates mod 35. One remedy is to
use the Chinese Remainder Theorem to write

E(Z35) = E(Z5) ⊕ E(Z7)

and then work mod 5 and mod 7 separately. This strategy works well in the
present case, but it doesn’t help in the previous example.
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Example 2.9
Let E be given by

y2 = x3 + 3x − 3

over Q. Suppose we want to compute

(1, 1) + (
571
361

,
16379
6859

).

Since the points are distinct, we compute the slope of the line through them
in the usual way. This allows us to find the sum. Now consider E mod 7.
The two points are seen to be congruent mod 7, so the line through them
mod 7 is the tangent line. Therefore, the formula we use to add the points
mod 7 is different from the one used in Q. Suppose we want to show that the
reduction map from E(Q) to E(F7) is a homomorphism. At first, it would
seem that this is obvious, since we just take the formulas for the group law
over Q and reduce them mod 7. But the present example says that sometimes
we are using different formulas over Q and mod 7. A careful analysis shows
that this does not cause problems, but it should be clear that the reduction
map is more subtle than one might guess.

The remedy for the above problems is to develop a theory of elliptic curves
over rings. We follow [74]. The reader willing to believe Corollaries 2.32, 2.33,
and 2.34 can safely skip the details in this section.

Let R be a ring (always assumed to be commutative with 1). A tuple of
elements (x1, x2, . . . ) from R is said to be primitive if there exist elements
r1, r2, · · · ∈ R such that

r1x1 + r2x2 + · · · = 1.

When R = Z, this means that gcd(x1, x2, . . . ) = 1. When R = Zn, primitivity
means that gcd(n, x1, x2, . . . ) = 1. When R is a field, primitivity means that
at least one of the xi is nonzero. In general, primitivity means that the ideal
generated by x1, x2, . . . is R. We say that two primitive triples (x, y, z) and
(x′, y′, z′) are equivalent if there exists a unit u ∈ R× such that

(x′, y′, z′) = (ux, uy, uz)

(in fact, it follows easily from the existence of r, s, t with rx′ + sy′ + tz′ = 1
that any u satisfying this equation must be a unit). Define 2-dimensional
projective space over R to be

P2(R) = {(x, y, z) ∈ R3 | (x, y, z) is primitive} mod equivalence.

The equivalence class of (x, y, z) is denoted by (x : y : z).
If R is a field, P2(R) is the same as that defined in Section 2.3. If (x :

y : z) ∈ P2(Q), we can multiply by a suitable rational number to clear
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denominators and remove common factors from the numerators and therefore
obtain a triple of integers with gcd=1. Therefore, P2(Q) and P2(Z) will be
regarded as equal. Similarly, if R is a ring with

Z ⊆ R ⊆ Q,

then P2(R) = P2(Z).
In order to work with elliptic curves over R, we need to impose two condi-

tions on R.

1. 2 ∈ R×

2. If (aij) is an m×n matrix such that (a11, a12, . . . , amn) is primitive and
such that all 2×2 subdeterminants vanish (that is, aijak�−ai�akj = 0 for
all i, j, k, �), then some R-linear combination of the rows is a primitive
n-tuple.

The first condition is needed since we’ll be working with the Weierstrass equa-
tion. In fact, we should add the condition that 3 ∈ R× if we want to change
an arbitrary elliptic curve into Weierstrass form. Note that Z does not satisfy
the first condition. This can be remedied by working with

Z(2) = { x

2k
|x ∈ Z, k ≥ 0}.

This is a ring. As pointed out above, P2(Z(2)) equals P2(Z), so the introduc-
tion of Z(2) is a minor technicality.

The second condition is perhaps best understood when R is a field. In this
case, the primitivity of the matrix simply means that at least one entry is
nonzero. The vanishing of the 2 × 2 subdeterminants says that the rows are
proportional to each other. The conclusion is that some linear combination
of the rows (in this case, some row itself) is a nonzero vector.

When R = Z, the primitivity of the matrix means that the gcd of the
elements in the matrix is 1. Since the rows are assumed to be proportional,
there is a vector v and integers a1, . . . , am such that the ith row is aiv. The
m-tuple (a1, . . . , am) must be primitive since the gcd of its entries divides the
gcd of the entries of the matrix. Therefore, there is a linear combination of
the ai’s that equals 1. This means that some linear combination of the rows
of the matrix is v. The vector v is primitive since the gcd of its entries divides
the gcd of the entries of the matrix. Therefore, we have obtained a primitive
vector as a linear combination of the rows of the matrix. This shows that
Z satisfies the second condition. The same argument, slightly modified to
handle powers of 2, shows that Z(2) also satisfies the second condition.

In general, condition 2 says that projective modules over R of rank 1 are
free (see [74]). In particular, this holds for local rings, for finite rings, and for
Z(2). These suffice for our purposes.
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For the rest of this section, assume R is a ring satisfying 1 and 2. An
elliptic curve E over R is given by a homogeneous equation

y2z = x3 + Axz2 + Bz3

with A,B ∈ R such that 4A3 + 27B2 ∈ R×. Define

E(R) = {(x : y : z) ∈ P2(R) | y2z = x3 + Axz2 + Bz3}.
The addition law is defined in essentially the same manner as in Section 2.2,
but the formulas needed are significantly more complicated. To make a long
story short (maybe not so short), the answer is the following.

GROUP LAW
Let (xi : yi : zi) ∈ E(R) for i = 1, 2. Consider the following three sets of
equations:

I.

x′
3 = (x1y2 − x2y1)(y1z2 + y2z1) + (x1z2 − x2z1)y1y2

−A(x1z2 + x2z1)(x1z2 − x2z1) − 3B(x1z2 − x2z1)z1z2

y′
3 = −3x1x2(x1y2 − x2y1) − y1y2(y1z2 − y2z1) − A(x1y2 − x2y1)z1z2

+A(x1z2 + x2z1)(y1z2 − y2z1) + 3B(y1z2 − y2z1)z1z2

z′3 = 3x1x2(x1z2 − x2z1) − (y1z2 + y2z1)(y1z2 − y2z1)
+A(x1z2 − x2z1)z1z2

II.

x′′
3 = y1y2(x1y2 + x2y1) − Ax1x2(y1z2 + y2z1)

−A(x1y2 + x2y1)(x1z2 + x2z1) − 3B(x1y2 + x2y1)z1z2

−3B(x1z2 + x2z1)(y1z2 + y2z1) + A2(y1z2 + y2z1)z1z2

y′′
3 = y2

1y2
2 + 3Ax2

1x
2
2 + 9Bx1x2(x1z2 + x2z1)

−A2x1z2(x1z2 + 2x2z1) − A2x2z1(2x1z2 + x2z1)
−3ABz1z2(x1z2 + x2z1) − (A3 + 9B2)z2

1z2
2

z′′3 = 3x1x2(x1y2 + x2y1) + y1y2(y1z2 + y2z1) + A(x1y2 + x2y1)z1z2

+A(x1z2 + x2z1)(y1z2 + y2z1) + 3B(y1z2 + y2z1)z1z2

III.

x′′′
3 = (x1y2 + x2y1)(x1y2 − x2y1) + Ax1x2(x1z2 − x2z1)

+3B(x1z2 + x2z1)(x1z2 − x2z1) − A2(x1z2 − x2z1)z1z2

y′′′
3 = (x1y2 − x2y1)y1y2 − 3Ax1x2(y1z2 − y2z1)

+A(x1y2 + x2y1)(x1z2 − x2z1) + 3B(x1y2 − x2y1)z1z2

−3B(x1z2 + x2z1)(y1z2 − y2z1) + A2(y1z2 − y2z1)z1z2

© 2008 by Taylor & Francis Group, LLC



68 CHAPTER 2 THE BASIC THEORY

z′′′3 = −(x1y2 + x2y1)(y1z2 − y2z1) − (x1z2 − x2z1)y1y2

−A(x1z2 + x2z1)(x1z2 − x2z1) − 3B(x1z2 − x2z1)z1z2

Then the m atrix ⎛⎝ x′
3 y′

3 z′3
x′′

3 y′′
3 z′′3

x′′′
3 y′′′

3 z′′′3

⎞⎠
is prim itive and all2 × 2 subdeterm inants vanish. Take a prim itive R-linear
com bination (x3, y3, z3) ofthe rows.Define

(x1 : y1 : z1) + (x2 : y2 : z2) = (x3 : y3 : z3).

Also,define
−(x1 : y1 : z1) = (x1 : −y1 : z1).

Then E(R) is an abelian group under this definition ofpointaddition. The
identity elem entis (0 : 1 : 0).

For some of the details concerning this definition, see [74]. The equations
are deduced (with a slight correction) from those in [18]. A similar set of
equations is given in [72].

When R is a field, each of these equations can be shown to give the usual
group law when the output is a point in P2(R) (that is, not all three coor-
dinates vanish). If two or three of the equations yield points in P2(R), then
these points are equal (since the 2×2 subdeterminants vanish). If R is a ring,
then it is possible that each of the equations yields a nonprimitive output
(for example, perhaps 5 divides the output of I, 7 divides the output of II,
and 11 divides the output of III). If we are working with Z or Z(2), this is
no problem. Simply divide by the gcd of the entries in an output. But in an
arbitrary ring, gcd’s might not exist, so we must take a linear combination to
obtain a primitive vector, and hence an element in P2(R).

Example 2.10
Let R = Z25 and let E be given by

y2 = x3 − x + 1 (mod 52).

Suppose we want to compute (1, 1) + (21, 4), as in Example 2.7 above. Write
the points in homogeneous coordinates as

(x1 : y1 : z1) = (1 : 1 : 1), (x2 : y2 : z2) = (21 : 4 : 1).

Formulas I, II, III yield

(x′
3, y

′
3, z

′
3) = (5, 23, 0)

(x′′
3 , y′′

3 , z′′3 ) = (5, 8, 0)
(x′′′

3 , y′′′
3 , z′′′3 ) = (20, 12, 0),
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respectively. Note that these are all the same point in P2(Z25) since

(5, 23, 0) = 6(5, 8, 0) = 4(20, 12, 0).

If we reduce the point (5 : 8 : 0) mod 5, we obtain (0 : 3 : 0) = (0 : 1 : 0),
which is the point ∞. The fact that the point is at infinity mod 5 but not
mod 25 is what caused the difficulties in our calculations in Example 2.7.

Example 2.11
Let E be an elliptic curve. Suppose we use the formulas to calculate

(0 : 1 : 0) + (0 : 1 : 0).

Formulas I, II, III yield

(0, 0, 0), (0, 1, 0), (0, 0, 0),

respectively. The first and third outputs do not yield points in projective
space. The second says that

(0 : 1 : 0) + (0 : 1 : 0) = (0 : 1 : 0).

This is of course the rule ∞ + ∞ = ∞ from the usual group law on elliptic
curves.

The present version of the group law allows us to work with elliptic curves
over rings in theoretical settings. We give three examples.

COROLLARY 2.32
Letn1 and n2 beodd integerswith gcd(n1, n2) = 1.LetE bean ellipticcurve
defined overZn1n2.Then there isa group isom orphism

E(Zn1n2) � E(Zn1) ⊕ E(Zn2).

PROOF Suppose that E is given by y2z = x3 + Axz2 + Bz3 with A,B ∈
Zn1n2 and 4A3 + 27B2 ∈ Z×

n1n2
. Then we can regard A and B as elements of

Zni
and we have 4A3 +27B2 ∈ Z×

ni
. Therefore, we can regard E as an elliptic

curve over Zni
, so the statement of the corollary makes sense.

The Chinese remainder theorem says that there is an isomorphism of rings

Zn1n2 � Zn1 ⊕ Zn2

given by
x mod n1n2 ←→ (x mod n1, x mod n2) .
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This yields a bijection between triples in Zn1n2 and pairs of triples, one in
Zn1 and one in Zn2 . It is not hard to see that primitive triples for Zn1n2

correspond to pairs of primitive triples in Zn1 and Zn2 . Moreover,

y2z ≡ x3 + Axz2 + Bz3 (mod n1n2)

⇐⇒
{

y2z ≡ x3 + Axz2 + Bz3 (mod n1)
y2z ≡ x3 + Axz2 + Bz3 (mod n2)

Therefore, there is a bijection

ψ : E(Zn1n2) −→ E(Zn1) ⊕ E(Zn2).

It remains to show that ψ is a homomorphism. Let P1, P2 ∈ E(Zn1n2) and let
P3 = P1 + P2. This means that there is a linear combination of the outputs
of formulas I, II, III that is primitive and yields P3. Reducing all of these
calculations mod ni (for i = 1, 2) yields exactly the same result, namely the
primitive point P3 (mod ni) is the sum of P1 (mod ni) and P2 (mod ni).
This means that ψ(P3) = ψ(P1) + ψ(P2), so ψ is a homomorphism.

COROLLARY 2.33
LetE be an elliptic curve overQ given by

y2 = x3 + Ax + B

withA,B ∈ Z.Letn bea positiveodd integersuch thatgcd(n, 4A3+27B2) =
1. Representthe elem ents ofE(Q) as prim itive triples (x : y : z) ∈ P2(Z).
The m ap

redn : E(Q) −→ E(Zn)
(x : y : z) �→ (x : y : z) (mod n)

isa group hom om orphism .

PROOF If P1, P2 ∈ E(Q) and P1 + P2 = P3, then P3 is a primitive point
that can be expressed as a linear combination of the outputs of formulas I, II,
III. Reducing all of the calculations mod n yields the result.

Corollary 2.33 can be generalized as follows.

COROLLARY 2.34
LetR be a ring and let I be an idealofR. Assum e thatboth R and R/I
satisfy conditions(1)and (2)on page 66.LetE be given by

y2z = x3 + Axz2 + Bz3
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with A,B ∈ R and assum e there exists r ∈ R such that

(4A3 + 27B2)r − 1 ∈ I.

Then the m ap

redI : E(R) −→ E(R/I)
(x : y : z) �→ (x : y : z) mod I

isa group hom om orphism .

PROOF The proof is the same as for Corollary 2.33, with R in place of
Z and mod I in place of mod n. The condition that (4A3 + 27B2)r − 1 ∈ I
for some r is the requirement that 4A3 + 27B2 is a unit in R/I, which was
required in the definition of an elliptic curve over the ring R/I.

Exercises

2.1 (a) Show that the constant term of a monic cubic polynomial is the
negative of the product of the roots.

(b) Use (a) to derive the formula for the sum of two distinct points
P1, P2 in the case that the x-coordinates x1 and x2 are nonzero, as
in Section 2.2. Note that when one of these coordinates is 0, you
need to divide by zero to obtain the usual formula.

2.2 The point (3, 5) lies on the elliptic curve E : y2 = x3 − 2, defined over
Q. Find a point (not ∞) with rational, nonintegral coordinates in (Q).

2.3 The points P = (2, 9), Q = (3, 10), and R = (−4,−3) lie on the elliptic
curve E : y2 = x3 + 73.

(a) Compute P + Q and (P + Q) + R.

(b) Compute Q + R and P + (Q + R). Your answer for P + (Q + R)
should agree with the result of part (a). However, note that one
computation used the doubling formula while the other did not use
it.

2.4 Let E be the elliptic curve y2 = x3 − 34x + 37 defined over Q. Let
P = (1, 2) and Q = (6, 7).

(a) Compute P + Q.
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(b) Note that P ≡ Q (mod 5). Compute 2P on E mod 5. Show that
the answer is the same as (P+Q) mod 5. Observe that since P ≡ Q,
the formula for adding the points mod 5 is not the reduction of the
formula for adding P +Q. However, the answers are the same. This
shows that the fact that reduction mod a prime is a homomorphism
is subtle, and this is the reason for the complicated formulas in
Section 2.11.

2.5 Let (x, y) be a point on the elliptic curve E given by y2 = x3 + Ax + B.
Show that if y = 0 then 3x2 + A �= 0. (Hint:What is the condition for
a polynomial to have x as a multiple root?)

2.6 Show that three points on an elliptic curve add to ∞ if and only if they
are collinear.

2.7 Let C be the curve u2 + v2 = c2
(
1 + du2v2

)
, as in Section 2.6.3. Show

that the point (c, 0) has order 4.

2.8 Show that the method at the end of Section 2.2 actually computes kP .
(Hint: Use induction on the length of the binary expansion of k. If
k = k0 + 2k1 + 4k2 + · · · + 2�a�, assume the result holds for k′ = k0 +
2k1 + 4k2 + · · · + 2�−1a�−1.)

2.9 If P = (x, y) �= ∞ is on the curve described by (2.1), then −P is the
other finite point of intersection of the curve and the vertical line through
P . Show that −P = (x, −a1x − a3 − y). (Hint: This involves solving
a quadratic in y. Note that the sum of the roots of a monic quadratic
polynomial equals the negative of the coefficient of the linear term.)

2.10 Let R be the real numbers. Show that the map (x, y, z) �→ (x : y : z)
gives a two-to-one map from the sphere x2 + y2 + z2 = 1 in R3 to P2

R.
Since the sphere is compact, this shows that P2

R is compact under the
topology inherited from the sphere (a set is open in P2

R if and only if
its inverse image is open in the sphere).

2.11 (a) Show that two lines a1x + b1y + c1z = 0 and a2x + b2y + c2z = 0
in two-dimensional projective space have a point of intersection.

(b) Show that there is exactly one line through two distinct given points
in P2

K .

2.12 Suppose that the matrix

M =

⎛⎝a1 b1

a2 b2

a3 b3

⎞⎠
has rank 2. Let (a, b, c) be a nonzero vector in the left nullspace of M ,
so (a, b, c)M = 0. Show that the parametric equations

x = a1u + b1v, y = a2u + b2v, z = a3u + b3v,
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describe the line ax + by + cz = 0 in P2
K . (It is easy to see that the

points (x : y : z) lie on the line. The main point is that each point on
the line corresponds to a pair (u, v).)

2.13 (a) Put the Legendre equation y2 = x(x − 1)(x − λ) into Weierstrass
form and use this to show that the j-invariant is

j = 28 (λ2 − λ + 1)3

λ2(λ − 1)2
.

(b) Show that if j �= 0, 1728 then there are six distinct values of λ
giving this j, and that if λ is one such value then the full set is

{λ,
1
λ

, 1 − λ,
1

1 − λ
,

λ

λ − 1
,
λ − 1

λ
}.

(c) Show that if j = 1728 then λ = −1, 2, 1/2, and if j = 0 then
λ2 − λ + 1 = 0.

2.14 Consider the equation u2 − v2 = 1, and the point (u0, v0) = (1, 0).

(a) Use the method of Section 2.5.4 to obtain the parameterization

u =
m2 + 1
m2 − 1

, v =
2m

m2 − 1
.

(b) Show that the projective curve u2 − v2 = w2 has two points at
infinity, (1 : 1 : 0) and (1 : −1 : 0).

(c) The parameterization obtained in (a) can be written in projective
coordinates as (u : v : w) = (m2 + 1 : 2m : m2 − 1) (or (m2 + n2 :
2mn : m2 − n2) in a homogeneous form). Show that the values
m = ±1 correspond to the two points at infinity. Explain why this
is to be expected from the graph (using real numbers) of u2−v2 = 1.
(Hint:Where does an asymptote intersect a hyperbola?)

2.15 Suppose (u0, v0, w0) = (u0, 0, 0) lies in the intersection

au2 + bv2 = e, cu2 + dw2 = f.

(a) Show that the procedure of Section 2.5.4 leads to an equation of
the form “square = degree 2 polynomial in m.”

(b) Let F = au2 + bv2 = e and G = cu2 + dw2 = f . Show that the

Jacobian matrix
(

Fu Fv Fw

Gu Gv Gw

)
at (u0, 0, 0) has rank 1. Since the

rank is less than 2, this means that the point is a singular point.

2.16 Show that the cubic equation x3 + y3 = d can be transformed to the
elliptic curve y2

1 = x3
1 − 432d2.
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2.17 (a) Show that (x, y) �→ (x,−y) is a group homomorphism from E to
itself, for any elliptic curve in Weierstrass form.

(b) Show that (x, y) �→ (ζx,−y), where ζ is a nontrivial cube root of
1, is an automorphism of the elliptic curve y2 = x3 + B.

(c) Show that (x, y) �→ (−x, iy), where i2 = −1, is an automorphism
of the elliptic curve y2 = x3 + Ax.

2.18 Let K have characteristic 3 and let E be defined by y2 = x3 + a2x
2 +

a4x + a6. The j-invariant in this case is defined to be

j =
a6
2

a2
2a

2
4 − a3

2a6 − a3
4

(this formula is false if the characteristic is not 3).

(a) Show that either a2 �= 0 or a4 �= 0 (otherwise, the cubic has a triple
root, which is not allowed).

(b) Show that if a2 �= 0, then the change of variables x1 = x− (a4/a2)
yields an equation of the form y2

1 = x3
1 + a′

2x
2
1 + a′

6. This means
that we may always assume that exactly one of a2 and a4 is 0.

(c) Show that if two elliptic curves y2 = x3 + a2x
2 + a6 and y2 =

x3 +a′
2x

2 +a′
6 have the same j-invariant, then there exists μ ∈ K

×

such that a′
2 = μ2a2 and a′

6 = μ6a6.
(d) Show that if y2 = x3 + a4x + a6 and y2 = x3 + a′

4x
2 + a′

6 are
two elliptic curves (in characteristic 3), then there is a change of
variables y �→ ay, x �→ bx + c, with a, b ∈ K

×
and c ∈ K, that

changes one equation into the other.
(e) Observe that if a2 = 0 then j = 0 and if a4 = 0 then j = −a3

2/a6.
Show that every element of K appears as the j-invariant of a curve
defined over K.

(f) Show that if two curves have the same j-invariant then there is a
change of variables over K that changes one into the other.

2.19 Let α(x, y) = (p(x)/q(x), y ·s(x)/t(x)) be an endomorphism of the ellip-
tic curve E given by y2 = x3 + Ax + B, where p, q, s, t are polynomials
such that p and q have no common root and s and t have no common
root.

(a) Using the fact that (x, y) and α(x, y) lie on E, show that

(x3 + Ax + B) s(x)2

t(x)2
=

u(x)
q(x)3

for some polynomial u(x) such that q and u have no common root.
(Hint:Show that a common root of u and q must also be a root of
p.)
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(b) Suppose t(x0) = 0. Use the facts that x3 +Ax+B has no multiple
roots and all roots of t2 are multiple roots to show that q(x0) = 0.
This shows that if q(x0) �= 0 then α(x0, y0) is defined.

2.20 Consider the singular curve y2 = x3 + ax2 with a �= 0. Let y = mx
be a line through (0, 0). Show that the line always intersects the curve
to order at least 2, and show that the order is 3 exactly when m2 = a.
This may be interpreted as saying that the lines y = ±√

ax are the two
tangents to the curve at (0, 0).

2.21 (a) Apply the method of Section 2.5.4 to the circle u2 + v2 = 1 and
the point (−1, 0) to obtain the parameterization

u =
1 − t2

1 + t2
, v =

2t

1 + t2
.

(b) Suppose x, y, z are integers such that x2 +y2 = z2, gcd(x, y, z) = 1,
and x is even. Use (a) to show that there are integers m,n such
that

x = 2mn, y = m2 − n2, z = m2 + n2.

Also, show that gcd(x, y, z) = 1 implies that gcd(m,n) = 1 and
that m �≡ n (mod 2).

2.22 Let p(x) and q(x) be polynomials with no common roots. Show that

d

dx

(
p(x)
q(x)

)
= 0

(that is, the identically 0 rational function) if and only if both p′(x) = 0
and q′(x) = 0. (If p or q is nonconstant, then this can happen only in
positive characteristic.)

2.23 Let E be given by y2 = x3 +Ax+B over a field K and let d ∈ K×. The
twist of E by d is the elliptic curve E(d) given by y2 = x3+Ad2x+Bd3.

(a) Show that j(E(d)) = j(E).

(b) Show that E(d) can be transformed into E over K(
√

d).

(c) Show that E(d) can be transformed over K to the form dy2
1 =

x3
1 + Ax1 + B.

2.24 Let α, β ∈ Z be such that gcd(α, β) = 1. Assume that α ≡ −1 (mod 4)
and β ≡ 0 (mod 32). Let E be given by y2 = x(x − α)(x − β).

(a) Let p be prime. Show that the cubic polynomial x(x − α)(x − β)
cannot have a triple root mod p.
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(b) Show that the substitution

x = 4x1, y = 8y1 + 4x1

changes E into E1, given by

y2
1 + x1y1 = x3

1 +
−β − α − 1

4
x2

1 +
αβ

16
x1.

(c) Show that the reduction mod 2 of the equation for E1 is

y2
1 + x1y1 = x3

1 + ex2
1

for some e ∈ F2. This curve is singular at (0, 0).

(d) Let γ be a constant and consider the line y1 = γx1. Show that if
γ2 + γ = e, then the line intersects the curve in part (c) to order
3, and if γ2 + γ �= e then this line intersects the curve to order 2.

(e) Show that there are two distinct values of γ ∈ F2 such that γ2+γ =
e. This implies that there are two distinct tangent lines to the curve
E1 mod 2 at (0,0), as in Exercise 2.20.

We take the property of part (e) to be the definition of multiplicative
reduction in characteristic 2. Therefore, parts (a) and (e) show that
the curve E1 has good or multiplicative reduction at all primes. A
semistable elliptic curve over Q is one that has good or multiplicative
reduction at all primes, possibly after a change of variables (over Q)
such as the one in part (b). Therefore, E is semistable. See Section 15.1
for a situation where this fact is used.
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Chapter 3
Torsion Points

The torsion points, namely those whose orders are finite, play an important
role in the study of elliptic curves. We’ll see this in Chapter 4 for elliptic
curves over finite fields, where all points are torsion points, and in Chapter
8, where we use 2-torsion points in a procedure known as descent. In the
present chapter, we first consider the elementary cases of 2- and 3-torsion,
then determine the general situation. Finally, we discuss the important Weil
and Tate-Lichtenbaum pairings.

3.1 Torsion Points

Let E be an elliptic curve defined over a field K. Let n be a positive integer.
We are interested in

E[n] = {P ∈ E(K) |nP = ∞}

(recall that K = algebraic closure of K). We emphasize that E[n] contains
points with coordinates in K, not just in K.

When the characteristic of K is not 2, E can be put in the form y2 = cubic,
and it is easy to determine E[2]. Let

y2 = (x − e1)(x − e2)(x − e3),

with e1, e2, e3 ∈ K. A point P satisfies 2P = ∞ if and only if the tangent line
at P is vertical. It is easy to see that this means that y = 0, so

E[2] = {∞, (e1, 0), (e2, 0), (e3, 0)}.

As an abstract group, this is isomorphic to Z2 ⊕ Z2.
The situation in characteristic 2 is more subtle. In Section 2.8 we showed

that E can be assumed to have one of the following two forms:

(I) y2 + xy + x3 + a2x
2 + a6 = 0 or (II) y2 + a3y + x3 + a4x + a6 = 0.

77
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In the first case, a6 �= 0 and in the second case, a3 �= 0 (otherwise the curves
would be singular). If P = (x, y) is a point of order 2, then the tangent at
P must be vertical, which means that the partial derivative with respect to
y must vanish. In case I, this means that x = 0. Substitute x = 0 into (I)
to obtain 0 = y2 + a6 = (y +

√
a6)2. Therefore (0,

√
a6) is the only point of

order 2 (square roots are unique in characteristic 2), so

E[2] = {∞, (0,
√

a6)}.
As an abstract group, this is isomorphic to Z2.

In case II, the partial derivative with respect to y is a3 �= 0. Therefore,
there is no point of order 2, so

E[2] = {∞}.
We summarize the preceding discussion as follows.

PROPOSITION 3.1
LetE be an elliptic curve overa field K.Ifthe characteristic ofK isnot2,
then

E[2] � Z2 ⊕ Z2.

Ifthe characteristic ofK is2,then

E[2] � 0 or Z2.

Now let’s look at E[3]. Assume first that the characteristic of K is not 2
or 3, so that E can be given by the equation y2 = x3 + Ax + B. A point P
satisfies 3P = ∞ if and only if 2P = −P . This means that the x-coordinate
of 2P equals the x-coordinate of P (the y-coordinates therefore differ in sign;
of course, if they were equal, then 2P = P , hence P = ∞). In equations, this
becomes

m2 − 2x = x, where m =
3x2 + A

2y
.

Using the fact that y2 = x3 + Ax + B, we find that

(3x2 + A)2 = 12x(x3 + Ax + B).

This simplifies to
3x4 + 6Ax2 + 12Bx − A2 = 0.

The discriminant of this polynomial is −6912(4A3+27B2)2, which is nonzero.
Therefore the polynomial has no multiple roots. There are 4 distinct values
of x (in K), and each x yields two values of y, so we have eight points of order
3. Since ∞ is also in E[3], we see that E[3] is a group of order 9 in which
every element is 3-torsion. It follows that

E[3] � Z3 ⊕ Z3.
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The case where K has characteristic 2 is Exercise 3.2.
Now let’s look at characteristic 3. We may assume that E has the form

y2 = x3 + a2x
2 + a4x + a6. Again, we want the x-coordinate of 2P to equal

the x-coordinate of P . We calculate the x-coordinate of 2P by the usual
procedure and set it equal to the x-coordinate x of P . Some terms disappear
because 3 = 0. We obtain(

2a2x + a4

2y

)2

− a2 = 3x = 0.

This simplifies to (recall that 4 = 1)

a2x
3 + a2a6 − a2

4 = 0.

Note that we cannot have a2 = a4 = 0 since then x3 + a6 = (x + a
1/3
6 )3 has

multiple roots, so at least one of a2, a4 is nonzero.
If a2 = 0, then we have −a2

4 = 0, which cannot happen, so there are no
values of x. Therefore E[3] = {∞} in this case.

If a2 �= 0, then we obtain an equation of the form a2(x3 +a) = 0, which has
a single triple root in characteristic 3. Therefore, there is one value of x, and
two corresponding values of y. This yields 2 points of order 3. Since there
is also the point ∞, we see that E[3] has order 3, so E[3] � Z3 as abstract
groups.

The general situation is given by the following.

THEOREM 3.2
LetE be an elliptic curve over a field K and letn be a positive integer. If
the characteristic ofK doesnotdivide n,oris0,then

E[n] � Zn ⊕ Zn.

Ifthe characteristic ofK is p > 0 and p|n,write n = prn′ with p � n′.Then

E[n] � Zn′ ⊕ Zn′ or Zn ⊕ Zn′ .

The theorem will be proved in Section 3.2.
An elliptic curve E in characteristic p is called ordinary if E[p] � Zp. It

is called supersingular if E[p] � 0. Note that the terms “supersingular”
and “singular” (as applied to bad points on elliptic curves) are unrelated.
In the theory of complex multiplication (see Chapter 10), the “singular” j-
invariants are those corresponding to elliptic curves with endomorphism rings
larger than Z, and the “supersingular” j-invariants are those corresponding to
elliptic curves with the largest possible endomorphism rings, namely, orders
in quaternion algebras.

Let n be a positive integer not divisible by the characteristic of K. Choose
a basis {β1, β2} for E[n] � Zn⊕Zn. This means that every element of E[n] is

© 2008 by Taylor & Francis Group, LLC



80 CHAPTER 3 TORSION POINTS

expressible in the form m1β1 + m2β with integers m1,m2. Note that m1,m2

are uniquely determined mod n. Let α : E(K) → E(K) be a homomorphism.
Then α maps E[n] into E[n]. Therefore, there are a, b, c, d ∈ Zn such that

α(β1) = aβ1 + cβ2, α(β2) = bβ1 + dβ2.

Therefore each homomorphism α : E(K) → E(K) is represented by a 2 × 2
matrix

αn =
(

a b
c d

)
.

Composition of homomorphisms corresponds to multiplication of the corre-
sponding matrices.

In many cases, the homomorphism α will be taken to be an endomorphism,
which means that it is given by rational functions (see Section 2.9). But α
can also come from an automorphism of K that fixes K. This leads to the im-
portant subject of representations of Galois groups (that is, homomorphisms
from Galois groups to groups of matrices).

Example 3.1
Let E be the elliptic curve defined over R by y2 = x3 − 2, and let n = 2.
Then

E[2] = {∞, (21/3, 0), (ζ21/3, 0), (ζ221/3, 0)},
where ζ is a nontrivial cube root of unity. Let

β1 = (21/3, 0), β2 = (ζ21/3, 0).

Then {β1, β2} is a basis for E[2], and β3 = (ζ221/3, 0) = β1 + β2.
Let α : E(C) → E(C) be complex conjugation: α(x, y) = (x, y), where

the bar denotes complex conjugation. It is easy to verify that α is a homo-
morphism. In fact, since all the coefficients of the formulas for the group
law have real coefficients, we have P1 + P2 = P1 + P2. This is the same as
α(P1) + α(P2) = α(P1 + P2). We have

α(β1) = 1 · β1 + 0 · β2, α(β2) = β3 = 1 · β1 + 1 · β2.

Therefore we obtain the matrix α2 =
(

1 1
0 1

)
. Note that α ◦ α is the identity,

which corresponds to the fact that α2
2 is the identity matrix mod 2.

3.2 Division Polynomials

The goal of this section is to prove Theorem 3.2. We’ll also obtain a few
other results that will be needed in proofs in Section 4.2.
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In order to study the torsion subgroups, we need to describe the map on
an elliptic curve given by multiplication by an integer. As in Section 2.9, this
is an endomorphism of the elliptic curve and can be described by rational
functions. We shall give formulas for these functions.

We start with variables A,B. Define the division polynomials ψm ∈
Z[x, y,A,B] by

ψ0 = 0
ψ1 = 1
ψ2 = 2y
ψ3 = 3x4 + 6Ax2 + 12Bx − A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3)
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m = (2y)−1(ψm)(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) for m ≥ 3.

LEMMA 3.3
ψn is a polynom ialin Z[x, y2, A,B] when n is odd,and ψn is a polynom ial
in 2yZ[x, y2, A,B] when n iseven.

PROOF The lemma is true for n ≤ 4. Assume, by induction, that it holds
for all n < 2m. We may assume that 2m > 4, so m > 2. Then 2m > m + 2,
so all polynomials appearing in the definition of ψ2m satisfy the induction
assumptions. If m is even, then ψm, ψm+2, ψm−2 are in 2yZ[x, y2, A,B], from
which it follows that ψ2m is in 2yZ[x, y2, A,B]. If m is odd, then ψm−1 and
ψm+1 are in 2yZ[x, y2, A,B], so again we find that ψ2m is in 2yZ[x, y2, A,B].
Therefore, the lemma holds for n = 2m. Similarly, it holds for n = 2m + 1.

Define polynomials

φm = xψ2
m − ψm+1ψm−1

ωm = (4y)−1(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1).

LEMMA 3.4
φn ∈ Z[x, y2, A,B] for alln. Ifn is odd,then ωn ∈ yZ[x, y2, A,B]. Ifn is
even,then ωn ∈ Z[x, y2, A,B].

PROOF If n is odd, then ψn+1 and ψn−1 are in yZ[x, y2, A,B], so their
product is in Z[x, y2, A,B]. Therefore, φn ∈ Z[x, y2, A,B]. If n is even, the
proof is similar.

The facts that y−1ωn ∈ Z[x, y2, A,B] for odd n and ωn ∈ 1
2Z[x, y2, A,B]

for even n follow from Lemma 3.3, and these are all that we need for future
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applications. However, to get rid of the extra 2 in the denominator, we proceed
as follows. Induction (treating separately the various possibilities for n mod
4) shows that

ψn ≡ (x2 + A)(n
2−1)/4 (mod 2) when n is odd

and

(2y)−1ψn ≡
(n

2

)
(x2 + A)(n

2−4)/4 (mod 2) when n is even.

A straightforward calculation now yields the lemma.

We now consider an elliptic curve

E : y2 = x3 + Ax + B, 4A3 + 27B2 �= 0.

We don’t specify what ring or field the coefficients A,B are in, so we continue
to treat them as variables. We regard the polynomials in Z[x, y2, A,B] as
polynomials in Z[x,A,B] by replacing y2 with x3 + Ax + B. Therefore, we
write φn(x) and ψ2

n(x). Note that ψn is not necessarily a polynomial in x
alone, while ψ2

n is always a polynomial in x.

LEMMA 3.5

φn(x) = xn2
+ lowerdegree term s

ψ2
n(x) = n2xn2−1 + lowerdegree term s

PROOF In fact, we claim that

ψn =

{
y(nx(n2−4)/2 + · · · ) if n is even
nx(n2−1)/2 + · · · if n is odd.

This is proved by induction. For example, if n = 2m + 1 with m even, then
the leading term of ψm+2ψ

3
m is

(m + 2)m3y4x
(m+2)2−4

2 + 3m2−12
2 .

Changing y4 to (x3 + Ax + B)2 yields

(m + 2)m3x
(2m+1)2−1

2 .

Similarly, the leading term of ψm−1ψ
3
m+1 is

(m − 1)(m + 1)3x
(2m+1)2−1

2 .
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Subtracting and using the recursion relation shows that the leading term of
ψ2m+1 is as claimed in the lemma. The other cases are treated similarly.

We can now state the main theorem.

THEOREM 3.6
LetP = (x, y) be a pointon the elliptic curve y2 = x3 + Ax + B (oversom e
field ofcharacteristic not2),and letn be a positive integer.Then

nP =
(

φn(x)
ψ2

n(x)
,

ωn(x, y)
ψn(x, y)3

)
.

The proof will be given in Section 9.5.

COROLLARY 3.7
LetE be an elliptic curve. The endom orphism ofE given by m ultiplication
by n hasdegree n2.

PROOF From Lemma 3.5, we have that the maximum of the degrees of
the numerator and denominator of φn(x)/ψ2

n(x) is n2. Therefore, the degree
of the endomorphism is n2 if this rational function is reduced, that is, if φn(x)
and ψ2

n(x) have no common roots. We’ll show that this is the case. Suppose
not. Let n be the smallest index for which they have a common root.

Suppose n = 2m is even. A quick calculation shows that

φ2(x) = x4 − 2Ax2 − 8Bx + A2.

Computing the x-coordinate of 2m(x, y) in two steps by multiplying by m
and then by 2, and using the fact that

ψ2
2 = 4y2 = 4(x3 + Ax + B),

we obtain

φ2m

ψ2
2m

=
φ2(φm/ψ2

m)
ψ2

2(φm/ψ2
m)

=
φ4

m − 2Aφ2
mψ4

m − 8Bφmψ6
m + A2ψ8

m

(4ψ2
m)(φ3

m + Aφmψ4
m + Bψ6

m)

=
U

V
,

where U and V are the numerator and denominator of the preceding expres-
sion. To show U and V have no common roots, we need the following.
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LEMMA 3.8
LetΔ = 4A3 + 27B2 and let

F (x, z) = x4 − 2Ax2z2 − 8Bxz3 + A2z4

G(x, z) = 4z(x3 + Axz2 + Bz3)
f1(x, z) = 12x2z + 16Az3

g1(x, z) = 3x3 − 5Axz2 − 27Bz3

f2(x, z) = 4Δx3 − 4A2Bx2z + 4A(3A3 + 22B2)xz2 + 12B(A3 + 8B2)z3

g2(x, z) = A2Bx3 + A(5A3 + 32B2)x2z + 2B(13A3 + 96B2)xz2

− 3A2(A3 + 8B2)z3.

Then
Ff1 − Gg1 = 4Δz7 and Ff2 + Gg2 = 4Δx7.

PROOF This is verified by a straightforward calculation. Where do these
identities come from? The polynomials F (x, 1) and G(x, 1) have no common
roots, so the extended Euclidean algorithm, applied to polynomials, finds
polynomials f1(x), g1(x) such that F (x, 1)f1(x)+G(x, 1)g1(x) = 1. Changing
x to x/z, multiplying by z7 (to make everything homogeneous), then multi-
plying by 4Δ to clear denominators yields the first identity. The second is
obtained by reversing the roles of x and z.

The lemma implies that

U · f1(φm, ψ2
m) − V · g1(φm, ψ2

m) = 4ψ14
m Δ

U · f2(φm, ψ2
m) + V · g2(φm, ψ2

m) = 4φ7
mΔ.

If U, V have a common root, then so do φm and ψ2
m. Since n = 2m is the first

index for which there is a common root, this is impossible.
It remains to show that U = φ2m and V = ψ2

2m. Since U/V = φ2m/ψ2
2m

and since U, V have no common root, it follows that φ2m is a multiple of U
and ψ2

2m is a multiple of V . A quick calculation using Lemma 3.5 shows that

U = x4m2
+ lower degree terms.

Lemma 3.5 and the fact that φ2m is a multiple of U imply that φ2m = U .
Therefore, V = ψ2

2m. It follows that φ2m and ψ2
2m have no common roots.

Now suppose that the smallest index n such that there is a common root is
odd: n = 2m + 1. Let r be a common root of φn and ψ2

n. Since

φn = xψ2
n − ψn−1ψn+1,

and since ψn+1ψn−1 is a polynomial in x, we have (ψn+1ψn−1)(r) = 0.
But ψ2

n±1 are polynomials in x and their product vanishes at r. Therefore
ψ2

n+δ(r) = 0, where δ is either 1 or −1.
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Since n is odd, both ψn and ψn+2δ are polynomials in x. Moreover,

(ψnψn+2δ)2 = ψ2
nψ2

n+2δ

vanishes at r. Therefore ψnψn+2δ vanishes at r. Since

φn+δ = xψ2
n+δ − ψnψn+2δ,

we find that φn+δ(r) = 0. Therefore, φn+δ and ψ2
n+δ have a common root.

Note that n + δ is even.
When considering the case that n is even, we showed that if φ2m and ψ2

2m

have a common root, then φm and ψ2
m have a common root. In the present

case, we apply this to 2m = n + δ. Since n is assumed to be the smallest
index for which there is a common root, we have

n + δ

2
≥ n.

This implies that n = 1. But clearly φ1 = x and ψ2
1 = 1 have no common

roots, so we have a contradiction.
This proves that φn and ψ2

n have no common roots in all cases. Therefore,
as pointed out at the beginning of the proof, the multiplication by n map has
degree n2. This completes the proof of Corollary 3.7.

Recall from Section 2.9 that if α(x, y) = (R(x), yS(x)) is an endomorphism
of an elliptic curve E, then α is separable if R′(x) is not identically 0. Assume
n is not a multiple of the characteristic p of the field. From Theorem 3.6 we
see that the multiplication by n map has

R(x) =
xn2

+ · · ·
n2xn2−1 + · · · .

The numerator of the derivative is n2x2n2−2+· · · �= 0, so R′(x) �= 0. Therefore,
multiplication by n is separable. From Corollary 3.7 and Proposition 2.21,
E[n], the kernel of multiplication by n, has order n2. The structure theorem
for finite abelian groups (see Appendix B) says that E[n] is isomorphic to

Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk
,

for some integers n1, n2, . . . , nk with ni|ni+1 for all i. Let � be a prime dividing
n1. Then �|ni for all i. This means that E[�] ⊆ E[n] has order �k. Since we
have just proved that E[�] has order �2, we must have k = 2. Multiplication by
n annihilates E[n] � Zn1 ⊕ Zn2 , so we must have n2|n. Since n2 = #E[n] =
n1n2, it follows that n1 = n2 = n. Therefore,

E[n] � Zn ⊕ Zn

when the characteristic p of the field does not divide n.
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It remains to consider the case where p|n. We first determine the p-power
torsion on E. By Proposition 2.28, multiplication by p is not separable. By
Proposition 2.21, the kernel E[p] of multiplication by p has order strictly less
than the degree of this endomorphism, which is p2 by Corollary 3.7. Since
every element of E[p] has order 1 or p, the order of E[p] is a power of p, hence
must be 1 or p. If E[p] is trivial, then E[pk] must be trivial for all k. Now
suppose E[p] has order p. We claim that E[pk] � Zpk for all k. It is easy to
see that E[pk] is cyclic. The hard part is to show that the order is pk, rather
than something smaller (for example, why can’t we have E[pk] = E[p] � Zp

for all k?). Suppose there exists an element P of order pj . By Theorem 2.22,
multiplication by p is surjective, so there exists a point Q with pQ = P . Since

pjQ = pj−1P �= ∞ but pj+1Q = pjP = ∞,

Q has order pj+1. By induction, there are points of order pk for all k. There-
fore, E[pk] is cyclic of order pk.

We can now put everything together. Write n = prn′ with r ≥ 0 and p � n′.
Then

E[n] � E[n′] ⊕ E[pr].

We have E[n′] � Zn′ ⊕ Zn′ , since p � n′. We have just showed that E[pr] �
0 or Zpr . Recall that

Zn′ ⊕ Zpr � Zn′pr � Zn

(see Appendix A). Therefore, we obtain

E[n] � Zn′ ⊕ Zn′ or Zn ⊕ Zn′ .

This completes the proof of Theorem 3.2.

3.3 The Weil Pairing

The Weil pairing on the n-torsion on an elliptic curve is a major tool in the
study of elliptic curves. For example, it will be used in Chapter 4 to prove
Hasse’s theorem on the number of points on an elliptic curve over a finite
field. It will be used in Chapter 5 to attack the discrete logarithm problem
for elliptic curves. In Chapter 6, it will be used in a cryptographic setting.

Let E be an elliptic curve over a field K and let n be an integer not divisible
by the characteristic of K. Then E[n] � Zn ⊕ Zn. Let

μn = {x ∈ K |xn = 1}
be the group of nth roots of unity in K. Since the characteristic of K does
not divide n, the equation xn = 1 has no multiple roots, hence has n roots in

© 2008 by Taylor & Francis Group, LLC



SECTION 3.3 THE WEIL PAIRING 87

K. Therefore, μn is a cyclic group of order n. Any generator ζ of μn is called
a primitive nth root of unity. This is equivalent to saying that ζk = 1 if
and only if n divides k.

THEOREM 3.9
LetE bean ellipticcurvedefined overa fieldK and letn bea positiveinteger.
Assum ethatthecharacteristicofK doesnotdividen.Then thereisa pairing

en : E[n] × E[n] → μn,

called theWeil pairing,thatsatisfiesthe following properties:

1. en isbilinear in each variable.Thism eansthat

en(S1 + S2, T ) = en(S1, T )en(S2, T )

and
en(S, T1 + T2) = en(S, T1)en(S, T2)

forallS, S1, S2, T, T1, T2 ∈ E[n].

2. en is nondegenerate in each variable. This m eans thatifen(S, T ) = 1
for allT ∈ E[n] then S = ∞ and also that if en(S, T ) = 1 for all
S ∈ E[n] then T = ∞.

3. en(T, T ) = 1 forallT ∈ E[n].

4. en(T, S) = en(S, T )−1 forallS, T ∈ E[n].

5. en(σS, σT ) = σ(en(S, T )) for allautom orphism s σ ofK such thatσ is
the identity m ap on the coe cients ofE (ifE is in W eierstrass form ,
thism eansthatσ(A) = A and σ(B) = B).

6. en(α(S), α(T )) = en(S, T )deg(α) for allseparable endom orphism s α of
E. Ifthe coe cients ofE lie in a finite field Fq,then the statem ent
also holds when α is the Frobenius endom orphism φq. (Actually, the
statem entholdsforallendom orphism sα,separable ornot.See [38].)

The proof of the theorem will be given in Chapter 11. In the present section,
we’ll derive some consequences.

COROLLARY 3.10
Let {T1, T2} be a basis ofE[n]. Then en(T1, T2) is a prim itive nth rootof
unity.

PROOF Suppose en(T1, T2) = ζ with ζd = 1. Then en(T1, dT2) = 1.
Also, en(T2, dT2) = en(T2, T2)d = 1 (by (1) and (3)). Let S ∈ E[n]. Then
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S = aT1 + bT2 for some integers a, b. Therefore,

en(S, dT2) = en(T1, dT2)aen(T2, dT2)b = 1.

Since this holds for all S, (2) implies that dT2 = ∞. Since dT2 = ∞ if and
only if n|d, it follows that ζ is a primitive nth root of unity.

COROLLARY 3.11
IfE[n] ⊆ E(K),then μn ⊂ K.

REMARK 3.12 Recall that points in E[n] are allowed to have coordinates
in K. The hypothesis of the corollary is that these points all have coordinates
in K.

PROOF Let σ be any automorphism of K such that σ is the identity on
K. Let T1, T2 be a basis of E[n]. Since T1, T2 are assumed to have coordinates
in K, we have σT1 = T1 and σT2 = T2. By (5),

ζ = en(T1, T2) = en(σT1, σT2) = σ(en(T1, T2)) = σ(ζ).

The fundamental theorem of Galois theory says that if an element x ∈ K is
fixed by all such automorphisms σ, then x ∈ K. Therefore, ζ ∈ K. Since ζ
is a primitive nth root of unity by Corollary 3.10, it follows that μn ⊂ K.
(Technicalpoint: The fundamental theorem of Galois theory only implies
that ζ lies in a purely inseparable extension of K. But an nth root of unity
generates a separable extension of K when the characteristic does not divide
n, so we conclude that ζ ∈ K.)

COROLLARY 3.13
LetE be an elliptic curve defined overQ.Then E[n] �⊆ E(Q) forn ≥ 3.

PROOF If E[n] ⊆ E(Q), then μn ⊂ Q, which is not the case when n ≥ 3.

REMARK 3.14 When n = 2, it is possible to have E[2] ⊆ E(Q). For
example, if E is given by y2 = x(x − 1)(x + 1), then

E[2] = {∞, (0, 0), (1, 0), (−1, 0)}.
If n = 3, 4, 5, 6, 7, 8, 9, 10, 12, there are elliptic curves E defined over Q that
have points of order n with rational coordinates. However, the corollary says
that it is not possible for all points of order n to have rational coordinates for
these n. The torsion subgroups of elliptic curves over Q will be discussed in
Chapter 8.
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We now use the Weil pairing to deduce two propositions that will be used in
the proof of Hasse’s theorem in Chapter 4. Recall that if α is an endomorphism

of E, then we obtain a matrix αn =
(

a b
c d

)
with entries in Zn, describing the

action of α on a basis {T1, T2} of E[n].

PROPOSITION 3.15

Let α be an endom orphism ofan elliptic curve E defined over a field K.
Let n be a positive integer not divisible by the characteristic ofK. Then
det(αn) ≡ deg(α) (mod n).

PROOF By Corollary 3.10, ζ = en(T1, T2) is a primitive nth root of unity.
By part (6) of Theorem 3.9, we have

ζdeg(α) = en(α(T1), α(T2)) = en(aT1 + cT2, bT1 + dT2)
= en(T1, T1)aben(T1, T2)aden(T2, T1)cben(T2, T2)cd

= ζad−bc,

by the properties of the Weil pairing. Since ζ is a primitive nth root of unity,
deg(α) ≡ ad − bc (mod n).

As we’ll see in the proof of the next result, Proposition 3.15 allows us to
reduce questions about the degree to calculations with matrices. Both Propo-
sition 3.15 and Proposition 3.16 hold for all endomorphisms, since part (6)
of Theorem 3.9 holds in general. However, we prove part (6) only for sepa-
rable endomorphisms and for the Frobenius map, which is sufficient for our
purposes. We’ll state Proposition 3.16 in general, and the proof is sufficient
for separable endomorphisms and for all endomorphisms of the form r + sφq

with arbitrary integers r, s.
Let α and β be endomorphisms of E and let a, b be integers. The endomor-

phism aα + bβ is defined by

(aα + bβ)(P ) = aα(P ) + bβ(P ).

Here aα(P ) means multiplication on E of α(P ) by the integer a. The result
is then added on E to bβ(P ). This process can all be described by rational
functions, since this is true for each of the individual steps. Therefore aα+bβ
is an endomorphism.

PROPOSITION 3.16

deg(aα + bβ) = a2 deg α + b2 deg β + ab(deg(α + β) − deg α − deg β).
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PROOF Let n be any integer not divisible by the characteristic of K.
Represent α and β by matrices αn and βn (with respect to some basis of
E[n]). Then aαn + bβn gives the action of aα+ bβ on E[n]. A straightforward
calculation yields

det(aαn + bβn) = a2 det αn + b2 det βn + ab(det(αn + βn) − det αn − det βn)

for any matrices αn and βn (see Exercise 3.4). Therefore

deg(aα + bβ) ≡
a2 deg α + b2 deg β + ab(deg(α + β) − deg α − deg β) (mod n).

Since this holds for infinitely many n, it must be an equality.

3.4 The Tate-Lichtenbaum Pairing

Starting from the Weil pairing, it is possible to define a pairing that can be
used in cases where the full n-torsion is not available, so the Weil pairing does
not apply directly. The approach used in this section was inspired by work of
Schaefer [96].

THEOREM 3.17
LetE be an elliptic curve over Fq. Letn be an integer such thatn|q − 1.
Denote by E(Fq)[n] the elem entsofE(Fq) oforder dividing n,and letμn =
{x ∈ Fq |xn = 1}. LetP ∈ E(Fq)[n] and Q ∈ E(Fq) and choose R ∈ E(Fq)
satisfying nR = Q.Denote by en the nth W eilpairing and by φ = φq the qth
powerFrobeniusendom orphism .Define

τn(P,Q) = en(P,R − φ(R)).

Then
τn : E(Fq)[n] × E(Fq)/nE(Fq) −→ μn

isa well-defined nondegenerate bilinear pairing.

The pairing of the theorem is called the modified Tate-Lichtenbaum
pairing. The original Tate-Lichtenbaum pairing is obtained by taking
the nth root of τn, thus obtaining a pairing

〈·, ·〉n : E(Fq)[n] × E(Fq)/nE(Fq) −→ F×
q /(F×

q )n.

The pairing τn is better suited for computations since it gives a definite answer,
rather than a coset in F×

q mod nth powers. These pairings can be computed
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quickly (using at most a constant times log q point additions on E). See
Section 11.4.

Technically, we should write τn(P,Q) as τn(P,Q+nE(Fq)), since an element
of E(Fq)/nE(Fq) has the form Q + nE(Fq). However, we’ll simply write
τn(P,Q) and similarly for 〈P,Q〉n. The fact that τn is nondegenerate means
that if τn(P,Q) = 1 for all Q then P = ∞, and if τn(P,Q) = 1 for all P then
Q ∈ nE(Fq). Bilinearity means that

τn(P1 + P1, Q) = τn(P1, Q)τn(P2, Q)

and
τn(P,Q1 + Q2) = τn(P,Q1)τn(P,Q2).

PROOF We now prove the theorem. First, we need to show that τn(P,Q)
is defined and is independent of the choice of R. Since nR = Q ∈ E(Fq), we
have

∞ = Q − φ(Q) = n (R − φR) ,

so R − φR ∈ E[n] (to lower the number of parentheses, we often write φR
instead of φ(R)). Since P ∈ E[n], too, the Weil pairing en(P,R − φR) is
defined. Suppose that nR′ = Q gives another choice of R. Let T = R′ − R.
Then nT = Q − Q = ∞, so T ∈ E[n]. Therefore,

en(P,R′ − φR′) = en(P,R − φR + T − φT )
= en(P,R − φR)en(P, T )/en(P, φT ).

But P = φP , since P ∈ E(Fq), so

en(P, φT ) = en(φP, φT ) = φ (en(P, T )) = en(P, T ),

since en(P, T ) ∈ μn ⊂ Fq. Therefore,

en(P,R′ − φR′) = en(P,R − φR),

so τn does not depend on the choice of R.
Since Q is actually a representative of a coset in E(Fq)/nE(Fq), we need

to show that the value of τn depends only on the coset, not on the particular
choice of representative. Therefore, suppose Q′ − Q = nU ∈ nE(Fq). Let
nR = Q and let R′ = R + U . Then nR′ = Q′. We have

en(P,R′ − φR′) = en(P,R − φR + U − φU) = en(P,R − φR),

since U = φU for U ∈ E(Fq). Therefore, the value does not depend on the
choice of coset representative. This completes the proof that τn is well defined.

The fact that τn(P,Q) is bilinear in P follows immediately from the cor-
responding fact for en. For bilinearity in Q, suppose that nR1 = Q1 and
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nR2 = Q2. Then n(R1 + R2) = Q1 + Q2, so

τn(P,Q1 + Q2) = en(P,R1 + R2 − φR1 − φR2)
= en(P,R1 − φR1)en(P,R2 − φR2)
= τn(P,Q1)τn(P,Q2).

It remains to prove the nondegeneracy. This we postpone to Section 11.7.

The Tate-Lichtenbaum pairing can be used in some situations where the
Weil pairing does not apply. The Weil pairing needs E[n] ⊆ E(Fq), which
implies that μn ⊆ F×

q , by Corollary 3.11. The Tate-Lichtenbaum pairing
requires that μn ⊆ F×

q , but only needs a point of order n, rather than all
of E[n], to be in E(Fq). In fact, it doesn’t even need a point of order n. If
E(Fq)[n] is trivial, for example, then we have a pairing between two trivial
groups.

Exercises

3.1 Let E be the elliptic curve y2 = x3 + 1 mod 5.

(a) Compute the division polynomial ψ3(x).

(b) Show that gcd(x5 − x, ψ3(x)) = x.

(c) Use the result of part (b) to show that the 3-torsion points in E(F5)
are {∞, (0, 1), (0,−1)}.

3.2 Let E be an elliptic curve in characteristic 2. Show that E[3] � Z3⊕Z3.
(Hint:Use the formulas at the end of Section 2.8.)

3.3 Let E be an elliptic curve over a field of characteristic not 2. Let E[2] =
{∞, P1, P2, P3}. Show that e2(Pi, Pj) = −1 whenever i �= j.

3.4 Let M and N be 2 × 2 matrices with N =
(

w x
y z

)
. Define Ñ =(

z −x
−y w

)
(this is the adjoint matrix).

(a) Show that Trace(MÑ) = det(M + N) − det(M) − det(N).

(b) Use (a) to show that

det(aM + bN) − a2 det M − b2 det N

= ab(det(M + N) − det M − det N)

© 2008 by Taylor & Francis Group, LLC



EXERCISES 93

for all scalars a, b. This is the relation used in the proof of Propo-
sition 3.16.

3.5 Show that part (6) of Theorem 3.9 holds when α is the endomorphism
given by multiplication by an integer m.

3.6 Let E be an elliptic curve over a field K and let P be a point of order
n (where n is not divisible by the characteristic of the field K). Let
Q ∈ E[n]. Show that there exists an integer k such that Q = kP if and
only if en(P,Q) = 1.

3.7 Write the equation of the elliptic curve E as

F (x, y, z) = y2z − x3 − Axz2 − Bz3 = 0.

Show that a point P on E is in E[3] if and only if

det

⎛⎝Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

⎞⎠ = 0

at the point P , where Fab denotes the 2nd partial derivative with respect
to a, b. The determinant is called the Hessian. For a curve in P2 defined
by an equation F = 0, a point where the Hessian is zero is called a flex
of the curve.

3.8 The division polynomials ψn were defined for n ≥ 0. Show that if we
let ψ−n = −ψn, then the recurrence relations preceding Lemma 3.3,
which are stated only for m ≥ 2, hold for all integers m. (Note that this
requires verifying the relations for m ≤ −2 and for m = −1, 0, 1.)
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Chapter 4
Elliptic Curves over Finite

Fields

Let F be a finite field and let E be an elliptic curve defined over F. Since
there are only finitely many pairs (x, y) with x, y ∈ F, the group E(F) is
finite. Various properties of this group, for example, its order, turn out to
be important in many contexts. In this chapter, we present the basic theory
of elliptic curves over finite fields. Not only are the results interesting in
their own right, but also they are the starting points for the cryptographic
applications discussed in Chapter 6.

4.1 Examples

First, let’s consider some examples.

Example 4.1

Let E be the curve y2 = x3 +x+1 over F5. To count points on E, we make a
list of the possible values of x, then of x3 + x + 1 (mod 5), then of the square
roots y of x3 + x + 1 (mod 5). This yields the points on E.

x x3 + x + 1 y Points
0 1 ±1 (0, 1), (0, 4)
1 3 – –
2 1 ±1 (2, 1), (2, 4)
3 1 ±1 (3, 1), (3, 4)
4 4 ±2 (4, 2), (4, 3)
∞ ∞ ∞

Therefore, E(F5) has order 9.

95
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Let’s compute (3, 1) + (2, 4) on E. The slope of the line through the two
points is

4 − 1
2 − 3

≡ 2 (mod 5).

The line is therefore y = 2(x−3)+1 ≡ 2x. Substituting this into y2 = x3+x+1
and rearranging yields

0 = x3 − 4x2 + x + 1.

The sum of the roots is 4, and we know the roots 3 and 2. Therefore the
remaining root is x = 4. Since y = 2x, we have y ≡ 3. Reflecting across the
x-axis yields the sum:

(3, 1) + (2, 4) = (4, 2).

(Of course, we could have used the formulas of Section 2.2 directly.) A little
calculation shows that E(F5) is cyclic, generated by (0, 1) (Exercise 4.1).

Example 4.2
Let E be the elliptic curve y2 = x3 + 2 over F7. Then

E(F7) = {∞, (0, 3), (0, 4), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6)}.
An easy calculation shows that all of these points P satisfy 3P = ∞, so the
group is isomorphic to Z3 ⊕ Z3.

Example 4.3
Let’s consider the elliptic curve E given by y2 +xy = x3 +1 defined over F2.
We can find the points as before and obtain

E(F2) = {∞, (0, 1), (1, 0), (1, 1)}.
This is a cyclic group of order 4. The points (1, 0), (1, 1) have order 4 and the
point (0, 1) has order 2.

Now let’s look at E(F4). Recall that F4 is the finite field with 4 elements.
We can write it as F4 = {0, 1, ω, ω2}, with the relation ω2 + ω + 1 = 0 (which
implies, after multiplying by ω + 1, that ω3 = 1). Let’s list the elements of
E(F4).

x = 0 ⇒ y2 = 1 ⇒ y = 1
x = 1 ⇒ y2 + y = 0 ⇒ y = 0, 1
x = ω ⇒ y2 + ωy = 0 ⇒ y = 0, ω

x = ω2 ⇒ y2 + ω2y = 0 ⇒ y = 0, ω2

x = ∞ ⇒ y = ∞.

Therefore

E(F4) =
{∞, (0, 1), (1, 0), (1, 1), (ω, 0), (ω, ω), (ω2, 0), (ω2, ω2)

}
.
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Since we are in characteristic 2, there is at most one point of order 2 (see
Proposition 3.1). In fact, (0, 1) has order 2. Therefore, E(F4) is cyclic of
order 8. Any one of the four points containing ω or ω2 is a generator. This
may be verified by direct calculation, or by observing that they do not lie in
the order 4 subgroup E(F2). Let φ2(x, y) = (x2, y2) be the Frobenius map.
It is easy to see that φ2 permutes the elements of E(F4), and

E(F2) = {(x, y) ∈ E(F4) |φ2(x, y) = (x, y)} .

In general, for any elliptic curve E defined over Fq and any extension F of
Fq, the Frobenius map φq permutes the elements of E(F) and is the identity
on the subgroup E(Fq). See Lemma 4.5.

Two main restrictions on the groups E(Fq) are given in the next two the-
orems.

THEOREM 4.1
LetE be an elliptic curve overthe finite field Fq.Then

E(Fq) � Zn or Zn1 ⊕ Zn2

forsom e integer n ≥ 1,orforsom e integersn1, n2 ≥ 1 with n1 dividing n2.

PROOF A basic result in group theory (see Appendix B) says that a finite
abelian group is isomorphic to a direct sum of cyclic groups

Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znr
,

with ni|ni+1 for i ≥ 1. Since, for each i, the group Zni
has n1 elements of

order dividing n1, we find that E(Fq) has nr
1 elements of order dividing n1. By

Theorem 3.2, there are at most n2
1 such points (even if we allow coordinates

in the algebraic closure of Fq). Therefore r ≤ 2. This is the desired result
(the group is trivial if r = 0; this case is covered by n = 1 in the theorem).

THEOREM 4.2 (Hasse)
LetE be an elliptic curve over the finite field Fq. Then the order ofE(Fq)
satisfies

|q + 1 − #E(Fq)| ≤ 2
√

q.

The proof will be given in Section 4.2.
A natural question is what groups can actually occur as groups E(Fq). The

answer is given in the following two results, which are proved in [130] and [93],
respectively.
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THEOREM 4.3
Letq = pn bea powerofa prim e p and letN = q+1−a.Thereisan elliptic
curveE defined overFq such that#E(Fq) = N ifand only if|a| ≤ 2

√
q and

a satisfiesone ofthe following:

1. gcd(a, p) = 1

2. n iseven and a = ±2
√

q

3. n iseven,p �≡ 1 (mod 3),and a = ±√
q

4. n isodd,p = 2 or 3,and a = ±p(n+1)/2

5. n iseven,p �≡ 1 (mod 4),and a = 0

6. n isodd and a = 0.

THEOREM 4.4
LetN be an integerthatoccursasthe orderofan elliptic curve overa finite
field Fq, as in Theorem 4.3. W rite N = pen1n2 with p � n1n2 and n1|n2

(possibly n1 = 1).There isan elliptic curveE overFq such that

E(Fq) � Zpe ⊕ Zn1 ⊕ Zn2

ifand only if

1. n1|q − 1 in cases(1),(3),(4),(5),(6)ofTheorem 4.3

2. n1 = n2 in case (2)ofTheorem 4.3.

These are the only groupsthatoccur asgroupsE(Fq).

4.2 The Frobenius Endomorphism

Let Fq be a finite field with algebraic closure Fq and let

φq : Fq −→ Fq,

x �→ xq

be the Frobenius map for Fq (see Appendix C for a review of finite fields).
Let E be an elliptic curve defined over Fq. Then φq acts on the coordinates
of points in E(Fq):

φq(x, y) = (xq, yq), φq(∞) = ∞.
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LEMMA 4.5
LetE be defined overFq,and let(x, y) ∈ E(Fq).

1. φq(x, y) ∈ E(Fq)

2. (x, y) ∈ E(Fq) ifand only ifφq(x, y) = (x, y).

PROOF One fact we need is that (a + b)q = aq + bq when q is a power of
the characteristic of the field. We also need that aq = a for all a ∈ Fq. See
Appendix C.

Since the proof is the same for the Weierstrass and the generalized Weier-
strass equations, we work with the general form. We have

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

with ai ∈ Fq. Raise the equation to the qth power to obtain

(yq)2 + a1(xqyq) + a3(yq) = (xq)3 + a2(xq)2 + a4(xq) + a6.

This means that (xq, yq) lies on E, which proves (1).
For (2), again recall that x ∈ Fq if and only if φq(x) = x (see Appendix C),

and similarly for y. Therefore

(x, y) ∈ E(Fq) ⇔ x, y ∈ Fq

⇔ φq(x) = x and φq(y) = y

⇔ φq(x, y) = (x, y).

LEMMA 4.6
LetE be an elliptic curve defined overFq. Then φq isan endom orphism of

E ofdegree q,and φq isnotseparable.

This is the same as Lemma 2.20.
Note that the kernel of the endomorphism φq is trivial. This is related to

the fact that φq is not separable. See Proposition 2.21.
The following result is the key to counting points on elliptic curves over

finite fields. Since φq is an endomorphism of E, so are φ2
q = φq ◦ φq and also

φn
q = φq ◦ φq ◦ · · · ◦ φq for every n ≥ 1. Since multiplication by −1 is also an

endomorphism, the sum φn
q − 1 is an endomorphism of E.

PROPOSITION 4.7
LetE be defined overFq and letn ≥ 1.

1. K er(φn
q − 1) = E(Fqn).
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2. φn
q − 1 isa separable endom orphism ,so #E(Fqn) = deg(φn

q − 1).

PROOF Since φn
q is the Frobenius map for the field Fqn , part (1) is just

a restatement of Lemma 4.5. The fact that φn
q − 1 is separable was proved in

Proposition 2.29. Therefore (2) follows from Proposition 2.21.

ProofofHasse’stheorem :
We can now prove Hasse’s theorem (Theorem 4.2). Let

a = q + 1 − #E(Fq) = q + 1 − deg(φq − 1). (4.1)

We want to show that |a| ≤ 2
√

q. We need the following.

LEMMA 4.8
Letr, s be integerswith gcd(s, q) = 1.Then deg(rφq − s) = r2q + s2 − rsa.

PROOF Proposition 3.16 implies that

deg(rφq −s) = r2 deg(φq)+s2 deg(−1)+rs(deg(φq −1)−deg(φq)−deg(−1)).

Since deg(φq) = q and deg(−1) = 1, the result follows from (4.1).

REMARK 4.9 The assumption that gcd(s, q) = 1 is not needed. We
include it since we have proved Proposition 3.16 not in general, but only
when the endomorphisms are separable or φq.

We can now finish the proof of Hasse’s theorem. Since deg(rφq − s) ≥ 0,
the lemma implies that

q
(r

s

)2

− a
(r

s

)
+ 1 ≥ 0

for all r, s with gcd(s, q) = 1. The set of rational numbers r/s such that
gcd(s, q) = 1 is dense in R. (Proof:Take s to be a power of 2 or a power of 3,
one of which must be relatively prime with q. The rationals of the form r/2m

and those of the form r/3m are easily seen to be dense in R.) Therefore,

qx2 − ax + 1 ≥ 0

for all real numbers x. Therefore the discriminant of the polynomial is negative
or 0, which means that a2 − 4q ≤ 0, hence |a| ≤ 2

√
q. This completes the

proof of Hasse’s theorem.

There are several major ingredients of the above proof. One is that we can
identify E(Fq) as the kernel of φq − 1. Another is that φq − 1 is separable,
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so the order of the kernel is the degree of φq − 1. A third major ingredient
is the Weil pairing, especially part (6) of Theorem 3.9, and its consequence,
Proposition 3.16.

Proposition 4.7 has another very useful consequence.

THEOREM 4.10
LetE be an elliptic curve defined overFq.Leta be asin Equation 4.1.Then

φ2
q − aφq + q = 0

asendom orphism sofE,and a isthe unique integer k such that

φ2
q − kφq + q = 0.

In otherwords,if(x, y) ∈ E(Fq),then(
xq2

, yq2
)
− a (xq, yq) + q(x, y) = ∞,

and a istheuniqueintegersuch thatthisrelation holdsforall(x, y) ∈ E(Fq).
M oreover,a isthe unique integer satisfying

a ≡ Trace((φq)m) mod m

forallm with gcd(m, q) = 1.

PROOF If φ2
q − aφq + q is not the zero endomorphism, then its kernel

is finite (Proposition 2.21). We’ll show that the kernel is infinite, hence the
endomorphism is 0.

Let m ≥ 1 be an integer with gcd(m, q) = 1. Recall that φq induces a
matrix (φq)m that describes the action of φq on E[m]. Let

(φq)m =
(

s t
u v

)
.

Since φq−1 is separable by Proposition 2.29, Propositions 2.21 and 3.15 imply
that

#Ker(φq − 1) = deg(φq − 1) ≡ det((φq)m − I)
= sv − tu − (s + v) + 1 (mod m).

By Proposition 3.15, sv−tu = det((φq)m) ≡ q (mod m). By (4.1), #Ker(φq−
1) = q + 1 − a. Therefore,

Trace((φq)m) = s + v ≡ a (mod m).
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By the Cayley-Hamilton theorem of linear algebra, or by a straightforward
calculation (substituting the matrix into the polynomial), we have

(φq)2m − a(φq)m + qI ≡ 0 (mod m),

where I is the 2×2 identity matrix. (Note that X2−aX+q is the characteristic
polynomial of (φq)m.) This means that the endomorphism φ2

q − aφq + q is
identically zero on E[m]. Since there are infinitely many choices for m, the
kernel of φ2

q − aφq + q is infinite, so the endomorphism is 0.
Suppose a1 �= a satisfies φ2

q − a1φq + q = 0. Then

(a − a1)φq = (φ2
q − a1φq + q) − (φ2

q − aφq + q) = 0.

By Theorem 2.22, φq : E(Fq) → E(Fq) is surjective. Therefore, (a − a1)
annihilates E(Fq). In particular, (a − a1) annihilates E[m] for every m ≥ 1.
Since there are points in E[m] of order m when gcd(m, q) = 1, we find that
a − a1 ≡ 0 (mod m) for such m. Therefore a − a1 = 0, so a is unique.

We single out the following result, which was proved during the proof of
Theorem 4.10.

PROPOSITION 4.11
LetE be an elliptic curve overFq and let(φq)m denote them atrix giving the
action ofthe Frobeniusφq on E[m].Leta = q + 1 − #E(Fq).Then

Trace((φq)m) ≡ a (mod m), det((φq)m) ≡ q (mod m).

The polynomial X2−aX+q is often called the characteristic polynomial
of Frobenius.

4.3 Determining the Group Order

Hasse’s theorem gives bounds for the group of points on an elliptic curve
over a finite field. In this section and in Section 4.5, we’ll discuss some methods
for actually determining the order of the group.

4.3.1 Subfield Curves

Sometimes we have an elliptic curve E defined over a small finite field Fq

and we want to know the order of E(Fqn) for some n. We can determine the
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order of E(Fqn) when n = 1 by listing the points or by some other elementary
procedure. The amazing fact is that this allows us to determine the order for
all n.

THEOREM 4.12
Let#E(Fq) = q + 1 − a.W riteX2 − aX + q = (X − α)(X − β).Then

#E(Fqn) = qn + 1 − (αn + βn)

foralln ≥ 1.

PROOF First, we need the fact that αn + βn is an integer. This could
be proved by remarking that it is an algebraic integer and is also a rational
number. However, it can also be proved by more elementary means.

LEMMA 4.13
Let sn = αn + βn. Then s0 = 2, s1 = a,and sn+1 = asn − qsn−1 for all

n ≥ 1.

PROOF Multiply the relation α2 − aα + q = 0 by αn−1 to obtain αn+1 =
aαn − qαn−1. There is a similar relation for β. Add the two relations to
obtain the lemma.

It follows immediately from the lemma that αn + βn is an integer for all
n ≥ 0.

Let

f(X) = (Xn − αn)(Xn − βn) = X2n − (αn + βn)Xn + qn.

Then X2 − aX + q = (X − α)(X − β) divides f(X). It follows immediately
from the standard algorithm for dividing polynomials that the quotient is
a polynomial Q(X) with integer coefficients (the main points are that the
leading coefficient of X2 − aX + q is 1 and that this polynomial and f(X)
have integer coefficients). Therefore

(φn
q )2 − (αn + βn)φn

q + qn = f(φq) = Q(φq)(φ2
q − aφq + q) = 0,

as endomorphisms of E, by Theorem 4.10. Note that φn
q = φqn . By Theo-

rem 4.10, there is only one integer k such that φ2
qn − kφqn + qn = 0, and such

a k is determined by k = qn + 1 − #E(Fqn). Therefore,

αn + βn = qn + 1 − #E(Fqn).

This completes the proof of Theorem 4.12.
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Example 4.4
In Example 4.3, we showed that the elliptic curve E given by y2+xy = x3+1
over F2 satisfies #E(F2) = 4. Therefore, a = 2 + 1 − 4 = −1, and we obtain
the polynomial

X2 + X + 2 =
(

X − −1 +
√−7

2

)(
X − −1 −√−7

2

)
.

Theorem 4.12 says that

#E(F4) = 4 + 1 −
(−1 +

√−7
2

)2

−
(−1 −√−7

2

)2

.

Rather than computing the last expression directly, we can use the recurrence
in Lemma 4.13:

s2 = as1 − 2s0 = −(−1) − 2(2) = −3.

It follows that #E(F4) = 4 + 1 − (−3) = 8, which is what we calculated by
listing points.

Similarly, using the recurrence or using sufficiently high precision floating
point arithmetic yields(−1 +

√−7
2

)101

+
(−1 −√−7

2

)101

= 2969292210605269.

Therefore,

#E(F2101) = 2101 + 1 − 2969292210605269
= 2535301200456455833701195805484.

The advantage of Theorem 4.12 is that it allows us to determine the group
order for certain curves very quickly. The disadvantage is that it requires the
curve to be defined over a small finite field.

4.3.2 Legendre Symbols

To make a list of points on y2 = x3 + Ax + B over a finite field, we tried
each possible value of x, then found the square roots y of x3 +Ax+B, if they
existed. This procedure is the basis for a simple point counting algorithm.

Recall the Legendre symbol
(

x
p

)
for an odd prime p, which is defined as

follows:(
x

p

)
=

⎧⎨⎩+1 if t2 ≡ x (mod p) has a solution t �≡ 0 (mod p),
−1 if t2 ≡ x (mod p) has no solution t

0 if x ≡ 0 (mod p).
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This can be generalized to any finite field Fq with q odd by defining, for
x ∈ Fq, (

x

Fq

)
=

⎧⎨⎩
+1 if t2 = x has a solution t ∈ F×

q ,
−1 if t2 = x has no solution t ∈ Fq,

0 if x = 0.

THEOREM 4.14

LetE be an elliptic curve defined by y2 = x3 + Ax + B overFq.Then

#E(Fq) = q + 1 +
∑

x∈Fq

(
x3 + Ax + B

Fq

)
.

PROOF For a given x0, there are two points (x, y) with x-coordinate x0

if x3
0 + Ax0 + B is a nonzero square in Fq, one such point if it is zero, and no

points if it is not a square. Therefore, the number of points with x-coordinate
x0 equals 1 +

(
x3
0+Ax0+B

Fq

)
. Summing over all x0 ∈ Fq, and including 1 for

the point ∞, yields

#E(Fq) = 1 +
∑

x∈Fq

(
1 +

(
x3 + Ax + B

Fq

))
.

Collecting the term 1 from each of the q summands yields the desired formula.

COROLLARY 4.15

Letx3 + Ax + B be a polynom ialwith A,B ∈ Fq,where q isodd.Then∣∣∣∣∣∣
∑

x∈Fq

(
x3 + Ax + B

Fq

)∣∣∣∣∣∣ ≤ 2
√

q.

PROOF When x3 +Ax+B has no repeated roots, y2 = x3 +Ax+B gives
an elliptic curve, so Theorem 4.14 says that

q + 1 − #E(Fq) = −
∑

x∈Fq

(
x3 + Ax + B

Fq

)
.

The result now follows from Hasse’s theorem.
The case where x3 + Ax + B has repeated roots follows from Exercise 4.3.
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Example 4.5

Let E be the curve y2 = x3 + x + 1 over F5, as in Example 4.1. The nonzero
squares mod 5 are 1 and 4. Therefore

#E(F5) = 5 + 1 +
4∑

x=0

(
x3 + x + 1

5

)

= 6 +
(

1
5

)
+
(

3
5

)
+
(

1
5

)
+
(

1
5

)
+
(

4
5

)
= 6 + 1 − 1 + 1 + 1 + 1 = 9.

When using Theorem 4.14, it is possible to compute each individual gen-
eralized Legendre symbol quickly (see Exercise 4.4), but it is more efficient
to square all the elements of F×

q and store the list of squares. For simplicity,
consider the case of Fp. Make a vector with p entries, one for each element
of Fp. Initially, all entries in the vector are set equal to −1. For each j with
1 ≤ j ≤ (p−1)/2, square j and reduce to get k mod p. Change the kth entry
in the vector to +1. Finally, change the 0th entry in the vector to 0. The
resulting vector will be a list of the values of the Legendre symbol.

Theorem 4.14, which is sometimes known as the Lang-Trotter method,
works quickly for small values of q, perhaps q < 100, but is slow for larger q,
and is impossible to use when q is around 10100 or larger.

4.3.3 Orders of Points

Let P ∈ E(Fq). The order of P is the smallest positive integer k such that
kP = ∞. A fundamental result from group theory (a corollary of Lagrange’s
theorem) is that the order of a point always divides the order of the group
E(Fq). Also, for an integer n, we have nP = ∞ if and only if the order of
P divides n. By Hasse’s theorem, #E(Fq) lies in an interval of length 4

√
q.

Therefore, if we can find a point of order greater than 4
√

q, there can be only
one multiple of this order in the correct interval, and it must be #E(Fq).
Even if the order of the point is smaller than 4

√
q, we obtain a small list

of possibilities for #E(Fq). Using a few more points often shortens the list
enough that there is a unique possibility for #E(Fq). For an addiitonal trick
that helps in this situation, see Proposition 4.18.

How do we find the order of a point? If we know the order of the full group
of points, then we can look at factors of this order. But, at present, the order
of the group is what we’re trying to find. In Section 4.3.4, we’ll discuss a
method (Baby Step, Giant Step) for finding the order of a point.
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Example 4.6
Let E be the curve y2 = x3 +7x+1 over F101. It is possible to show that the
point (0, 1) has order 116, so N101 = #E(F101) is a multiple of 116. Hasse’s
theorem says that

101 + 1 − 2
√

101 ≤ N101 ≤ 101 + 1 + 2
√

101,

which means that 82 ≤ N101 ≤ 122. The only multiple of 116 in this range is
116, so N101 = 116. As a corollary, we find that the group of points is cyclic
of order 116, generated by (0,1).

Example 4.7
Let E be the elliptic curve y2 = x3−10x+21 over F557. The point (2, 3) can
be shown to have order 189. Hasse’s theorem implies that 511 ≤ N557 ≤ 605.
The only multiple of 189 in this range is 3 · 189 = 567. Therefore N557 = 567.

Example 4.8
Let E be the elliptic curve y2 = x3 + 7x + 12 over F103. The point (−1, 2)

has order 13 and the point (19, 0) has order 2. Therefore the order N103 of
E(F103) is a multiple of 26. Hasse’s theorem implies that 84 ≤ N103 ≤ 124.
The only multiple of 26 in that range is 104, so N103 = 104.

Example 4.9
Let E be the elliptic curve y2 = x3 +2 over F7, as in Example 4.2. The group
of points E(F7) is isomorphic to Z3 ⊕ Z3. Every point, except ∞, has order
3, so the best we can conclude with the present method is that the order N7

of the group is a multiple of 3. Hasse’s theorem says that 3 ≤ N7 ≤ 13, so the
order is 3, 6, 9, or 12. Of course, if we find two independent points of order 3
(that is, one is not a multiple of the other), then they generate a subgroup of
order 9. This means that the order of the full group is a multiple of 9, hence
is 9.

The situation of the last example, where E(Fq) � Zn ⊕ Zn, makes it more
difficult to find the order of the group of points, but is fairly rare, as the next
result shows.

PROPOSITION 4.16
LetE be an elliptic curve overFq and suppose

E(Fq) � Zn ⊕ Zn

forsom e integern.Then either q = n2 + 1 or q = n2 ±n + 1 or q = (n± 1)2.
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PROOF By Hasse’s theorem, n2 = q + 1 − a, with |a| ≤ 2
√

q. To prove
the proposition, we use the following lemma, which puts a severe restriction
on a.

LEMMA 4.17

a ≡ 2 (mod n).

PROOF Let p be the characteristic of Fq. Then p � n; otherwise, there
would be p2 points in E[p], which is impossible in characteristic p by Theo-
rem 3.2.

Since E[n] ⊆ E(Fq), Corollary 3.11 implies that the nth roots of unity
are in Fq, so q − 1 must be a multiple of n (see Appendix C). Therefore,
a = q + 1 − n2 ≡ 2 (mod n).

Write a = 2 + kn for some integer k. Then

n2 = q + 1 − a = q − 1 − kn, so q = n2 + kn + 1.

By Hasse’s theorem,

|2 + kn| ≤ 2
√

q.

Squaring this last inequality yields

4 + 4kn + k2n2 ≤ 4q = 4(n2 + kn + 1).

Therefore, |k| ≤ 2. The possibilities k = 0,±1,±2 give the values of q listed
in the proposition. This completes the proof of Proposition 4.16.

Most values of q are not of the form given in the proposition, and even
for such q most elliptic curves do not have E(Fq) � Zn ⊕ Zn (only a small
fraction have order n2), so we can regard Zn ⊕ Zn as rare.

More generally, most q are such that all elliptic curves over Fq have points
of order greater than 4

√
q (Exercise 4.6). Therefore, with a little luck, we can

usually find points with orders that allow us to determine #E(Fq).
The following result of Mestre shows that for E defined over Fp, there is

a point of sufficiently high order on either E or its quadratic twist. The
quadratic twist of E is defined as follows. Let d ∈ F×

p be a quadratic non-
residue mod p. If E has equation y2 = x3 + Ax + B, then the quadratic twist
E′ has the equation y2 = x3 + Ad2x + Bd3 (see Exercise 2.23). By Exercise
4.10, if #E(Fp) = p + 1 − a then E′ has p + 1 + a points. Once we know the
order of one of these two groups, we know a and therefore know the order of
both groups.
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PROPOSITION 4.18
Letp > 229 be prim e and letE be an elliptic curve over Fp. Either E or
itsquadratic twistE′ hasa pointP whose orderhasonly one m ultiple in the
interval

(
p + 1 − 2

√
p, p + 1 + 2

√
p
)
.

PROOF Let

E(Fp) � Zm ⊕ ZM , E′(Fp) � Zn ⊕ ZN ,

with m|M and n|N . If mM = #E(Fp) = p + 1 − a, then nN = #E′(Fp) =
p + 1 + a. Since m|M and n|N , we have m2|p + 1 − a and n2|p + 1 + a.
Therefore, gcd(m2, n2)|2a.

Since E[m] ⊆ E(Fp), then μm ⊆ F×
p by Corollary 3.11, so p ≡ 1 (mod m).

Therefore, 2 − a ≡ p + 1 − a ≡ 0 (mod m). Similarly, 2 + a ≡ 0 (mod n).
Therefore, gcd(m,n)|(2 − a) + (2 + a) = 4, and gcd(m2, n2)|16.

If 4|m and 4|n, then 16| gcd(m2, n2), which divides 2a. Then 8|a, which is
impossible since then 2−a ≡ 0 (mod m) implies 2−0 ≡ 0 (mod 4). Therefore,
gcd(m2, n2)|4. This implies that the least common multiple of m2 and n2 is
a multiple of m2n2/4.

Let φ be the pth power Frobenius endomorphism for E. Since E[n] ⊆
E(Fp), it follows that φ acts trivially on E[n]. Choose a basis for E[n2]. The
action of φ on E[n2] is given by a matrix of the form(

1 + sn tn
un 1 + vn

)
.

By Proposition 4.11, we have a ≡ 2 + (s+ v)n (mod n2) and p ≡ 1 + (s+ v)n
(mod n2). Therefore, 4p−a2 ≡ 0 (mod n2). Similarly, 4p−a2 ≡ 0 (mod m2).

It follows that the least common multiple of m2 and n2 divides 4p − a2, so

m2n2

4
≤ 4p − a2.

Suppose that both M and N are less than 4
√

p. Then, since a2 < 4p,

(p − 1)2 < (p + 1)2 − a2 = (p + 1 − a)(p + 1 + a) = mMnN

<
(
4(4p − a2)

)1/2
(4
√

p)2 ≤ 64p3/2.

A straightforward calculation shows that this implies that p < 4100. We have
therefore shown that if p > 4100, then either M or N must be greater than
4
√

p. This means that either E or E′ has a point of order greater than 4
√

p.
Therefore, there can be at most one multiple of this order in the interval(
p + 1 − 2

√
p, p + 1 + 2

√
p
)
. This proves the theorem for p > 4100.

Suppose now that 457 < p < 4100. A straightforward computation shows
that there are no integers a,m, n with |a| < 2

√
p such that
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1. m2|p + 1 − a

2. n2|p + 1 + a

3. (p + 1 − a)/m < 4
√

p

4. (p + 1 + a)/n < 4
√

p.

Therefore, the theorem is true for p > 457.
For p = 457, we may take a = 10, m = 8, n = 6, which correspond

to the groups Z8 ⊕ Z56 and Z6 ⊕ Z78 (and can be realized by the curves
E : y2 = x3−125 and its quadratic twist E′ : y2 = x3−1). Note, however, that
the only multiple of 56 in the interval

(
457 + 1 − 2

√
457, 457 + 1 + 2

√
457

)
=

(415.2, 500.8) is 448, which is the order of E(F457). Similarly, the only mul-
tiple of 78 in this interval is 468, which is the order of E′(F457). Therefore,
the theorem still holds in this case.

In fact, the search for a,m, n can be extended in this way to 229 < p ≤ 457,
with conditions (3) and (4) replaced by

3’. there is more than one multiple of (p + 1 − a)/m in the interval(
p + 1 − 2

√
p, p + 1 + 2

√
p
)

4’. there is more than one multiple of (p + 1 + a)/m in the interval(
p + 1 − 2

√
p, p + 1 + 2

√
p
)
.

No values of a,m, n exist satisfying these conditions, so the theorem holds.

Example 4.10
The theorem is false for p = 229. Consider the curve E : y2 = x3 − 1.
A calculation shows that E(F229) � Z6 ⊕ Z42. Therefore, 42P = ∞ for
all P ∈ E(F229). The Hasse bound says that 200 ≤ #E(F229) ≤ 260, so the
existence of a point of order 42 allows both the values 210 and 252. Since 2 is a
quadratic nonresidue mod 229, the curve E′ : y2 = x3−8 is the quadratic twist
of E. A calculation shows that E′(F229) � Z4 ⊕ Z52. Therefore, 52P = ∞
for all P ∈ E′(F229). The existence of a point of order 52 allows both the
values 208 and 260. Therefore, neither E nor its quadratic twist E′ has a
point whose order has only one multiple in the Hasse interval.

Suppose E(Fq) � Zn1 ⊕ Zn2 with n1|n2. Then the order of every element
divides n2. If we choose some random points and compute their orders, what
is the chance that the least common multiple of these orders is n2? Let P1, P2

be points of orders n1, n2 such that every P ∈ E(Fq) is uniquely expressible in
the form P = a1P1 + a2P2 with 0 ≤ ai < ni. Let p be a prime dividing n2. If
we take a random point P , then the probability is 1−1/p that p � a2. If p � a2,
then the order of P contains the highest power of p possible. If p is large,
then this means that it is very likely that the order of one randomly chosen
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point will contribute the correct power of p to the least common multiple of
the orders of the points. If p is small, say p = 2, then the probability is at
least 1/2. This means that if we choose several randomly chosen points, the
least common multiples of their orders should still have the correct power of
p. The conclusion is that if we choose several random points and compute the
least common multiple of their orders, it is very likely that we will obtain n2,
which is as large as possible.

The following result of Cremona and Harley shows that knowledge of n2

usually determines the group structure.

PROPOSITION 4.19
LetE be an elliptic curve over Fq. W rite E(Fq) � Zn1 ⊕ Zn2 with n1|n2.
Suppose thatq isnotone ofthe following:

3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37,

43, 61, 73, 181, 331, 547.

Then n2 uniquely determ inesn1.

PROOF Fix q and suppose there exist n2, x, y (regard x, y as two possible
values of n1) with

1. x, y|n2

2.
(√

q − 1
)2 ≤ n2x < n2y ≤ (√

q + 1
)2

(so the groups of order n2x and n2y satisfy the bounds in Hasse’s theorem).
Our first goal is to show that if n2, x, y satisfying (1) and (2) exist then
q ≤ 4612.

Let d = gcd(x, y). Then n′
2 = dn2, x

′ = x/d, y′ = y/d also satisfy (1), (2).
So we may assume that gcd(x, y) = 1. Since n2y − n2x > 0,

n2 ≤ n2y − n2x ≤ (
√

q + 1)2 − (
√

q − 1)2 = 4
√

q.

Since x, y|n2, we have xy|n2, hence xy ≤ n2. Therefore,

x2 ≤ xy ≤ n2 ≤ 4
√

q,

which implies that

(
√

q − 1)2 ≤ n2x ≤ (4
√

q) (4
√

q)1/2
.

But
(√

q − 1
)2

> 8q3/4 when q ≥ 4613. Therefore, we must have q ≤ 4612.
The values of q ≤ 4612 can be checked on a computer to get a much smaller

list of possibilities for q. However, we can speed up the search with the
following observations.
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First,
(√

q − 1
)2 ≤ n2x ≤ 4

√
qx implies that x >

(√
q − 2

)
/4. Second,

y2 ≤ n2y ≤ (√
q + 1

)2. Third, xy2 = (xy)y ≤ n2y ≤ (√
q + 1

)2. Finally,
n1|q − 1 (by Corollary 3.11), so x, y|q − 1.

Therefore, we should look for values of q ≤ 4612 that are primes or prime
powers and such that q − 1 has divisors x, y with

1. gcd(x, y) = 1

2.
(√

q − 2
)
/4 < x < y ≤ √

q + 1

3. xy2 ≤ (√
q + 1

)2.
The values of q for which such x, y exist are those on the list in the statement
of the theorem, plus the five values q = 49, 81, 121, 169, 841. Therefore, for
all other q, a number n2 cannot have two possible values x, y for n1, so n1 is
uniquely determined.

We need to eliminate the remaining five values. For example, consider
q = 49. One solution is x = 2, y = 3, n2 = 18, which corresponds to #E(Fq) =
36 and 54. By Theorem 4.4, or by Exercise 4.14, if #E(Fq) =

(√
q − 1

)2,
then E(Fq) � Z√

q−1 ⊕ Z√
q−1. Therefore, if #E(F49) = 36, we must have

n1 = n2 = 6. This arises from x = 2 after multiplying by 3 (recall that
we removed d = gcd(x, y) from x, y in order to make them relatively prime).
Multiplying y = 3 by d = 3 yields n1 = 9, n2 = 6, which does not satisfy n1|n2.
Therefore, the solution x = 2, y = 3 for q = 49 is eliminated. Similarly, all
solutions for all of the five values q = 49, 81, 121, 169, 841 can be eliminated.
This completes the proof.

.

4.3.4 Baby Step, Giant Step

Let P ∈ E(Fq). We want to find the order of P . First, we want to find
an integer k such that kP = ∞. Let #E(Fq) = N . By Lagrange’s theorem,
NP = ∞. Of course, we might not know N yet, but we know that q+1−2

√
q ≤

N ≤ q + 1 + 2
√

q. We could try all values of N in this range and see which
ones satisfy NP = ∞. This takes around 4

√
q steps. However, it is possible

to speed this up to around 4q1/4 steps by the following algorithm.

1. Compute Q = (q + 1)P .

2. Choose an integer m with m > q1/4. Compute and store the points jP
for j = 0, 1, 2, . . . ,m.

3. Compute the points

Q + k(2mP ) for k = −m,−(m − 1), . . . , m
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until there is a match Q+k(2mP ) = ±jP with a point (or its negative)
on the stored list.

4. Conclude that (q + 1 + 2mk ∓ j)P = ∞. Let M = q + 1 + 2mk ∓ j.

5. Factor M . Let p1, . . . , pr be the distinct prime factors of M .

6. Compute (M/pi)P for i = 1, . . . , r. If (M/pi)P = ∞ for some i, replace
M with M/pi and go back to step (5). If (M/pi)P �= ∞ for all i then
M is the order of the point P .

7. If we are looking for the #E(Fq), then repeat steps (1)-(6) with ran-
domly chosen points in E(Fq) until the least common multiple of the
orders divides only one integer N with q + 1− 2

√
q ≤ N ≤ q + 1 + 2

√
q.

Then N = #E(Fq).

There are two points that must be addressed.
I. Assuming that there is a match, this method clearly produces an integer

that annihilates P . But why is there a match?

LEMMA 4.20
Let a be an integer with |a| ≤ 2m2. There exist integers a0 and a1 with
−m < a0 ≤ m and −m ≤ a1 ≤ m such that

a = a0 + 2ma1.

PROOF Let a0 ≡ a (mod 2m), with −m < a0 ≤ m and a1 = (a−a0)/2m.
Then

|a1| ≤ (2m2 + m)/2m < m + 1.

Let a = a0 + 2ma1 be as in the lemma and let k = −a1. Then

Q + k(2mP ) = (q + 1 − 2ma1)P
= (q + 1 − a + a0)P = NP + a0P

= a0P = ±jP,

where j = |a0|. Therefore, there is a match.

II. Why does step (6) yield the order of P?

LEMMA 4.21
LetG be an additive group (with identity elem ent0)and letg ∈ G.Suppose

Mg = 0 for som e positive integer M. Let p1, . . . , pr be the distinctprim es
dividingM.If(M/pi)g �= 0 foralli,then M isthe orderofg.
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PROOF Let k be the order of g. Then k|M . Suppose k �= M . Let pi be
a prime dividing M/k. Then pik|M , so k|(M/pi). Therefore, (M/pi)g = 0,
contrary to assumption. Therefore k = M .

Therefore, step (6) finds the order of P .

REMARK 4.22 (1) To save storage space, it might be more efficient to
store only the x coordinates of the points jP (along with the corresponding
integer j), since looking for a match with ±jP only requires the x-coordinate
(assuming we are working with a Weierstrass equation). When a match is
found, the two possible y-coordinates can be recomputed.

(2) Computing Q + k(2mP ) can be done by computing Q and 2mP once
for all. To get from Q+k(2mP ) to Q+(k+1)(2mP ), simply add 2mP rather
than recomputing everything. Similarly, once jP has been computed, add P
to get (j + 1)P .

(3) We are assuming that we can factor M . If not, we can at least find all
the small prime factors pi and check that (M/pi)P �= ∞ for these. Then M
will be a good candidate for the order of P .

(4) Why is the method called “Baby Step, Giant Step”? The baby steps
are from a point jP to (j + 1)P . The giant steps are from a point k(2mP )
to (k + 1)(2mP ), since we take the “bigger” step 2mP .

Example 4.11
Let E be the elliptic curve y2 = x3 − 10x + 21 over F557, as in Example 4.7.
Let P = (2, 3). We follow the procedure above.

1. Q = 558P = (418, 33).

2. Let m = 5, which is greater than 5571/4. The list of jP is

∞, (2, 3), (58, 164), (44, 294), (56, 339), (132, 364).

3. When k = 1, we have Q+ k(2mP ) = (2, 3), which matches the point on
our list for j = 1.

4. We have (q + 1 + 2mk − j)P = 567P = ∞.

5. Factor 567 = 34 ·7. Compute (567/3)P = 189P = ∞. We now have 189
as a candidate for the order of P .

6. Factor 189 = 337. Compute (189/3)P = (38, 535) �= ∞ and (189/7)P =
(136, 360) �= ∞. Therefore 189 is the order of P .

As pointed out in Example 4.7, this suffices to determine that #E(F557) =
567.
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4.4 A Family of Curves

In this section we give an explicit formula for the number of points in E(Fp),
where E is the elliptic curve

y2 = x3 − kx,

and k �≡ 0 (mod p). Counting the points on this curve mod a prime p has a
long history, going back at least to Gauss.

THEOREM 4.23
Letp be an odd prim e and letk �≡ 0 (mod p). LetNp = #E(Fp),where E
isthe elliptic curve

y2 = x3 − kx.

1. Ifp ≡ 3 (mod 4),then Np = p + 1.

2. Ifp ≡ 1 (mod 4),write p = a2 + b2,where a, b are integerswith b even
and a + b ≡ 1 (mod 4).Then

Np =

⎧⎨⎩p + 1 − 2a ifk isa fourth powerm od p
p + 1 + 2a ifk isa square m od p butnota 4th power m od p
p + 1 ± 2b ifk isnota square m od p.

The proof of the theorem will take the rest of this section.
The integer a is uniquely determined by the conditions in the theorem, and

b is uniquely determined up to sign. When k is not a square mod p, the proof
below does not determine the sign of b. This is a much more delicate problem
and we omit it.

Example 4.12
Let p = 61 = (−5)2 + 62, where we chose the negative sign on 5 so that
−5 + 6 ≡ 1 (mod 4). Since k = 1 is a fourth power, the number of points on
y2 = x3 − x is p + 1 − 2(−5) = 72.

It is well known that every prime p ≡ 1 (mod 4) is a sum of two squares
(this follows from Proposition 4.27 below). The next lemma shows that a and
b are uniquely determined up to order and sign.

LEMMA 4.24
Suppose p isprim e and a, b, c, d are integerssuch thata2 + b2 = p = c2 + d2.
Then a = ±c and b = ±d,or a = ±d and b = ±c.
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PROOF We have (a/b)2+1 ≡ 0 ≡ (c/d)2+1 (mod p), so a/b ≡ ±(c/d). By
changing the sign of c if necessary, we may assume that a/b ≡ c/d (mod p),
hence ad − bc ≡ 0 (mod p). A quick calculation shows that

p2 = (ac + bd)2 + (bc − ad)2. (4.2)

Suppose ad = bc. Then (4.2) implies that ac + bd = ±p, so

±ap = a2c + abd = a2c + b2c = pc.

Hence, ±a = c. It follows that b = ±d.
Now suppose ad �= bc. Since ad− bc ≡ 0 (mod p), we have (ad− bc)2 ≥ p2.

Since (ac + bd)2 ≥ 0, it follows from (4.2) that ad− bc = ±p and ac + bd = 0.
Therefore,

±cp = acd − bc2 = −bd2 − bc2 = −bp,

so c = ±b. This implies that d = ±a.

If we require that a is odd and b is even, then a and b are uniquely deter-
mined up to sign. Suppose b ≡ 2 (mod 4). Then a + b ≡ 1 (mod 4) for a
unique choice of the sign of a. Similarly, if b ≡ 0 (mod 4), there is a unique
choice of the sign of a that makes a + b ≡ 1 (mod 4). Therefore, the integer
a in the lemma is uniquely determined by p if we require that a is odd and
a + b ≡ 1 (mod 4).

The main part of the proof of Theorem 4.23 involves the case p ≡ 1 (mod 4),
so let’s treat the case p ≡ 3 (mod 4) first. The main point is that −1 is
not a square mod p (Proof: if x2 ≡ −1, then 1 ≡ xp−1 ≡ (x2)(p−1)/2 ≡
(−1)(p−1)/2 ≡ (−1)odd = −1, contradiction). Moreover, a nonsquare times
a nonsquare is a square mod p. Therefore x3 − kx is a nonzero square mod
p if and only if (−x)3 − k(−x) = −(x3 − kx) is not a square mod p. Let’s
count points on E. Whenever x3 − kx = 0, we obtain one point (x, 0). For
the remaining values of x, we pair up x and −x. One of these gives two
points (the one that makes x3 − kx a square) and the other gives no points.
Therefore, each pair x,−x gives two points. Therefore, we obtain a total of p
points. The point ∞ gives one more, so we have p + 1 points.

Now assume p ≡ 1 (mod 4). The proof, which takes the rest of this sec-
tion, involves several steps and counts the points in terms of Jacobi sums.
Rather than count the points on E directly, we make the transformation (see
Theorem 2.17)

x =
2(v + 1)

u2
, y =

4(v + 1)
u3

,

which changes E into the curve C given by

v2 = (k/4)u4 + 1.

The inverse transformation is

u =
2x

y
, v = −1 +

2x3

y2
.
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We’ll count the points on C mod p.
First, there are a few special points for the transformation from E to C. The

point ∞ on E corresponds to (0, 1) on C. The point (0, 0) on E corresponds
to (0,−1) on C (see Theorem 2.17). If k is a square mod p, then the two
2-torsion points (±√

k, 0) correspond to the point at infinity on C. Therefore,

#E(Fp) = #{(u, v) ∈ Fp × Fp | v2 = (k/4)u4 + 1} + δ,

where

δ =
{

2 if k is a square mod p
0 if not.

Let g be a primitive root mod p, which means that

F×
p = {gj | 0 ≤ j < p − 1}.

Let i =
√−1 ∈ C. Define

χ2(gj) = (−1)j and χ4(gj) = ij .

Then χ2 and χ4 can be regarded as homomorphisms from F×
p to {±1,±i}.

Note that χ2
4 = χ2. The following lemma gets us started.

LEMMA 4.25
Letp ≡ 1 (mod 4) be prim e and letx ∈ F×

p .Then

#{u ∈ F×
p |u2 = x} =

1∑
�=0

χ2(x)�,

and

#{u ∈ F×
p |u4 = x} =

3∑
�=0

χ4(x)�.

PROOF Since p ≡ 1 (mod 4), there are 4 fourth roots of 1 in F×
p . There-

fore, if there is a solution to u4 ≡ x, there are 4 solutions. Write x ≡ gj

(mod p). Then x is a fourth power mod p if and only if j ≡ 0 (mod 4). We
have

3∑
�=0

χ4(x)� =
3∑

�=0

ij� =
{

4 if j ≡ 0 (mod 4)
0 if j �≡ 0 (mod 4),

which is exactly the number of u with u4 ≡ x. This proves the second half of
the lemma. The proof of the first half is similar.

If, instead, we sum over the elements of F×
p , we have the following result.

© 2008 by Taylor & Francis Group, LLC



118 CHAPTER 4 ELLIPTIC CURVES OVER FINITE FIELDS

LEMMA 4.26
Letp ≡ 1 (mod 4) be prim e.Then∑

b∈F×
p

χ4(b)� =
{

p − 1 if � ≡ 0 (mod 4)
0 if � �≡ 0 (mod 4).

PROOF If � ≡ 0 (mod 4), all the terms in the sum are 1, so the sum is
p − 1. If � �≡ 0 (mod 4), then χ4(g)� �= 1. Multiplying by g permutes the
elements of F×

p , so

χ4(g)�
∑

b∈F×
p

χ4(b)� =
∑

b∈F×
p

χ4(gb)� =
∑

c∈F×
p

χ4(c)�,

which is the original sum. Since χ4(g)� �= 1, the sum must be 0.

Define the Jacobi sums by

J(χj
2, χ

�
4) =

∑
a∈F

×
p

a �=1

χ2(a)jχ4(1 − a)�.

PROPOSITION 4.27
J(χ2, χ

2
4) = −1 and |J(χ2, χ4)|2 = p.

PROOF The first equality is proved as follows.

J(χ2, χ
2
4) =

∑
a∈F

×
p

a �=1

χ2(a)χ4(1 − a)2 =
∑

a�=0,1

χ2(a)χ2(1 − a),

since χ2
4 = χ2. Since χ2(a) = ±1, we have χ2(a) = χ2(a)−1 so the sum equals∑

a�=0,1

χ2(a)−1χ2(1 − a) =
∑

a�=0,1

χ2

(
1 − a

a

)
.

The map x �→ 1 − 1
x gives a permutation of the set of x ∈ Fp, x �= 0, 1.

Therefore, letting c = 1 − 1/a, we obtain∑
a�=0,1

χ2

(
1
a
− 1

)
=

∑
c �=0,1

χ2(−c) = −χ2(−1),

by Lemma 4.26. Since g(p−1)/2 ≡ −1 (mod p) (both have order 2 in the cyclic
group F×

p ), we have

1 = (±1)2 = χ2(g(p−1)/4)2 = χ2(g(p−1)/2) = χ2(−1).
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This yields the first equality of the proposition.
To prove the second equality, multiply the Jacobi sum by its complex con-

jugate to obtain

|J(χ2, χ4)|2 =
∑

a�=0,1

χ2(a)χ4(1 − a)
∑

b�=0,1

χ2(b)χ4(1 − b)

=
∑

a�=0,1

∑
b�=0,1

χ2

(a

b

)
χ4

(
1 − a

1 − b

)
.

We have used the fact that χ4(x) = χ4(x)−1. We now need the following.

LEMMA 4.28
LetS = {(x, y) |x, y ∈ F×

p ; x, y �= 1; x �= y}.The m ap

σ : (x, y) �→
(

x

y
,

1 − x

1 − y

)
isa perm utation ofS.

PROOF Let c = x/y and d = (1 − x)/(1 − y). Then x �= 0 yields c �= 0
and x �= 1 yields d �= 0. The assumption that x �= y yields c, d �= 1 and c �= d.
Therefore, (c, d) ∈ S.

To show that σ is surjective, let c, d ∈ S. Let

x = c
d − 1
d − c

, y =
d − 1
d − c

.

It is easily verified that (c, d) ∈ S implies (x, y) ∈ S and that σ(x, y) = (c, d).

Returning to the proof of the proposition, we find that

|J(χ2, χ4)|2 =
∑
a=b

χ2

(a

b

)
χ4

(
1 − a

1 − b

)
+

∑
(a,b)∈S

χ2

(a

b

)
χ4

(
1 − a

1 − b

)
= (p − 2) +

∑
(c,d)∈S

χ2(c)χ4(d)

= (p − 2) +
∑

d�=0,1

χ4(d)

⎛⎝ ∑
c∈F×

p

χ2(c) − χ2(1) − χ2(d)

⎞⎠
= (p − 2) +

∑
d�=0,1

χ4(d)(0 − 1 − χ4(d)2)

= (p − 2) −
∑

d�=0,1

χ4(d) −
∑

d�=0,1

χ4(d)3

= (p − 2) + χ4(1) + χ4(1)3 = p.
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This completes the proof of the second equality of Proposition 4.27.

We now show that the number of points on v2 = (k/4)u4 + 1 can be ex-
pressed in terms of Jacobi sums. By separating out the terms with u = 0 and
the terms with v = 0, we obtain that the number of points is

#{v | v2 = 1} + #{u |u4 = −4/k}

+
∑

a+b=1
a,b �=0

#{v | v2 = a}#{u |u4 = −4b/k}

=
1∑

j=0

χ2(1)j +
3∑

�=0

χ4(−4/k)� +
∑

a+b=1
a,b �=0

1∑
j=0

χ2(a)j
3∑

�=0

χ4(−4b/k)�

=
1∑

j=0

χ2(1)j +
3∑

�=0

χ4(−4/k)� +
∑

b�=0,1

3∑
�=0

χ4(−4b/k)�

+
∑

a�=0,1

1∑
j=0

χ2(a)j − (p − 2)

+χ4(−4/k)2J(χ2, χ
2
4) + χ4(−4/k)J(χ2, χ4) + χ4(−4/k)3J(χ2, χ

3
4)

(Separate out the terms with j = 0 and � = 0. These yield the sums over �
and over j, respectively. The terms with j = � = 0, which sum to p − 2, are
counted twice, so subtract p − 2. The terms with j, � �= 0 contribute to the
Jacobi sums.)

=
1∑

j=0

∑
a�=0

χ2(a)j +
3∑

�=0

∑
b�=0

χ4(−4b/k)� − (p − 2)

−χ2(−4/k) + χ4(−4/k)J(χ2, χ4) + χ4(−4/k)3J(χ2, χ
3
4)

= (p − 1) + (p − 1) − (p − 2)
−χ2(−4/k) + χ4(−4/k)J(χ2, χ4) + χ4(−4/k)3J(χ2, χ

3
4)

(by Lemma 4.26)

= p + 1 − δ + χ4(−4/k)J(χ2, χ4) + χ4(−4/k)3J(χ2, χ
3
4).

For the last equality, we used the fact that

1 + χ2(−4/k) = 1 + χ2(1/k) =
{

0 if k is not a square
2 if k is a square mod p,
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hence 1 + χ2(−4/k) = δ. Therefore,

#E(Fp) = #{(u, v) ∈ Fp × Fp | v2 = (k/4)u4 + 1} + δ

= p + 1 − α − α,

where
α = −χ4(−4/k)J(χ2, χ4) ∈ Z[i].

If we write α = a + bi, then α + α = 2a. Proposition 4.27 implies that
a2 + b2 = p, so we have almost proved Theorem 4.23. It remains to evaluate
a mod 4.

Let x1 + y1i, x2 + y2i ∈ Z[i]. We say that

x1 + y1i ≡ x2 + y2i (mod 2 + 2i)

if
(x1 − x2) + (y1 − y2)i = (x3 + y3i)(2 + 2i)

for some x3+y3i ∈ Z[i]. Clearly −2i ≡ 2 (mod 2+2i). Since 2i−2 = i(2+2i)
and −2 = 2 + (−1 + i)(2 + 2i), we have

2i ≡ 2 ≡ −2 ≡ −2i (mod 2 + 2i).

It follows easily that

2χ4(a) ≡ 2 (mod 2 + 2i) (4.3)

for all a. Since p − 1 is a multiple of 4 = (1 − i)(2 + 2i), we have p ≡ 1
(mod 2 + 2i).

LEMMA 4.29
Letp ≡ 1 (mod 4) be prim e.Then

J(χ2, χ4) ≡ −1 (mod 2 + 2i).

PROOF Let S = {x ∈ F×
p |x �= 1}. Let

τ : S → S, x �→ x

x − 1
.

It is easy to check that τ(τ(x)) = x for all x ∈ S and that x = 2 is the only
value of x such that τ(x) = x. Put the elements of S, other than 2, into
pairs (x, τ(x)). Note that if x is paired with y = τ(x), then y is paired with
τ(y) = τ(τ(x)) = x. This divides S into (p − 3)/2 pairs plus the element 2,
which is not in a pair. We have

J(χ2, χ4) =
∑

a�=0,1

χ2(a)χ4(1 − a) =

χ2(2)χ4(1 − 2) +
∑

(a,τ(a))

(
χ2(a)χ4(1 − a) + χ2

(
a

a − 1

)
χ4

(
1 − a

a − 1

))
,
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where the sum is over pairs (a, τ(a)). Note that since χ2χ4 = χ−1
4 , we have

χ2

(
a

a − 1

)
χ4

(
1 − a

a − 1

)
=

χ2(a)
χ2(a − 1)

χ4(−1)
χ4(a − 1)

= χ2(a)χ4(−1)χ4(a − 1) = χ2(a)χ4(1 − a).

Therefore, since χ2(2) = χ4(2)2 = χ4(4),

J(χ2, χ4) = χ4(−4) + 2
∑

(a,τ(a))

χ2(a)χ4(1 − a)

≡ χ4(−4) +
∑

(a,τ(a))

2 (by (4.3))

≡ χ4(−4) + (p − 3) ≡ χ4(−4) − 2 (mod 2 + 2i).

Suppose p ≡ 1 (mod 8). Since g(p−1)/2 ≡ −1 (mod p), we have that −1 is a
fourth power. It is well known that 2 is a square mod p if and only if p ≡ ±1
(mod 8) (this is one of the supplementary laws for quadratic reciprocity and
is covered in most elementary number theory texts). Therefore 4 is a fourth
power when p ≡ 1 (mod 8). It follows that χ4(−4) = 1.

Now suppose p ≡ 5 (mod 8). Then 2 is not a square mod p, so 2 ≡ gj

(mod p) with j odd. Therefore

−4 ≡ g2j+(p−1)/2 (mod p).

Since 2j ≡ 2 (mod 4) and (p − 1)/2 ≡ 2 (mod 4), it follows that −4 is a
fourth power mod p. Therefore, χ4(−4) = 1.

In both cases, we obtain J(χ2, χ4) ≡ χ4(−4) − 2 ≡ −1 (mod 2 + 2i).

Since we just proved that χ4(−4) = 1, the lemma implies that

α = −χ4(−4/k)J(χ2, χ4) = −χ4(1/k)J(χ2, χ4) ≡ χ4(k)3 (mod 2 + 2i).

LEMMA 4.30
Letα = x + yi ∈ Z[i].

1. Ifα ≡ 1 (mod 2 + 2i),then x isodd and x + y ≡ 1 (mod 4).

2. Ifα ≡ −1 (mod 2 + 2i),then x isodd and x + y ≡ 3 (mod 4).

3. Ifα ≡ ±i (mod 2 + 2i),then x iseven.

PROOF Suppose α ≡ 1 (mod 2 + 2i), so α− 1 = (u + iv)(2 + 2i) for some
u, v. Since (1 − i)(2 + 2i) = 4, we have

(x + y − 1) + (y + 1 − x)i = (1 − i)(α − 1) = 4u + 4vi.
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Therefore, x + y ≡ 1 (mod 4) and x − y ≡ 1 (mod 4). It follows that y is
even. This proves (1). The proofs of (2) and (3) are similar.

If k is a fourth power mod p, then χ4(k) = 1, so α ≡ 1 (mod 2 + 2i). The
lemma yields α = a + bi with b even and a + b ≡ 1 (mod 4). This proves
part of part (2) of Theorem 4.23. The other parts are proved similarly. This
completes the proof of Theorem 4.23.

4.5 Schoof’s Algorithm

In 1985, Schoof [97] published an algorithm for computing the number
of points on elliptic curves over finite fields Fq that runs much faster than
existing algorithms, at least for very large q. In particular, it requires at
most a constant times log8 q bit operations, in contrast to the q1/4 used in
Baby Step, Giant Step, for example. Subsequently, Atkin and Elkies refined
and improved Schoof’s method (see Section 12.4). It has now been used
successfully when q has several hundred decimal digits. In the following, we’ll
give Schoof’s method. For details of the method of Atkins and Elkies, see [12]
and [99]. For other methods for counting points, see [60] and [94].

Suppose E is an elliptic curve given by y2 = x3 + Ax + B over Fq. We
know, by Hasse’s theorem, that

#E(Fq) = q + 1 − a, with |a| ≤ 2
√

q.

Let S = {2, 3, 5, 7, . . . , L} be a set of primes such that∏
�∈S

� > 4
√

q.

If we can determine a mod � for each prime � ∈ S, then we know a mod
∏

�,
and therefore a is uniquely determined.

Let � be prime. For simplicity, we assume � �= p, where p is the characteristic
of Fq. We also assume that q is odd. We want to compute a (mod �).

If � = 2, this is easy. If x3 + Ax + B has a root e ∈ Fq, then (e, 0) ∈ E[2]
and (e, 0) ∈ E(Fq), so E(Fq) has even order. In this case, q + 1 − a ≡ 0
(mod 2), so a is even. If x3 + Ax + B has no roots in Fq, then E(Fq) has no
points of order 2, and a is odd. To determine whether x3 +Ax+B has a root
in Fq, we could try all the elements in Fq, but there is a faster way. Recall
(see Appendix C) that the roots of xq − x are exactly the elements of Fq.
Therefore, x3 +Ax+B has a root in Fq if and only if it has a root in common
with xq − x. The Euclidean algorithm, applied to polynomials, yields the gcd
of the two polynomials.
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If q is very large, the polynomial xq has very large degree. Therefore, it is
more efficient to compute xq ≡ xq (mod x3 + Ax + B) by successive squaring
(cf. Section 2.2), and then use the result to compute

gcd(xq − x, x3 + Ax + B) = gcd(xq − x, x3 + Ax + B).

If the gcd is 1, then there is no common root and a is odd. If the gcd is not
1, then a is even. This finishes the case � = 2.

In the following, various expressions such as xq and xq2
will be used. They

will always be computed mod a polynomial in a manner similar to that just
done in the case � = 2

In Section 3.2, we defined the division polynomials ψn. When n is odd, ψn

is a polynomial in x and, for (x, y) ∈ E(Fq), we have

(x, y) ∈ E[n] ⇐⇒ ψn(x) = 0.

These polynomials play a crucial role in Schoof’s algorithm.
Let φq be the Frobenius endomorphism (not to be confused with the poly-

nomials φn from Section 3.2, which are not used in this section), so

φq(x, y) = (xq, yq).

By Theorem 4.10,
φ2

q − aφq + q = 0.

Let (x, y) be a point of order �. Then(
xq2

, yq2
)

+ q(x, y) = a (xq, yq) .

Let
q� ≡ q (mod �), |q�| < �/2.

Then q(x, y) = q�(x, y), so(
xq2

, yq2
)

+ q�(x, y) = a (xq, yq) .

Since (xq, yq) is also a point of order �, this relation determines a mod �. The
idea is to compute all the terms except a in this relation, then determine a
value of a that makes the relation hold. Note that if the relation holds for
one point (x, y) ∈ E[�], then we have determined a (mod �); hence, it holds
for all (x, y) ∈ E[�].

Assume first that
(
xq2

, yq2
)
�= ±q�(x, y) for some (x, y) ∈ E[�]. Then

(x′, y′) def=
(
xq2

, yq2
)

+ q�(x, y) �= ∞,
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so a �≡ 0 (mod �). In this case, the x-coordinates of
(
xq2

, yq2
)

and q�(x, y) are
distinct, so the sum of the two points is found by the formula using the line
through the two points, rather than a tangent line or a vertical line. Write

j(x, y) = (xj , yj)

for integers j. We may compute xj and yj using division polynomials, as in
Section 3.2. Moreover, xj = r1,j(x) and yj = r2,j(x)y, as on page 47. We
have

x′ =

(
yq2 − yq�

xq2 − xq�

)2

− xq2 − xq�
.

Writing(
yq2 − yq�

)2

= y2
(
yq2−1 − r2,q�

(x)
)2

= (x3 + Ax + B)
(
(x3 + Ax + B)(q

2−1)/2 − r2,q�
(x)

)2

,

and noting that xq�
is a function of x, we change x′ into a rational function

of x. We want to find j such that

(x′, y′) = (xq
j , y

q
j ).

First, we look at the x-coordinates. Starting with (x, y) ∈ E[�], we have
(x′, y′) = ±(xq

j , y
q
j ) if and only if x′ = xq

j . As pointed out above, if this
happens for one point in E[�], it happens for all (finite) points in E[�]. Since
the roots of ψ� are the x-coordinates of the points in E[�], this implies that

x′ − xq
j ≡ 0 (mod ψ�) (4.4)

(this means that the numerator of x′ − xq
j is a multiple of ψ�). We are using

here the fact that the roots of ψ� are simple (otherwise, we would obtain only
that ψ� divides some power of x′−xq

j). This is proved by noting that there are
�2−1 distinct points of order �, since � is assumed not to be the characteristic
of Fq. There are (�2 − 1)/2 distinct x-coordinates of these points, and all of
them are roots of ψ�, which has degree (�2 − 1)/2. Therefore, the roots of ψ�

must be simple.
Assume now that we have found j such that (4.4) holds. Then

(x′, y′) = ±(xq
j , yq

j ) = (xq
j , ±yq

j ).

To determine the sign, we need to look at the y-coordinates. Both y′/y and
yq

j /y can be written as functions of x. If

(y′ − yq
j )/y ≡ 0 (mod ψ�),

then a ≡ j (mod �). Otherwise, a ≡ −j (mod �). Therefore, we have found
a (mod �).
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It remains to consider the case where
(
xq2

, yq2
)

= ±q(x, y) for all (x, y) ∈
E[�]. If

φ2
q(x, y) =

(
xq2

, yq2
)

= q(x, y),

then
aφq(x, y) = φ2

q(x, y) + q(x, y) = 2q(x, y),

hence
a2q(x, y) = a2φ2

q(x, y) = (2q)2(x, y).

Therefore, a2q ≡ 4q2 (mod �), so q is a square mod �. If q is not a square
mod �, then we cannot be in this case. If q is a square mod �, let w2 ≡ q
(mod �). We have

(φq + w)(φq − w)(x, y) = (φ2
q − q)(x, y) = ∞

for all (x, y) ∈ E[�]. Let P be any point in E[�]. Then either (φq −w)P = ∞,
so φqP = wP , or P ′ = (φq − w)P is a finite point with (φq + w)P ′ = ∞.
Therefore, in either case, there exists a point P ∈ E[�] with φqP = ±wP .

Suppose there exists a point P ∈ E[�] such that φqP = wP . Then

∞ = (φ2
q − aφq + q)P = (q − aw + q)P,

so aw ≡ 2q ≡ 2w2 (mod �). Therefore, a ≡ 2w (mod �). Similarly, if there
exists P such that φqP = −wP , then a ≡ −2w (mod �). We can check
whether we are in this case as follows. We need to know whether or not

(xq, yq) = ±w(x, y) = ±(xw, yw) = (xw,±yw)

for some (x, y) ∈ E[�]. Therefore, we compute xq − xw, which is a rational
function of x. If

gcd(numerator(xq − xw), ψ�) �= 1,

then there is some (x, y) ∈ E[�] such that φq(x, y) = ±w(x, y). If this happens,
then use the y-coordinates to determine the sign.

Why do we use the gcd rather than simply checking whether we have 0 mod
ψ�? The gcd checks for the existence of one point. Looking for 0 (mod ψ�)
checks if the relation holds for all points simultaneously. The problem is that
we are not guaranteed that φqP = ±wP for all P ∈ E[�]. For example,
the matrix representing φq on E[�] might not be diagonalizable. It might

be
(

w 1
0 w

)
. In this case, the eigenvectors for φq form a one-dimensional

subspace.
If we have gcd(numerator(xq −xw), ψ�) = 1, then we cannot be in the case(

xq2
, yq2

)
= q(x, y), so the only remaining case is

(
xq2

, yq2
)

= −q(x, y). In

this case, aP = (φ2
q + q)P = ∞ for all P ∈ E[�]. Therefore, a ≡ 0 (mod �).

We summarize Schoof’s algorithm as follows. We start with an elliptic curve
E over Fq given by y2 = x3+Ax+B. We want to compute #E(Fq) = q+1−a.
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1. Choose a set of primes S = {2, 3, 5, . . . , L} (with p �∈ S) such that∏
�∈S � > 4

√
q.

2. If � = 2, we have a ≡ 0 (mod 2) if and only if gcd(x3+Ax+B, xq−x) �=
1.

3. For each odd prime � ∈ S, do the following.

(a) Let q� ≡ q (mod �) with |q�| < �/2.

(b) Compute the x-coordinate x′ of

(x′, y′) =
(
xq2

, yq2
)

+ q�(x, y) mod ψ�.

(c) For j = 1, 2, . . . , (� − 1)/2, do the following.

i. Compute the x-coordinate xj of (xj , yj) = j(x, y).
ii. If x′ − xq

j ≡ 0 (mod ψ�), go to step (iii). If not, try the next
value of j (in step (c)). If all values 1 ≤ j ≤ (� − 1)/2 have
been tried, go to step (d).

iii. Compute y′ and yj . If (y′ − yq
j )/y ≡ 0 (mod ψ�), then a ≡ j

(mod �). If not, then a ≡ −j (mod �).

(d) If all values 1 ≤ j ≤ (� − 1)/2 have been tried without success, let
w2 ≡ q (mod �). If w does not exist, then a ≡ 0 (mod �).

(e) If gcd(numerator(xq − xw), ψ�) = 1, then a ≡ 0 (mod �). Other-
wise, compute

gcd(numerator((yq − yw)/y), ψ�).

If this gcd is not 1, then a ≡ 2w (mod �). Otherwise, a ≡ −2w
(mod �).

4. Use the knowledge of a (mod �) for each � ∈ S to compute a (mod
∏

�).
Choose the value of a that satisfies this congruence and such that |a| ≤
2
√

q. The number of points in E(Fq) is q + 1 − a.

Example 4.13
Let E be the elliptic curve y2 = x3 + 2x + 1 mod 19. Then

#E(F19) = 19 + 1 − a.

We want to determine a. We’ll show that

a ≡
⎧⎨⎩1 (mod 2)

2 (mod 3)
3 (mod 5).
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Putting these together yields

a ≡ 23 (mod 30).

Since |a| < 2
√

19 < 9, we must have a = −7.
We start with � = 2. We compute

x19 ≡ x2 + 13x + 14 (mod x3 + 2x + 1)

by successive squaring (cf. Section 2.2) and then use the result to compute

gcd(x19 − x, x3 + 2x + 1) = gcd(x2 + 12x + 14, x3 + 2x + 1) = 1.

It follows that x3 +2x+1 has no roots in F19. Therefore, there is no 2-torsion
in E(F19), so a ≡ 1 (mod 2).

For � = 3, we proceed as in Schoof’s algorithm and eventually get to j = 1.
We have q2 = 361 and we have q ≡ 1 (mod 3). Therefore, q� = 1 and we need
to check whether

(x361, y361) + (x, y) = ±(x19, y19)

for (x, y) ∈ E[3]. The third division polynomial is

ψ3 = 3x4 + 12x2 + 12x − 4.

We compute the x-coordinate of (x361, y361) + (x, y):(
y361 − y

x361 − x

)2

− x361 − x = (x3 + 2x + 1)
(

(x3 + 2x + 1)180 − 1
x361 − x

)2

− x361 − x,

where we have used the relation y2 = x3 + 2x + 1. We need to reduce this
mod ψ3. The natural way to start is to use the extended Euclidean algorithm
to find the inverse of x361 − x (mod ψ3). However,

gcd(x361 − x, ψ3) = x − 8 �= 1,

so the multiplicative inverse does not exist. We could remove x − 8 from the
numerator and denominator of

(x3 + 2x + 1)180 − 1
x361 − x

,

but this is unnecessary. Instead, we realize that since x = 8 is a root of ψ3,
the point (8, 4) ∈ E(F19) has order 3. Therefore,

#E(F19) = 19 + 1 − a ≡ 0 (mod 3),

so a ≡ 2 (mod 3).
For � = 5, we follow Schoof’s algorithm, eventually arriving at j = 2. Note

that
19 ≡ 4 ≡ −1 (mod 5),
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so q� = −1 and

19(x, y) = −(x, y) = (x,−y) for all (x, y) ∈ E[5].

We need to check whether

(x′, y′) def= (x361, y361) + (x,−y) ?= ±2(x19, y19) def= ±(x′′, y′′)

for all (x, y) ∈ E[5]. The recurrence of Section 3.2 shows that the fifth division
polynomial is

ψ5 = 32(x3 + 2x + 1)2(x6 + 10x4 + 20x3 − 20x2 − 8x − 8 − 8) − ψ3
3

= 5x12 + 10x10 + 17x8 + 5x7 + x6 + 9x5 + 12x4 + 2x3 + 5x2 + 8x + 8.

The equation for the x-coordinates yields

x′ =
(

y361 + y

x361 − x

)2

− x361 − x
?≡
(

3x38 + 2
2y19

)2

− 2x19 = x′′ (mod ψ5).

When y2 is changed to x3 + 2x + 1, this reduces to a polynomial relation in
x, which is then verified. Therefore,

a ≡ ±2 (mod 5).

To determine the sign, we look at the y-coordinates. The y-coordinate of
(x′, y′) = (x361, y361) + (x,−y) is computed to be

y(9x11 +13x10 +15x9 +15x7 +18x6 +17x5 +8x4 +12x3 +8x+6) (mod ψ5).

The y-coordinate of (x′′, y′′) = 2(x, y) is

y(13x10 +15x9 +16x8 +13x7 +8x6 +6x5 +17x4 +18x3 +8x+18) (mod ψ5).

A computation yields

(y′ + y′′19)/y ≡ 0 (mod ψ5).

This means that

(x′, y′) ≡ (x′′19,−y′′19) = −2(xq, yq) (mod ψ5).

It follows that a ≡ −2 (mod 5).
As we showed above, the information from � = 2, 3, 5 is sufficient to yield

a = −7. Therefore, #E(F19) = 27.
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4.6 Supersingular Curves

An elliptic curve E in characteristic p is called supersingular if E[p] =
{∞}. In other words, there are no points of order p, even with coordinates
in an algebraically closed field. Supersingular curves have many interesting
properties, some of which we’ll discuss in the present section.
Note: Supersingular curves are not singular curves in the sense of Sec-

tion 2.4. The term “singular” was used classically to describe the j-invariants
of elliptic curves with endomorphism rings larger than Z. These rings usually
are subrings of quadratic extensions of the rationals. The term “supersingu-
lar” refers to j-invariants of curves with even larger rings of endomorphisms,
namely, subrings of quaternion algebras. These ideas will be discussed in
Chapter 10.

The following result is useful because it gives a simple way of determining
whether or not an elliptic curve over a finite field is supersingular.

PROPOSITION 4.31
LetE be an elliptic curve overFq,where q is a power ofthe prim e num ber

p. Leta = q + 1 − #E(Fq). Then E is supersingular ifand only ifa ≡ 0
(mod p),which isifand only if#E(Fq) ≡ 1 (mod p).

PROOF Write X2−aX + q = (X −α)(X −β). Theorem 4.12 implies that

#E(Fqn) = qn + 1 − (αn + βn).

Lemma 4.13 says that sn = αn + βn satisfies the recurrence relation

s0 = 2, s1 = a, sn+1 = asn − qsn−1.

Suppose a ≡ 0 (mod p). Then s1 = a ≡ 0 (mod p), and sn+1 ≡ 0 (mod p)
for all n ≥ 1 by the recurrence. Therefore,

#E(Fqn) = qn + 1 − sn ≡ 1 (mod p),

so there are no points of order p in E(Fqn) for any n ≥ 1. Since Fq = ∪n≥1Fqn ,
there are no points of order p in E(Fq). Therefore, E is supersingular.

Now suppose a �≡ 0 (mod p). The recurrence implies that sn+1 ≡ asn

(mod p) for n ≥ 1. Since s1 = a, we have sn ≡ an (mod p) for all n ≥ 1.
Therefore

#E(Fqn) = qn + 1 − sn ≡ 1 − an (mod p).

By Fermat’s little theorem, ap−1 ≡ 1 (mod p). Therefore, E(Fqp−1) has order
divisible by p, hence contains a point of order p. This means that E is not
supersingular.
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For the last part of the proposition, note that

#E(Fq) ≡ q + 1 − a ≡ 1 − a (mod p),

so #E(Fq) ≡ 1 (mod p) if and only if a ≡ 0 (mod p).

COROLLARY 4.32
Suppose p ≥ 5 isa prim e and E isdefined overFp.Then E issupersingular
ifand only ifa = 0,which isthe case ifand only if#E(Fp) = p + 1.

PROOF If a = 0, then E is supersingular, by the proposition. Conversely,
suppose E is supersingular but a �= 0. Then a ≡ 0 (mod p) implies that
|a| ≥ p. By Hasse’s theorem, |a| ≤ 2

√
p, so we have p ≤ 2

√
p. This means

that p ≤ 4.

When p = 2 or p = 3, there are examples of supersingular curves with
a �= 0. See Exercise 4.7.

For general finite fields Fq, it can be shown that if E defined over Fq is
supersingular, then a2 is one of 0, q, 2q, 3q, 4q. See [98], [80], or Theorem 4.3.

In Section 3.1, we saw that the elliptic curve y2 + a3y = x3 + a4x + a6

in characteristic 2 is supersingular. Also, in characteristic 3, the curve y2 =
x3 + a2x

2 + a4x + a6 is supersingular if and only if a2 = 0. Here is a way to
construct supersingular curves in many other characteristics.

PROPOSITION 4.33
Suppose q isodd and q ≡ 2 (mod 3).LetB ∈ F×

q .Then the elliptic curveE
given by y2 = x3 + B issupersingular.

PROOF Let ψ : F×
q → F×

q be the homomorphism defined by ψ(x) = x3.
Since q − 1 is not a multiple of 3, there are no elements of order 3 in F×

q , so
the kernel of ψ is trivial. Therefore, ψ is injective, hence must be surjective
since it is a map from a finite group to itself. In particular, every element of
Fq has a unique cube root in Fq.

For each y ∈ Fq, there is exactly one x ∈ Fq such that (x, y) lies on the
curve, namely, x is the unique cube root of y2 − B. Since there are q values
of y, we obtain q points. Including the point ∞ yields

#E(Fq) = q + 1.

Therefore, E is supersingular.

Later (Theorem 4.34), we’ll see how to obtain all supersingular elliptic
curves over an algebraically closed field.
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An attractive feature of supersingular curves is that computations involving
an integer times a point can sometimes be done faster than might be expected.
Suppose E is a supersingular elliptic curve defined over Fq and let P = (x, y)
be a point in E(Fqn) for some n ≥ 1. Usually n is large. Let k be a positive
integer. We want to compute kP . This can be done quickly by successive
doubling, but it is possible to do even better. Let’s assume that a = 0. Then

φ2
q + q = 0

by Theorem 4.10. Therefore

q(x, y) = −φ2
q(x, y) =

(
xq2

,−yq2
)

.

The calculations of xq2
and yq2

involve finite field arithmetic, which is gener-
ally faster than elliptic curve calculations. Moreover, if x and y are expressed
in terms of a normal basis of Fqn over Fq, then xq2

and yq2
are computed by

shift operations (see Appendix C). The procedure is now as follows:

1. Expand k in base q:

k = k0 + k1q + k2q
2 + · · · + krq

r,

with 0 ≤ ki < q.

2. Compute kiP = (xi, yi) for each i.

3. Compute qikiP = (xq2i

i , (−1)iyq2i

i ).

4. Sum the points qikiP for 0 ≤ i ≤ r.

The main savings is in step (3), where elliptic curve calculations are replaced
by finite field computations.

We now show how to obtain all supersingular curves over Fq. Note that
supersingularity means that there are no points of order p with coordinates
in the algebraic closure; hence, it is really a property of an elliptic curve over
an algebraically closed field. If we have two elliptic curves E1 and E2 defined
over a field such that E1 can be transformed into E2 by a change of variables
defined over some extension field, then E1 is supersingular if and only if E2

is supersingular.
For example, in Proposition 4.33, the curve y2

1 = x3
1 + B can be changed

into y2
2 = x3

2 + 1 via x2 = x1/B1/3, y2 = y1/B1/2. Therefore, it would have
sufficed to prove the proposition for the curve y2 = x3 + 1.

Recall (Section 2.5.1) that an elliptic curve E over an algebraically closed
field of characteristic not 2 can be put into the Legendre form y2 = x(x −
1)(x − λ) with λ �= 0, 1.
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THEOREM 4.34
Letp be an odd prim e.Define the polynom ial

Hp(T ) =
(p−1)/2∑

i=0

(
(p − 1)/2

i

)2

T i.

TheellipticcurveE given by y2 = x(x−1)(x−λ) with λ ∈ Fp issupersingular
ifand only ifHp(λ) = 0.

PROOF Since Fp = ∪n≥1Fpn , we have λ ∈ Fq = Fpn for some n. So E is
defined over Fq. To determine supersingularity, it suffices to count points in
E(Fq), by Proposition 4.31. We know (Exercise 4.4) that(

x

Fq

)
= x(q−1)/2

in Fq. Therefore, by Theorem 4.14,

#E(Fq) = q + 1 +
∑

x∈Fq

(x(x − 1)(x − λ))(q−1)/2
,

where this is now an equality in Fq. The integers in this formula are regarded
as elements of Fp ⊆ Fq. The following lemma allows us to simplify the sum.

LEMMA 4.35
Leti > 0 be an integer.Then∑

x∈Fq

xi =
{

0 if q − 1 � i
−1 if q − 1|i.

PROOF If q − 1|i then xi = 1 for all nonzero x, so the sum equals q − 1,
which equals −1 in Fq. The group F×

q is cyclic of order q − 1. Let g be a
generator. Then every nonzero element of Fq can be written in the form gj

with 0 ≤ j ≤ q − 2. Therefore, if q − 1 � i,∑
x∈Fq

xi = 0 +
∑

x∈F×
q

xi =
q−2∑
j=0

(gj)i =
q−2∑
j=0

(gi)j =
(gi)q−1 − 1

gi − 1
= 0,

since gq−1 = 1.

Expand (x(x − 1)(x − λ))(q−1)/2 into a polynomial of degree 3(q − 1)/2.
There is no constant term, so the only term xi with q − 1|i is xq−1. Let Aq

be the coefficient of xq−1. By the lemma,∑
x∈Fq

(x(x − 1)(x − λ))(q−1)/2 = −Aq,
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since all the powers of x except for xq−1 sum to 0. Therefore,

#E(Fq) = 1 − Aq in Fq.

By Proposition 4.31, E is supersingular if and only if Aq = 0 in Fq. The
following lemma allows us to relate Aq to Ap.

LEMMA 4.36
Letf(x) = x3 + c2x

2 + c1x + c0 be a cubic polynom ialwith coe cients in a
field ofcharacteristic p.Foreach r ≥ 1,letApr be the coe cientofxpr−1 in
f(x)(p

r−1)/2.Then

Apr = A1+p+p2+···+pr−1

p .

PROOF We have

(f(x)(p−1)/2)pr

= (x3(p−1)/2 + · · · + Apx
p−1 + · · · )pr

= x3(p−1)pr/2 + · · · + Apr

p xpr(p−1) + · · · .

Therefore,

f(x)(p
r+1−1)/2 = f(x)(p

r−1)/2
(
f(x)(p−1)/2

)pr

= (x3(pr−1)/2 + · · · + Aprxpr−1 + · · · )
·(x3(p−1)pr/2 + · · · + Apr

p xpr(p−1) + · · · ).

To obtain the coefficient of xpr+1−1, choose indices i and j with i + j =
pr+1 − 1, multiply the corresponding coefficients from the first and second
factors in the above product, and sum over all such pairs i, j. A term with
0 ≤ i ≤ 3(pr − 1)/2 from the first factor requires a term with

pr+1 − 1 ≥ j ≥ (pr+1 − 1) − 3
2
(pr − 1) > (p − 2)pr

from the second factor. Since all of the exponents in the second factor are
multiples of pr, the only index j in this range that has a nonzero exponent
is j = (p − 1)pr. The corresponding index i is pr − 1. The product of the
coefficients yields

Apr+1 = AprApr

p .

The formula of the lemma is trivially true for r = 1. It now follows by an
easy induction for all r.

From the lemma, we now see that E is supersingular if and only if Ap = 0.
This is significant progress, since Ap depends on p but not on which power of
p is used to get q.
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It remains to express Ap as a polynomial in λ. The coefficient Ap of xp−1

in (x(x − 1)(x − λ))(p−1)/2 is the coefficient of x(p−1)/2 in

((x − 1)(x − λ))(p−1)/2.

By the binomial theorem,

(x − 1)(p−1)/2 =
∑

i

(
(p − 1)/2

i

)
xi(−1)(p−1)/2−i

(x − λ)(p−1)/2 =
∑

j

(
(p − 1)/2

j

)
x(p−1)/2−j(−λ)j .

The coefficient Ap of x(p−1)/2 in (x − 1)(p−1)/2(x − λ)(p−1)/2 is

(−1)(p−1)/2

(p−1)/2∑
k=0

(
(p − 1)/2

k

)2

λk = (−1)(p−1)/2Hp(λ).

Therefore, E is supersingular if and only if Hp(λ) = 0. This completes the
proof of Theorem 4.34.

It is possible to use the method of the preceding proof to determine when
certain curves are supersingular.

PROPOSITION 4.37
Letp ≥ 5 be prim e.Then the elliptic curve y2 = x3 + 1 overFp issupersin-
gularifand only ifp ≡ 2 (mod 3),and the elliptic curve y2 = x3 +x overFp

issupersingularifand only ifp ≡ 3 (mod 4).

PROOF The coefficient of xp−1 in (x3 + 1)(p−1)/2 is 0 if p ≡ 2 (mod 3)
(since we only get exponents that are multiples of 3), and is

(
(p−1)/2
(p−1)/3

) �≡
0 (mod p) when p ≡ 1 (mod 3) (since the binomial coefficient contains no
factors of p). Since the coefficient of xp−1 is zero mod p if and only if the
curve is supersingular, this proves the first part.

The coefficient of xp−1 in (x3 + x)(p−1)/2 is the coefficient of x(p−1)/2 in
(x2 + 1)(p−1)/2. All exponents appearing in this last expression are even,
so x(p−1)/2 doesn’t appear when p ≡ 3 (mod 4). When p ≡ 1 (mod 4),
the coefficient is

(
(p−1)/2
(p−1)/4

) �≡ 0 (mod p). This proves the second part of the

proposition.

If E is an elliptic curve defined over Z with complex multiplication (see
Chapter 10) by a subring of Q(

√−d), and p is an odd prime number not
dividing d for which E (mod p) is an elliptic curve, then E (mod p) is super-
singular if and only if −d is not a square mod p. Therefore, for such an E,
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the curve E (mod p) is supersingular for approximately half of the primes.
In the proposition, the curve y2 = x3 + 1 has complex multiplication by
Z[(1 +

√−3)/2], and −3 is a square mod p if and only if p ≡ 1 (mod 3). The
curve y2 = x3 + x has complex multiplication by Z[

√−1], and −1 is a square
mod p if and only if p ≡ 1 (mod 4).

If E does not have complex multiplication, the set of primes for which E
(mod p) is supersingular is much more sparse. Elkies [37] proved in 1986
that, for each E, the set of such primes is infinite. Wan [126], improving
on an argument of Serre, showed that, for each ε > 0, the number of such
p < x for which E (mod p) is supersingular is less than Cεx/ ln2−ε(x) for
some constant Cε depending on ε. Since the number of primes less than x
is approximately x/ ln x, this shows that substantially less than half of the
primes are supersingular for E. It has been conjectured by Lang and Trotter
that the number of supersingular p is asymptotic to C ′√x/ ln x (as x → ∞)
for some constant C ′ depending on E. This has been shown to be true “on
the average” by Fouvry and Murty [39].

We now change our viewpoint and fix p and count supersingular E over
Fp. This essentially amounts to counting distinct zeros of Hp(T ). The values
λ = 0, 1 are not allowed in the Legendre form of an elliptic curve. Moreover,
they also don’t appear as zeros of Hp(T ). It is easy to see that Hp(0) = 1.
For Hp(1), observe that the coefficient of x(p−1)/2 in

(x + 1)p−1 = (x + 1)(p−1)/2(x + 1)(p−1)/2

is (
p − 1

(p − 1)/2

)
=
∑

k

(
(p − 1)/2

k

)(
(p − 1)/2

(p − 1)/2 − k

)
= Hp(1),

(use the identity
(
n
k

)
=

(
n

n−k

)
). Since

(
p−1

(p−1)/2

)
contains no factors p, it is

nonzero mod p. Therefore, Hp(1) �= 0.

PROPOSITION 4.38

Hp(T ) has (p − 1)/2 distinctrootsin Fp.

PROOF We claim that

4T (1 − T )H ′′
p (T ) + 4(1 − 2T )H ′

p(T ) − Hp(T ) ≡ 0 (mod p). (4.5)

Write Hp(T ) =
∑

k bkT k. The coefficient of T k on the left side of (4.5) is

4(k + 1)kbk+1 − 4k(k − 1)bk + 4(k + 1)bk+1 − 8kbk − bk

= 4(k + 1)2bk+1 − (2k + 1)2bk.
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Using the fact that

bk+1 =
(

(p − 1)/2
k + 1

)2

=
(

((p − 1)/2)!
(k + 1)!(((p − 1)/2) − k − 1)!

)2

=
(

((p − 1)/2) − k

k + 1

)2

bk,

we find that the coefficient of T k is(
4 (((p − 1)/2) − k)2 − (2k + 1)2

)
bk = p(p − 2 − 4k)bk ≡ 0 (mod p).

This proves the claim.
Suppose now that Hp(λ) = 0 with λ ∈ Fp. Since Hp(0) �= 0 and Hp(1) �= 0,

we have λ �= 0, 1. Write Hp(T ) = (T−λ)rG(T ) for some polynomial G(T ) with
G(λ) �= 0. Suppose r ≥ 2. In (4.5), we have (T −λ)r−1 dividing the last term
and the middle term, but only (T − λ)r−2 divides the term 4T (1− T )H ′′

p (T ).
Since the sum of the three terms is 0, this is impossible, so we must have
r = 1. Therefore, λ is a simple root. (Technicalpoint: Since the degree of
Hp(T ) is less than p, we have r < p, so the first term of the derivative

H ′′
p (T ) = r(r − 1)(T − λ)r−2G(T ) + 2r(T − λ)r−1G′(T ) + (T − λ)rG′′(T )

does not disappear in characteristic p. Hence (T − λ)r−1 does not divide the
first term of (4.5).)

REMARK 4.39 The differential equation 4.5 is called a Picard-Fuchs
differential equation. For a discussion of this equation in the study of
families of elliptic curves in characteristic 0, see [24]. Once we know that
Hp(T ) satisfies this differential equation, the simplicity of the roots follows
from a characteristic p version of the uniqueness theorem for second order
differential equations. If λ is a multiple root of Hp(T ), then Hp(λ) = H ′

p(λ) =
0. Such a uniqueness theorem would say that Hp(T ) must be identically 0,
which is a contradiction. Note that we must avoid λ = 0, 1 because of the
coefficient T (1 − T ) for H ′′

p (T ).

COROLLARY 4.40
Let p ≥ 5 be prim e. The num ber of j ∈ Fp thatoccur as j-invariants of
supersingularelliptic curvesis [ p

12

]
+ εp,

where εp = 0, 1, 1, 2 ifp ≡ 1, 5, 7, 11 (mod 12),respectively.
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PROOF The j-invariant of y2 = x(x − 1)(x − λ) is

28 (λ2 − λ + 1)3

λ2(λ − 1)2

(see Exercise 2.13), so the values of λ yielding a given j are roots of the
polynomial

Pj(λ) = 28(λ2 − λ + 1)3 − jλ2(λ − 1)2.

The discriminant of this polynomial is 230(j−1728)3j4, which is nonzero unless
j = 0 or 1728. Therefore, there are 6 distinct values of λ ∈ Fp corresponding
to each value of j �= 0, 1728. If one of these λ’s is a root of Hp(T ), then all
six must be roots, since the corresponding elliptic curves are all the same (up
to changes of variables), and therefore all or none are supersingular.

Since the degree of Hp(T ) is (p− 1)/2, we expect approximately (p− 1)/12
supersingular j-invariants, with corrections needed for the cases when at least
one of j = 0 or j = 1728 is supersingular.

When j = 0, the polynomial Pj(λ) becomes 28(λ2 − λ + 1)3, so there are
two values of λ that give j = 0. When j = 1728, the polynomial becomes
28(λ − 2)2(λ − 1

2 )2(λ + 1)2, so there are three values of λ yielding j = 1728.
A curve with j-invariant 0 can be put into the form y2 = x3 + 1 over an

algebraically closed field. Theorem 4.34 therefore tells us that when p ≡ 2
(mod 3), the two λ’s yielding j = 0 are roots of Hp(T ). Similarly, when p ≡ 3
(mod 4), the three λ yielding j = 1728 are roots of Hp(T ).

Putting everything together, the total count of roots of Hp(T ) is

6 · #{supersingular j �= 0, 1728} + 2δ2(3) + 3δ3(4)

= deg Hp(T ) = (p − 1)/2,

where δi(j) = 1 if p ≡ i (mod j) and = 0 otherwise.
Suppose that p ≡ 5 (mod 12). Then δ2(3) = 1 and δ3(4) = 0, so the number

of supersingular j �= 0, 1728 is

p − 1
12

− 1
3

=
[ p

12

]
.

Adding 1 for the case j = 0 yields the number given in the proposition. The
other cases of p (mod 12) are similar.

Example 4.14
When p = 23, we have

H23(T ) = (T − 3)(T − 8)(T − 21)(T − 11)(T − 13)(T − 16)
·(T − 2)(T − 12)(T + 1)(T 2 − T + 1)

(this is a factorization over F23). The first 6 factors correspond to

{λ,
1
λ

, 1 − λ,
1

1 − λ
,

λ

λ − 1
,
λ − 1

λ
},
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with λ = 3, hence to the curve y2 = x(x − 1)(x − 3). The next three factors
correspond to j = 1728, hence to the curve y2 = x3 + x. The last factor
corresponds to j = 0, hence to y2 = x3 + 1. Therefore, we have found the
three supersingular curves over F23. Of course, over F23, there are different
forms of these curves. For example, y2 = x3 + 1 and y2 = x3 + 2 are different
curves over F23, but are the same over F23.

Example 4.15

When p = 13,

H13(T ) ≡ (T 2 + 4T + 9)(T 2 + 12T + 3)(T 2 + 7T + 1).

The six roots correspond to one value of j. Since λ = −2 +
√

8 is a root of
the first factor, the corresponding elliptic curve is

y2 = x(x − 1)(x + 2 −
√

8).

The appearance of a square root such as
√

8 is fairly common. It is possible
to show that a supersingular curve over a perfect field of characteristic p
must have its j-invariant in Fp2 (see [109, Theorem V.3.1]). Therefore, a
supersingular elliptic curve over Fq can always be transformed via a change
of variables (over Fq) into a curve defined over Fp2 .

Exercises

4.1 Let E be the elliptic curve y2 = x3 + x + 1 (mod 5).

(a) Show that 3(0, 1) = (2, 1) on E.

(b) Show that (0, 1) generates E(F5). (Use the fact that E(F5) has
order 9 (see Example 4.1), plus the fact that the order of any
element of a group divides the order of the group.)

4.2 Let E be the elliptic curve y2 + y = x3 over F2. Show that

#E(F2n) =
{

2n + 1 if n is odd
2n + 1 − 2(−2)n/2 if n is even.

4.3 Let Fq be a finite field with q odd. Since F×
q is cyclic of even order q−1,

half of the elements of F×
q are squares and half are nonsquares.
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(a) Let u ∈ Fq. Show that

∑
x∈Fq

(
x + u

Fq

)
= 0.

(b) Let f(x) = (x− r)2(x− s), where r, s ∈ Fq with q odd. Show that

∑
x∈Fq

(
f(x)
Fq

)
= −

(
r − s

Fq

)
.

(Hint: If x �= r, then (x− r)2(x− s) is a square exactly when x− s
is a square.)

4.4 Let x ∈ Fq with q odd. Show that(
x

Fq

)
= x(q−1)/2

as elements of Fq. (Rem ark: Since the exponentiation on the right
can be done quickly, for example, by successive squaring (this is the
multiplicative version of the successive doubling in Section 2.2), this
shows that the generalized Legendre symbol can be calculated quickly.
Of course, the classical Legendre symbol can also be calculated quickly
using quadratic reciprocity.)

4.5 Let p ≡ 1 (mod 4) be prime and let E be given by y2 = x3 − kx, where
k �≡ 0 (mod p).

(a) Use Theorem 4.23 to show that #E(Fp) is a multiple of 4 when k
is a square mod p.

(b) Show that when k is a square mod p, then E(Fp) contains 4 points
P satisfying 2P = ∞. Conclude again that #E(Fp) is a multiple
of 4.

(c) Show that when k is not a square mod p, then E(Fp) contains no
points of order 4.

(d) Let k be a square but not a fourth power mod p. Show that exactly
one of the curves y2 = x3−x and y2 = x3−kx has a point of order
4 defined over Fp.

4.6 Let E be an elliptic curve over Fq and suppose

E(Fq) � Zn ⊕ Zmn.

(a) Use the techniques of the proof of Proposition 4.16 to show that
q = mn2 + kn + 1 for some integer k.
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(b) Use Hasse’s theorem in the form a2 ≤ 4q to show that |k| ≤ 2
√

m.
Therefore, if m is fixed, q occurs as the value of one of finitely many
quadratic polynomials.

(c) The prime number theorem implies that the number of prime pow-
ers less than x is approximately x/ ln x. Use this to show that most
prime powers do not occur as values of the finite list of polynomials
in (b).

(d) Use Hasse’s theorem to show that mn ≥ √
m(

√
q − 1).

(e) Show that if m ≥ 17 and q is sufficiently large (q ≥ 1122 suffices),
then E(Fq) has a point of order greater than 4

√
q.

(f) Show that for most values of q, an elliptic curve over Fq has a point
of order greater than 4

√
q.

4.7 (a) Let E be defined by y2 +y = x3 +x over F2. Show that #E(F2) =
5.

(b) Let E be defined by y2 = x3−x+2 over F3. Show that #E(F3) = 1.

(c) Show that the curves in (a) and (b) are supersingular, but that, in
each case, a = p+1−#E(Fp) �= 0. This shows that the restriction
to p ≥ 5 is needed in Corollary 4.32.

4.8 Let p ≥ 5 be prime. Use Theorem 4.23 to prove Hasse’s theorem for the
elliptic curve given by y2 = x3 − kx over Fp.

4.9 Let E be an elliptic curve over Fq with q = p2m. Suppose that #E(Fq) =
q + 1 − 2

√
q.

(a) Let φq be the Frobenius endomorphism. Show that (φq−pm)2 = 0.

(b) Show that φq − pm = 0 (Hint:Theorem 2.22).

(c) Show that φq acts as the identity on E[pm − 1], and therefore that
E[pm − 1] ⊆ E(Fq).

(d) Show that E(Fq) � Zpm−1 ⊕ Zpm−1.

4.10 Let E be an elliptic curve over Fq with q odd. Write #E(Fq) = q+1−a.
Let d ∈ F×

q and let E(d) be the twist of E, as in Exercise 2.23. Show
that

#E(d)(Fq) = q + 1 −
(

d

Fq

)
a.

(Hint:Use Exercise 2.23(c) and Theorem 4.14.)

4.11 Let Fq be a finite field of odd characteristic and let a, b ∈ Fq with
a �= ±2b and b �= 0. Define the elliptic curve E by

y2 = x3 + ax2 + b2x.
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(a) Show that the points (b, b
√

a + 2b) and (−b, −b
√

a − 2b) have or-
der 4.

(b) Show that at least one of a + 2b, a− 2b, a2 − 4b2 is a square in Fq.

(c) Show that if a2 − 4b2 is a square in Fq, then E[2] ⊆ E(Fq).

(d) (Suyama) Show that #E(Fq) is a multiple of 4.

(e) Let E′ be defined by y′2 = x′3 − 2ax′2 + (a2 − 4b2)x′. Show that
E′[2] ⊆ E′(Fq). Conclude that #E′(Fq) is a multiple of 4.

The curve E′ is isogenous to E via

(x′, y′) = (y2/x2, y(b2 − x2)/x2)

(see the end of Section 8.6 and also Chapter 12). It can be shown that
this implies that #E(Fq) = #E′(Fq). This gives another proof of the
result of part (d). The curve E has been used in certain elliptic curve
factorization implementations (see [19]).

4.12 Let p be a prime and let E be a supersingular elliptic curve over the
finite field Fp. Let φp be the Frobenius endomorphism. Show that some
power of φp is an integer. (Note: This is easy when p ≥ 5. The cases
p = 2, 3 can be done by a case-by-case calculation.)

4.13 Let E be an elliptic curve over Fq. Show that Hasse’s theorem can be
restated as ∣∣∣∣√#E(Fq) −√

q

∣∣∣∣ ≤ 1.

4.14 Let E be an elliptic curve over Fq. Assume that q = r2 for some integer
r. Suppose that #E(Fq) = (r − 1)2. Let φ = φq be the qth power
Frobenius endomorphism.

(a) Show that (φ − r)2 = 0.

(b) Show that φ−r = 0. (Hint:A nonzero endomorphism is surjective
on E(Fq) by Theorem 2.22.)

(c) Show that (r − 1)E(Fq) = 0.

(d) Show that E(Fq) � Zr−1 ⊕ Zr−1.

(e) Now suppose E′ is an elliptic curve over Fq with #E′(Fq) = (r+1)2

(where q = r2). Show that E′(Fq) � Zr+1 ⊕ Zr+1.
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Chapter 5
The Discrete Logarithm

Problem

Let p be a prime and let a, b be integers that are nonzero mod p. Suppose we
know that there exists an integer k such that

ak ≡ b (mod p).

The classical discrete logarithm problem is to find k. Since k + (p− 1) is
also a solution, the answer k should be regarded as being defined mod p − 1,
or mod a divisor d of p − 1 if ad ≡ 1 (mod p).

More generally, let G be any group, written multiplicatively for the moment,
and let a, b ∈ G. Suppose we know that ak = b for some integer k. In this
context, the discrete logarithm problem is again to find k. For example, G
could be the multiplicative group F×

q of a finite field. Also, G could be E(Fq)
for some elliptic curve, in which case a and b are points on E and we are
trying to find an integer k with ka = b.

In Chapter 6, we’ll meet several cryptographic applications of the discrete
logarithm problem. The security of the cryptosystems will depend on the
difficulty of solving the discrete log problem.

One way of attacking a discrete log problem is simple brute force: try all
possible values of k until one works. This is impractical when the answer k
can be an integer of several hundred digits, which is a typical size used in
cryptography. Therefore, better techniques are needed.

In this chapter, we start by discussing an attack, called the index calculus,
that can be used in F×

p , and more generally in the multiplicative group of a
finite field. However, it does not apply to general groups. Then we discuss the
method of Pohlig-Hellman, the baby step, giant step method, and Pollard’s ρ
and λ methods. These work for general finite groups, in particular for elliptic
curves. Finally, we show that for special classes of elliptic curves, namely
supersingular and anomalous curves, it is possible to reduce the discrete log
problem to easier discrete log problems (in the multiplicative group of a finite
field and in the additive group of integers mod a prime, respectively).

143
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5.1 The Index Calculus

Let p be a prime and let g be primitive root (see Appendix A) mod p,
which means that g is a generator for the cyclic group F×

p . In other words,
every h �≡ 0 (mod p) can be written in the form h ≡ gk for some integer k
that is uniquely determined mod p − 1. Let k = L(h) denote the discrete
logarithm of h with respect to g and p, so

gL(h) ≡ h (mod p).

Suppose we have h1 and h2. Then

gL(h1h2) ≡ h1h2 ≡ gL(h1)+L(h2) (mod p),

which implies that

L(h1h2) ≡ L(h1) + L(h2) (mod p − 1).

Therefore, L changes multiplication into addition, just like the classical loga-
rithm function.

The index calculus is a method for computing values of the discrete log
function L. The idea is to compute L(�) for several small primes �, then use
this information to compute L(h) for arbitrary h. It is easiest to describe the
method with an example.

Example 5.1
Let p = 1217 and g = 3. We want to solve 3k ≡ 37 (mod 1217). Most
of our work will be precomputation that will be independent of the number
37. Let’s choose a set of small primes, called the factor base, to be B =
{2, 3, 5, 7, 11, 13}. First, we find relations of the form

3x ≡ ±product of some primes in B (mod 1217).

Eventually, we find the following:

31 ≡ 3 (mod 1217)
324 ≡ −22 · 7 · 13
325 ≡ 53

330 ≡ −2 · 52

354 ≡ −5 · 11
387 ≡ 13

These can be changed into equations for discrete logs, where now the congru-
ences are all mod p−1 = 1216. Note that we already know that 3(p−1)/2 ≡ −1
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(mod p), so L(−1) = 608.

1 ≡ L(3) (mod 1216)
24 ≡ 608 + 2L(2) + L(7) + L(13)
25 ≡ 3L(5)
30 ≡ 608 + L(2) + 2L(5)
54 ≡ 608 + L(5) + L(11)
87 ≡ L(13)

The first equation yields L(3) ≡ 1. The third yields L(5) ≡ 819 (mod 1216).
The sixth yields L(13) ≡ 87. The fourth gives

L(2) ≡ 30 − 608 − 2 · 819 ≡ 216 (mod 1216).

The fifth yields L(11) ≡ 54 − 608 − L(5) ≡ 1059. Finally, the second gives

L(7) ≡ 24 − 608 − 2L(2) − L(13) ≡ 113 (mod 1216).

We now know the discrete logs of all the elements of the factor base.
Recall that we want to solve 3k ≡ 37 (mod 1216). We compute 3j · 37

(mod p) for several random values of j until we obtain an integer that can be
factored into a product of primes in B. In our case, we find that

316 · 37 ≡ 23 · 7 · 11 (mod 1217).

Therefore,

L(37) ≡ 3L(2) + L(7) + L(11) − 16 ≡ 588 (mod 1216),

and 3588 ≡ 37 (mod 1217).

The choice of the size of the factor base B is important. If B is too small,
then it will be very hard to find powers of g that factor with primes in B. If B
is too large, it will be easy to find relations, but the linear algebra needed to
solve for the logs of the elements of B will be unwieldy. An example that was
completed in 2001 by A. Joux and R. Lercier used the first 1 million primes
to compute discrete logs mod a 120-digit prime.

There are various methods that produce relations of the form gx ≡ product
of primes in B. A popular one uses the number field sieve. See [58].

The expected running time of the index calculus is approximately a constant
times exp(

√
2 ln p ln ln p) (see [81, p. 129]), which means that it is a subex-

ponential algorithm. The algorithms in Section 5.2, which are exponential
algorithms, run in time approximately

√
p = exp(1

2 ln p). Since
√

2 ln p ln ln p
is much smaller than 1

2 ln p for large p, the index calculus is generally much
faster when it can be used.
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Note that the index calculus depends heavily on the fact that integers can
be written as products of primes. An analogue of this is not available for
arbitrary groups.

There is a generalization of the index calculus that works for finite fields,
but it requires some algebraic number theory, so we do not discuss it here.

In Section 13.4, we show how an analogue of the index calculus can be
applied to groups arising from hyperelliptic curves.

5.2 General Attacks on Discrete Logs

In this section, we discuss attacks that work for arbitrary groups. Since our
main focus is elliptic curves, we write our group G additively. Therefore, we
are given P,Q ∈ G and we are trying to solve kP = Q (we always assume
that k exists). Let N be the order of G. Usually, we assume N is known. For
simplicity, it is usually assumed that P generates G.

5.2.1 Baby Step, Giant Step

This method, developed by D. Shanks [107], requires approximately
√

N
steps and around

√
N storage. Therefore it only works well for moderate

sized N . The procedure is as follows.

1. Fix an integer m ≥ √
N and compute mP .

2. Make and store a list of iP for 0 ≤ i < m.

3. Compute the points Q − jmP for j = 0, 1, · · ·m − 1 until one matches
an element from the stored list.

4. If iP = Q − jmP , we have Q = kP with k ≡ i + jm (mod N).

Why does this work? Since m2 > N , we may assume the answer k satisfies
0 ≤ k < m2. Write k = k0 + mk1 with k0 ≡ k (mod m) and 0 ≤ k0 < m and
let k1 = (k − k0)/m. Then 0 ≤ k1 < m. When i = k0 and j = k1, we have

Q − k1mP = kP − k1mP = k0P,

so there is a match.
The point iP is calculated by adding P (a “baby step”) to (i− 1)P . The

point Q − jmP is computed by adding −mP (a “giant step”) to Q − (j −
1)mP . The method was developed by Shanks for computations in algebraic
number theory.

© 2008 by Taylor & Francis Group, LLC



SECTION 5.2 GENERAL ATTACKS ON DISCRETE LOGS 147

Note that we did not need to know the exact order N of G. We only
required an upper bound for N . Therefore, for elliptic curves over Fq, we
could use this method with m2 ≥ q + 1 + 2

√
q, by Hasse’s theorem.

A slight improvement of the method can be made for elliptic curves by
computing and storing only the points iP for 0 ≤ i ≤ m/2 and checking
whether Q − jmP = ±iP (see Exercise 5.1).

Example 5.2
Let G = E(F41), where E is given by y2 = x3 + 2x + 1. Let P = (0, 1) and
Q = (30, 40). By Hasse’s theorem, we know that the order of G is at most 54,
so we let m = 8. The points iP for 1 ≤ i ≤ 7 are

(0, 1), (1, 39), (8, 23), (38, 38), (23, 23), (20, 28), (26, 9).

We calculate Q − jmP for j = 0, 1, 2 and obtain

(30, 40), (9, 25), (26, 9),

at which point we stop since this third point matches 7P . Since j = 2 yielded
the match, we have

(30, 40) = (7 + 2 · 8)P = 23P.

Therefore k = 23.

5.2.2 Pollard’s ρ and λ Methods

A disadvantage of the Baby Step, Giant Step method is that it requires a
lot of storage. Pollard’s ρ and λ methods [87] run in approximately the same
time as Baby Step, Giant Step, but require very little storage. First, we’ll
discuss the ρ method, then its generalization to the λ method.

Let G be a finite group of order N . Choose a function f : G → G that
behaves rather randomly. Then start with a random element P0 and compute
the iterations Pi+1 = f(Pi). Since G is a finite set, there will be some indices
i0 < j0 such that Pi0 = Pj0 . Then

Pi0+1 = f(Pi0) = f(Pj0) = Pj0+1,

and, similarly, Pi0+� = Pj0+� for all � ≥ 0. Therefore, the sequence Pi is
periodic with period j0 − i0 (or possibly a divisor of j0 − i0). The picture
describing this process (see Figure 5.1) looks like the Greek letter ρ, which
is why it is called Pollard’s ρ method. If f is a randomly chosen random
function (we’ll not make this precise), then we expect to find a match with j0
at most a constant times

√
N . For an analysis of the running time for various

choices of function f , see [119].
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A naive implementation of the method stores all the points Pi until a match
is found. This takes around

√
N storage, which is similar to Baby Step, Giant

Step. However, as R. W. Floyd has pointed out, it is possible to do much better
at the cost of a little more computation. The key idea is that once there is a
match for two indices differing by d, all subsequent indices differing by d will
yield matches. This is just the periodicity mentioned above. Therefore, we
can compute pairs (Pi, P2i) for i = 1, 2, . . . , but only keep the current pair;
we don’t store the previous pairs. These can be calculated by the rules

Pi+1 = f(Pi), P2(i+1) = f(f(P2i)).

Suppose i ≥ i0 and i is a multiple of d. Then the indices 2i and i differ by a
multiple of d and hence yield a match: Pi = P2i. Since d ≤ j0 and i0 < j0, it
follows easily that there is a match for i ≤ j0. Therefore, the number of steps
to find a match is expected to be at most a constant multiple of

√
N .

Another method of finding a match is to store only those points Pi that
satisfy a certain property (call them “distinguished points”). For example, we
could require the last k bits of the binary representation of the x-coordinate to
be 0. We then store, on the average, one out of every 2k points Pi. Suppose
there is a match Pi = Pj but Pi is not one of these distinguished points.
We expect Pi+� to be a distinguished point for some � with 1 ≤ � ≤ 2k,
approximately. Then Pj+� = Pi+�, so we find a match between distinguished
points with only a little more computation.

The problem remains of how to choose a suitable function f . Besides having
f act randomly, we need to be able to extract useful information from a match.
Here is one way of doing this. Divide G into s disjoint subsets S1, S2, . . . , Ss

of approximately the same size. A good choice for s seems to be around 20.
Choose 2s random integers ai, bi mod N . Let

Mi = aiP + biQ.

Finally, define
f(g) = g + Mi if g ∈ Si.

The best way to think of f is as giving a random walk in G, with the possible
steps being the elements Mi.

Finally, choose random integers a0, b0 and let P0 = a0P+b0Q be the starting
point for the random walk. While computing the points Pj , we also record
how these points are expressed in terms of P and Q. If Pj = ujP + vjQ and
Pj+1 = Pj + Mi, then Pj+1 = (uj + ai)P + (vj + bi)Q, so (uj+1, vj+1) =
(uj , vj) + (ai, bi). When we find a match Pj0 = Pi0 , then we have

uj0P + vj0Q = ui0P + vi0Q, hence (ui0 − uj0)P = (vj0 − vi0)Q.

If gcd(vj0 − vi0 , N) = d, we have

k ≡ (vj0 − vi0)
−1(ui0 − uj0) (mod N/d).

© 2008 by Taylor & Francis Group, LLC



SECTION 5.2 GENERAL ATTACKS ON DISCRETE LOGS 149

P0

P1

P2

P3

P4

P58�P5

P59�P6

Figure 5.1

Pollard’s Rho Method

This gives us d choices for k. Usually, d will be small, so we can try all
possibilities until we have Q = kP .

In cryptographic applications, N is often prime, in which case, d = 1 or
N . If d = N , we have a trivial relation (the coefficients of both P and Q are
multiples of N), so we start over. If d = 1, we obtain k.

Example 5.3
Let G = E(F1093), where E is the elliptic curve given by y2 = x3 + x + 1.
We’ll use s = 3. Let P = (0, 1) and Q = (413, 959). It can be shown that the
order of P is 1067. We want to find k such that kP = Q. Let

P0 = 3P + 5Q, M0 = 4P + 3Q, M1 = 9P + 17Q, M2 = 19P + 6Q.

Let f : E(F1093) → E(F1093) be defined by

f(x, y) = (x, y) + Mi if x ≡ i (mod 3).

Here the number x is regarded as an integer 0 ≤ x < 1093 and is then reduced
mod 3. For example,

f(P0) = P0 + M2 = (727, 589),

since P0 = (326, 69) and 326 ≡ 2 (mod 3).
We can define f(∞) = ∞ if we want. However, if we encounter f(∞), we

have found a relation of the form aP + bQ = ∞ and can find k easily (if the
relation isn’t something trivial like 1067P +2134Q = ∞). Therefore, we don’t
worry about ∞.
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If we compute P0, P1 = f(P0), P2 = f(P1), . . . , we obtain

P0 = (326, 69), P1 = (727, 589), P2 = (560, 365), P3 = (1070, 260),
P4 = (473, 903), P5 = (1006, 951), P6 = (523, 938), . . . ,

P57 = (895, 337), P58 = (1006, 951), P59 = (523, 938), . . . .

Therefore, the sequence starts repeating at P5 = P58.
If we keep track of the coefficients of P and Q in the calculations, we find

that
P5 = 88P + 46Q and P58 = 685P + 620Q.

Therefore,
∞ = P58 − P5 = 597P + 574Q.

Since P has order 1067, we calculate

−574−1597 ≡ 499 (mod 1067).

Therefore, Q = 499P , so k = 499.
We stored all of the points P0, P1, . . . , P58 until we found a match. Instead,

let’s repeat the computation, but compute the pairs (Pi, P2i) and store nothing
except the current pair. We then find that for i = 53 there is the match
P53 = P106. This yields

620P + 557Q = P53 = P106 = 1217P + 1131Q.

Therefore, 597P + 574Q = ∞, which yields k = 499, as before.

Pollard’s λ method uses a function f as in the ρ method, but several
random starting points P

(1)
0 , . . . , P

(r)
0 are used. We then get sequences defined

by
P

(�)
i+1 = f(P (�)

i ), 1 ≤ � ≤ r, i = 0, 1, 2, . . . .

These can be computed by several computers in parallel. Points satisfying
certain conditions are called distinguished and are reported to a central com-
puter. When a match is found among the inputs from the various computers,
we have a relation that should allow us to solve the discrete log problem, as
in the ρ method. When there is a match between two sequences, these two
sequences will always match from that point on. We only need to look at
distinguished points because distinguished points should occur soon after a
match occurs.

When there are only two random starting points, we have two random
walks. Eventually they will have a point in common, and therefore they will
coincide thereafter. The picture of this process resembles the Greek letter λ,
hence the name.

Sometimes the λ method is described in terms of kangaroos jumping around
a field (this is the random walk). A variant of the λ method with two random
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walks records every 10th point, for example, in the first sequence and then
checks whether the second sequence matches any of these points. In this case,
the first sequence is called a tame kangaroo, and the second is called a wild
kangaroo. The idea is to use the tame kangaroo to catch the wild kangaroo.

The λ method is expected to find a match in at most a constant times
√

N
steps. If it is run in parallel with many starting points, the running time can
be improved significantly.

Finally, we should point out a difference between the baby step, giant step
method and the ρ and λ methods. The baby step, giant step method is de-
terministic, which means that it is guaranteed to finish within the predicted
time of a constant times

√
N . On the other hand, the ρ and λ methods are

probabilistic, which means that there is a very high probability that they
will finish within the predicted time, but this is not guaranteed.

5.2.3 The Pohlig-Hellman Method

As before, P,Q are elements in a group G and we want to find an integer
k with Q = kP . We also know the order N of P and we know the prime
factorization

N =
∏

i

qei
i

of N . The idea of Pohlig-Hellman is to find k (mod qei
i ) for each i, then use

the Chinese Remainder theorem to combine these and obtain k (mod N).
Let q be a prime, and let qe be the exact power of q dividing N . Write k

in its base q expansion as

k = k0 + k1q + k2q
2 + · · ·

with 0 ≤ ki < q. We’ll evaluate k (mod qe) by successively determining
k0, k1, . . . , ke−1. The procedure is as follows.

1. Compute T =
{

j
(

N
q P

)
| 0 ≤ j ≤ q − 1

}
.

2. Compute N
q Q. This will be an element k0

(
N
q P

)
of T .

3. If e = 1, stop. Otherwise, continue.

4. Let Q1 = Q − k0P .

5. Compute N
q2 Q1. This will be an element k1

(
N
q P

)
of T .

6. If e = 2, stop. Otherwise, continue.

7. Suppose we have computed k0, k1, . . . , kr−1, and Q1, . . . , Qr−1.
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8. Let Qr = Qr−1 − kr−1q
r−1P .

9. Determine kr such that N
qr+1 Qr = kr

(
N
q P

)
.

10. If r = e − 1, stop. Otherwise, return to step (7).

Then
k ≡ k0 + k1q + · + ke−1q

e−1 (mod qe).

Why does this work? We have

N

q
Q =

N

q
(k0 + k1q + · · · )P

= k0
N

q
P + (k1 + k2q + · · · )NP = k0

N

q
P,

since NP = ∞. Therefore, step (2) finds k0. Then

Q1 = Q − k0P = (k1q + k2q
2 + · · · )P,

so

N

q2
Q1 = (k1 + k2q + · · · )N

q
P

= k1
N

q
P + (k2 + k3q + · · · )NP = k1

N

q
P.

Therefore, we find k1. Similarly, the method produces k2, k3, . . . . We have
to stop after r = e − 1 since N/qe+1 is no longer an integer, and we cannot
multiply Qe by the noninteger N/qe+1. Besides, we do not need to continue
because we now know k mod qe.

Example 5.4
Let G = E(F599), where E is the elliptic curve given by y2 = x3 + 1. Let
P = (60, 19) and Q = (277, 239). The methods of Section 4.3.3 can be used
to show that P has order N = 600. We want to solve Q = kP for k. The
prime factorization of N is

600 = 23 · 3 · 52.

We’ll compute k mod 8, mod 3, and mod 25, then recombine to obtain k mod
600 (the Chinese Remainder Theorem allows us to do this).

k mod 8. We compute T = {∞, (598, 0)}. Since

(N/2)Q = ∞ = 0 ·
(

N

2
P

)
,
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we have k0 = 0. Therefore,

Q1 = Q − 0P = Q.

Since (N/4)Q1 = 150Q1 = (598, 0) = 1 · N
2 P , we have k1 = 1. Therefore,

Q2 = Q1 − 1 · 2 · P = (35, 243).

Since (N/8)Q2 = 75Q2 = ∞ = 0 · N
2 P , we have k2 = 0. Therefore,

k = 0 + 1 · 2 + 0 · 4 + · · · ≡ 2 (mod 8).

k mod 3. We have T = {∞, (0, 1), (0, 598)}. Since

(N/3)Q = (0, 598) = 2 · N

3
P,

we have k0 = 2. Therefore,

k ≡ 2 (mod 3).

k mod 25. We have

T = {∞, (84, 179), (491, 134), (491, 465), (84, 420)}.

Since (N/5)Q = (84, 179), we have k0 = 1. Then

Q1 = Q − 1 · P = (130, 129).

Since (N/25)Q1 = (491, 465), we have k1 = 3. Therefore,

k = 1 + 3 · 5 + · · · ≡ 16 (mod 25).

We now have the simultaneous congruences⎧⎨⎩x ≡ 2 (mod 8)
x ≡ 2 (mod 3)
x ≡ 16 (mod 25)

.

These combine to yield k ≡ 266 (mod 600), so k = 266.

The Pohlig-Hellman method works well if all of the prime numbers dividing
N are small. However, if q is a large prime dividing N , then it is difficult to
list the elements of T , which contains q elements. We could try to find the ki

without listing the elements; however, finding ki is a discrete log problem in
the group generated by (N/q)P , which has order q. If q is of the same order of
magnitude as N (for example, q = N or q = N/2), then the Pohlig-Hellman
method is of little use. For this reason, if a cryptographic system is based on
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discrete logs, the order of the group should be chosen so it contains a large
prime factor.

If N contains some small prime factors, then the Pohlig-Hellman method
can be used to obtain partial information on the value of k, namely a congru-
ence modulo a product of these small prime factors. In certain cryptographic
situations, this could be undesirable. Therefore, the group G is often chosen
to be of large prime order. This can be accomplished by starting with a group
that has a large prime q in its order. Pick a random point P1 and compute
its order. With high probability (at least 1 − 1/q; cf. Remark 5.2), the order
of P1 is divisible by q, so in a few tries, we can find such a point P1. Write
the order of P1 as qm. Then P = mP1 will have order q. As long as q is
sufficiently large, discrete log problems in the cyclic group generated by P
will resist the Pohlig-Hellman attack.

5.3 Attacks with Pairings

One strategy for attacking a discrete logarithm problem is to reduce it to an
easier discrete logarithm problem. This can often be done with pairings such
as the Weil pairing or the Tate-Lichtenbaum pairing, which reduce a discrete
logarithm problem on an elliptic curve to one in the multiplicative group of a
finite field.

5.3.1 The MOV Attack

The MOV attack, named after Menezes, Okamoto, and Vanstone [80], uses
the Weil pairing to convert a discrete log problem in E(Fq) to one in F×

qm .
Since discrete log problems in finite fields can be attacked by index calculus
methods, they can be solved faster than elliptic curve discrete log problems, as
long as the field Fqm is not much larger than Fq. For supersingular curves, we
can usually take m = 2, so discrete logarithms can be computed more easily
for these curves than for arbitrary elliptic curves. This is unfortunate from a
cryptographic standpoint since an attractive feature of supersingular curves
is that calculations can often be done quickly on them (see Section 4.6).

Recall that for an elliptic curve E defined over Fq, we let E[N ] denote the
set of points of order dividing N with coordinates in the algebraic closure. If
gcd(q,N) = 1 and S, T ∈ E[N ], then the Weil pairing eN (S, T ) is an Nth root
of unity and can be computed fairly quickly. The pairing is bilinear, and if
{S, T} is a basis for E[N ], then eN (S, T ) is a primitive Nth root of unity. For
any S, eN (S, S) = 1. For more properties of the Weil pairing, see Sections 3.3
and 11.2.
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Let E be an elliptic curve over Fq. Let P,Q ∈ E(Fq). Let N be the order
of P . Assume that

gcd(N, q) = 1.

We want to find k such that Q = kP . First, it’s worthwhile to check that k
exists.

LEMMA 5.1
Thereexistsk such thatQ = kP ifand only ifNQ = ∞ and theW eilparing
eN (P,Q) = 1.

PROOF If Q = kP , then NQ = kNP = ∞. Also,

eN (P,Q) = eN (P, P )k = 1k = 1.

Conversely, if NQ = ∞, then Q ∈ E[N ]. Since gcd(N, q) = 1, we have
E[N ] � ZN ⊕ ZN , by Theorem 3.2. Choose a point R such that {P, R} is a
basis of E[N ]. Then

Q = aP + bR

for some integers a, b. By Corollary 3.10, eN (P,R) = ζ is a primitive Nth
root of unity. Therefore, if eN (P,Q) = 1, we have

1 = eN (P,Q) = eN (P, P )aeN (P,R)b = ζb.

This implies that b ≡ 0 (mod N), so bR = ∞. Therefore, Q = aP , as desired.

The idea used to prove the lemma yields the MOV attack on discrete logs
for elliptic curves. Choose m so that

E[N ] ⊆ E(Fqm).

Since all the points of E[N ] have coordinates in Fq = ∪j≥1Fqj , such an m
exists. By Corollary 3.11, the group μN of Nth roots of unity is contained in
Fqm . All of our calculations will be done in Fqm . The algorithm is as follows.

1. Choose a random point T ∈ E(Fqm).

2. Compute the order M of T .

3. Let d = gcd(M,N), and let T1 = (M/d)T . Then T1 has order d, which
divides N , so T1 ∈ E[N ].

4. Compute ζ1 = eN (P, T1) and ζ2 = eN (Q,T1). Then both ζ1 and ζ2 are
in μd ⊆ F×

qm .

5. Solve the discrete log problem ζ2 = ζk
1 in F×

qm . This will give k (mod d).
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6. Repeat with random points T until the least common multiple of the
various d’s obtained is N . This determines k (mod N).

REMARK 5.2 At first, it might seem that d = 1 will occur very often.
However, the opposite is true because of the structure of E(Fqm). Recall that

E(Fqm) � Zn1 ⊕ Zn2

for some integers n1, n2 with n1|n2 (possibly, n1 = 1, in which case the group
is cyclic). Then N |n2, since n2 is the largest possible order of an element
of the group. Let B1, B2 be points of orders n1, n2, respectively, such that
B1, B2 generate E(Fqm). Then T = a1B1 + a2B2. Let �e be a prime power
dividing N . Then �f |n2 with f ≥ e. If � � a2, then �f divides M , the order of
T . Therefore, �e|d = gcd(M,N). Since the probability that � � a2 is 1 − 1/�,
the probability is at least this high that the full power �e is in d. After a few
choices of T , this should be the case. (Note that our probability estimates
are low, since we never included the possible contribution of the a1B1 term.)
Therefore, a few iterations of the algorithm should yield k.

Potentially, the integer m could be large, in which case the discrete log
problem in the group F×

qm , which has order qm − 1, is just as hard as the
original discrete log problem in the smaller group E(Fq), which has order
approximately q, by Hasse’s theorem. However, for supersingular curves, we
can usually take m = 2, as the next result shows.

Let E be an elliptic curve over Fq, where q is a power of the prime number
p. Then

#E(Fq) = q + 1 − a

for some integer a. The curve E is called supersingular if a ≡ 0 (mod p).
Corollary 4.32 says that this is equivalent to a = 0 when q = p ≥ 5.

PROPOSITION 5.3
LetE be an elliptic curve overFq and suppose a = q + 1−#E(Fq) = 0.Let

N be a positive integer. Ifthere exists a pointP ∈ E(Fq) oforderN,then
E[N ] ⊆ E(Fq2).

PROOF The Frobenius endomorphism φq satisfies φ2
q −aφq + q = 0. Since

a = 0, this reduces to
φ2

q = −q.

Let S ∈ E[N ]. Since #E(Fq) = q + 1, and since there exists a point of order
N , we have N |q + 1, or −q ≡ 1 (mod N). Therefore

φ2
q(S) = −qS = 1 · S.
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By Lemma 4.5, S ∈ E(Fq2), as claimed.

Therefore, discrete log problems over Fq for supersingular curves with a = 0
can be reduced to discrete log calculations in F×

q2 . These are much easier.
When E is supersingular but a �= 0, the above ideas work, but possibly

m = 3, 4, or 6 (see [80] and Exercise 5.12). This is still small enough to speed
up discrete log computations.

5.3.2 The Frey-Rück Attack

Frey and Rück showed that in some situations, the Tate-Lichtenbaum pair-
ing τn can be used to solve discrete logarithm problems (see [41] and also
[40]). First, we need the following.

LEMMA 5.4
Let � be a prim e with �|q − 1, �|#E(Fq), and �2 � #E(Fq). Let P be a
generatorofE(Fq)[�].Then τ�(P, P ) isa prim itive �th rootofunity.

PROOF If τ�(P, P ) = 1, then τ�(uP, P ) = 1u = 1 for all u ∈ Z. Since
τ� is nondegenerate, P ∈ �E(Fq). Write P = �P1. Then �2P1 = �P = ∞.
Since �2 � #E(Fq), there are no points of order �2. Therefore P1 must have
order 1 or �. In particular, P = �P1 = ∞, which is a contradiction. Therefore
τ�(P, P ) �= 1, so it must be a primitive �th root of unity.

Let E(Fq) and P be as in the lemma, and suppose Q = kP . Compute

τ�(P,Q) = τ�(P, P )k.

Since τ�(P, P ) is a primitive �th root of unity, this determines k (mod �). We
have therefore reduced the discrete log problem to one in the multiplicative
group of the finite field Fq. Such discrete log problems are usually easier to
solve.

Therefore, to choose a situation where the discrete log problem is hard, we
should choose a situation where there is a point of order �, where � is a large
prime, and such that � � q−1. In fact, we should arrange that qm �≡ 1 (mod �)
for small values of m.

Suppose E(Fq) has a point of order n, but n � q − 1. We can extend our
field to Fqm so that n|qm − 1. Then the Tate-Lichtenbaum pairing can be
used. However, the following proposition from [9] shows, at least in the case
n is prime, that the Weil pairing also can be used.

PROPOSITION 5.5
LetE be an elliptic curve over Fq. Let � be a prim e such that �|#E(Fq),
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E[�] �⊆ E(Fq),and � � q(q − 1).Then

E[�] ⊆ E(Fqm) ifand only ifqm ≡ 1 (mod �).

PROOF If E[�] ⊆ E(Fqm), then μ� ⊆ Fqm by Corollary 3.11, hence qm ≡ 1
(mod �).

Conversely, suppose qm ≡ 1 (mod �). Let P ∈ E(Fq) have order � and let
Q ∈ E[�] with Q �∈ E(Fq). We claim that P and Q are independent points of
order �. If not, then uP = vQ for some integers u, v �≡ 0 (mod �). Multiplying
by v−1 (mod �), we find that Q = v−1uP ∈ E(Fq), which is a contradiction.
Therefore {P,Q} is a basis for E[�].

Let φq be the Frobenius map. The action of φq on the basis {P,Q} of
E[�] gives us a matrix (φq)�, as in Section 3.1. Since P ∈ E(Fq), we have
φq(P ) = P . Let φq(Q) = bP + dQ. Then

(φq)� =
(

1 b
0 d

)
.

From Theorem 4.10, we know that

Trace((φq)�) ≡ a = q + 1 − #E(Fq) (mod �).

Since #E(Fq) ≡ 0 (mod �) by assumption, we have

1 + d ≡ q + 1 (mod �),

so d ≡ q (mod �). An easy induction shows that(
1 b
0 q

)m

=
(

1 b qm−1
q−1

0 qm

)
.

Since q �≡ 1 (mod �), by assumption, we have

φm
q = 1 on E[�] ⇐⇒ (φq)m

� ≡ I (mod �) ⇐⇒ qm ≡ 1 (mod �).

Since E[�] ⊆ E(Fqm) if and only if φm
q = 1 on E[�], by Lemma 4.5, this proves

the proposition.

If we have E[n] ⊆ E(Fqm), then we can use the MOV attack or we can
use the Tate-Lichtenbaum pairing to reduce discrete log problems in E(Fqm)
to discrete log problems in F×

qm . The Tate-Lichtenbaum pairing is generally
faster (see [44]). In both cases, we pick arbitrary points R and compute their
pairings with P and kP . With high probability (as in Section 5.3.1), we obtain
k after using only a few values of R.
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5.4 Anomalous Curves

The reason the MOV attack works is that it is possible to use the Weil
pairing. In order to avoid this, it was suggested that elliptic curves E over Fq

with
#E(Fq) = q

be used. Such curves are called anomalous. Unfortunately, the discrete log
problem for the group E(Fq) can be solved quickly. However, as we’ll see be-
low, anomalous curves are potentially useful when considered over extensions
of Fq, since they permit a speed-up in certain calculations in E(Fq).

The Weil pairing is not defined on E[p] (or, if we defined it, it would be
trivial since E[p] is cyclic and also since there are no nontrivial pth roots of
unity in characteristic p; however, see [10] for a way to use a Weil pairing in
this situation). Therefore, it was hoped that this would be a good way to
avoid the MOV attack. However, it turns out that there is a different attack
for anomalous curves that works even faster for these curves than the MOV
attack works for supersingular curves.

In the following, we show how to compute discrete logs in the case q = p.
Procedures for doing this have been developed in [95], [102], and [115]. Similar
ideas work for subgroups of p-power order in E(Fq) when q is a power of p
(but in Proposition 5.6 we would need to lift E to a curve defined over a larger
ring than Z).

Warning: The property of being anomalous depends on the base field.
If E is anomalous over Fq, it is not necessarily anomalous over any Fqn for
n ≥ 2. See Exercises 5.5 and 5.6. This is in contrast to supersingularity,
which is independent of the base field and is really a property of the curve
over the algebraic closure (since supersingular means that there are no points
of order p with coordinates in the algebraic closure of the base field).

The first thing we need to do is lift the curve E and the points P,Q to an
elliptic curve over Z.

PROPOSITION 5.6

Let E be an elliptic curve over Fp and let P,Q ∈ E(Fp). W e assum e
E is in W eierstrass form y2 = x3 + Ax + B. Then there exist integers
Ã, B̃, x1, x2, y1, y2 and an elliptic curve Ẽ given by

y2 = x3 + Ãx + B̃

such thatP̃ = (x1, y1), Q̃ = (x2, y2) ∈ Ẽ(Q) and such that

A ≡ Ã, B ≡ B̃, P ≡ P̃ , Q ≡ Q̃ (mod p).
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PROOF Choose integers x1 and x2 such that x1, x2 (mod p) give the x-
coordinates of P,Q. First, assume that x1 �≡ x2 (mod p). Choose an integer
y1 such that P̃ = (x1, y1) reduces to P mod p. Now choose y2 such that

y2
2 ≡ y2

1 (mod x2 − x1) and (x2, y2) ≡ Q (mod p).

This is possible by the Chinese Remainder Theorem, since gcd(p, x2−x1) = 1
by assumption.

Consider the simultaneous equations

y2
1 = x3

1 + Ãx1 + B̃

y2
2 = x3

2 + Ãx2 + B̃.

We can solve these for Ã, B̃:

Ã =
y2
2 − y2

1

x2 − x1
− x3

2 − x3
1

x2 − x1
, B̃ = y2

1 − x3
1 − Ãx1.

Since y2
2 − y2

1 is divisible by x2 − x1, and since x1, x2, y1, y2 are integers, it
follows that Ã, and therefore B̃, are integers. The points P̃ and Q̃ lie on the
curve Ẽ we obtain.

If x1 ≡ x2 (mod p), then P = ±Q. In this case, take x1 = x2. Then
choose y1 that reduces mod p to the y-coordinate of P . Choose an integer
Ã ≡ A (mod p) and let B̃ = y2

1 − x3
1 − Ãx1. Then P̃ = (x1, y1) lies on Ẽ. Let

Q̃ = ±P̃ . Then Q̃ reduces to ±P = Q mod p.
Finally, 4Ã3+27B̃2 ≡ 4A3+27B2 �≡ 0 (mod p), since E is an elliptic curve.

It follows that 4Ã3 + 27B̃2 �= 0. Therefore Ẽ is an elliptic curve.

REMARK 5.7 If we start with Q = kP for some integer k, it is very
unlikely that this relation still holds on Ẽ. In fact, usually P̃ and Q̃ are
independent points. However, if they are dependent, so aP̃ = bQ̃ for some
nonzero integers a, b, then aP = bQ, which allows us to find k (unless bP =
∞). The amazing thing about the case of anomalous curves is that even when
P̃ and Q̃ are independent, we can extract enough information to find k.

Let a/b �= 0 be a rational number, where a, b are relatively prime integers.
Write a/b = pra1/b1 with p � a1b1. Define the p-adic valuation to be

vp(a/b) = r.

For example,

v2(7/40) = −3, v5(50/3) = 2, v7(1/2) = 0.

Define vp(0) = +∞ (so vp(0) > n for every integer n).
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Let Ẽ be an elliptic curve over Z given by y2 = x3 + Ãx + B̃. Let r ≥ 1 be
an integer. Define

Ẽr = {(x, y) ∈ Ẽ(Q) | vp(x) ≤ −2r, vp(y) ≤ −3r} ∪ {∞}.
These are the points such that x has at least p2r in its denominator and y
has at least p3r in its denominator. These should be thought of as the points
that are close to ∞ mod powers of p (that is, p-adically close to ∞).

THEOREM 5.8
LetẼ be given by y2 = x3 + Ãx + B̃,with Ã, B̃ ∈ Z.Letp be prim e and let

r be a positive integer.Then

1. Ẽr isa subgroup ofẼ(Q).

2. If(x, y) ∈ Ẽ(Q),then vp(x) < 0 ifand only ifvp(y) < 0. In this case,
there existsan integer r ≥ 1 such thatvp(x) = −2r, vp(y) = −3r.

3. The m ap

λr : Ẽr/Ẽ5r → Zp4r

(x, y) �→ p−rx/y (mod p4r)
∞ �→ 0

isan injective hom om orphism (where Zp4r isa group under addition).

4. If(x, y) ∈ Ẽr but(x, y) �∈ Ẽr+1,then λr(x, y) �≡ 0 (mod p).

This will be proved in Section 8.1. The map λr should be regarded as a
logarithm for the group Ẽr/Ẽr+1 since it changes the law of composition in
the group to addition in Zp4r , just as the classical logarithm changes the com-
position law in the multiplicative group of positive real numbers to addition
in R.

We need one more fact, which is contained in Corollary 2.33: the reduction
mod p map

redp : Ẽ(Q) −→ Ẽ (mod p)

(x, y) �→ (x, y) (mod p) when (x, y) �∈ Ẽ1

Ẽ1 → {∞}
is a homomorphism. The kernel of redp is Ẽ1.

We are now ready for a theoretical version of the algorithm. We start with
an elliptic curve E over Fp in Weierstrass form, and we have points P and
Q on E. We want to find an integer k such that Q = kP (assume k �= 0).
The crucial assumption is that E is anomalous, so #E(Fp) = p. Perform the
following steps.

© 2008 by Taylor & Francis Group, LLC



162 CHAPTER 5 THE DISCRETE LOGARITHM PROBLEM

1. Lift E,P,Q to Z to obtain Ẽ, P̃ , Q̃, as in Proposition 5.6.

2. Let P̃1 = pP̃ , Q̃1 = pQ̃. Note that P̃1, Q̃1 ∈ Ẽ1 since redp(pP̃ ) =
p · redp(P̃ ) = ∞ (this is where we use the fact that E is anomalous).

3. If P̃1 ∈ Ẽ2, choose new Ẽ, P̃ , Q̃ and try again. Otherwise, let �1 =
λ1(P̃1) and �2 = λ1(Q̃1). We have k ≡ �2/�1 (mod p).

Why does this work? Let K̃ = kP̃ − Q̃. We have

∞ = kP − Q = redp(kP̃ − Q̃) = redp(K̃).

Therefore K̃ ∈ Ẽ1, so λ1(K̃) is defined and

λ1(pK̃) = pλ1(K̃) ≡ 0 (mod p).

Therefore,

k�1 − �2 = λ1(kP̃1 − Q̃1) = λ1(kpP̃ − pQ̃) = λ1(pK̃) ≡ 0 (mod p).

This means that k ≡ �2/�1 (mod p), as claimed.
Note that the assumption that E is anomalous is crucial. If E(Fp) has

order N , we need to multiply by N to put P̃ , Q̃ into Ẽ1, where λ1 is defined.
The difference K̃ = kP̃ − Q̃ gets multiplied by N , also. When N is a multiple
of p, we have λ1(NK̃) ≡ 0 (mod p), so the contribution from K̃ disappears
from our calculations.

If we try to implement the above algorithm, we soon encounter difficulties.
If p is a large prime, the point P̃1 has coordinates whose numerators and
denominators are too large to work with. For example, the numerator and
denominator of the x-coordinate usually have approximately p2 digits (see
Section 8.3). However, we are only looking for x/y (mod p). As we shall see,
it suffices to work with numbers mod p2. (It is also possible to use the “dual
numbers” Fp[ε], where ε2 = 0; see [10].)

Let’s try calculating on Ẽ (mod p2). When we compute (x, y) = P̃1 = pP̃ ,
we run into problems. Since P̃1 ∈ Ẽ2, we have p2 in the denominator of x, so
P̃1 is already at ∞ mod p2. Therefore, we cannot obtain information directly
from calculating λ1(P̃1). Instead, we calculate (p − 1)P̃ (mod p2), then add
it to P̃ , keeping track of p in denominators.

The procedure is the following.

1. Lift E,P,Q to Z to obtain Ẽ, P̃ = (x1, y1), Q̃ = (x2, y2), as in Proposi-
tion 5.6.

2. Calculate
P̃2 = (p − 1)P̃ ≡ (x′, y′) (mod p2).

The rational numbers in the calculation of P̃2 should not have p in their
denominators, so the denominators can be inverted mod p2 to obtain
integers x′, y′.
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3. Calculate Q̃2 = (p − 1)Q̃ ≡ (x′′, y′′) (mod p2).

4. Compute

m1 = p
y′ − y1

x′ − x1
, m2 = p

y′′ − y2

x′′ − x2
.

5. If vp(m2) < 0 or vp(m1) < 0, then try another Ẽ. Otherwise, Q = kP ,
where k ≡ m1/m2 (mod p).

Example 5.5
Let E be the elliptic curve given by y2 = x3+108x+4 over F853. Let P = (0, 2)
and Q = (563, 755). It can be shown that 853P = ∞. Since 853 is prime, the
order of P is 853, so 853|#E(F853). Hasse’s theorem implies that #E(F853) =
853, as in Section 4.3.3. Therefore, E is anomalous. Proposition 5.6 yields

Ẽ : y2 = x3 + 7522715x + 4, P̃ = (0, 2), Q̃ = (563, 66436).

We have

P̃2 = 852P̃ ≡ (159511, 58855) (mod 8532)
Q̃2 = 852Q̃ ≡ (256463, 645819) (mod 8532).

Note that even with a prime as small as 853, writing P̃2 without reducing
mod 8533 would require more than 100 thousand digits. We now calculate

m1 = 853
58855 − 2
159511 − 0

=
58853
187

and m2 = 853
645819 − 66436
256463 − 563

=
58853
187

.

Therefore, k ≡ m1/m2 ≡ 234 (mod 853).

Let’s prove this algorithm works (the proof consists mostly of keeping track
of powers of p, and can be skipped without much loss). The following notation
is useful. We write O(pk) to represent a rational number of the form pkz with
vp(z) ≥ 0. Therefore, if a, b ∈ Z and k > 0, then a = b + O(pk) simply
means that a ≡ b (mod pk). But we are allowing rational numbers and we
are allowing negative k. For example,

1
49

=
23
98

+ O(7−1)

since
23
98

=
1
49

+
1
7

3
2
.

The following rule is useful:

a

b + O(pk)
=

a

b
+ O(pk) when vp(b) = 0, vp(a) ≥ 0, and k > 0.
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To prove it, simply rewrite the difference a
b+pkz

− a
b . (Technicalpoint: This

actually should say that a/(b + O(pk)) can be changed to (a/b) + O(pk). The
problem with “=” is that the right side sometimes cannot be changed back
to the left side; for example, let the right side be 0 with a = −pk.)

Write P̃2 = (p− 1)P̃ = (u, v), with u, v ∈ Q (this is not yet mod p2). Then

u = x′ + O(p2), v = y′ + O(p2).

Let
(x, y) = P̃1 = pP̃ = P̃ + P̃2 = (x1, y1) + (u, v).

Then

x =
(

v − y1

u − x1

)2

− u − x1 =
(

y′ − y1 + O(p2)
x′ − x1 + O(p2)

)2

− u − x1.

We have P̃1 ∈ Ẽ1 and usually we have P̃1 �∈ Ẽ2. This means that x′ − x1

is a multiple of p, but not of p2 (note: y′ �≡ y1 (mod p) since otherwise
(p − 1)P = P , which is not the case). We’ll assume this is the case. Then

y′ − y1 + O(p2)
x′ − x1 + O(p2)

=
1
p

(
y′ − y1 + O(p2)

x′−x1
p + O(p)

)

=
1
p

(
y′ − y1

x′−x1
p

+ O(p)

)

=
1
p
m1 + O(p0).

Note that vp(m1) = 0. Since vp(u) ≥ 0 and vp(x1) ≥ 0, we obtain

x =
(

1
p
m1 + O(p0)

)2

− u − x1 =
m2

1

p2
+ O(p−1).

Similarly, the y-coordinate of P̃1 satisfies

y = −m3
1

p3
+ O(p−2).

Therefore,

�1 = λ1(P̃1) = λ1(x, y) = p−1 x

y
= − 1

m1
+ O(p) ≡ − 1

m1
(mod p).

Similarly,

�2 = λ1(Q̃1) ≡ − 1
m2

(mod p).
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If vp(m2) < 0, then Q̃1 ∈ Ẽ2 by Theorem 5.8, hence either P̃1 ∈ Ẽ2 or k = 0.
We are assuming these cases do not happen, and therefore the congruence
just obtained makes sense. Therefore,

k ≡ �2
�1

≡ m1

m2
(mod p),

as claimed. This shows that the algorithm works.
Anomalous curves are attractive from a computational viewpoint since cal-

culating an integer multiple of a point in E(Fq) can be done efficiently. In
designing a cryptosystem, one therefore starts with an anomalous curve E
over a small finite field Fq and works in E(Fqk) for a large k. Usually it is
best to work with the subgroup generated by a point whose order � is a large
prime number. In particular, � will be much larger than p, hence not equal
to p. Therefore, the above attack on anomalous curves does not apply to the
present situation.

Let E be an elliptic curve over Fq such that #E(Fq) = q. Then the trace
of the Frobenius φq is a = 1, so

φ2
q − φq + q = 0.

This means that q = φq − φ2
q. Therefore

q(x, y) = (xq, yq) + (xq2
,−yq2

) for all (x, y) ∈ E(Fq).

The calculation of xq, for example, can be done quickly in a finite field. There-
fore, the expense of multiplying by q is little more than the expense of one
addition of points. The standard method of computing q(x, y) (see Section 2.2)
involves more point additions (except when q = 2; but see Exercise 5.8). To
calculate k(x, y) for some integer k, expand k = k0 + k1q + k2q

2 + · · · in base
q. Compute kiP for each i, then compute qikiP . Finally, add these together
to obtain kP .

5.5 Other Attacks

For arbitrary elliptic curves, Baby Step/Giant Step and the Pollard ρ and
λ methods seem to be the best algorithms. There are a few cases where index
calculus techniques can be used in the jacobians of higher genus curves to
solve discrete logarithm problems on certain elliptic curves, but it is not clear
how generally their methods apply. See [45], [46], [79]. See also [113] for a
discussion of some other index calculus ideas and elliptic curves.

An interesting approach due to Silverman [112] is called the xedni calcu-
lus. Suppose we want to find k such that Q = kP on a curve E over Fp.
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Proposition 5.6 shows that we can lift E, P , and Q to an elliptic curve Ẽ
over Z with points P̃ and Q̃. If we can find k′ with Q̃ = k′P̃ , then Q = k′P .
However, it is usually the case that P̃ and Q̃ are independent, so no k′ ex-
ists. Silverman’s idea was to start with several (up to 9) points of the form
aiP + biQ and lift them to a curve over Q. This is possible: Choose a lift
to Z for each of the points. Write down an arbitrary cubic curve containing
lifts of the points. The fact that a point lies on the curve gives a linear equa-
tion in the coefficients of the cubic equation. Use linear algebra to solve for
these coefficients. This curve can then be converted to Weierstrass form (see
Section 2.5.2). Since most curves over Q tend to have at most 2 independent
points, the hope was that there would be relations among the lifted points.
These could then be reduced mod p to obtain relations between P and Q, thus
solving the discrete log problem. Unfortunately, the curves obtained tend to
have many independent points and no relations. Certain modifications that
should induce the curve to have fewer independent points do not seem to
work. For an analysis of the algorithm and why it probably is not successful,
see [55].

Exercises

5.1 Suppose G is a subgroup of order N of the points on an elliptic curve over
a field. Show that the following algorithm finds k such that kP = Q:

(a) Fix an integer m ≥ √
N .

(b) Compute and store a list of the x-coordinates of iP for 0 ≤ i ≤ m/2.

(c) Compute the points Q − jmP for j = 0, 1, 2, · · · ,m − 1 until the
x-coordinate of one of them matches an element from the stored
list.

(d) Decide whether Q − jmP = iP or = −iP .

(e) If ±iP = Q− jmP , we have Q = kP with k ≡ ±i + jm (mod N).

This requires a little less computation and half as much storage as the
baby step, giant step algorithm in the text. It is essentially the same as
the method used in Section 4.3.4 to find the order of E(Fq).

5.2 Let G be the additive group Zn. Explain why the discrete logarithm
problem for G means solving ka ≡ b (mod n) for k and describe how
this can be solved quickly. This shows that the difficulty of a discrete
logarithm problem depends on the group.

5.3 Let E be the elliptic curve y2 = x3 + 3 over F7.
(a) Show that 4(1, 2) = (4, 5) on E.
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(b) Show that the method of the proof of Proposition 5.6, with P = (1, 2)
and Q = (4, 5), produces the points P̃ = (1, 2) and Q̃ = (4, 5) on
Ẽ : y2 = x3 − 14x + 17 (which is defined over Q).
(c) Show that 2(1, 2) = (1,−2) and 3(1, 2) = ∞ on Ẽ mod 73.
(d) Show that there is no integer k such that k(1, 2) = (4, 5) on Ẽ.
This shows that lifting a discrete log problem mod p to one on an elliptic
curve over Q does not necessarily yield a discrete log problem that has
a solution.

5.4 Let G be a group and let p be a prime. Suppose we have a fast algorithm
for solving the discrete log problem for elements of order p (that is,
given g ∈ G of order p and h = gk, there is a fast way to find k). Show
that there is a fast algorithm for solving the discrete log problem for
elements of order a power of p. (This is essentially what the Pohlig-
Hellman method does. Since Pohlig-Hellman works with small primes,
the fast algorithm for elements of order p in this case is simply brute
force search.)

5.5 Let p ≥ 7 be prime. Show that if E is an elliptic curve over Fp such
that E(Fp) contains a point of order p, then #E(Fp) = p.

5.6 Show that if E is anomalous over Fq then it is not anomalous over Fq2 .

5.7 Show that if E is anomalous over F2 then it is anomalous over F16.

5.8 Suppose E is anomalous over F2, so φ2
2 − φ2 + 2 = 0. Show that

(a) 4 = −φ3
2 − φ2

2

(b) 8 = −φ3
2 + φ5

2

(c) 16 = φ4
2 − φ8

2

These equations were discovered by Koblitz [63], who pointed out that
multiplication by each of 2, 4, 8, 16 in E(Q) can be accomplished by
applying suitable powers of φ2 (this is finite field arithmetic and is fast)
and then performing only one point addition. This is faster than suc-
cessive doubling for 4, 8, and 16.

5.9 Let E be defined over Fq.

(a) Show that a map from E(Fq) to itself is injective if and only if it
is surjective.

(b) Show that if E(Fq) has no point of order n, then E(Fq)/nE(Fq) =
0 (in which case, the Tate-Lichtenbaum pairing is trivial).

5.10 (a) Let ψ be a homomorphism from a finite group G to itself. Show
that the index of ψ(G) in G equals the order of the kernel of ψ.
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(b) Let E be defined over Fq and let n ≥ 1. Show that E(Fq)[n] and
E(Fq)/nE(Fq) have the same order. (When n|q − 1, this can be
proved from the nondegeneracy of the Tate-Lichtenbaum pairing;
see Lemma 11.28. The point of the present exercise is to prove it
without using this fact.)

5.11 This exercise gives a way to attack discrete logarithms using the Tate-
Lichtenbaum pairing, even when there is a point of order �2 in E(Fq)
(cf. Lemma 5.4). Assume � is a prime such that �|#E(Fq) and �|q − 1,
and suppose that the �-power torsion in E(Fq) is cyclic of order �i, with
i ≥ 1. Let Pi have order �i and let P have order �.

(a) Show that τ�(P, Pi) is a primitive �th root of unity.

(b) Suppose Q = kP . Show how to use (a) to reduce the problem of
finding k to a discrete logarithm problem in F×

q .

(c) Let N = #E(Fq). Let R be a random point in E(Fq). Explain
why (N/�i)R is very likely to be a point of order �i. This shows
that finding a suitable point Pi is not difficult.

5.12 Let E be defined by y2 + y = x3 + x over F2. Exercise 4.7 showed that
#E(F2) = 5, so E is supersingular and φ2

2 + 2φ2 + 2 = 0.

(a) Show that φ4
2 = −4.

(b) Show that E[5] ⊆ E(F16).

(c) Show that #E(F4) = 5 and #E(F16) = 25.

This example shows that Proposition 5.3 can fail when a �= 0.
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Chapter 6
Elliptic Curve Cryptography

In this chapter, we’ll discuss several cryptosystems based on elliptic curves,
especially on the discrete logarithm problem for elliptic curves. We’ll also
treat various related ideas, such as digital signatures.

One might wonder why elliptic curves are used in cryptographic situations.
The reason is that elliptic curves provide security equivalent to classical sys-
tems while using fewer bits. For example, it is estimated in [12] that a key
size of 4096 bits for RSA gives the same level of security as 313 bits in an
elliptic curve system. This means that implementations of elliptic curve cryp-
tosystems require smaller chip size, less power consumption, etc. Daswani and
Boneh [14] performed experiments using 3Com’s PalmPilot, which is a small
hand-held device that is larger than a smart card but smaller than a laptop
computer. They found that generating a 512-bit RSA key took 3.4 minutes,
while generating a 163-bit ECC-DSA key to 0.597 seconds. Though certain
procedures, such as signature verifications, were slightly faster for RSA, the
elliptic curve methods such as ECC-DSA clearly offer great increases in speed
in many situations.

6.1 The Basic Setup

Alice wants to send a message, often called the plaintext, to Bob. In
order to keep the eavesdropper Eve from reading the message, she encrypts
it to obtain the ciphertext. When Bob receives the ciphertext, he decrypts
it and reads the message. In order to encrypt the message, Alice uses an
encryption key. Bob uses a decryption key to decrypt the ciphertext.
Clearly, the decryption key must be kept secret from Eve.

There are two basic types of encryption. In symmetric encryption, the
encryption key and decryption key are the same, or one can be easily deduced
from the other. Popular symmetric encryption methods include the Data
Encryption Standard (DES) and the Advanced Encryption Standard (AES,
often referred to by its original name Rijndael). In this case, Alice and Bob
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need to have some way of establishing a key. For example, Bob could send
a messenger to Alice several days in advance. Then, when it is time to send
the message, they both will have the key. Clearly this is impractical in many
situations.

The other type of encryption is public key encryption, or asymmetric
encryption. In this case, Alice and Bob do not need to have prior contact.
Bob publishes a public encryption key, which Alice uses. He also has a private
decryption key that allows him to decrypt ciphertexts. Since everyone knows
the encryption key, it should be infeasible to deduce the decryption key from
the encryption key. The most famous public key system is known as RSA
and is based on the difficulty of factoring integers into primes. Another well-
known system is due to ElGamal and is based on the difficulty of the discrete
logarithm problem.

Generally, public key systems are slower than good symmetric systems.
Therefore, it is common to use a public key system to establish a key that
is then used in a symmetric system. The improvement in speed is important
when massive amounts of data are being transmitted.

6.2 Diffie-Hellman Key Exchange

Alice and Bob want to agree on a common key that they can use for ex-
changing data via a symmetric encryption scheme such as DES or AES. For
example, Alice and Bob could be banks that want to transmit financial data.
It is impractical and time-consuming to use a courier to deliver the key. More-
over, we assume that Alice and Bob have had no prior contact and therefore
the only communication channels between them are public. One way to estab-
lish a secret key is the following method, due to Diffie and Hellman (actually,
they used multiplicative groups of finite fields).

1. Alice and Bob agree on an elliptic curve E over a finite field Fq such
that the discrete logarithm problem is hard in E(Fq). They also agree
on a point P ∈ E(Fq) such that the subgroup generated by P has large
order (usually, the curve and point are chosen so that the order is a
large prime).

2. Alice chooses a secret integer a, computes Pa = aP , and sends Pa to
Bob.

3. Bob chooses a secret integer b, computes Pb = bP , and sends Pb to Alice.

4. Alice computes aPb = abP .

5. Bob computes bPa = baP .
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6. Alice and Bob use some publicly agreed on method to extract a key from
abP . For example, they could use the last 256 bits of the x-coordinate
of abP as the key. Or they could evaluate a hash function at the x-
coordinate.

The only information that the eavesdropper Eve sees is the curve E, the finite
field Fq, and the points P , aP , and bP . She therefore needs to solve the
following:

DIFFIE-HELLMAN PROBLEM

Given P,aP,and bP in E(Fq),com pute abP.

If Eve can solve discrete logs in E(Fq), then she can use P and aP to find
a. Then she can compute a(bP ) to get abP . However, it is not known whether
there is some way to compute abP without first solving a discrete log problem.

A related question is the following:

DECISION DIFFIE-HELLMAN PROBLEM

Given P, aP,and bP in E(Fq),and given a pointQ ∈ E(Fq) determ ine
whetherornotQ = abP.

In other words, if Eve receives an anonymous tip telling her abP , can she
verify that the information is correct?

The Diffie-Hellman problem and the Decision Diffie-Hellman problem can
be asked for arbitrary groups. Originally, they appeared in the context of
multiplicative groups F×

q of finite fields.
For elliptic curves, the Weil pairing can be used to solve the Decision Diffie-

Hellman problem in some cases. We give one such example.
Let E be the curve y2 = x3 +1 over Fq, where q ≡ 2 (mod 3). By Proposi-

tion 4.33, E is supersingular. Let ω ∈ Fq2 be a primitive third root of unity.
Note that ω �∈ Fq since the order of F×

q is q − 1, which is not a multiple of 3.
Define a map

β : E(Fq) → E(Fq), (x, y) �→ (ωx, y), β(∞) = ∞.

It is straightforward to show, using the formulas for the addition law, that β
is an isomorphism (Exercise 6.1).

Suppose P ∈ E(Fq) has order n. Then β(P ) also has order n. Define the
modified Weil pairing

ẽn(P1, P2) = en(P1, β(P2)),

where en is the usual Weil pairing and P1, P2 ∈ E[n].
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LEMMA 6.1
Assum e 3 � n.IfP ∈ E(Fq) hasorderexactly n,then ẽn(P, P ) isa prim itive
nth rootofunity.

PROOF Suppose uP = vβ(P ) for some integers u, v. Then

β(vP ) = vβ(P ) = uP ∈ E(Fq).

If vP = ∞, then uP = ∞, so u ≡ 0 (mod n). If vP �= ∞, write vP = (x, y)
with x, y ∈ Fq. Then

(ωx, y) = β(vP ) ∈ E(Fq).

Since ω �∈ Fq, we must have x = 0. Therefore vP = (0,±1), which has order
3. This is impossible since we have assumed that 3 � n. It follows that the
only relation of the form uP = vβ(P ) has u, v ≡ 0 (mod n), so P and β(P )
form a basis of E[n]. By Corollary 3.10, ẽn(P, P ) = en(P, β(P )) is a primitive
nth root of unity.

Suppose now that we know P, aP, bP, Q and we want to decide whether or
not Q = abP . First, use the usual Weil pairing to decide whether or not Q is a
multiple of P . By Lemma 5.1, Q is a multiple of P if and only if en(P,Q) = 1.
Assume this is the case, so Q = tP for some t. We have

ẽn(aP, bP ) = ẽn(P, P )ab = ẽn(P, abP ) and ẽn(Q,P ) = ẽn(P, P )t.

Assume 3 � n. Then ẽn(P, P ) is a primitive nth root of unity, so

Q = abP ⇐⇒ t ≡ ab (mod n) ⇐⇒ ẽn(aP, bP ) = ẽn(Q,P ).

This solves the Decision Diffie-Hellman problem in this case. Note that we
did not need to compute any discrete logs, even in finite fields. All that was
needed was to compute the Weil pairing.

The above method was pointed out by Joux and Nguyen. For more on the
Decision Diffie-Hellman problem, see [13].

Joux [56] (see also [124]) has given another application of the modified
Weil pairing to what is known as tripartite Diffie-Hellman key exchange.
Suppose Alice, Bob, and Chris want to establish a common key. The standard
Diffie-Hellman procedure requires two rounds of interaction. The modified
Weil pairing allows this to be cut to one round. As above, let E be the curve
y2 = x3 + 1 over Fq, where q ≡ 2 (mod 3). Let P be a point of order n.
Usually, n should be chosen to be a large prime. Alice, Bob, and Chris do the
following.

1. Alice, Bob, and Chris choose secret integers a, b, c mod n, respectively.

2. Alice broadcasts aP , Bob broadcasts bP , and Chris broadcasts cP .
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3. Alice computes ẽn(bP, cP )a, Bob computes ẽn(aP, cP )b, and Chris com-
putes ẽn(aP, bP )c.

4. Since each of the three users has computed the same number, they use
this number to produce a key, using some publicly prearranged method.

Recall that, since E is supersingular, the discrete log problem on E can be
reduced to a discrete log problem for F×

q2 (see Section 5.3.1). Therefore, q
should be chosen large enough that this discrete log problem is hard.

For more on cryptographic applications of pairings, see [57].

6.3 Massey-Omura Encryption

Alice wants to send a message to Bob over public channels. They have not
yet established a private key. One way to do this is the following. Alice puts
her message in a box and puts her lock on it. She sends the box to Bob. Bob
puts his lock on it and sends it back to Alice. Alice then takes her lock off
and sends the box back to Bob. Bob then removes his lock, opens the box,
and reads the message.

This procedure can be implemented mathematically as follows.

1. Alice and Bob agree on an elliptic curve E over a finite field Fq such
that the discrete log problem is hard in E(Fq). Let N = #E(Fq).

2. Alice represents her message as a point M ∈ E(Fq). (We’ll discuss how
to do this below.)

3. Alice chooses a secret integer mA with gcd(mA, N) = 1, computes M1 =
mAM , and sends M1 to Bob.

4. Bob chooses a secret integer mB with gcd(mB , N) = 1, computes M2 =
mBM1, and sends M2 to Alice.

5. Alice computes m−1
A ∈ ZN . She computes M3 = m−1

A M2 and sends M3

to Bob.

6. Bob computes m−1
B ∈ ZN . He computes M4 = m−1

B M3. Then M4 = M
is the message.

Let’s show that M4 is the original message M . Formally, we have

M4 = m−1
B m−1

A mBmAM = M,

but we need to justify the fact that m−1
A , which is an integer representing

the inverse of mA mod N , and mA cancel each other. We have m−1
A mA ≡ 1
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(mod N), so m−1
A mA = 1 + kN for some k. The group E(Fq) has order N ,

so Lagrange’s theorem implies that NR = ∞ for any R ∈ E(Fq). Therefore,

m−1
A mAR = (1 + kN)R = R + k∞ = R.

Applying this to R = mBM , we find that

M3 = m−1
A mBmAM = mBM.

Similarly, m−1
B and mB cancel, so

M4 = m−1
B M3 = m−1

B mBM = M.

The eavesdropper Eve knows E(Fq) and the points mAM , mBmAM , and
mBM . Let a = m−1

A , b = m−1
B , P = mAmBM . Then we see that Eve knows

P, bP, aP and wants to find abP . This is the Diffie-Hellman problem (see
Section 6.2).

The above procedure works in any finite group. It seems that the method
is rarely used in practice.

It remains to show how to represent a message as a point on an elliptic curve.
We use a method proposed by Koblitz. Suppose E is an elliptic curve given by
y2 = x3+Ax+B over Fp. The case of an arbitrary finite field Fq is similar. Let
m be a message, expressed as a number 0 ≤ m < p/100. Let xj = 100m + j
for 0 ≤ j < 100. For j = 0, 1, 2, . . . , 99, compute sj = x3

j + Axj + B . If

s
(p−1)/2
j ≡ 1 (mod p), then sj is a square mod p, in which case we do not

need to try any more values of j. When p ≡ 3 (mod 4), a square root of
sj is then given by yj ≡ s

(p+1)/4
j (mod p) (see Exercise 6.7). When p ≡ 1

(mod 4), a square root of sj can also be computed, but the procedure is more
complicated (see [25]). We obtain a point (xj , yj) on E. To recover m from
(xj , yj), simply compute [xj/100] (= the greatest integer less than or equal
to xj/100). Since sj is essentially a random element of F×

p , which is cyclic of
even order, the probability is approximately 1/2 that sj is a square. So the
probability of not being able to find a point for m after trying 100 values is
around 2−100.

6.4 ElGamal Public Key Encryption

Alice wants to send a message to Bob. First, Bob establishes his public
key as follows. He chooses an elliptic curve E over a finite field Fq such that
the discrete log problem is hard for E(Fq). He also chooses a point P on E
(usually, it is arranged that the order of P is a large prime). He chooses a
secret integer s and computes B = sP . The elliptic curve E, the finite field
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Fq, and the points P and B are Bob’s public key. They are made public.
Bob’s private key is the integer s.

To send a message to Bob, Alice does the following:

1. Downloads Bob’s public key.

2. Expresses her message as a point M ∈ E(Fq).

3. Chooses a secret random integer k and computes M1 = kP .

4. Computes M2 = M + kB.

5. Sends M1,M2 to Bob.

Bob decrypts by calculating

M = M2 − sM1.

This decryption works because

M2 − sM1 = (M + kB) − s(kP ) = M + k(sP ) − skP = M.

The eavesdropper Eve knows Bob’s public information and the points M1

and M2. If she can calculate discrete logs, she can use P and B to find s,
which she can then use to decrypt the message as M2 − sM1. Also, she could
use P and M1 to find k. Then she can calculate M = M2 −kB. If she cannot
calculate discrete logs, there does not appear to be a way to find M .

It is important for Alice to use a different random k each time she sends
a message to Bob. Suppose Alice uses the same k for both M and M ′. Eve
recognizes this because then M1 = M ′

1. She then computes M ′
2 − M2 =

M ′−M . Suppose M is a sales announcement that is made public a day later.
Then Eve finds out M , so she calculates M ′ = M − M2 + M ′

2. Therefore,
knowledge of one plaintext M allows Eve to deduce another plaintext M ′ in
this case.

The ElGamal Public Key system, in contrast to the ElGamal signature
scheme of the next section, does not appear to be widely used.

6.5 ElGamal Digital Signatures

Alice wants to sign a document. The classical way is to write her signature
on a piece of paper containing the document. Suppose, however, that the
document is electronic, for example, a computer file. The naive solution
would be to digitize Alice’s signature and append it to the file containing the
document. In this case, evil Eve can copy the signature and append it to
another document. Therefore, steps must be taken to tie the signature to
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the document in such a way that it cannot be used again. However, it must
be possible for someone to verify that the signature is valid, and it should
be possible to show that Alice must have been the person who signed the
document. One solution to the problem relies on the difficulty of discrete
logs. Classically, the algorithm was developed for the multiplicative group of
a finite field. In fact, it applies to any finite group. We’ll present it for elliptic
curves.

Alice first must establish a public key. She chooses an elliptic curve E over
a finite field Fq such that the discrete log problem is hard for E(Fq). She also
chooses a point A ∈ E(Fq). Usually the choices are made so that the order
N of A is a large prime. Alice also chooses a secret integer a and computes
B = aA. Finally, she chooses a function

f : E(Fq) → Z.

For example, if Fq = Fp, then she could use f(x, y) = x, where x is regarded
as an integer, 0 ≤ x < p. The function f needs no special properties, except
that its image should be large and only a small number of inputs should
produce any given output (for example, for f(x, y) = x, at most two points
(x, y) yield a given output x).

Alice’s public information is E, Fq, f , A, and B. She keeps a private. The
integer N does not need to be made public. Its secrecy does not affect our
analysis of the security of the system. To sign a document, Alice does the
following:

1. Represents the document as an integer m (if m > N , choose a larger
curve, or use a hash function (see below)).

2. Chooses a random integer k with gcd(k,N) = 1 and computes R = kA.

3. Computes s ≡ k−1(m − af(R)) (mod N).

The signed message is (m,R, s). Note that m, s are integers, while R is a point
on E. Also, note that Alice is not trying to keep the document m secret. If
she wants to do that, then she needs to use some form of encryption. Bob
verifies the signature as follows:

1. Downloads Alice’s public information.

2. Computes V1 = f(R)B + sR and V2 = mA.

3. If V1 = V2, he declares the signature valid.

If the signature is valid, then V1 = V2 since

V1 = f(R)B + sR = f(R)aA + skA = f(R)aA + (m − af(R))A = mA = V2.

We have used the fact that sk ≡ m− af(R), hence sk = m− af(R) + zN for
some integer z. Therefore,

skA = (m − af(R))A + zNA = (m − af(R))A + ∞ = (m − af(R))A.
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This is why the congruence defining s was taken mod N .
If Eve can calculate discrete logs, then she can use A and B to find a.

In this case, she can put Alice’s signature on any message. Alternatively,
Eve can use A and R to find k. Since she knows s, f(R),m, she can then
use ks ≡ m − af(R) (mod N) to find a. If d = gcd(f(R), N) �= 1, then
af(R) ≡ m − ks (mod N) has d solutions for a. As long as d is small, Eve
can try each possibility until she obtains B = aA. Then she can use a, as
before, to forge Alice’s signature on arbitrary messages.

As we just saw, Alice must keep a and k secret. Also, she must use a
different random k for each signature. Suppose she signs m and m′ using the
same k to obtain signed messages (m,R, s) and (m′, R, s′). Eve immediately
recognizes that k has been used twice since R is the same for both signatures.
The equations for s, s′ yield the following:

ks ≡ m − af(R) (mod N)
ks′ ≡ m′ − af(R) (mod N).

Subtracting yields k(s−s′) ≡ m−m′ (mod N). Let d = gcd(s−s′, N). There
are d possible values for k. Eve tries each one until R = kA is satisfied. Once
she knows k, she can find a, as above.

It is perhaps not necessary for Eve to solve discrete log problems in order to
forge Alice’s signature on another message m. All Eve needs to do is produce
R, s such that the verification equation V1 = V2 is satisfied. This means that
she needs to find R = (x, y) and s such that

f(R)B + sR = mA.

If she chooses some point R (there is no need to choose an integer k), she
needs to solve the discrete log problem sR = mA − f(R)B for the integer s.
If, instead, she chooses s, then she must solve an equation for R = (x, y). This
equation appears to be at least as complex as a discrete log problem, though it
has not been analyzed as thoroughly. Moreover, no one has been able to rule
out the possibility of using some procedure that finds R and s simultaneously.
There are ways of using a valid signed message to produce another valid signed
message (see Exercise 6.2). However, the messages produced are unlikely to
be meaningful messages.

The general belief is that the security of the ElGamal system is very close
to the security of discrete logs for the group E(Fq).

A disadvantage of the ElGamal system is that the signed message (m,R, s)
is approximately three times as long as the original message (it is not necessary
to store the full y-coordinate of R since there are only two choices for y for
a given x). A more efficient method is to choose a public hash function H
and sign H(m). A cryptographic hash function is a function that takes
inputs of arbitrary length, sometimes a message of billions of bits, and outputs
values of fixed length, for example, 160 bits. A hash function H should have
the following properties:
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1. Given a message m, the value H(m) can be calculated very quickly.

2. Given y, it is computationally infeasible to find m with H(m) = y. (This
says that H is preimage resistant.)

3. It is computationally infeasible to find distinct messages m1 and m2

with H(m1) = H(m2). (This says that H is strongly collision-free.)

The reason for (2) and (3) is to prevent Eve from producing messages with
a desired hash value, or two messages with the same hash value. This helps
prevent forgery. There are several popular hash functions available, for exam-
ple, MD5 (due to Rivest; it produces a 128-bit output) and the Secure Hash
Algorithm (from NIST; it produces a 160-bit output). We won’t discuss these
here. For details, see [81]. Recent work of Wang, Yin, and Yu [127] has found
weaknesses in them, so the subject is somewhat in a state of flux.

If Alice uses a hash function, the signed message is then

(m,RH , sH),

where (H(m), RH , sH) is a valid signature. To verify that the signature
(m,RH , sH) is valid, Bob does the following:

1. Downloads Alice’s public information.

2. Computes V1 = f(RH)B + sHRH and V2 = H(m)A.

3. If V1 = V2, he declares the signature valid.

The advantage is that a very long message m containing billions of bits has a
signature that requires only a few thousand extra bits. As long as the discrete
log problem is hard for E(Fq), Eve will be unable to put Alice’s signature on
another message. The use of a hash function also guards against certain other
forgeries (see Exercise 6.2).

A recent variant of the ElGamal signature scheme due to van Duin is very
efficient in certain aspects. For example, it avoids the computation of k−1,
and its verification procedure requires only two computations of an integer
times a point. As before, Alice has a document m that she wants to sign. To
set up the system, she chooses an elliptic curve E over a finite field Fq and
a point A ∈ E(Fq) of large prime order N . She also chooses a cryptographic
hash function H. She chooses a secret integer a and computes B = aA. The
public information is (E, q,N,H,A,B). The secret information is a. To sign
m, Alice does the following:

1. Chooses a random integer k mod N and computes R = kA.

2. Computes t = H(R,m)k + a (mod N).
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The signed document is (m,R, t).
To verify the signature, Bob downloads Alice’s public information and

checks whether
tA = H(R,m)R + B

is true. If it is, the signature is declared valid; otherwise, it is invalid.

6.6 The Digital Signature Algorithm

The Digital Signature Standard [1],[86] is based on the Digital Signature Al-
gorithm (DSA). The original version used multiplicative groups of finite fields.
A more recent elliptic curve version (ECDSA) uses elliptic curves. The algo-
rithm is a variant on the ElGamal signature scheme, with some modifications.
We sketch the algorithm here.

Alice wants to sign a document m, which is an integer (actually, she usually
signs the hash of the document, as in Section 6.5). Alice chooses an elliptic
curve over a finite field Fq such that #E(Fq) = fr, where r is a large prime
and f is a small integer, usually 1,2, or 4 (f should be small in order to keep
the algorithm efficient). She chooses a base point G in E(Fq) of order r.
Finally, Alice chooses a secret integer a and computes Q = aG. Alice makes
public the following information:

Fq, E, r, G, Q.

(There is no need to keep f secret; it can be deduced from q and r using
Hasse’s theorem by the technique in Examples 4.6 and 4.7.) To sign the
message m Alice does the following:

1. Chooses a random integer k with 1 ≤ k < r and computes R = kG =
(x, y).

2. Computes s = k−1(m + ax) (mod r).

The signed document is
(m, R, s).

To verify the signature, Bob does the following.

1. Computes u1 = s−1m (mod r) and u2 = s−1x (mod r).

2. Computes V = u1G + u2Q.

3. Declares the signature valid if V = R.
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If the message is signed correctly, the verification equation holds:

V = u1G + u2Q = s−1mG + s−1xQ = s−1(mG + xaG) = kG = R.

The main difference between the ECDSA and the ElGamal system is the
verification procedure. In the ElGamal system, the verification equation
f(R)B + sR = mA requires three computations of an integer times a point.
These are the most expensive parts of the algorithm. In the ECDSA, only two
computations of an integer times a point are needed. If many verifications
are going to be made, then the improved efficiency of the ECDSA is valuable.
This is the same type of improvement as in the van Duin system mentioned
at the end of the previous section.

6.7 ECIES

The Elliptic Curve Integrated Encryption Scheme (ECIES) was invented
by Bellare and Rogaway [2]. It is a public key encryption scheme.

Alice wants to send a message m to Bob. First, Bob establishes his public
key. He chooses an elliptic curve E over a finite field Fq such that the discrete
log problem is hard for E(Fq), and he chooses a point A on E, usually of large
prime order N . He then chooses a secret integer s and computes B = sA.
The public key is (q, E,N,A,B). The private key is s.

The algorithm also needs two cryptographic hash functions, H1 and H2,
and a symmetric encryption function Ek (depending on a key k) that are
publicly agreed upon.

To encrypt and send her message, Alice does the following:

1. Downloads Bob’s public key.

2. Chooses a random integer k with 1 ≤ k ≤ N − 1.

3. Computes R = kA and Z = kB.

4. Writes the output of H1(R,Z) as k1‖k2 (that is, k1 followed by k2),
where k1 and k2 have specified lengths.

5. Computes C = Ek1(m) and t = H2(C, k2).

6. Sends (R,C, t) to Bob.

To decrypt, Bob does the following:

1. Computes Z = sR, using his knowledge of the secret key s.

2. Computes H1(R,Z) and writes the output as k1‖k2.
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3. Computes H2(C, k2). If it does not equal t, Bob stops and rejects the
ciphertext. Otherwise, he continues.

4. Computes m = Dk1(C), where Dk1 is the decryption function for Ek1 .

An important feature is the authentication procedure in step (3) of the de-
cryption. In many cryptosystems, an attacker can choose various ciphertexts
and force Bob to decrypt them. These decryptions are used to attack the sys-
tem. In the present system, the attacker can generate ciphertexts by choosing
C and k′

2 and then letting t′ = H2(C, k′
2). But the attacker does not know Z,

so he cannot use the same value k2 that Bob obtains from H1(R,Z). There-
fore, it is very unlikely that t′ = H2(C, k′

2) will equal t = H2(C, k2). With
very high probability, Bob simply rejects the ciphertext and does not return
a decryption.

In our description of the procedure, we used hash functions for the au-
thentication. There are other message authentication methods that could be
used.

An advantage of ECIES over the Massey-Omura and ElGamal public key
methods is that the message is not represented as a point on the curve. More-
over, since a keyed symmetric method is used to send the message, we do not
need to do a new elliptic curve calculation for each block of the message.

6.8 A Public Key Scheme Based on Factoring

Most cryptosystems using elliptic curves are based on the discrete log prob-
lem, in contrast to the situation for classical systems, which are sometimes
based on discrete logs and sometimes based on the difficulty of factorization.
The most famous public key cryptosystem is called RSA (for Rivest-Shamir-
Adleman) and proceeds as follows. Alice wants to send a message to Bob. Bob
secretly chooses two large primes p, q and multiplies them to obtain n = pq.
Bob also chooses integers e and d with ed ≡ 1 (mod (p−1)(q−1)). He makes
n and e public and keeps d secret. Alice’s message is a number m (mod n).
She computes c ≡ me (mod n) and sends c to Bob. Bob computes m ≡ cd

(mod n) to obtain the message. If Eve can find p and q, then she can solve
ed ≡ 1 (mod (p−1)(q−1)) to obtain d. It can be shown (by methods similar
to those used in the elliptic curve scheme below; see [121]) that if Eve can
find the decryption exponent d, then she probably can factor n. Therefore,
the difficulty of factoring n is the key to the security of the RSA system.

A natural question is whether there is an elliptic curve analogue of RSA. In
the following, we present one such system, due to Koyama-Maurer-Okamoto-
Vanstone. It does not seem to be used much in practice.

Alice want to send a message to Bob. They do the following.
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1. Bob chooses two distinct large primes p, q with p ≡ q ≡ 2 (mod 3) and
computes n = pq.

2. Bob chooses integers e, d with ed ≡ 1 (mod lcm(p+1, q+1)). (He could
use (p + 1)(q + 1) in place of lcm(p + 1, q + 1).)

3. Bob makes n and e public (they form his public key) and he keeps d, p, q
private.

4. Alice represents her message as a pair of integers (m1,m2) (mod n).
She regards (m1,m2) as a point M on the elliptic curve E given by

y2 = x3 + b mod n,

where b = m2
2 − m3

1 (mod n) (she does not need to compute b).

5. Alice adds M to itself e times on E to obtain C = (c1, c2) = eM . She
sends C to Bob.

6. Bob computes M = dC on E to obtain M .

We’ll discuss the security of the system shortly. But, first, there are several
points that need to be discussed.

1. Note that the formulas for the addition law on E never use the value of
b. Therefore, Alice and Bob never need to compute it. Eve can compute
it, if she wants, as b = c2

2 − c3
1.

2. The computation of eM and dC on E are carried out with the formulas
for the group law on an elliptic curve, with all of the computations being
done mod n. Several times during the computation, expressions such
as (y2 − y1)/(x2 − x1) are encountered. These are changed to integers
mod n by finding the multiplicative inverse of (x2 − x1) mod n. This
requires gcd(x2 − x1, n) = 1. If the gcd is not 1, then it is p, q, or n.
If we assume it is very hard to factor n, then we regard the possibility
of the gcd being p or q as very unlikely. If the gcd is n, then the slope
is infinite and the sum of the points in question is ∞. The usual rules
for working with ∞ are followed. For technical details of working with
elliptic curves mod n, see Section 2.11.

By the Chinese Remainder Theorem, an integer mod n may be regarded
as a pair of integers, one mod p and one mod q. Therefore, we can regard
a point on E in Zn as a pair of points, one on E mod p and the other
on E mod q. In this way, we have

E(Zn) = E(Fp) ⊕ E(Fq). (6.1)

For example, the point (11, 32) on y2 = x3 + 8 mod 35 can be regarded
as the pair of points

(1, 2) mod 5, (4, 4) mod 7.
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Any such pair of points can be combined to obtain a point mod n. There
is a technicality with points at infinity, which is discussed in Section 2.11.

3. Using (6.1), we see that the order of E(Zn) is #E(Fp) · #E(Fq). By
Proposition 4.33, E is supersingular mod p and mod q, so we find (by
Corollary 4.32) that

#E(Fp) = p + 1 and #E(Fq) = q + 1.

Therefore, (p + 1)M = ∞ (mod p) and (q + 1)M = ∞ (mod q). This
means that the decryption works: Write de = 1 + k(p + 1) for some
integer k. Then

dC = deM = (1+k(p+1))M = M+k(p+1)M = M+∞ = M (mod p),

and similarly mod q. Therefore, dC = M .

4. A key point of the procedure is that the group order is independent
of b. If Bob chooses a random elliptic curve y2 = x3 + Ax + B over
Zn, then he has to compute the group order, perhaps by computing it
mod p and mod q. This is infeasible if p and q are chosen large enough
to make factoring n infeasible. Also, if Bob fixes the elliptic curve,
Alice will have difficulty finding points M on the curve. If she does
the procedure of first choosing the x-coordinate as the message, then
solving y2 ≡ m3 +Am+B (mod n) for y, she is faced with the problem
of computing square roots mod n. This is computationally equivalent to
factoring n (see [121]). If Bob fixes only A (the formulas for the group
operations depend only on A) and allows Alice to choose B so that her
point lies on the curve, then his choice of e, d requires that the group
order be independent of B. This is the situation in the above procedure.

If Eve factors n as pq, then she knows (p + 1)(q + 1), so she can find d with
ed ≡ 1 (mod (p + 1)(q + 1)). Therefore, she can decrypt Alice’s message.

Suppose that Eve does not yet know the factorization of n, but she finds
out the decryption exponent d. We claim that she can, with high probability,
factor n. She does the following:

1. Writes ed−1 = 2kv with v odd and with k ≥ 1 (k �= 0 since p+1 divides
ed − 1).

2. Picks a random pair of integers R = (r1, r2) mod n, lets b′ = r2
2 − r3

1,
and regards R as a point on the elliptic curve E′ given by y2 = x3 + b′.

3. Computes R0 = vR. If R0 = ∞ mod n, start over with a new R. If R0

is ∞ mod exactly one of p, q, then Eve has factored n (see below).

4. For i = 0, 1, 2, . . . , k, computes Ri+1 = 2Ri.
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5. If for some i, the point Ri+1 is ∞ mod exactly one of p, q, then Ri =
(xi, yi) with yi ≡ 0 mod one of p, q. Therefore, gcd(yi, n) = p or q. In
this case, Eve stops, since she has factored n.

6. If for some i, Ri+1 = ∞ mod n, then Eve starts over with a new random
point.

In a few iterations, this should factor n. Since ed−1 is a multiple of #E(Zn),

Rk = (ed − 1)R = edR − R = ∞.

Therefore, each iteration of the procedure will eventually end with a point Rj

that is ∞ mod at least one of p, q. Let 2k′
be the highest power of 2 dividing

p+1. If we take a random point P in E(Fp), then the probability is 1/2 that
the order of P is divisible by 2k′

. This follows easily from the fact that E(Fp)
is cyclic (see Exercise 6.6). In this case, Rk′−1 = 2k′−1vP �= ∞ (mod p),
while Rk′ = 2k′

vP = ∞ (mod p). If the order is not divisible by 2k′
, then

Rk′−1 = ∞ (mod p). Similarly, if 2k′′
is the highest power of 2 dividing q +1,

then Rk′′−1 = ∞ (mod q) half the time, and �= ∞ (mod q) half the time.
Since mod p and mod q are independent, it is easy to see that the sequence
R0, R1, R2, . . . reaches ∞ mod p and mod q at different indices i at least half
the time. This means that for at least half of the choices of random starting
points R, we obtain a factorization of n.

If R0 = ∞ mod p, but not mod q, then somewhere in the calculation of R0

there was a denominator of a slope that was infinite mod p but not mod q.
The gcd of this denominator with n yields p. A similar situation occurs if p
and q are switched. Therefore, if R0 is infinite mod exactly one of the primes,
Eve obtains a factorization, as claimed in step (3).

We conclude that knowledge of the decryption exponent d is computation-
ally equivalent to knowledge of the factorization of n.

6.9 A Cryptosystem Based on the Weil Pairing

In Chapter 5, we saw how the Weil pairing could be used to reduce the
discrete log problem on certain elliptic curves to the discrete log problem for
the multiplicative group of a finite field. In the present section, we’ll present
a method, due to Boneh and Franklin, that uses the Weil pairing on these
curves to obtain a cryptosystem (other pairings could also be used). The
reader may wonder why we use these curves, since the discrete log problem
is easier on these curves. The reason is that the properties of the pairing are
used in an essential way. The fact that the pairing can be computed quickly
is vital for the present algorithm. This fact was also important in reducing
the discrete log problem to finite fields. However, note that the discrete log
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problem in the finite field is still not trivial as long as the finite field is large
enough.

For simplicity, we’ll consider a specific curve, namely the one discussed in
Section 6.2. Let E be defined by y2 = x3 + 1 over Fp, where p ≡ 2 (mod 3).
Let ω ∈ Fp2 be a primitive third root of unity. Define a map

β : E(Fp2) → E(Fp2), (x, y) �→ (ωx, y), β(∞) = ∞.

Suppose P has order n. Then β(P ) also has order n. Define the modified
Weil pairing

ẽn(P1, P2) = en(P1, β(P2)),

where en is the usual Weil pairing and P1, P2 ∈ E[n]. We showed in Lemma 6.1
that if 3 � n and if P ∈ E(Fp) has order exactly n, then ẽn(P, P ) is a primitive
nth root of unity.

Since E is supersingular, by Proposition 4.33, E(Fp) has order p+1. We’ll
add the further assumption that p = 6� − 1 for some prime �. Then 6P has
order � or 1 for each P ∈ E(Fp).

In the system we’ll describe, each user has a public key based on her or
his identity, such as an email address. A central trusted authority assigns
a corresponding private key to each user. In most public key systems, when
Alice wants to send a message to Bob, she looks up Bob’s public key. However,
she needs some way of being sure that this key actually belongs to Bob, rather
than someone such as Eve who is masquerading as Bob. In the present system,
the authentication happens in the initial communication between Bob and the
trusted authority. After that, Bob is the only one who has the information
necessary to decrypt messages that are encrypted using his public identity.

A natural question is why RSA cannot be used to produce such a system.
For example, all users could share the same common modulus n, whose fac-
torization is known only to the trusted authority (TA). Bob’s identity, call it
bobid, would be his encryption exponent. The TA would then compute Bob’s
secret decryption exponent and communicate it to him. When Alice sends
Bob a message m, she encrypts it as mbobid (mod n). Bob then decrypts us-
ing the secret exponent provided by the TA. However, anyone such as Bob who
knows an encryption and decryption exponent can find the factorization of n
(using a variation of the method of Section 6.8), and thus read all messages
in the system. Therefore, the system would not protect secrets. If, instead,
a different n is used for each user, some type of authentication procedure is
needed for a communication in order to make sure that the n is the correct
one. This brings us back to the original problem.

The system described in the following gives the basic idea, but is not secure
against certain attacks. For ways to strengthen the system, see [15].

To set up the system, the trusted authority does the following:

1. Chooses a large prime p = 6� − 1 as above.

2. Chooses a point P of order � in E(Fp).

© 2008 by Taylor & Francis Group, LLC



186 CHAPTER 6 ELLIPTIC CURVE CRYPTOGRAPHY

3. Chooses hash functions H1 and H2. The function H1 takes a string of
bits of arbitrary length and outputs a point of order � on E (see Exercise
6.8). The function H2 inputs an element of order � in F×

p2 and outputs
a binary string of length n, where n is the length of the messages that
will be sent.

4. Chooses a secret random s ∈ F×
� and computes Ppub = sP .

5. Makes p,H1,H2, n, P, Ppub public, while keeping s secret.

If a user with identity ID wants a private key, the trusted authority does the
following:

1. Computes QID = H1(ID). This is a point on E.

2. Lets DID = sQID.

3. After verifying that ID is the identification for the user with whom he
is communicating, sends DID to this user.

If Alice wants to send a message M to Bob, she does the following:

1. Looks up Bob’s identity, for example, ID =bob@com puter.com (written
as a binary string) and computes QID = H1(ID).

2. Chooses a random r ∈ F×
� .

3. Computes gID = ẽ�(QID, Ppub).

4. Lets the ciphertext be the pair

c = (rP, M ⊕ H2(gr
ID)),

where ⊕ denotes XOR (= bitwise addition mod 2).

Bob decrypts a ciphertext (u, v) as follows:

1. Uses his private key DID to compute hID = ẽ�(DID, u).

2. Computes m = v ⊕ H2(hID).

The decryption works because

ẽ�(DID, u) = ẽ�(sQID, rP ) = ẽ�(QID, P )sr = ẽ�(QID, Ppub)r = gr
ID.

Therefore,

m = v ⊕ H2(ẽ�(DID, u)) = (M ⊕ H2(gr
ID)) ⊕ H2(gr

ID) = M.
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Exercises

6.1 Show that the map β in Section 6.2 is an isomorphism (it is clearly
bijective; the main point is that it is a homomorphism).

6.2 (a) Suppose that the ElGamal signature scheme is used to produce
the valid signed message (m,R, s), as in Section 6.5. Let h be an
integer with gcd(h,N) = 1. Assume gcd(f(R), N) = 1. Let

R′ = hR, s′ ≡ sf(R′)f(R)−1h−1 (mod N),
m′ ≡ mf(R′)f(R)−1 (mod N).

Show that (m′, R′, s′) is a valid signed message (however, it is un-
likely that m′ is a meaningful message, so this procedure does not
affect the security of the system).

(b) Suppose a hash function is used, so the signed messages are of the
form (m,RH , sH). Explain why this prevents the method of (a)
from working.

6.3 Use the notation of Section 6.5. Let u, v be two integers with gcd(v,N) =
1 and let R = uA + vB. Let s ≡ −v−1f(R) (mod N) and m ≡ su
(mod N).

(a) Show that (m,R, s) is a valid signed message for the ElGamal sig-
nature scheme. (However, it is unlikely that m is a meaningful
message.)

(b) Suppose a hash function is used, so the signed messages are of the
form (m,RH , sH). Explain why this prevents the method of (a)
from working.

6.4 Let E be an elliptic curve over Fq and let N = #E(Fq). Alice has a
message that she wants to sign. She represents the message as a point
M ∈ E(Fq). Alice has a secret integer a and makes public points A and
B in E(Fq) with B = aA, as in the ElGamal signature scheme. There
is a public function f : E(Fq) → Z/NZ. Alice performs the following
steps.

(a) She chooses a random integer k with gcd(k,N) = 1.

(b) She computes R = M − kA.

(c) She computes s ≡ k−1(1 − f(R)a) (mod N).

(d) The signed message is (M,R, s).

Bob verifies the signature as follows.
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(a) He computes V1 = sR − f(R)B and V2 = sM − A.

(b) He declares the signature valid if V1 = V2.

Show that if Alice performs the required steps correctly, then the ver-
ification equation V1 = V2 holds. (This signature scheme is a variant
of one due to Nyberg and Rueppel (see [12]). An interesting feature is
that the message appears as an element of the group E(Fq) rather than
as an integer.)

6.5 Let p, q be prime numbers and suppose you know the numbers m =
(p + 1)(q + 1) and n = pq. Show that p, q are the roots of the quadratic
equation

x2 − (m − n − 1)x + n = 0

(so p, q can be found using the quadratic formula).

6.6 Let E be the elliptic curve y2 = x3 + b mod p, where p ≡ 2 (mod 3).

(a) Suppose E[n] ⊆ E(Fp) for some n �≡ 0 (mod p). Show that n|p−1
and n2|p + 1. Conclude that n ≤ 2.

(b) Show that E[2] �⊆ E(Fp).

(c) Show that E(Fp) is cyclic (of order p + 1).

6.7 Let p ≡ 3 (mod 4) be a prime number. Suppose x ≡ y2 (mod p).

(a) Show that (y(p+1)/2)2 ≡ y2 (mod p).

(b) Show that y(p+1)/2 ≡ ±y (mod p).

(c) Show that x(p+1)/4 is a square root of x (mod p).

(d) Suppose z is not a square mod p. Using the fact that −1 is not a
square mod p, show that −z is a square mod p.

(e) Show that z(p+1)/4 is a square root of −z (mod p).

6.8 Let p = 6�−1 and E be as in Section 6.9. The hash function H1 in that
section inputs a string of bits of arbitrary length and outputs a point of
order � on E. One way to do this is as follows.

(a) Choose a hash function H that outputs integers mod p. Input a
binary string B. Let the output of H be the y coordinate of a
point: y = H(B). Show that there is a unique x mod p such that
(x, y) lies on E.

(b) Let H1(B) = 6(x, y). Show that H1(B) is a point of order � or 1
on E. Why is it very unlikely that H1(B) has order 1?
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Other Applications

In the 1980s, about the same time that elliptic curves were being introduced
into cryptography, two related applications of elliptic curves were found, one
to factoring and one to primality testing. These are generalizations of classical
methods that worked with multiplicative groups Z×

n . The main advantage of
elliptic curves stems from the fact that there are many elliptic curves mod a
number n, so if one elliptic curve doesn’t work, another can be tried.

The problems of factorization and primality testing are related, but are
very different in nature. The largest announced factorization up to the year
2007 was of an integer with 200 digits. However, it was at that time possible
to prove primality of primes of several thousand digits.

It is possible to prove that a number is composite without finding a factor.
One way is to show that an−1 �≡ 1 (mod n) for some a with gcd(a, n) = 1.
Fermat’s little theorem says that if n is prime and gcd(a, n) = 1, then an−1 ≡ 1
(mod n), so it follows that n must be composite, even though we have not
produced a factor. Of course, if an−1 ≡ 1 (mod n) for several random choices
of a, we might suspect that n is probably prime. But how can we actually
prove n is prime? If n has only a few digits, we can divide n by each of the
primes up to

√
n. However, if n has hundreds of digits, this method will take

too long (much longer than the predicted life of the universe). In Section 7.2,
we discuss efficient methods for proving primality. Similarly, suppose we have
proved that a number is composite. How do we find the factors? This is a
difficult computational problem. If the smallest prime factor of n has more
than a few digits, then trying all prime factors up to

√
n cannot work. In

Section 7.1, we give a method that works well on numbers n of around 60
digits.

7.1 Factoring Using Elliptic Curves

In the mid 1980s, Hendrik Lenstra [75] gave new impetus to the study of
elliptic curves by developing an efficient factoring algorithm that used elliptic
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curves. It turned out to be very effective for factoring numbers of around 60
decimal digits, and, for larger numbers, finding prime factors having around
20 to 30 decimal digits.

We start with an example.

Example 7.1
We want to factor 4453. Let E be the elliptic curve y2 = x3 + 10x − 2 mod
4453 and let P = (1, 3). Let’s try to compute 3P . First, we compute 2P . The
slope of the tangent line at P is

3x2 + 10
2y

=
13
6

≡ 3713 (mod 4453).

We used the fact that gcd(6, 4453) = 1 to find 6−1 ≡ 3711 (mod 4453). Using
this slope, we find that 2P = (x, y), with

x ≡ 37132 − 2 ≡ 4332, y ≡ −3713(x − 1) − 3 ≡ 3230.

To compute 3P , we add P and 2P . The slope is

3230 − 3
4332 − 1

=
3227
4331

.

But gcd(4331, 4453) = 61 �= 1. Therefore, we cannot find 4331−1 (mod 4453),
and we cannot evaluate the slope. However, we have found the factor 61 of
4453, and therefore 4453 = 61 · 73.

Recall (Section 2.11) that

E(Z4453) = E(F61) ⊕ E(F73).

If we look at the multiples of P mod 61 we have

P ≡ (1, 3), 2P ≡ (1, 58), 3P ≡ ∞, 4P ≡ (1, 3), . . . (mod 61).

However, the multiples of P mod 73 are

P ≡ (1, 3), 2P ≡ (25, 18), 3P ≡ (28, 44), . . . , 64P ≡ ∞ (mod 73).

Therefore, when we computed 3P mod 4453, we obtained ∞ mod 61 and a
finite point mod 73. This is why the slope had a 61 in the denominator and
was therefore infinite mod 61. If the order of P mod 73 had been 3 instead
of 64, the slope would have had 0 mod 4453 in its denominator and the gcd
would have been 4453, which would have meant that we did not obtain the
factorization of 4453. But the probability is low that the order of a point
mod 61 is exactly the same as the order of a point mod 73, so this situation
will usually not cause us much trouble. If we replace 4453 with a much larger
composite number n and work with an elliptic curve mod n and a point P
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on E, then the main problem we’ll face is finding some integer k such that
kP = ∞ mod one of the factors of n. In fact, we’ll often not obtain such an
integer k. But if we work with enough curves E, it is likely that at least one
of them will allow us to find such a k. This is the key property of the elliptic
curve factorization method.

Before we say more about elliptic curves, let’s look at the classical p − 1
factorization method. We start with a composite integer n that we want
to factor. Choose a random integer a and a large integer B. Compute

a1 ≡ aB! (mod n), and gcd(a1 − 1, n).

Note that we do not compute aB! and then reduce mod n, since that would
overflow the computer. Instead, we can compute aB! mod n recursively by
ab! ≡ (

a(b−1)!
)b

(mod n), for b = 2, 3, 4, . . . , B. Or we can write B! in binary
and do modular exponentiation by successive squaring.

We say that an integer m is B-smooth if all of the prime factors of m are
less than or equal to B. For simplicity, assume n = pq is the product of two
large primes. Suppose that p − 1 is B-smooth. Since B! contains all of the
primes up to B, it is likely that B! is a multiple of p− 1 (the main exception
is when p − 1 is divisible by the square of a prime that is between B/2 and
B). Therefore,

a1 ≡ aB! ≡ 1 (mod p)

by Fermat’s little theorem (we ignore the very unlikely case that p|a).
Now suppose q−1 is divisible by a prime � > B. Among all the elements in

the cyclic group Z×
q , there are at most (q − 1)/� that have order not divisible

by � and at least (� − 1)(q − 1)/� that have order divisible by �. (These
numbers are exact if �2 � q − 1.) Therefore, it is very likely that the order of
a is divisible by �, and therefore

a1 ≡ aB! �≡ 1 (mod q).

Therefore, a1 − 1 is a multiple of p but is not a multiple of q, so

gcd(a1 − 1, pq) = p.

If all the prime factors of q − 1 are less than B, we usually obtain gcd(a1 −
1, n) = n. In this case, we can try a smaller B, or use various other procedures
(similar to the one in Section 6.8). The main problem is choosing B so that
p − 1 (or q − 1) is B-smooth. If we choose B small, the probability of this
is low. If we choose B very large, then the computation of a1 becomes too
lengthy. So we need to choose B of medium size, maybe around 108. But
what if both p − 1 and q − 1 have prime factors of around 20 decimal digits?
We could keep trying various random choices of a, hoping to get lucky. But
the above calculation shows that if there is a prime �′ with �′|p−1 but �′ > B,
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then the chance that a1 ≡ 1 (mod p) is at most 1/�′. This is very small if
�′ ≈ 1020. There seems to be no way to get the method to work. The elliptic
curve method has a much better chance of success in this case because it
allows us to change groups.

In the elliptic curve factorization method, we will need to choose random
elliptic curves mod n and random points on these curves. A good way to do
this is as follows. Choose a random integer A mod n and a random pair of
integers P = (u, v) mod n. Then choose C (the letter B is currently being
used for the bound) such that

C = v2 − u3 − Au (mod n).

This yields an elliptic curve y2 = x3 + Ax + C with a point (u, v). This is
much more efficient than the naive method of choosing A,C, u, then trying to
find v. In fact, since being able to find square roots mod n is computationally
equivalent to factoring n, this naive method will almost surely fail.

Here is the elliptic curve factorization method. We start with a com-
posite integer n (assume n is odd) that we want to factor and do the following.

1. Choose several (usually around 10 to 20) random elliptic curves Ei :
y2 = x3 + Aix + Bi and points Pi mod n.

2. Choose an integer B (perhaps around 108) and compute (B!)Pi on Ei

for each i.

3. If step 2 fails because some slope does not exist mod n, then we have
found a factor of n.

4. If step 2 succeeds, increase B or choose new random curves Ei and
points Pi and start over.

Steps 2, 3, 4 can often be done in parallel using all of the curves Ei simulta-
neously.

The elliptic curve method is very successful in finding a prime factor p of n
when p < 1040. Suppose we have a random integer n of around 100 decimal
digits, and we know it is composite (perhaps, for example, 2n−1 �≡ 1 (mod n),
so Fermat’s little theorem implies that n is not prime). If we cannot find a
small prime factor (by testing all of the primes up to 107, for example), then
the elliptic curve method is worth trying since there is a good chance that n
will have a prime factor less than 1040.

Values of n that are used in cryptographic applications are now usually
chosen as n = pq with both p and q large (at least 75 decimal digits). For
such numbers, the quadratic sieve and the number field sieve factorization
methods outperform the elliptic curve method. However, the elliptic curve
method is sometimes used inside these methods to look for medium sized
prime factors of numbers that appear in intermediate steps.
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Why does the elliptic curve method work? For simplicity, assume n = pq.
A random elliptic curve E mod n can be regarded as an elliptic curve mod p
and an elliptic curve mod q. We know, by Hasse’s theorem, that

p + 1 − 2
√

p < #E(Fp) < p + 1 + 2
√

p.

In fact, each integer in the interval (p+1−2
√

p, p+1+2
√

p) occurs for some
elliptic curve. If B is of reasonable size, then the density of B-smooth integers
in this interval is high enough, and the distribution of orders of random elliptic
curves is sufficiently uniform. Therefore, if we choose several random E, at
least one will probably have B-smooth order. In particular, if P lies on this
E, then it is likely that (B!)P = ∞ (mod p) (as in the p − 1 method, the
main exception occurs when the order is divisible by the square of a prime
near B). It is unlikely that the corresponding point P on E mod q will satisfy
(B!)P = ∞ (mod q). (If it does, choose a smaller B or use the techniques
of Section 6.8 to factor n.) Therefore, when computing (B!)P (mod n), we
expect to obtain a slope whose denominator is divisible by p but not by q.
The gcd of this denominator with n yields the factor p.

In summary, the difference between the p− 1 method and the elliptic curve
method is the following. In the p − 1 method, there is a reasonable chance
that p − 1 is B-smooth, but if it is not, there is not much we can do. In the
elliptic curve method, there is a reasonable chance that #E(Fp) is B-smooth,
but if it is not we can choose another elliptic curve E.

It is interesting to note that the elliptic curve method, when applied to
singular curves (see Section 2.10), yields classical factorization methods.

First, let’s consider the curve E given by y2 = x2(x+1) mod n. We showed
in Theorem 2.31 that the map

(x, y) �→ x + y

x − y

is an isomorphism from Ens = E(Zn)\(0, 0) to Z×
n . (Actually, we only showed

this for fields. But it is true mod p and mod q, so the Chinese Remainder
Theorem allows us to get the result mod n = pq.) A random point P on
Ens corresponds to a random a ∈ Z×

n . Calculating (B!)P corresponds to
computing a1 ≡ aB! (mod n). We have (B!)P = ∞ (mod p) if and only if
a1 ≡ 1 (mod p), since ∞ and 1 are the identity elements of their respective
groups. Fortunately, we have ways to extract the prime factor p of n in both
cases. The first is by computing the gcd in the calculation of a slope. The
second is by computing gcd(a1 − 1, n). Therefore, we see that the elliptic
curve method for the singular curve y2 = x2(x + 1) is really the p− 1 method
in disguise.

If we consider y2 = x2(x + a) when a is not a square mod p, then we get
the classical p + 1 factoring method (see Exercise 7.2).

Now let’s consider E given by y2 = x3. By Theorem 2.30, the map

(x, y) �→ x

y
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is an isomorphism from Ens = E(Zn) \ (0, 0) to Zn, regarded as an additive
group. A random point P in Ens corresponds to a random integer a mod
n. Computing (B!)P corresponds to computing (B!)a (mod n). We have
(B!)P = ∞ (mod p) if and only if (B!)a ≡ 0 (mod p), which occurs if and
only if p ≤ B (note that this is much less likely than having p − 1 be B-
smooth). Essentially, this reduces to the easiest factorization method: divide
n by each of the primes up to B. This method is impractical if the smallest
prime factor of n is not small. But at least it is almost an efficient way to
do it. If we replace B! by the product Q of primes up to B, then computing
gcd(Q,n) is often faster than trying each prime separately.

7.2 Primality Testing

Suppose n is an integer of several hundred decimal digits. It is usually
easy to decide with reasonable certainty whether n is prime or composite.
But suppose we actually want to prove that our answer is correct. If n is
composite, then usually either we know a nontrivial factor (so the proof that
n is composite consists of giving the factor) or n failed a pseudoprimality test
(for example, perhaps an−1 �≡ 1 (mod n) for some a). Therefore, when n
is composite, it is usually easy to prove it, and the proof can be stated in
a form that can be checked easily. But if n is prime, the situation is more
difficult. Saying that n passed several pseudoprimality tests indicates that n
is probably prime, but does not prove that n is prime. Saying that a computer
checked all primes up to

√
n is not very satisfying (and is not believable when n

has several hundred digits). Cohen and Lenstra developed methods involving
Jacobi sums that work well for primes of a few hundred digits. However, for
primes of a thousand digits or more, the most popular method currently in use
involves elliptic curves. (Note: For primes restricted to special classes, such
as Mersenne primes, there are special methods. However, we are considering
randomly chosen primes.)

The elliptic curve primality test is an elliptic curve version of the classical
Pocklington-Lehmer primality test. Let’s look at it first.

PROPOSITION 7.1

Letn > 1 be an integer,and letn − 1 = rs with r ≥ √
n. Suppose that,for

each prim e �|r,there existsan integer a� with

an−1
� ≡ 1 (mod n) and gcd

(
a
(n−1)/�
� − 1, n

)
= 1.

Then n isprim e.
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PROOF Let p be a prime factor of n and let �e be the highest power of �

dividing r. Let b ≡ a
(n−1)/�e

� (mod p). Then

b�e ≡ an−1
� ≡ 1 (mod p) and b�e−1 ≡ a

(n−1)/�
� �≡ 1 (mod p),

since gcd
(
a
(n−1)/�
� − 1, n

)
= 1. It follows that the order of b (mod p) is �e.

Therefore, �e|p− 1. Since this is true for every prime power factor �e of r, we
have r|p − 1. In particular,

p > r ≥ √
n.

If n is composite, it must have a prime factor at most
√

n. We have shown
this is not the case, so n is prime.

REMARK 7.2 A converse of Proposition 7.1 is true. See Exercise 7.3.

Example 7.2
Let n = 153533. Then n − 1 = 4 · 131 · 293. Let r = 4 · 131. The primes
dividing r are � = 2 and � = 131. We have

2n−1 ≡ 1 (mod n) and gcd
(
2(n−1)/2 − 1, n

)
= 1,

so we can take a2 = 2. Also,

2n−1 ≡ 1 (mod n) and gcd
(
2(n−1)/131 − 1, n

)
= 1,

so we can take a131 = 2, also. The hypotheses of Proposition 7.1 are satisfied,
so we have proved that 153533 is prime. The fact that a2 = a131 can be
regarded as coincidence. In fact, we could take a2 = a131 = a293 = 2, which
shows that 2 is a primitive root mod 153533 (see Appendix A). So, in a sense,
the calculations for the Pocklington-Lehmer test can be regarded as progress
towards showing that there is a primitive root mod n (see Exercise 7.3).

Of course, to make the proof complete, we should prove that 2 and 131 are
primes. We leave the case of 2 as an exercise and look at 131. We’ll use the
Pocklington-Lehmer test again. Write 130 = 2 · 5 · 13. Let r = 13, so we have
only one prime �, namely � = 13. We have

2130 ≡ 1 (mod 131) and gcd
(
210 − 1, 131

)
= 1.

Therefore, we can take a13 = 2. The Pocklington-Lehmer test implies that
131 is prime. Of course, we need the fact that 13 is prime, but 13 is small
enough to check by trying possible factors.

We can compactly record the proof that an integer n is prime by stating
the values of the prime factors � of r and the corresponding integers a�. We
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should also include proofs of primality of each of these primes �. And we
should include proofs of primality of the auxiliary primes used in the proofs
for each �, etc. Anyone can use this information to verify our proof. We never
need to say how we found the numbers a�, nor how we factored r.

What happens if we cannot find enough factors of n − 1 to obtain r ≥ √
n

such that we know all the prime factors � of r? This is clearly a possibility if
we are working with n of a thousand digits. As in the case of the p−1 factoring
method in Section 7.1, an elliptic curve analogue comes to the rescue. Note
that the number n− 1 that we need to factor is the order of the group Z×

n . If
we can use elliptic curves, we can replace n−1 with a group order near n, but
there will be enough choices for the elliptic curve that we can probably find
a number that can be partially factored. The following is due to Goldwasser
and Kilian [47]. Recall that a finite point in E(Zn) is a point (x, y) with
x, y ∈ Zn. This is in contrast to the points in E(Zn) that are infinite mod
some of the factors of n and therefore cannot be expressed using coordinates
in Zn. See Section 2.10.

THEOREM 7.3
Letn > 1 and letE be an elliptic curve m od n. Suppose there existdistinct
prim e num bers �1, . . . , �k and finite pointsPi ∈ E(Zn) such that

1. �iPi = ∞ for 1 ≤ i ≤ k

2.
∏k

i=1 �i >
(
n1/4 + 1

)2
.

Then n isprim e.

PROOF Let p be a prime factor of n. Write n = pfn1 with p � n1. Then

E(Zn) = E(Zpf ) ⊕ E(Zn1).

Since Pi is a finite point in E(Zn), it yields a finite point in E(Zpf ), namely
Pi mod pf . We can further reduce and obtain a finite point Pi,p = Pi mod p
in E(Fp). Since �iPi = ∞ mod n, we have �iPi = ∞ mod every factor of n.
In particular, �iPi,p = ∞ in E(Fp), which means that Pi,p has order �i. It
follows that

�i |#E(Fp)

for all i, so #E(Fp) is divisible by
∏

�i. Therefore,

(
n1/4 + 1

)2

<

k∏
i=1

�i ≤ #E(Fp) < p + 1 + 2
√

p =
(
p1/2 + 1

)2

,

so p >
√

n. Since all prime factors of n are greater than
√

n, it follows that n

is prime.
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Example 7.3
Let n = 907. Let E be the elliptic curve y2 = x3 +10x−2 mod n. Let � = 71.
Then

� >
(
9071/4 + 1

)2

≈ 42.1.

Let P = (819, 784). Then 71P = ∞. Theorem 7.3 implies that 907 is prime.
Of course, we needed the fact that 71 is prime, which could also be proved
using Theorem 7.3, or by direct calculation.

How did we find E and P? First, we looked at a few elliptic curves mod 907
until we found one whose order was divisible by a prime � that was slightly
larger than 42.1. (If we had chosen � ≈ 907 then we wouldn’t have made much
progress, since we would still have needed to prove the primality of �). In fact,
to find the order of the curve, we started with curves where we knew a point.
In the present case, E has the point (1, 3). Using Baby Step, Giant Step, we
found the order of (1, 3) to be 923 = 13 ·71. Then we took P = 13(1, 3), which
has order 71.

For large n, the hardest part of the algorithm is finding an elliptic curve
E with a suitable number of points. One possibility is to choose random
elliptic curves mod n and compute their orders, for example, using Schoof’s
algorithm, until an order is found that has a suitable prime factor �. A more
efficient procedure, due to Atkin and Morain (see [7]), uses the theory of
complex multiplication to find suitable curves.

As in the Pocklington-Lehmer test, once a proof of primality is found, it
can be recorded rather compactly. The Goldwasser-Kilian test has been used
to prove the primality of numbers of more than 1000 decimal digits.

Exercises

7.1 Let E be y2 = x3 − 20x + 21 mod 35, and let P = (15,−4).
(a) Factor 35 by trying to compute 3P .
(b) Factor 35 by trying to compute 4P by doubling twice.
(c) Compute both 3P and 4P on E mod 5 and on E mod 7. Explain
why the factor 5 is obtained by computing 3P and 7 is obtained by
computing 4P .

7.2 This exercise shows that when the elliptic curve factorization method is
applied to the singular curve y2 = x2(x+a) where a is not a square mod
a prime p, then we obtain a method equivalent to the p + 1 factoring
method [134]. We first describe a version of the p + 1 method. Let p be
an odd prime factor of the integer n that we want to factor. Let t0 = 2
and choose a random integer t1 mod n. Define tm by the recurrence
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relation tm+2 = t1tm+1 − tm for m ≥ 0. Let β, γ be the two roots of
f(X) = X2 − t1X + 1 in Fp2 . Assume that t21 − 4 is not a square in Fp,
so β, γ �∈ Fp. Let sm = βm + γm for m ≥ 0.

(a) Show that βm+2 = t1β
m+1 − βm for m ≥ 0, and similarly for γ.

(b) Show that sm+2 = t1sm+1 − sm for all m ≥ 0.
(c) Show that tm ≡ sm (mod p) for all m ≥ 0.
(d) Show that βp is a root of f(X) (mod p), and that βp �= β. There-

fore, γ = βp.
(e) Show that βp+1 = 1 and γp+1 = 1.
(f) Show that tp+1 − 2 ≡ 0 (mod p).
(g) Show that if p+1|B! for some bound B (so p+1 is B-smooth) then

gcd(tB! − 2, n) is a multiple of p. Since there are ways to compute
tB! mod n quickly, this gives a factorization method.

We now show the relation with the elliptic curve factorization method.
Consider a curve E given by y2 = x2(x + a) mod n, where a is not a
square mod p. Choose a random point P on E. To factor n by the
elliptic curve method, we compute B!P . By Theorem 2.31, P mod p
corresponds to an element β = u + v

√
a ∈ Fp2 with u2 − v2a = 1.

(h) Show that β is a root of X2 − 2uX + 1.
(i) Show that B!P = ∞ mod p if and only if βB! = 1 in Fp2 .
(j) Let t1 = 2u and define the sequence tm as above. Show that

B!P = ∞ mod p if and only if p divides gcd(tB! − 2, n). Therefore,
the elliptic curve method factors n exactly when the p + 1 method
factors n.

7.3 (a) Show that if n is prime and g is a primitive root mod n, then a� = g
satisfies the hypotheses of Proposition 7.1 for all �.

(b) Suppose we take r = n − 1 and s = 1 in Proposition 7.1, and
suppose that there is some number g such that a� = g satisfies the
conditions on a� for each �. Show that g is a primitive root mod
n. (Hint:What power of � divides the order of g mod n?)

7.4 The proof of Theorem 7.3 works for singular curves given by a Weier-
strass equation where the cubic has a double root, as in Theorem 2.31.
This yields a theorem that uses Z×

n , rather than E(Zn), to prove that n
is prime. State Theorem 7.3 in this case in terms of Z×

n . (Rem ark:The
analogue of Theorem 7.3 for Zn is rather trivial. The condition that
Pi is a finite point becomes the condition that Pi is a number mod n
such that gcd(Pi, n) = 1 (that is, it is not the identity for the group law
mod any prime factor of n). Therefore �iPi = ∞ translates to �iPi ≡ 0
(mod n), which implies that �i ≡ 0 (mod n). Since �i is prime, we must
have n = �i. Hence n is prime.)
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Chapter 8
Elliptic Curves over Q

As we saw in Chapter 1, elliptic curves over Q represent an interesting class of
Diophantine equations. In the present chapter, we study the group structure
of the set of rational points of an elliptic curve E defined over Q. First, we
show how the torsion points can be found quite easily. Then we prove the
Mordell-Weil theorem, which says that E(Q) is a finitely generated abelian
group. As we’ll see in Section 8.6, the method of proof has its origins in
Fermat’s method of infinite descent. Finally, we reinterpret the descent calcu-
lations in terms of Galois cohomology and define the Shafarevich-Tate group.

8.1 The Torsion Subgroup. The Lutz-Nagell The-
orem

The torsion subgroup of E(Q) is easy to calculate. In this section we’ll give
examples of how this can be done. The crucial step is the following theorem,
which was used in Chapter 5 to study anomalous curves. For convenience, we
repeat some of the notation introduced there.

Let a/b �= 0 be a rational number, where a, b are relatively prime integers.
Write a/b = pra1/b1 with p � a1b1. Define the p-adic valuation to be

vp(a/b) = r.

For example, v2(7/40) = −3, v5(50/3) = 2, and v7(1/2) = 0. Define vp(0) =
+∞ (so vp(0) > n for every integer n).

Let E be an elliptic curve over Z given by y2 = x3 + Ax + B. Let r ≥ 1 be
an integer. Define

Er = {(x, y) ∈ E(Q) | vp(x) ≤ −2r, vp(y) ≤ −3r} ∪ {∞}.

These are the points such that x has at least p2r in its denominator and y
has at least p3r in its denominator. These should be thought of as the points
that are close to ∞ mod powers of p (that is, p-adically close to ∞).

199
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THEOREM 8.1
LetE be given by y2 = x3 + Ax + B with A,B ∈ Z.Letp be a prim e and let

r be a positive integer.Then

1.Er isa subgroup ofE(Q).

2. If(x, y) ∈ E(Q),then vp(x) < 0 ifand only ifvp(y) < 0. In this case,
there existsan integer r ≥ 1 such thatvp(x) = −2r and vp(y) = −3r.

3. The m ap

λr : Er/E5r → Zp4r

(x, y) �→ p−rx/y (mod p4r)
∞ �→ 0

isan injective hom om orphism (where Zp4r isa group under addition).

4. If(x, y) ∈ Er but(x, y) �∈ Er+1,then λr(x, y) �≡ 0 (mod p).

REMARK 8.2 The map λr should be regarded as a logarithm for the
group Er/E5r since it changes the law of composition in the group to addition
in Zp4r , just as the classical logarithm changes the composition law in the
multiplicative group of positive real numbers to addition in R.

PROOF The denominator of x3 + Ax + B equals the denominator of y2.
It is easy to see that the denominator of y is divisible by p if and only if
the denominator of x is divisible by p. If pj , with j > 0, is the exact power
of p dividing the denominator of y, then p2j is the exact power of p in the
denominator of y2. Similarly, if pk, with k > 0, is the exact power of p dividing
the denominator of x, then denominator of x3 + Ax + B is exactly divisible
by p3k. Therefore, 2j = 3k. It follows that there exists r with j = 3r and
k = 2r. This proves (2). Also, we see that

{(x, y) ∈ Er | vp(x) = −2r, vp(y) = −3r} = {(x, y) ∈ Er | vp(x/y) = r}

is the set of points in Er not in Er+1. This proves (4). Moreover, if λr(x, y) ≡
0 (mod p4r), then vp(x/y) ≥ 5r, so (x, y) ∈ E5r. This proves that λr is
injective (as soon as we prove it is a homomorphism).

Let
t =

x

y
, s =

1
y
.

Dividing the equation y2 = x3 + Ax + B by y3 yields

1
y

=
(

x

y

)3

+ A

(
x

y

)(
1
y

)2

+ B

(
1
y

)3

,
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which can be written as

s = t3 + Ats2 + Bs3.

In the following, it will be convenient to write pj |z for a rational number
z when pj divides the numerator of z. Similarly, we’ll write z ≡ 0 (mod pj)
in this case. These extended notions of divisibility and congruence satisfy
properties similar to those for the usual notions.

LEMMA 8.3
(x, y) ∈ Er ifand only ifp3r|s.Ifp3r|s,then pr|t.

PROOF If (x, y) ∈ Er, then p3r divides the denominator of y, so p3r

divides the numerator of s = 1/y. Conversely, suppose p3r|s. Then p3r

divides the denominator of y. Part (2) of the theorem shows that p2r divides
the denominator of x. Therefore, (x, y) ∈ Er.

If p3r|s, then the exact power of p dividing the denominator of y is p3k,
with k ≥ r. Part (2) of the theorem implies that the exact power of p dividing
t = x/y is pk. Since k ≥ r, we have pr|t.

We now continue with the proof of Theorem 8.1. Let λr be as in the
statement of the theorem. Note that

λr(−(x, y)) = λr(x,−y) = −p−rx/y = −λr(x, y).

We now claim that if P1 + P2 + P3 = ∞ then

λr(P1) + λr(P2) + λr(P3) ≡ 0 (mod p4r).

The proof will also show that if P1, P2 ∈ Er, then P3 ∈ Er (hence Er is a
subgroup). Therefore,

λr(P1 + P2) = λr(−P3) = −λr(P3) = λr(P1) + λr(P2),

so λr is a homomorphism.
Recall that three points add to ∞ if and only if they are collinear (Exercise

2.6). To prove the claim, let P1, P2, P3 lie on the line

ax + by + d = 0

and assume that P1, P2 ∈ Er. Dividing by y yields the s, t line

at + b + ds = 0.

Let P ′
i denote the point Pi written in terms of the s, t coordinates. In other

words, if
Pi = (xi, yi),
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then
P ′

i = (si, ti)

with
si = 1/yi, ti = xi/yi.

The points P ′
1, P

′
2, P

′
3 lie on the line at + b + ds = 0.

Since P1, P2 ∈ Er, Lemma 8.3 implies that

p3r|si, pr|ti, for i = 1, 2.

As discussed in Section 2.4, at a finite point (x, y), the order of intersection
of the line ax+by+d = 0 and the curve y2 = x3+Ax+B can be calculated by
using projective coordinates and considering the line aX + bY + dZ = 0 and
the curve ZY 2 = X3 + AXZ2 + BZ3. In this case, x = X/Z and y = Y/Z.

If we start with a line at + b + ds = 0 and the curve s = t3 + Ats2 + Bs3,
we can homogenize to get aT + bU + dS = 0 and SU2 = T 3 + ATS2 + BS3.
In this case, we have t = T/U and s = S/U . If we let Z = S, Y = U , X = T ,
we find that we are working with the same line and curve as above. A point
(x, y) corresponds to

t = T/U = X/Y = x/y and s = S/U = Z/Y = 1/y.

Since orders of intersection can be calculated using the projective models, it
follows that the order of intersection of the line ax+by+d = 0 with the curve
y2 = x3 + Ax + B at (x, y) is the same as the order of intersection of the line
at + b + ds = 0 with the curve s = t3 + Ats2 + Bs3 at (s, t) = (1/y, x/y).
For example, the line and curve are tangent in the variables x, y if and only if
they are tangent in the variables t, s. This allows us to do the elliptic curve
group calculations using t, s instead of x, y.

LEMMA 8.4
A line t = c,where c ∈ Q is a constantwith c ≡ 0 (mod p),intersects the
curve s = t3 + As2t + Bs3 in atm ostone point (s, t) with s ≡ 0 (mod p).
Thisline isnottangentatsuch a pointofintersection.

PROOF Suppose we have two values of s, call them s1, s2 with s1 ≡ s2 ≡ 0
(mod p). Suppose s1 ≡ s2 (mod pk) for some k ≥ 1. Write si = ps′i. Then
s′1 ≡ s′2 (mod pk−1), so s′1

2 ≡ s′2
2 (mod pk−1), so s2

1 = p2s′1
2 ≡ p2s′2

2 = s2
2

(mod pk+1). Similarly, s3
1 ≡ s3

2 (mod pk+2). Therefore,

s1 = c3 + Acs2
1 + Bs3

1 ≡ c3 + Acs2
2 + Bs3

2 = s2 (mod pk+1).

By induction, we have s1 ≡ s2 (mod pk) for all k. It follows that s1 = s2, so
there is at most one point of intersection with s ≡ 0 (mod p).
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The slope of the tangent line to the curve can be found by implicit differ-
entiation:

ds

dt
= 3t2 + As2 + 2Ast

ds

dt
+ 3Bs2 ds

dt
,

so
ds

dt
=

3t2 + As2

1 − 2Ast − 3Bs2
.

If the line t = c is tangent to the curve at (s, t), then 1 − 2Ast − 3Bs2 = 0.
But s ≡ t ≡ 0 (mod p) implies that

1 − 2Ast − 3Bs2 ≡ 1 �≡ 0 (mod p).

Therefore, t = c is not tangent to the curve.

If d = 0, then our line is of the form in the lemma. But it passes through
the points P ′

1 and P ′
2, so we must have P ′

1 = P ′
2, and the line is tangent to the

curve. Changing back to x, y coordinates, we obtain P1 = P2. The definition
of the group law says that since the points P1 and P2 are equal, the line
ax + by + d = 0 is tangent at (x, y). As pointed out above, this means that
at + b + ds = 0 is tangent at (s, t). The lemma says that this cannot happen.
Therefore, d �= 0.

Dividing by d, we obtain
s = αt + β

for some α, β ∈ Q. Then P ′
1, P

′
2, P

′
3 lie on the line s = αt + β.

LEMMA 8.5

α =
t22 + t1t2 + t21 + As2

2

1 − A(s1 + s2)t1 − B(s2
2 + s1s2 + s2

1)
.

PROOF If t1 �= t2, then α = (s2−s1)/(t2−t1). Since si = t3i +As2
i ti+Bs3

i ,
we have

(s2 − s1)
(
1 − A(s1 + s2)t1 − B(s2

2 + s1s2 + s2
1)
)

= (s2 − s1) − A(s2
2 − s2

1)t1 − B(s3
2 − s3

1)
= (s2 − As2

2t2 − Bs3
2) − (s1 − As2

1t1 − Bs3
1) + As2

2(t2 − t1)
= t32 − t31 + As2

2(t2 − t1)
= (t2 − t1)(t22 + t1t2 + t21 + As2

2).

This proves that (s2 − s1)/(t2 − t1) equals the expression in the lemma.
Now suppose that t1 = t2. Since a line t = c with c ≡ 0 (mod p) intersects

the curve s = t3 + As2t + Bs3 in only one point with s ≡ 0 (mod p) by
Lemma 8.4, the points (s1, t1) and (s2, t2) must be equal. The line s = αt+β
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is therefore the tangent line at this point, and the slope is computed by implicit
differentiation of s = t3 + Ats2 + Bs3:

ds

dt
= 3t2 + As2 + 2Ast

ds

dt
+ 3Bs2 ds

dt
.

Solving for ds/dt yields the expression in the statement of the lemma when
t1 = t2 = t and s1 = s2 = s.

Since s1 ≡ s2 ≡ 0 (mod p), we find that the denominator

1 − A(s1 + s2)t1 − B(s2
2 + s1s2 + s2

1) ≡ 1 (mod p).

Since pr|ti, we have

t22 + t1t2 + t21 + As2
2 ≡ 0 (mod p2r).

Therefore, α ≡ 0 (mod p2r). Since p3r|si, we have

β = si − αti ≡ 0 (mod p3r).

The point P ′
3 is the third point of intersection of the line s = αt + β with

s = t3 + As2t + Bs3. Therefore, we need to solve for t:

αt + β = t3 + A(αt + β)2t + B(αt + β)3.

This can be rearranged to obtain

0 = t3 +
2Aαβ + 3Bα2β

1 + Bα3 + Aα2
t2 + · · · .

The sum of the three roots is the negative of the coefficient of t2, so

t1 + t2 + t3 = −2Aαβ + 3Bα2β

1 + Bα3 + Aα2

≡ 0 (mod p5r).

The last congruence holds because p2r|α and p3r|β. Since t1 ≡ t2 ≡ 0
(mod pr), we have t3 ≡ 0 (mod pr). Therefore, s3 = αt3 + β ≡ 0 (mod p3r).
By Lemma 8.3, P3 ∈ Er. Moreover,

λr(P1) + λr(P2) + λr(P3) ≡ p−r(t1 + t2 + t3) ≡ 0 (mod p4r).

Therefore, λr is a homomorphism. This completes the proof of Theorem 8.1.

COROLLARY 8.6
Letthe notationsbe asin Theorem 8.1. Ifn > 1 and n isnota power ofp,
then E1 containsno pointsofexactorder n.(See also Theorem 8.9.)

© 2008 by Taylor & Francis Group, LLC



SECTION 8.1 THE TORSION SUBGROUP. THE LUTZ-NAGELL THEOREM 205

PROOF Suppose P ∈ E1 has order n. Since n is not a power of p, we
may multiply P by the largest power of p dividing n and obtain a point, not
equal to ∞, of order prime to p. Therefore, we may assume that P has order
n with p � n. Let r be the largest integer such that P ∈ Er. Then

nλr(P ) = λr(nP ) = λr(∞) ≡ 0 (mod p4r).

Since p � n, we have λr(P ) ≡ 0 (mod p4r), so P ∈ E5r. Since 5r > r, this
contradicts the choice of r. Therefore, P does not exist.

The following theorem was proved independently by Lutz and Nagell in the
1930s. Quite often it allows a quick determination of the torsion points on an
elliptic curve over Q. See Section 9.6 for another method.

THEOREM 8.7 (Lutz-Nagell)
LetE be given by y2 = x3 + Ax + B with A,B ∈ Z.LetP = (x, y) ∈ E(Q).
Suppose P hasfinite order.Then x, y ∈ Z.Ify �= 0 then

y2|4A3 + 27B2.

PROOF Suppose x or y is not in Z. Then there is some prime p dividing
the denominator of one of them. By part (2) of Theorem 8.1, P ∈ Er for
some r ≥ 1. Let � be a prime dividing the order n of P . Then Q = (n/�)P
has order �. By Corollary 8.6, � = p. Choose j such that Q ∈ Ej , Q �∈ Ej+1.
Then λj(Q) �≡ 0 (mod p), and

pλj(Q) = λj(pQ) ≡ 0 (mod p4j).

Therefore,
λj(Q) ≡ 0 (mod p4j−1).

This contradicts the fact that λj(Q) �≡ 0 (mod p). It follows that x, y ∈ Z.
Assume y �= 0. Then 2P = (x2, y2) �= ∞. Since 2P has finite order,

x2, y2 ∈ Z. By Theorem 3.6,

x2 =
x4 − 2Ax2 − 8Bx + A2

4y2
.

Since x2 ∈ Z, this implies that

y2|x4 − 2Ax2 − 8Bx + A2.

A straightforward calculation shows that

(3x2 + 4A)(x4 − 2Ax2 − 8Bx + A2) − (3x3 − 5Ax − 27B)(x3 + Ax + B)
= 4A3 + 27B2.
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Since y2 = x3 + Ax + B, we see that y2 divides both terms on the left.
Therefore, y2|4A3 + 27B2.

COROLLARY 8.8
LetE be an elliptic curve over Q. Then the torsion subgroup ofE(Q) is
finite.

PROOF A suitable change of variables puts the equation for E into Weier-
strass form with integer coefficients. Theorem 8.7 now shows that there are
only finitely many possibilities for the torsion points.

Example 8.1
Let E be given by y2 = x3 +4. Then 4A3 +27B2 = 432. Let P = (x, y) be a
point of finite order in E(Q). Since 0 = x3 + 4 has no rational solutions, we
have y �= 0. Therefore, y2|432, so

y = ±1, ±2, ±3, ±4, ±6, ±12.

Only y = ±2 yields a rational value of x, so the only possible torsion points are
(0, 2) and (0,−2). A quick calculation shows that 3(0,±2) = ∞. Therefore,
the torsion subgroup of E(Q) is cyclic of order 3.

Example 8.2
Let E be given by y2 = x3 + 8. Then 4A3 + 27B2 = 1728. If y = 0, then

x = −2. The point (−2, 0) has order 2. If y �= 0, then y2|1728, which means
that y|24. Trying the various possibilities, we find the points (1,±3) and
(2,±4). However,

2(1, 3) = (−7/4, −13/8) and 2(2, 4) = (−7/4, 13/8).

Since these points do not have integer coordinates, they cannot have finite
order. Therefore, (1, 3) and (2, 4) cannot have finite order. It follows that the
torsion subgroup of E(Q) is {∞, (−2, 0)}. (Rem ark:The fact that 2(1, 3) =
−2(2, 4) leads us to suspect, and easily verify, that (1, 3) + (2, 4) = (−2, 0).)

Suppose we use the Lutz-Nagell theorem and obtain a possible torsion point
P . How do we decide whether or not it’s a torsion point? In the previous
example, we multiplied P by an integer and obtained a nontorsion point.
Therefore, P was not a torsion point. In general, the Lutz-Nagell theorem
explicitly gives a finite list of possibilities for torsion points. If P is a torsion
point, then, for every n, the point nP must either be ∞ or be on that list.
Since there are only finitely many points on the list, either we’ll have nP = mP
for some m �= n, in which case P is torsion and (n − m)P = ∞, or some
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multiple nP is not on the list and P is not torsion. Alternatively, we can use
Mazur’s theorem (Theorem 8.11 below), which says that the order of a torsion
point in E(Q) is at most 12. Therefore, if nP �= ∞ for all n ≤ 12, then P is
not torsion. Consequently, it is usually not hard to check each possibility in
the Lutz-Nagell theorem and see which ones yield torsion points. However,
sometimes the discriminant is hard to factor, and sometimes it contains many
factors. In this case, another algorithm can be used. See Section 9.6.

Another technique that helps us determine the torsion subgroup involves
reduction mod primes. The main result needed is the following.

THEOREM 8.9
LetE be an elliptic curve given by y2 = x3 + Ax + B with A,B ∈ Z. Letp
be an odd prim e and assum e p � 4A3 + 27B2.Let

ρp : E(Q) → E(Fp)

bethe reduction mod p m ap.IfP ∈ E(Q) hasfiniteorderand ρp(P ) = ∞,
then P = ∞.

REMARK 8.10 In general, reduction mod a prime ideal containing p is
injective on the prime-to-p torsion in E(Q). This is similar to the situation
in algebraic number theory, where reduction mod a prime ideal containing p
is injective on roots of unity of order prime to p (see [129]).

PROOF By Theorem 8.7, all of the torsion points (other than ∞) have
integral coordinates, so they reduce to well-defined finite points mod p. In
particular, ∞ is the only point that reduces to ∞.

Example 8.3
Let’s use Theorem 8.9 to find the torsion on y2 = x3 + 8. We have 4A3 +

27B2 = 1728 = 26 · 33, so we cannot use the primes 2, 3. The reduction
mod 5 has 6 points, so Theorem 8.9 implies that the torsion in E(Q) has
order dividing 6. The reduction mod 7 has 12 points, so the torsion has order
dividing 12, which gives no new information. The reduction mod 11 has 12
points, so we again get no new information. However, the reduction mod 13
has 16 points, so the torsion in E(Q) has order dividing 16. It follows that
the torsion group has order dividing 2. Since (−2, 0) is a point of order 2, the
torsion has order exactly 2. This is of course the same result that we obtained
earlier using the Lutz-Nagell theorem.

Example 8.4
In the preceding example, the Lutz-Nagell theorem was perhaps at least as

fast as Theorem 8.9 in determining the order of the torsion subgroup. This is
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not always the case. Let E be given by y2 = x3 + 18x + 72. Then

4A3 + 27B2 = 163296 = 25 · 36 · 7.

The Lutz-Nagell theorem would require us to check all y with y2|163296, which
amounts to checking all y|108 = 22 · 33. Instead, the reduction mod 5 has 5
points and the reduction mod 11 has 8 points. It follows that the torsion
subgroup of E(Q) is trivial.

Finally, we mention a deep result of Mazur, which we will not prove (see
[77]).

THEOREM 8.11
LetE bean ellipticcurvedefined overQ.Then thetorsion subgroup ofE(Q)
isone ofthe following:

Zn with 1 ≤ n ≤ 10 orn = 12,
Z2 ⊕ Z2n with 1 ≤ n ≤ 4.

REMARK 8.12 For each of the groups in the theorem, there are infinitely
many elliptic curves E (with distinct j-invariants) having that group as the
torsion subgroup of E(Q). See Exercise 8.1 for examples of each possibility.

8.2 Descent and the Weak Mordell-Weil Theo-
rem

We start with an example that has its origins in the work of Fermat (see
Section 8.6).

Example 8.5
Let’s look at rational points on the curve E given by

y2 = x(x − 2)(x + 2).

If y = 0, we have x = 0,±2. Therefore, assume y �= 0. Since the product of
x, x − 2, and x + 2 is a square, intuition suggests that each of these factors
should, in some sense, be close to being a square. Write

x = au2

x − 2 = bv2

x + 2 = cw2
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with rational numbers a, b, c, u, v, w. Then y2 = abc(uvw)2, so

abc is a square.

By adjusting u, v, w, we may assume that a, b, c are squarefree integers. In
fact, we claim that

a, b, c ∈ {±1,±2}.
Suppose that p is an odd prime dividing a. Since a is squarefree, p2 � a, so
the exact power pk dividing x = au2 has k odd. If k < 0, then pk is the
exact power of p in the denominator of x ± 2, so p3k is the power of p in the
denominator of y2 = x(x− 2)(x + 2). Since 3k is odd and y2 is a square, this
is impossible. If k > 0 then x ≡ 0 (mod p), so x± 2 �≡ 0 (mod p). Therefore,
pk is the power of p dividing y2. Since k is odd, this is impossible. Therefore,
p � a. Similarly, no odd prime divides b or c. Therefore, each of a, b, c is, up
to sign, a power of 2. Since they are squarefree, this proves the claim.

The procedure we are following is called descent, or, more precisely, a
2-descent. Suppose x is a rational number with at most N digits in its
numerator and denominator. Then u, v, w should have at most N/2 digits
(approximately) in their numerators and denominators. Therefore, if we are
searching for points (x, y), we can instead search for smaller numbers u, v, w.
This method was developed by Fermat. See Section 8.6.

We have four choices for a and four choices for b. Since a and b together
determine c (because abc is a square), there are 16 possible combinations for
a, b, c. We can eliminate some of them quickly. Since x(x−1)(x+2) = y2 > 0,
we have cw2 = x + 2 > 0, so c > 0. Since abc > 0, it follows that a and b
must have the same sign. We are now down to 8 possible combinations.

Let’s consider (a, b, c) = (1, 2, 2). We have

x = u2, x − 2 = 2v2, x + 2 = 2w2

with rational numbers u, v, w. Therefore,

u2 − 2v2 = 2, u2 − 2w2 = −2.

If v has 2 in its denominator, then 2v2 has an odd power of 2 in its denomi-
nator. But u2 has an even power of 2 in its denominator, so u2 − 2v2 cannot
be an integer. This contradiction shows that v and u have odd denominators.
Therefore, we may consider u, v mod powers of 2. Since 2|u2, we have 2|u,
hence 4|u2. Therefore, −2v2 ≡ 2 (mod 4), which implies that 2 � v. Similarly,
−2w2 ≡ −2 (mod 4), so 2 � w. It follows that v2 ≡ w2 ≡ 1 (mod 8), so

2 ≡ u2 − 2v2 ≡ u2 − 2 ≡ u2 − 2w2 ≡ −2 (mod 8),

which is a contradiction. It follows that (a, b, c) = (1, 2, 2) is impossible.
Similar considerations eliminate the combinations (−1,−1, 1), (2, 1, 2), and
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(−2,−2, 1) for (a, b, c) (later, we’ll see a faster way to eliminate them). Only
the combinations

(a, b, c) = (1, 1, 1), (−1,−2, 2), (2, 2, 1), (−2,−1, 2)

remain. As we’ll see below, these four combinations correspond to the four
points that we already know about, namely,

∞, (0, 0), (2, 0), (−2, 0)

(this requires some explanation, which will be given later). As we’ll see later,
the fact that we eliminated all combinations except those coming from known
points implies that we have found all points, except possibly points of odd
order, on the curve. The Lutz-Nagell theorem, or reduction mod 5 and 7
(see Theorem 8.9), shows that there are no nontrivial points of odd order.
Therefore, we have found all rational points on E:

E(Q) = {∞, (0, 0), (2, 0), (−2, 0)}.

The calculations of the example generalize to elliptic curves E of the form

y2 = (x − e1)(x − e2)(x − e3)

with e1, e2, e3 ∈ Z and ei �= ej when i �= j. In fact, they extend to even more
general situations. If ei ∈ Q but ei �∈ Z, then a change of variables transforms
the equation to one with ei ∈ Z, so this situation gives nothing new. However,
if ei �∈ Q, the method still applies. In order to keep the discussion elementary,
we’ll not consider this case, though we’ll say a few things about it later.

Assuming that x, y ∈ Q, write

x − e1 = au2

x − e2 = bv2

x − e3 = cw2

with rational numbers a, b, c, u, v, w. Then y2 = abc(uvw)2, so

abc is a square.

By adjusting u, v, w, we may assume that a, b, c are squarefree integers.

PROPOSITION 8.13
Let

S = {p | p isprim e and p|(e1 − e2)(e1 − e3)(e2 − e3)}.
Ifp isa prim e and p|abc,then p ∈ S.
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PROOF Suppose p|a. Then pk, with k odd, is the exact power of p dividing
x − e1. If k < 0, then pk is the power of p in the denominator of x − e2 and
x − e3. Therefore, p3k is the power of p in the denominator of y2, which is
impossible. Therefore k > 0. This means that x ≡ e1 (mod p). Also, x has
no p in its denominator, so the same is true of bv2 = x− e2 and cw2 = x− e3.
Moreover, bv2 ≡ e1 − e2 and cw2 ≡ e1 − e3 (mod p). If p �∈ S, then the power
of p in

y2 = (au2)(bv2)(cw2)

is pkp0p0 = pk. Since k is odd, this is impossible. Therefore, p ∈ S.

Since S is a finite set, there are only finitely many combinations (a, b, c)
that are possible. The following theorem shows that the set of combinations
that actually come from points (x, y) has a group structure modulo squares.

Let Q×/Q×2 denote the group of rational numbers modulo squares. This
means that we regard two nonzero rational numbers x1, x2 as equivalent if the
ratio x1/x2 is the square of a rational number. Every element of Q×/Q×2

can be represented by ±1 times a (possibly empty) product of distinct primes.
Note that if x− e1 = au2, then x− e1 is equivalent to a mod squares. There-
fore, the map φ in the following theorem maps a point (x, y) �∈ E[2] to the
corresponding triple (a, b, c).

THEOREM 8.14
LetE be given by y2 = (x− e1)(x− e2)(x− e3) with e1, e2, e3 ∈ Z.The m ap

φ : E(Q) → (Q×/Q×2) ⊕ (Q×/Q×2) ⊕ (Q×/Q×2)

defined by

(x, y) �→ (x − e1, x − e2, x − e3) when y �= 0
∞ �→ (1, 1, 1)

(e1, 0) �→ ((e1 − e2)(e1 − e3), e1 − e2, e1 − e3)
(e2, 0) �→ (e2 − e1, (e2 − e1)(e2 − e3), e2 − e3)
(e3, 0) �→ (e3 − e1, e3 − e2, (e3 − e1)(e3 − e2))

isa hom om orphism .The kernelofφ is 2E(Q).

PROOF First, we show that φ is a homomorphism. Suppose Pi = (xi, yi),
i = 1, 2, 3, are points lying on the line y = ax + b. Assume for the moment
that yi �= 0. The polynomial

(x − e1)(x − e2)(x − e3) − (ax + b)2

has leading coefficient 1 and has roots x1, x2, x3 (with the correct multiplici-
ties). Therefore,

(x − e1)(x − e2)(x − e3) − (ax + b)2 = (x − x1)(x − x2)(x − x3).
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Evaluating at ei yields

(x1 − ei)(x2 − ei)(x3 − ei) = (aei + b)2 ∈ Q×2
.

Since this is true for each i,

φ(P1)φ(P2)φ(P3) = 1 ∈ Q×/Q×2 ⊕ Q×/Q×2 ⊕ Q×/Q×2

(that is, the product is a square, hence is equivalent to 1 mod squares). Since
any number z is congruent to its multiplicative inverse mod squares (that is,
z equals 1/z times a square),

φ(P3)−1 = φ(P3) = φ(−P3).

Therefore,
φ(P1)φ(P2) = φ(−P3) = φ(P1 + P2).

To show that φ is a homomorphism, it remains to check what happens when
one or both of P1, P2 is a point of order 1 or 2. The case where a point Pi is of
order 1 (that is, Pi = ∞) is trivial. If both P1 and P2 have order 2, a case by
case check shows that φ(P1 +P2) = φ(P1)φ(P2). Finally, suppose that P1 has
order 2 and P2 has y2 �= 0. Let’s assume P1 = (e1, 0). The other possibilities
are similar. Since the values of φ are triples, let φ1, φ2, φ3 denote the three
components of φ (so φ = (φ1, φ2, φ3)). The proof given above shows that

φi(P1)φi(P2) = φi(P1 + P2)

for i = 2, 3. So it remains to consider φ1.
By inspection, φ1(P )φ2(P )φ3(P ) = 1 for all P . Since φi(P1)φi(P2) =

φi(P1 + P2) for i = 2, 3, the relation holds for i = 1, too. Therefore, φ is a
homomorphism.

Putting everything together, we see that φ is a homomorphism.
To prove the second half of the theorem, we need to show that if x − ei is

a square for all i, then (x, y) = 2P for some point P ∈ E(Q). Let

x − ei = v2
i , i = 1, 2, 3.

For simplicity, we’ll assume that e1 + e2 + e3 = 0, which means that the
equation for our elliptic curve has the form y2 = x3+Ax+B. (If e1+e2+e3 �=
0, the coefficient of x2 is nonzero. A simple change of variables yields the
present case.) Let

f(T ) = u0 + u1T + u2T
2

satisfy
f(ei) = vi, i = 1, 2, 3.
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Such an f exists since there is a unique quadratic polynomial whose graph
passes through any three points that have distinct x-coordinates. In fact

f(T ) = v1
1

(e1 − e2)(e1 − e3)
(T − e2)(T − e3)

+ v2
1

(e2 − e1)(e2 − e3)
(T − e1)(T − e3)

+ v3
1

(e3 − e1)(e3 − e2)
(T − e1)(T − e2).

Let g(T ) = x − T − f(T )2. Then g(ei) = 0 for all i, so

T 3 + AT + B = (T − e1)(T − e2)(T − e3) divides g(T ).

Therefore, g(T ) ≡ 0 (mod T 3 + AT + B), so

x − T ≡ (u0 + u1T + u2T
2)2 (mod T 3 + AT + B).

(We say that two polynomials P1, P2 are congruent mod P3 if P1 − P2 is a
multiple of P3.) This congruence for x − T can be thought of as a way of
simultaneously capturing the information that x − ei is a square for all i.
Mod T 3 + AT + B, we have

T 3 ≡ −AT − B, T 4 ≡ T · T 3 ≡ −AT 2 − BT.

Therefore,

x − T ≡ (u0 + u1T + u2T
2)2

≡ u2
0 + 2u0u1T + (u2

1 + 2u0u2)T 2 + 2u1u2T
3 + u2

2T
4

≡ (u2
0 − 2Bu1u2) + (2u0u1 − 2Au1u2 − Bu2

2)T
+(u2

1 + 2u0u2 − Au2
2)T

2.

If two polynomials P1 and P2 of degree at most two are congruent mod a
polynomial of degree three, then their difference P1 − P2 is a polynomial of
degree at most two that is divisible by a polynomial of degree three. This can
only happen if P1 = P2. In our case, this means that

x = u2
0 − 2Bu1u2 (8.1)

−1 = 2u0u1 − 2Au1u2 − Bu2
2 (8.2)

0 = u2
1 + 2u0u2 − Au2

2. (8.3)

If u2 = 0 then (8.3) implies that also u1 = 0. Then f(T ) is constant, so
v1 = v2 = v3. This means that e1 = e2 = e3, contradiction. Therefore,
u2 �= 0. Multiply (8.3) by u1/u3

2 and multiply (8.2) by 1/u2
2, then subtract to

obtain (
1
u2

)2

=
(

u1

u2

)3

+ A

(
u1

u2

)
+ B.
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Let
x1 =

u1

u2
, y1 =

1
u2

,

so (x1, y1) ∈ E(Q). We claim that 2(x1, y1) = ±(x, y).
Equation 8.3 implies that

u0 =
Au2

2 − u2
1

2u2
=

A − x2
1

2y1
.

Substituting this into (8.1) yields

x =
x4

1 − 2Ax2
1 − 8Bx1 + A2

4y2
1

.

This is the x-coordinate of 2(x1, y1) (see Theorem 3.6). The y-coordinate is
determined up to sign by the x-coordinate, so 2(x1, y1) = (x,±y) = ±(x, y).
It follows that (x, y) = 2(x1, y1) or 2(x1,−y1). In particular, (x, y) ∈ 2E(Q).

Example 8.6
We continue with Example 8.5. For the curve y2 = x(x− 2)(x + 2), we have

φ(∞) = (1, 1, 1), φ(0, 0) = (−1,−2, 2),
φ(2, 0) = (2, 2, 1), φ(−2, 0) = (−2,−1, 2)

(we used the fact that 4 and 1 are equivalent mod squares to replace 4 by 1).
We eliminated the triple (a, b, c) = (1, 2, 2) by working mod powers of 2. We
now show how to eliminate (−1,−1, 1), (2, 1, 2), (−2,−2, 1). Suppose there is
a point P with φ(P ) = (−1,−1, 1). Then

φ(P + (0, 0)) = φ(P )φ(0, 0) = (−1,−1, 1)(−1,−2, 2) = (1, 2, 2).

But we showed that (1, 2, 2) does not come from a point in E(Q). Therefore,
P does not exist. The two other triples are eliminated similarly.

Theorem 8.14 has a very important corollary.

THEOREM 8.15 (Weak Mordell-Weil Theorem)
LetE be an elliptic curve defined overQ.Then

E(Q)/2E(Q)

isfinite.

PROOF We give the proof in the case that e1, e2, e3 ∈ Q. As remarked
earlier, we may assume that e1, e2, e3 ∈ Z. The map φ in Theorem 8.14 gives
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an injection

E(Q)/2E(Q) ↪→ (Q×/Q×2) ⊕ (Q×/Q×2) ⊕ (Q×/Q×2).

Proposition 8.13 says that if (a, b, c) (where a, b, c are chosen to be squarefree
integers) is in the image of φ, then a, b, c are products of primes in the set S
of Proposition 8.13. Since S is finite, there are only finitely many such a, b, c
mod squares. Therefore, the image of φ is finite. This proves the theorem.

REMARK 8.16 (for those who know some algebraic number theory) Let
K/Q be a finite extension. The theorem can be extended to say that if E
is an elliptic curve over K then E(K)/2E(K) is finite. If we assume that
x3 + Ax + B = (x− e1)(x− e2)(x− e3) with all ei ∈ K, then the proof is the
same except that the image of φ is contained in

(K×/K×2) ⊕ (K×/K×2) ⊕ (K×/K×2).

Let OK be the ring of algebraic integers of K. To make things simpler, we
invert some elements in order to obtain a unique factorization domain. Take
a nonzero element from an integral ideal in each ideal class of OK and let M
be the multiplicative subset generated by these elements. Then M−1OK is a
principal ideal domain, hence a unique factorization domain. The analogue of
Proposition 8.13 says that the primes of M−1OK dividing a, b, c also divide
(e1 − e2)(e1 − e3)(e2 − e3). Let S ⊂ M−1OK be the set of prime divisors of
(e1 − e2)(e1 − e3)(e2 − e3). Then the image of φ is contained in the group
generated by S and the units of M−1OK . Since the class number of K is
finite, M is finitely generated. A generalization of the Dirichlet unit theorem
(often called the S-unit theorem) says that the units of M−1OK are a finitely
generated group. Therefore, the image of φ is a finitely generated abelian
group of exponent 2, hence is finite. This proves that E(K)/2E(K) is finite.

8.3 Heights and the Mordell-Weil Theorem

The purpose of this section is to change the weak Mordell-Weil theorem
into the Mordell-Weil theorem. This result was proved by Mordell in 1922 for
elliptic curves defined over Q. It was greatly generalized in 1928 by Weil in
his thesis, where he proved the result not only for elliptic curves over number
fields (that is, finite extensions of Q) but also for abelian varieties (higher-
dimensional analogues of elliptic curves).
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THEOREM 8.17 (Mordell-Weil)
LetE be an elliptic curve defined overQ.Then E(Q) isa finitely generated
abelian group.

The theorem says that there is a finite set of points on E from which all
other points can be obtained by repeatedly drawing tangent lines and lines
through points, as in the definition of the group law. The proof will be given
below. Since we proved the weak Mordell-Weil theorem only in the case that
E[2] ⊆ E(Q), we obtain the theorem only for this case. However, the weak
Mordell-Weil theorem is true in general, and the proof of the passage from
the weak result to the strong result holds in general.

From the weak Mordell-Weil theorem, we know that E(Q)/2E(Q) is fi-
nite. This alone is not enough to deduce the stronger result. For example,
R/2R = 0, hence is finite, even though R is not finitely generated. In our
case, suppose we have points R1, . . . , Rn representing the finitely many cosets
in E(Q)/2E(Q). Let P ∈ E(Q) be an arbitrary point. We can write

P = Ri + 2P1

for some i and some point P1. Then we write

P1 = Rj + 2P2,

etc. If we can prove the process stops, then we can put things back together
and obtain the theorem. The theory of heights will show that the points
P1, P2, . . . are getting smaller, in some sense, so the process will eventually
yield a point Pk that lies in some finite set of small points. These points, along
with the Ri, yield the generators of E(Q). We make these ideas more precise
after Theorem 8.18 below. Note that sometimes the points Ri by themselves
do not suffice to generate E(Q). See Exercise 8.7.

Let a/b be a rational number, where a, b are integers with gcd(a, b) = 1.
Define

H(a/b) = Max(|a|, |b|)
and

h(a/b) = log H(a/b).

The function h is called the (logarithmic) height function. It is closely
related to the number of digits required to write the rational number a/b.
Note that, given a constant c, there are only finitely many rational numbers
x with h(x) ≤ c.

Now let E be an elliptic curve over Q and let (x, y) ∈ E(Q). Define

h(x, y) = h(x), h(∞) = 0, H(x, y) = H(x), H(∞) = 1.

It might seem strange using only the x-coordinate. Instead, we could use
the y-coordinate. Since the square of the denominator of the y-coordinate is

© 2008 by Taylor & Francis Group, LLC



SECTION 8.3 HEIGHTS AND THE MORDELL-WEIL THEOREM 217

the cube of the denominator of the x-coordinate (when the coefficients A,B
of E are integers), it can be shown that this would change the function h
approximately by a factor of 3/2. This would cause no substantial change in
the theory. In fact, the canonical height ĥ, which will be introduced shortly,
is defined using a limit of values of 1

2h. It could also be defined as a limit of
values of 1/3 of the height of the y-coordinate. These yield the same canonical
height function. See [109, Lemma 6.3]. The numbers 2 and 3 are the orders
of the poles of the functions x and y on E (see Section 11.1).

It is convenient to replace h with a function ĥ that has slightly better
properties. The function ĥ is called the canonical height.

THEOREM 8.18
LetE be an elliptic curve defined overQ.There isa function

ĥ : E(Q) → R≥0

with the following properties:

1. ĥ(P ) ≥ 0 forallP ∈ E(Q).

2. There isa constantc0 such that | 12h(P ) − ĥ(P )| ≤ c0 forallP.

3. Given a constantc,there are only finitely m any pointsP ∈ E(Q) with
ĥ(P ) ≤ c.

4. ĥ(mP ) = m2ĥ(P ) forallintegersm and allP.

5. ĥ(P + Q) + ĥ(P − Q) = 2ĥ(P ) + 2ĥ(Q) forallP,Q.

6. ĥ(P ) = 0 ifand only ifP isa torsion point.

Property (5) is often called the parallelogram law because if the origin
0 and vectors P,Q, P + Q (ordinary vector addition) are the vertices of a
parallelogram, then the sum of the squares of the lengths of the diagonals
equals the sum of the squares of the lengths of the four sides:

||P + Q||2 + ||P − Q||2 = 2||P ||2 + 2||Q||2.
The proof of Theorem 8.18 will occupy most of the rest of this section. First,
let’s use the theorem to deduce the Mordell-Weil theorem.
Proofofthe M ordell-W eiltheorem : Let R1, . . . , Rn be representatives for

E(Q)/2E(Q). Let
c = Maxi{ĥ(Ri)}

and let Q1, . . . , Qm be the set of points with ĥ(Qi) ≤ c. This is a finite set by
Theorem 8.18. Let G be the subgroup of E(Q) generated by

R1, . . . , Rn, Q1, . . . , Qm.
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We claim that G = E(Q). Suppose not. Let P ∈ E(Q) be an element not
in G. Since, for a point P , there are only finitely many points of height less
than P , we may change P to one of these, if necessary, and assume P has the
smallest height among points not in G. We may write

P − Ri = 2P1

for some i and some P1. By Theorem 8.18,

4ĥ(P1) = ĥ(2P1) = ĥ(P − Ri)

= 2ĥ(P ) + 2ĥ(Ri) − ĥ(P + Ri)

≤ 2ĥ(P ) + 2c + 0

< 2ĥ(P ) + 2ĥ(P ) = 4ĥ(P )

(since c < ĥ(P ), because P �= Qj). Therefore,

ĥ(P1) < ĥ(P ).

Since P had the smallest height for points not in G, we must have P1 ∈ G.
Therefore,

P = Ri + 2P1 ∈ G.

This contradiction proves that E(Q) = G. This completes the proof of the
Mordell-Weil theorem.

It remains to prove Theorem 8.18. The key step is the following.

PROPOSITION 8.19
There existsa constantc1 such that

|h(P + Q) + h(P − Q) − 2h(P ) − 2h(Q)| ≤ c1

forallP,Q ∈ E(Q).

The proof is rather technical, so we postpone it in order to complete the
proof of Theorem 8.18.
ProofofTheorem 8.18:
Proofofparts(1)and (2):Letting Q = P in Proposition 8.19, we obtain

|h(2P ) − 4h(P )| ≤ c1 (8.4)

for all P . Define
ĥ(P ) =

1
2

lim
n→∞

1
4n

h(2nP ).

We need to prove the limit exists. We have

lim
n→∞

1
4n

h(2nP ) = h(P ) +
∞∑

j=1

1
4j

(h(2jP ) − 4h(2j−1P )). (8.5)
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By (8.4), ∣∣∣∣ 1
4j

(h(2jP ) − 4h(2j−1P ))
∣∣∣∣ ≤ c1

4j
,

so the infinite sum converges. Therefore, ĥ(P ) exists. Since
∞∑

j=1

c1

4j
=

c1

3
,

we obtain |ĥ(P )− 1
2h(P )| ≤ c1/6. It is clear from the definitions that ĥ(P ) ≥ 0

for all P .
Proofofpart(3): If ĥ(P ) ≤ c, then h(P ) ≤ 2c + c1

3 . There are only finitely
many P satisfying this inequality.
Proofofpart(5):We have

1
4n

|h(2nP + 2nQ) + h(2nP − 2nQ) − 2h(2nP ) − 2h(2nQ)| ≤ c1

4n
.

Letting n → ∞ yields the result.
Proof of part (4): Since the height depends only on the x-coordinate,

ĥ(−P ) = ĥ(P ). Therefore, we may assume m ≥ 0. The cases m = 0, 1
are trivial. Letting Q = P in part (5) yields the case m = 2. Assume that we
know the result for m − 1 and m. Then

ĥ((m + 1)P ) = −ĥ((m − 1)P ) + 2ĥ(mP ) + 2ĥ(P ) (by part (5))

=
(−(m − 1)2 + 2m2 + 2

)
ĥ(P )

= (m + 1)2ĥ(P ).

By induction, the result is true for all m.
Proofofpart(6): If mP = ∞, then m2ĥ(P ) = ĥ(mP ) = ĥ(∞) = 0, so

ĥ(P ) = 0. Conversely, if ĥ(P ) = 0, then ĥ(mP ) = m2ĥ(P ) = 0 for all m.
Since there are only finitely many points of height 0, the set of multiples
of P is finite. Therefore, P is a torsion point. This completes the proof of
Theorem 8.18.

ProofofProposition 8.19. It remains to prove Proposition 8.19. It can be
restated as saying that there exist constants c′, c′′ such that

2h(P ) + 2h(Q) − c′ ≤ h(P + Q) + h(P − Q) (8.6)
h(P + Q) + h(P − Q) ≤ 2h(P ) + 2h(Q) + c′′ (8.7)

for all P,Q. These two inequalities will be proved separately. We’ll start with
the second one.

Let the elliptic curve E be given by y2 = x3 + Ax + B with A,B ∈ Z. Let

P = (
a1

b1
, y1), Q = (

a2

b2
, y2),

P + Q = (
a3

b3
, y3), P − Q = (

a4

b4
, y4)
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be points on E, where yi ∈ Q and ai, bi are integers with gcd(ai, bi) = 1. Let

g1 = 2(a1b2 + a2b1)(Ab1b2 + a1a2) + 4Bb2
1b

2
2

g2 = (a1a2 − Ab1b2)2 − 4B(a1b2 + a2b1)b1b2

g3 = (a1b2 − a2b1)2.

Then a short calculation shows that
a3

b3
+

a4

b4
=

g1

g3
,

a3a4

b3b4
=

g2

g3
.

LEMMA 8.20
Letc1, c2, d1, d2 ∈ Z.Then

Max(|c1|, |d1|) · Max(|c2|, |d2|) ≤ 2Max(|c1c2|, |c1d2 + c2d1|, |d1d2|).

PROOF Without loss of generality, we may assume that |c1| ≤ |d1| (other-
wise, switch c1, d1). Let L denote the left side of the inequality of the lemma
and let R denote the right side. There are three cases to consider.

1. If |c2| ≤ |d2|, then L = |d1d2| and 2|d1d2| ≤ R, so L ≤ R.

2. If |c2| ≥ |d2| ≥ (1/2)|c2|, then L = |d1c2| and

R ≥ 2|d1d2| ≥ |d1c2| ≥ L.

3. If |d2| ≤ (1/2)|c2|, then L = |d1c2| and

R ≥ 2|c1d2 + c2d1|
≥ 2(|c2d1| − |c1d2|)
≥ 2(|c2d1| − |d1|(1/2)|c2|)
= |c2d1| = L.

This completes the proof of the lemma.

LEMMA 8.21
Letc1, c2, d1, d2 ∈ Z with gcd(ci, di) = 1 for i = 1, 2.Then

gcd(c1c2, c1d2 + c2d1, d1d2) = 1.

PROOF Let d = gcd(c1d2 + c2d1, d1d2). Suppose p is a prime such that
p|c1 and p|d. Then p � d1 since gcd(c1, d1) = 1. Since p|d1d2, we have p|d2.
Therefore, p � c2. Therefore, p|c1d2 and p � c2d1, so p � c1d2 + c2d1. Therefore
p � d, contradiction. Similarly, there is no prime dividing both c2 and d. It
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follows that there is no prime dividing c1c2 and d, so the gcd in the lemma is
1.

We can apply the lemmas to a3, a4, b3, b4. Since gcd(a3, b3) = 1 and
gcd(a4, b4) = 1, we have

gcd(a3a4, a3b4 + a4b3, b3b4) = 1.

Therefore, there exist integers x, y, z such that

a3a4x + (a3b4 + a4b3)y + b3b4z = 1.

Since

g3(a3b4 + a4b3) = g1(b3b4) and g3(a3a4) = g2(b3b4), (8.8)

we have

g3 = g3(a3a4)x + g3(a3b4 + a4b3)y + g3(b3b4)z
= g2(b3b4)x + g1(b3b4)y + g3(b3b4)z.

Therefore, b3b4|g3, so
|b3b4| ≤ |g3|.

Similarly,
|a3a4| ≤ |g2|.

Equation 8.8 and the fact that |b3b4| ≤ |g3| imply that

|a3b4 + a4b3| ≤ |g1|.
In terms of the nonlogarithmic height H, these inequalities say that

H(P + Q) · H(P − Q) = Max(|a3|, |b3|) · Max(|a4|, |b4|)
≤ 2Max(|a3a4|, |a3b4 + a4b3|, |b3b4|)
≤ 2Max(|g2|, |g1|, |g3|).

Let H1 = Max(|a1|, |b1|) and H2 = Max(|a2|, |b2|). Then

|g1| = |2(a1b2 + a2b1)(Ab1b2 + a1a2) + 4Bb2
1b

2
2|

≤ 2(H1H2 + H2H1)(|A|H1H2 + H1H2) + 4|B|H2
1H2

2

≤ 4(|A| + 1 + |B|)H2
1H2

2 .

Similarly,

|g2| ≤ ((1 + |A|)2 + 8|B|)H2
1H2

2 , |g3| ≤ 4H2
1H2

2 .

Therefore,

H(P + Q) · H(P − Q) ≤ CH2
1H2

2 = CH(P )2H(Q)2
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for some constant C. Taking logs yields

h(P + Q) + h(P − Q) ≤ 2h(P ) + 2h(Q) + c′′ (8.9)

for some constant c′′.
We now need to prove the inequality in (8.6). First we’ll prove an inequality

between h(R) and h(2R) for points R.

LEMMA 8.22
LetR ∈ E(Q).There existsa constantC2,independentofR,such that

4h(R) ≤ h(2R) + C2.

PROOF Let
R = (

a

b
, y)

with y ∈ Q and a, b ∈ Z with gcd(a, b) = 1. Let

h1 = a4 − 2Aa2b2 − 8Bab3 + A2b4

h2 = (4b)(a3 + Aab2 + Bb3)
Δ = 4A3 + 27B2.

By Lemma 3.8, there exist homogeneous polynomials r1, r2, s1, s2 ∈ Z[a, b] of
degree 3 (the coefficients depend on A,B) such that

4Δb7 = r1h1 + r2h2 (8.10)
4Δa7 = s1h1 + s2h2. (8.11)

For a homogeneous polynomial

p(x, y) = c0x
3 + c1x

2y + c2xy2 + c3y
3,

we have
|p(a, b)| ≤ (|c0| + |c1| + |c2| + |c3|)Max(|a|, |b|)3.

Suppose |b| ≥ |a|. It follows that

|4Δ||b|7 ≤ |r1(a, b)||h1| + |r2(a, b)||h2|
≤ C1|b|3Max(|h1|, |h2|),

for some constant C1 independent of R. Therefore,

|4Δ||b|4 ≤ C1Max(|h1|, |h2|).
Let d = gcd(h1, h2). Then (8.10) and (8.11) imply that

d | 4Δb7 and d | 4Δa7.
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Since gcd(a, b) = 1, we have d|4Δ, so d ≤ |4Δ|. Since

H(2R) = Max
( |h1|

d
,
|h2|
d

)
,

we have

|4Δ|H(R)4 = |4Δ||b|4
≤ C1Max(|h1|, |h2|)
≤ C1|4Δ|Max(

|h1|
d

,
|h2|
d

)

≤ C1|4Δ|H(2R).

Dividing by |4Δ| and taking logs yields

4h(R) ≤ h(2R) + C2

for some constant C2, independent of R.
The case where |a| ≥ |b| is similar. This completes the proof of Lemma 8.22.

Changing P to P + Q and Q to P − Q in (8.9) yields

h(2P ) + h(2Q) ≤ 2h(P + Q) + 2h(P − Q) + c′′.

By Lemma 8.22,

4h(P ) + 4h(Q) − 2C2 ≤ h(2P ) + h(2Q).

Therefore,
2h(P ) + 2h(Q) − c′ ≤ h(P + Q) + h(P − Q)

for some constant c′. This completes the proof of Proposition 8.19.

8.4 Examples

The Mordell-Weil theorem says that if E is an elliptic curve defined over
Q, then E(Q) is a finitely generated abelian group. The structure theorem
for such groups (see Appendix B) says that

E(Q) � T ⊕ Zr,

where T is a finite group (the torsion subgroup) and r ≥ 0 is an integer,
called the rank of E(Q). In Section 8.1, we showed how to compute T .
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The integer r is harder to compute. In this section, we show how to use the
methods of the previous sections to compute r in some cases. In Section 8.8,
we’ll give an example that shows why the computation of r is sometimes
difficult.

Example 8.7
Let E be the curve

y2 = x3 − 4x.

In Section 8.2, we showed that

E(Q)/2E(Q) = {∞, (0, 0), (2, 0), (−2, 0)}

(more precisely, the points on the right are representatives for the cosets on
the left). Moreover, an easy calculation using the Lutz-Nagell theorem shows
that the torsion subgroup of E(Q) is

T = E[2].

From Theorem 8.15, we have E(Q) � T ⊕ Zr, so

E(Q)/2E(Q) � (T/2T ) ⊕ Zr
2 = T ⊕ Zr

2.

Since E(Q)/2E(Q) has order 4, we must have r = 0. Therefore,

E(Q) = E[2] = {∞, (0, 0), (2, 0), (−2, 0)}.

Example 8.8
Let E be the curve

y2 = x3 − 25x.

This curve E appeared in Chapter 1, where we found the points

(0, 0), (5, 0), (−5, 0), (−4, 6).

We also calculated the point

2(−4, 6) = (
412

122
,
−62279
1728

).

Since 2(−4, 6) does not have integer coordinates, (−4, 6) cannot be a torsion
point, by Theorem 8.7. In fact, a calculation using the Lutz-Nagell theorem
shows that the torsion subgroup is

T = {∞, (0, 0), (5, 0), (−5, 0)} � Z2 ⊕ Z2.
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We claim that
E(Q) � Z2 ⊕ Z2 ⊕ Z.

We know that the rank r is at least 1, because there is a point (−4, 6) of
infinite order. The problem is to show that the rank is exactly 1.

Consider the map

φ : E(Q) → (Q×/Q×2) ⊕ (Q×/Q×2) ⊕ (Q×/Q×2)

of Theorem 8.14 defined by

(x, y) �→ (x, x − 5, x + 5)

when y �= 0. Therefore,

φ(−4, 6) = (−1,−1, 1),

where we have used the fact that −4 and −9 are equivalent to −1 mod squares.
Also, from Theorem 8.14,

φ(∞) = (1, 1, 1)
φ(0, 0) = (−1,−5, 5)
φ(5, 0) = (5, 2, 10)

φ(−5, 0) = (−5,−10, 2).

Since φ is a homomorphism, we immediately find that φ(−4, 6) times any of
these triples is in the image of φ, so

(1, 5, 5), (−5,−2, 10), (5, 10, 2)

correspond to points.
If we write

x = au2

x − 5 = bv2

x + 5 = cw2,

we have φ(x, y) = (a, b, c). From Proposition 8.13, we may assume

a, b, c ∈ {±1,±2,±5,±10}.

Also, abc is a square, so c is determined by a, b. Therefore, we’ll often ignore
c and concentrate on the possibilities for a, b. There are 64 possible pairs a, b.
So far, we have 8 pairs that correspond to points. Let’s record them in a list,
which we’ll refer to as L in the following:

L = {(1, 1), (1, 5), (−1,−1), (−1,−5), (5, 2), (5, 10), (−5,−2), (−5,−10)}.

© 2008 by Taylor & Francis Group, LLC



226 CHAPTER 8 ELLIPTIC CURVES OVER Q

Our job is to eliminate the remaining 56 possibilities.
Observe that

x − 5 = bv2 < x = au2 < x + 5 = cw2.

If a < 0, then b < 0. If a > 0 then c > 0, hence b > 0 since abc is a square.
Therefore, a and b have the same sign. This leaves 32 possible pairs a, b.

We now consider, and eliminate, three special pairs a, b. The fact that
φ is a homomorphism will then suffice to eliminate all but the eight pairs
corresponding to known points.

(a,b)=(2,1). We have

x = 2u2

x − 5 = v2

x + 5 = 2w2.

Therefore,
2u2 − v2 = 5, 2w2 − 2u2 = 5.

If one of u or v has an even denominator, then so does the other. However,
2u2 has an odd power of 2 in its denominator, while v2 has an even power
of 2 in its denominator. Therefore, 2u2 − v2 is not an integer, contradiction.
It follows that u, v have odd denominators, so we may work with them mod
powers of 2. Since v2 ≡ −5 (mod 2), we must have v odd. Therefore, v2 ≡ 1
(mod 8), so

2u2 ≡ 6 (mod 8).

This implies that u2 ≡ 3 (mod 4), which is impossible. Therefore, the pair
(a, b) = (2, 1) is eliminated.

(a,b)=(5,1). We have

x = 5u2

x − 5 = v2

x + 5 = 5w2.

Therefore,
5u2 − v2 = 5, 5w2 − 5u2 = 5.

If the denominator of one of u or v is divisible by 5, then so is the other.
But 5u2 then has an odd power of 5 in its denominator, while v2 has an even
power of 5 in its denominator. This is impossible, so the denominators of
both u and v are not divisible by 5. Since w2 − u2 = 1, the same holds for w.
Therefore, we can work with u, v, w mod 5. We have v ≡ 0 (mod 5), so we
can write v = 5v1. Then

u2 − 5v2
1 = 1,

so u2 ≡ 1 (mod 5). Therefore, w2 = 1 + u2 ≡ 2 (mod 5). This is impossible.
Therefore, the pair (a, b) = (5, 1) is eliminated.
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(a,b)=(10, 1). We have

x = 10u2

x − 5 = v2

x + 5 = 10w2.

Therefore,
10u2 − v2 = 5, 10w2 − 10u2 = 5.

As before, the denominators of u, v, w are not divisible by 5. Write v = 5v1.
Then 2u2 − 5v2

1 = 1, so 2u2 ≡ 1 (mod 5). This is impossible, so the pair
(a, b) = (10, 1) is eliminated.

The pairs (a, 1) with a < 0 are eliminated since a, b must have the same
sign. Therefore, (1, 1) = φ(∞) is the only pair of the form (a, 1) corresponding
to a point.

Let (a, b) be any pair. There is a point P with φ(P ) = (a′, b) on the list L
for some a′. If there is a point Q with φ(Q) = (a, b), then

φ(P − Q) = (a′, b)(a, b)−1 = (a′′, 1)

for some a′′. We showed that (a′′, 1) is not in the image of φ when a′′ �= 1.
Therefore, a′′ = 1, so a = a′ and (a, b) = (a′, b) = φ(P ). Consequently, the
only pairs in the image of φ are those on the list L.

As stated above, the torsion subgroup of E(Q) is E[2], so

E(Q)/2E(Q) � Z2 ⊕ Z2 ⊕ Zr
2

for some r. Since the image of φ has order 8 and the kernel of φ is 2E(Q),
the order of E(Q)/2E(Q) is 8. Therefore, r = 1. This implies that

E(Q) � Z2 ⊕ Z2 ⊕ Z.

Note that we have also proved that E[2] and (−4, 6) generate a subgroup of
E(Q) of odd index. It can be shown that they actually generate the whole
group. This would require making the constants in the proof of Theorem 8.17
more explicit, then finding all points with heights less than an explicit bound
to obtain a generating set.

Silverman [110] proved the following.

THEOREM 8.23

LetE be defined overQ by the equation

y2 = x3 + Ax + B
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with A,B ∈ Z.Then

−1
8
h(j) − 1

12
h(Δ) − 0.973 ≤ ĥ(P ) − 1

2
h(P )

≤ 1
12

h(j) +
1
12

h(Δ) + 1.07

forallP ∈ E(Q).HereΔ = −16(4A3 + 27B2) and j = −1728(4A)3/Δ.

For the curve y2 = x3 − 25x, we have Δ = 106 and j = 1728. Therefore,

−3.057 < ĥ(P ) − 1
2
h(P ) < 2.843

for all P ∈ E(Q). The points (0, 0), (5, 0), (−5, 0), (−4, 6) generate the group
E(Q)/2E(Q). The first three of these points have canonical height 0 since
they are torsion points. The point (−4, 6) has canonical height 0.94974 . . .
(this can be calculated using the series (8.5)). The proof of Theorem 8.17
shows that the points with canonical height at most 0.94974 . . . generate
E(Q). Theorem 8.23 says that such points have noncanonical height h(P ) <
8.02. Since e8.02 ≈ 3041, the nonlogarithmic height of the x-coordinate is at
most 3041. Therefore, we need to find all points (x, y) ∈ E(Q) such that

x =
a

b
with Max(|a|, |b|) ≤ 3041.

It is possible to find all such points using a computer. The fact that the
denominator of x must be a perfect square can be used to speed up the
search. We find the points

(0, 0), (−5, 0), (5, 0), (−4, 6)
(45,−300) = (−5, 0) + (−4, 6)
(25/4, 75/8) = (0, 0) + (−4, 6)
(−5/9, −100/27) = (5, 0) + (−4, 6)
(1681/144, −62279/1728) = 2(−4, 6)

and the negatives of these points. Since these points generate E(Q), we
conclude that (0, 0), (5,0), (−5, 0), (−4, 6) generate E(Q).

REMARK 8.24 In Chapter 1, we needed to find an x such that x, x− 5,
and x+5 were all squares. We did this by starting with the point (−4, 6) and
finding the other point of intersection of the tangent line with the curve. In
effect, we computed

2(−4, 6) = (
412

122
,
−62279
1728

)

and miraculously obtained x = 412/122 with the desired property. We now
see that this can be explained by the fact that φ is a homomorphism. Since
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φ(2P ) = (1, 1, 1) for any point P , we always obtain an x such that x, x − 5,
and x+5 are squares when we double a point on the curve y2 = x(x−5)(x+5).

Example 8.9
One use of descent is to find points on elliptic curves. The idea is that in the
equations

x − e1 = au2

x − e2 = bv2

x − e3 = cw2,

the numerators and denominators of u, v, w are generally smaller than those
of x. Therefore, an exhaustive search for u, v, w is faster than searching for x
directly. For example, suppose we are looking for points on

y2 = x3 − 36x.

One of the triples that we encounter is (a, b, c) = (3, 6, 2). This gives the
equations

x = 3u2

x − 6 = 6v2

x + 6 = 2w2.

These can be written as

3u2 − 6v2 = 6, 2w2 − 3u2 = 6,

which simplify to
u2 − 2v2 = 2, 2w2 − 3u2 = 6.

A quick search through small values of u yields (u, v, w) = (2, 1, 3). This gives

(x, y) = (12, 36).

Note that the value of u is smaller than x. Of course, we are lucky in this
example since the value of u turned out to be integral. Otherwise, we would
have had to search through values of u with small numerator and small de-
nominator.

The curve y2 = x3−36x can be transformed to the curve y2 = x(x+1)(2x+
1)/6 that we met in Chapter 1 (see Exercise 1.5). The point (1/2, 1/2) on
that curve corresponds to the point (12, 36) that we found here.

Example 8.10
The elliptic curves that we have seen up to now have had small generators

for their Mordell-Weil groups. However, frequently the generators of Mordell-
Weil groups have very large heights. For example, the Mordell-Weil group of
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the elliptic curve (see [76])

y2 = x3 − 59643

over Q is infinite cyclic, generated by(
62511752209

9922500
,

15629405421521177
31255875000

)
(there are much larger examples, but the margin is not large enough to contain
them). This curve can be transformed to the curve u3 + v3 = 94 by the
techniques of Section 2.5.2.

8.5 The Height Pairing

Suppose we have points P1, . . . , Pr that we want to prove are independent.
How do we do it?

THEOREM 8.25
LetE be an elliptic curve defined overQ and let ĥ be the canonicalheight
function.ForP,Q ∈ E(Q),define the height pairing

〈P,Q〉 = ĥ(P + Q) − ĥ(P ) − ĥ(Q).

Then 〈 , 〉 is bilinear in each variable. IfP1, . . . , Pr are points in E(Q),and
the r × r determ inant

det(〈Pi, Pj〉) �= 0,

then P1, . . . , Pr are independent (that is, if there are integers ai such that
a1P1 + · · · + arPr = ∞,then ai = 0 foralli).

PROOF The second part of the theorem is true for any bilinear pairing.
Let’s assume for the moment that the pairing is bilinear and prove the second
part. Suppose a1P1 + · · · + arPr = ∞, and ar �= 0, for example. Then ar

times the last row of the matrix 〈Pi, Pj〉 is a linear combination of the first
r − 1 rows. Therefore, the determinant vanishes. This contradiction proves
that the points must be independent.

The proof of bilinearity is harder. Since the pairing is symmetric (that is,
〈P,Q〉 = 〈Q,P 〉), it suffices to prove bilinearity in the first variable:

〈P + Q,R〉 = 〈P,R〉 + 〈Q,R〉.
Recall the parallelogram law:

ĥ(S + T ) + ĥ(S − T ) = 2ĥ(S) + 2ĥ(T ).
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Successively letting (S, T ) = (P + Q,R), (P,Q − R), (P + R,Q), and (Q,R)
yields the following equations:

ĥ(P + Q + R) + ĥ(P + Q − R) = 2ĥ(P + Q) + 2ĥ(R)

2ĥ(P ) + 2ĥ(Q − R) = ĥ(P + Q − R) + ĥ(P − Q + R)

ĥ(P + R + Q) + ĥ(P + R − Q) = 2ĥ(P + R) + 2ĥ(Q)

4ĥ(Q) + 4ĥ(R) = 2ĥ(Q + R) + 2ĥ(Q − R).

Adding together all of these equations yields

2
(
ĥ(P + Q + R) − ĥ(P + Q) − ĥ(R)

)
= 2

(
ĥ(P + R) − ĥ(P ) − ĥ(R) + ĥ(Q + R) − ĥ(Q) − ĥ(R)

)
.

Dividing by 2 and using the definition of the pairing yields the result.

Example 8.11

Let E be given by y2 = x3 + 73. Let P = (2, 9) and Q = (3, 10). Then

〈P, P 〉 = 0.9239 . . .

〈P,Q〉 = −0.9770 . . .

〈Q,Q〉 = 1.9927 . . . .

Since

det
(

0.9239 −0.9770
−0.9770 1.9927

)
= 0.8865 · · · �= 0,

the points P and Q are independent on E.

8.6 Fermat’s Infinite Descent

The methods in this chapter have their origins in Fermat’s method of
infinite descent. In the present section, we’ll give an example of Fermat’s
method and show how it relates to the calculations we have been doing.

Consider the equation

a4 + b4 = c2. (8.12)

The goal is to show that it has no solutions in nonzero integers a, b, c. Recall
the parameterization of Pythagorean triples:
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PROPOSITION 8.26
Suppose x, y, z are relatively prim e positive integerssuch that

x2 + y2 = z2.

Then one ofx, y is even. Suppose itis x. Then there existpositive integers
m,n such that

x = 2mn, y = m2 − n2, z = m2 + n2.

M oreover,gcd(m,n) = 1 and m �≡ n (mod 2).

This result is proved in most elementary number theory texts. Alternatively,
see Exercise 2.21.

Suppose now that there are nonzero integers a, b, c satisfying (8.12). We
may assume a, b, c are positive and relatively prime. Proposition 8.26 implies
we may assume that a is even and that there exist integers m,n with

a2 = 2mn, b2 = m2 − n2, c = m2 + n2.

If n is odd, then m is even, which implies that b2 ≡ −1 (mod 4). This is
impossible, so n is even and m is odd. Write n = 2q for some integer q. We
then have

(a/2)2 = mq.

Since gcd(m,n) = 1, we also have gcd(m, q) = 1. Since m, q are relatively
prime and their product is a square, it follows easily from looking at the prime
factorizations of m, q that both m and q must be squares:

m = t2, q = u2

for some positive integers t, u. Therefore, we have

b2 = m2 − n2 = t4 − 4u4.

This may be rewritten as
(2u2)2 + b2 = t4.

Since m is odd, t is odd. Since gcd(m, q) = 1, we also have gcd(t, u) = 1.
Therefore, gcd(t, 2u2) = 1. Proposition 8.26 implies that

2u2 = 2vw, b = v2 − w2, t2 = v2 + w2

with gcd(v, w) = 1. Since the product vw is a square, it follows that both v
and w are squares:

v = r2, w = s2.

Therefore, t2 = v2 + w2 becomes

t2 = r4 + s4.
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This is the same equation we started with. Since

0 < t ≤ t4 = m2 < c, (8.13)

we have proved that for every triple (a, b, c) with a4 +b4 = c2, there is another
solution (r, s, t) with 0 < t < c. We therefore have an infinitely descending
sequence c > t > . . . of positive integers. This is impossible. Therefore, there
is no solution (a, b, c).

Observe that m2 > n2, so c < 2m2 = 2t4. Combining this with (8.13) yields

t4 < c < 2t4.

This implies that the logarithmic height of t is approximately one fourth the
logarithmic height of c. Recall that the canonical height of 2P is four times
the height of P . Therefore, we suspect that Fermat’s procedure amounts to
halving a point on an elliptic curve. We’ll show that this is the case.

We showed in Section 2.5.3 that the transformation

x =
2(z + 1)

w2
, y =

4(z + 1)
w3

maps the curve
C : w2 = z4 + 1

to the curve
E : y2 = x3 − 4x.

If we start with
a4 + b4 = c2,

then the point
(z, w) = (

a

b
,

c

b2
)

lies on C. It maps to a point (x, y) on E, with

x =
2(

c

b2
+ 1)

(a/b)2
=

2(c + b2)
a2

=
2(t4 + 4r4s4 + (r4 − s4)2)

(2rst)2

=
(

t

rs

)2

.

This implies that

x − 2 =
t2 − 2r2s2

(rs)2
=
(

r2 − s2

rs

)2

x + 2 =
t2 + 2r2s2

(rs)2
=
(

r2 + s2

rs

)2

.
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Let φ be the map in Theorem 8.14. Since x, x−2, x+2 are squares, φ(x, y) =
1. Theorem 8.14 implies that

(x, y) = 2P

for some point P ∈ E(Q).
Let’s find P . We follow the procedure used to prove Theorem 8.14. In the

notation of the proof of Theorem 8.14, the polynomial

f(T ) =
t

rs
− s

rs
T +

r2 − t

4rs
T 2

satisfies

f(0) =
t

rs
, f(2) =

r2 − s2

rs
, f(−2) =

r2 + s2

rs
.

The formulas from the proof of Theorem 8.14 say that the point (x1, y1) with

x1 =
−s/2r

(r2 − t)/4rs
=

−2s2

r2 − t

y1 =
4rs

r2 − t

satisfies 2(x1, y1) = (x, y).
The transformation

z =
2x

y
, w = −1 +

2x3

y2

maps E to C. The point (x1, y1) maps to

z1 =
2x1

y1
= −s

r

w1 = −1 +
2x3

1

y2
1

= −1 − s4

r2(r2 − t)

= −r4 + s4 − r2t

r2(r2 − t)
= − t2 − r2t

r2(r2 − t)

=
t

r2
.

We have (
t

r2

)2

=
(−s

r

)4

+ 1.

Therefore, the solution (r,−s, t) corresponds to a point P on E such that 2P
corresponds to (a, b, c). Fermat’s procedure, therefore, can be interpreted as
starting with a point on an elliptic curve and halving it. The height decreases
by a factor of 4. The procedure cannot continue forever, so we must conclude
that there are no nontrivial solutions to start with.
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On y2 = x3−4x, the points of order 2 played a role in the descent procedure
in Section 8.2. We showed that the image of the map φ was equal to the image
of E[2] under φ. If we start with a possible point P ∈ E(Q), then φ(P ) = φ(T )
for some T ∈ E[2]. Therefore, P − T = 2Q for some Q ∈ E(Q). In Fermat’s
method, the points of order 2 appear more subtly. If (x, y) on E corresponds
to the solution a, b, c of a4 + b4 = c2, then a calculation shows that

(x, y) + (0, 0) ←→ −a, b,−c

(x, y) + (2, 0) ←→ −b, a, c

(x, y) + (−2, 0) ←→ b, a,−c.

Since we assumed that a was even and b was odd, we removed the solutions
±b, a,∓c from consideration. The solution −a, b,−c was implicitly removed
by the equation c = m2 + n2, which required c to be positive. Therefore,
the choices that were made, which seemed fairly natural and innocent, were
exactly those that caused φ(P ) to be trivial and thus allowed us to halve the
point.

Finally, we note that in the descent procedure for E in Section 8.2, we elim-
inated many possibilities by congruences mod powers of 2. The considerations
also appear in Fermat’s method, for example, in the argument that n is even.

In Fermat’s descent, the equation

b2 = t4 − 4u4

appears in an intermediate stage. This means we are working with the point
(w, z) = (u/t, b/t2) on the curve

C ′ : w2 = −4z4 + 1.

The transformation (see Theorem 2.17)

x′ =
2(z + 1)

w2
, y′ =

4(z + 1)
w3

maps C ′ to the elliptic curve

E′ : y′2 = x′3 + 16x′.

There is a map ψ : E → E′ given by

(x′, y′) = ψ(x, y) =
(

y2

x2
,

y(x2 + 4)
x2

)
.

There is also a map ψ′ : E′ → E given by

(x, y) = ψ′(x′, y′) =

(
y′2

4x′2 ,
y′(x′2 − 16)

8x′2

)
.
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It can be shown that ψ′ ◦ ψ is multiplication by 2 on E. Fermat’s descent
procedure can be analyzed in terms of the maps ψ and ψ′.

More generally, if E is an elliptic curve given by y2 = x3 +Cx2 +Ax and E′

is given by y′2 = x′3 − 2Cx′2 + (C2 − 4A)x′, then there are maps ψ : E → E′

given by

(x′, y′) = ψ(x, y) =
(

y2

x2
,

y(x2 − A)
x2

)
, ψ(0, 0) = ψ(∞) = ∞,

and ψ′ : E′ → E given by

(x, y) = ψ′(x′, y′) =

(
y′2

4x′2 ,
y′(x′2 − C2 + 4A)

8x′2

)
, ψ′(0, 0) = ψ′(∞) = ∞.

The composition ψ′ ◦ ψ is multiplication by 2 on E. It is possible to do
descent and prove the Mordell-Weil theorem using the maps ψ and ψ′. This
is a more powerful method than the one we have used since it requires only
one two-torsion to be rational, rather than all three. For details, see [114],
[109].

The maps ψ and ψ′ can be shown to be homomorphisms between E(Q) and
E′(Q) and are described by rational functions. In general, for elliptic curves
E1 and E2 over a field K, a homomorphism from E1(K) to E2(K) that is
given by rational functions is called an isogeny.

8.7 2-Selmer Groups; Shafarevich-Tate Groups

Let’s return to the basic descent procedure of Section 8.2. We start with
an elliptic curve E defined over Q by

y2 = (x − e1)(x − e2)(x − e3)

with all ei ∈ Z. This leads to equations

x − e1 = au2

x − e2 = bv2

x − e3 = cw2.

These lead to the equations

au2 − bv2 = e2 − e1, au2 − cw2 = e3 − e1.

This defines a curve Ca,b,c in u, v, w. In fact, it is the intersection of two
quadratic surfaces. If it has a rational point, then it can be changed to an
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elliptic curve, as in Section 2.5.4. A lengthy calculation, using the formulas of
Theorem 2.17, shows that this elliptic curve is the original curve E. If Ca,b,c

does not have any rational points, then the triple (a, b, c) is eliminated.
The problem is how to decide which curves Ca,b,c have rational points. In

the examples of Section 8.2, we used considerations of sign and congruences
mod powers of 2 and 5. These can be interpreted as showing that the curves
Ca,b,c that are being eliminated have no real points, no 2-adic points, or no
5-adic points (for a summary of the relevant properties of p-adic numbers, see
Appendix A). For example, when we used inequalities to eliminate the triple
(a, b, c) = (−1, 1,−1) for the curve y2 = x(x−2)(x+2), we were showing that
the curve

C−1,1,−1 : −u2 − v2 = 2, −u2 + w2 = −2

has no real points. When we eliminated (a, b, c) = (1, 2, 2), we used congru-
ences mod powers of 2. This meant that

C1,2,2 : u2 − 2v2 = 2, u2 − 2w2 = −2

has no 2-adic points.
The 2-Selmer group S2 is defined to be the set of (a, b, c) such that Ca,b,c

has a real point and has p-adic points for all p. For notational convenience,
the real numbers are sometimes called the ∞-adics Q∞. Instead of saying
that something holds for the reals and for all the p-adics Qp, we say that it
holds for Qp for all p ≤ ∞. Therefore,

S2 = {(a, b, c) |Ca,b,c(Qp) is nonempty for all p ≤ ∞}.

Therefore, S2 is the set of (a, b, c) that cannot be eliminated by sign or congru-
ence considerations. It is a group under multiplication mod squares. Namely,
we regard

S2 ⊂ (Q×/Q×2) ⊕ (Q×/Q×2) ⊕ (Q×/Q×2).

The prime divisors of a, b, c divide (e1 − e2)(e1 − e3)(e2 − e3), which implies
that S2 is a finite group.

The descent map φ gives a map

φ : E(Q)/2E(Q) ↪→ S2.

The 2-torsion in the Shafarevich-Tate group is the cokernel of this map:

2 = S2/Im φ.

The symbol is the Cyrillic letter “sha,” which is the first letter of “Shafare-
vich” (in Cyrillic). We’ll define the full group in Section 8.9. The group

2 represents those triples (a, b, c) such that Ca,b,c has a p-adic point for all
p ≤ ∞, but has no rational point. If 2 �= 1, then it is much more difficult
to find the points on the elliptic curve E. If (a, b, c) represents a nontrivial
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element of , then it is usually difficult to show that Ca,b,c does not have
rational points.

Suppose we have an elliptic curve on which we want to find rational points.
If we do a 2-descent, then we encounter curves Ca,b,c. If we search for points
on a curve Ca,b,c and also try congruence conditions, both with no success,
then perhaps (a, b, c) represents a nontrivial element of 2. Or we might
need to search longer for points. It is difficult to decide which is the case.
Fortunately for Fermat, the curves on which he did 2-descents had trivial

2.

The possible nontriviality of the group 2 means that we do not have a
general procedure for finding the rank of the group E(Q). The group S2 can
be computed exactly and allows us to obtain an upper bound for the rank.
But we do not know how much of S2 is the image of φ and how much consists
of triples (a, b, c) representing elements of a possibly nontrivial 2. Since
the generators of E(Q) can sometimes have very large height, it is sometimes
quite difficult to find points representing elements of the image of φ. Without
this information, we don’t know that the triple is actually in the image.

The Shafarevich-Tate group is often called the Tate-Shafarevich group
in English and the Shafarevich-Tate group in Russian. Since comes after
T in the Cyrillic alphabet, these names for the group, in each language, are
the reverse of the standard practice in mathematics, which is to put names
in alphabetical order. The symbol was given to the group by Cassels (see
[23, p. 109]).

REMARK 8.27 The Hasse-Minkowski theorem (see [104]) states that a
quadratic form

Q(x1, . . . , xn) =
n∑

i=1

n∑
j=1

aijxixj

with aij ∈ Q represents 0 nontrivially over Q (that is, Q(x1, . . . , xn) = 0 for
some (0, . . . , 0) �= (x1, . . . , xn) ∈ Qn) if and only if it represents 0 nontrivially
in Qp for all p ≤ ∞. This is an example of a local-global principle.

For a general algebraic variety over Q (for example, an algebraic curve), we
can ask whether the local-global principle holds. Namely, if the variety has a
p-adic point for all p ≤ ∞, does it have a rational point? Since it is fairly easy
to determine when a variety has p-adic points, and most varieties fail to have
p-adic points for at most a finite set of p, this would make it easy to decide
when a variety has rational points. However, the local-global principle fails in
many cases. In Section 8.8, we’ll give an example of a curve, one that arises in
a descent on an elliptic curve, for which the local-global principle fails.
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8.8 A Nontrivial Shafarevich-Tate Group

Let E be the elliptic curve over Q given by

y2 = x(x − 2p)(x + 2p),

where p is a prime. If we do a 2-descent on E, we encounter the equations

x = u2

x − 2p = pv2

x + 2p = pw2.

These yield the curve defined by the intersection of two quadratic surfaces:

C1,p,p : u2 − pv2 = 2p, u2 − pw2 = −2p. (8.14)

THEOREM 8.28
Ifp ≡ 9 (mod 16),then C1,p,p has q-adic points for allprim es q ≤ ∞,but
hasno rationalpoints.

PROOF First, we’ll show that there are no rational points. Suppose there
is a rational point (u, v, w). We may assume that u, v, w > 0. If p divides
the denominator of v, then an odd power of p is in the denominator of pv2

and an even power of p is in the denominator of u2, so u2 − pv2 cannot be
an integer, contradiction. Therefore, u, v, and hence also w have no p in their
denominators. It follows easily that the denominators of u, v, w are equal.
Since u2 = 2p + pv2, we have u ≡ 0 (mod p). Write

u =
pr

e
, v =

s

e
, w =

t

e
,

with positive integers r, s, t, e and with

gcd(r, e) = gcd(s, e) = gcd(t, e) = 1.

The equations for C1,p,p become

pr2 − s2 = 2e2, pr2 − t2 = −2e2.

Subtracting yields
s2 + 4e2 = t2.

If s is even, then pr2 = s2 + 2e2 is even, so r is even. Then 2e2 = pr2 −
s2 ≡ 0 (mod 4), which implies that e is even. This contradicts the fact that
gcd(s, e) = 1. Therefore, s is odd, so

gcd(s, 2e) = 1.
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By Proposition 8.26, there exist integers m,n with gcd(m,n) = 1 such that

2e = 2mn, s = m2 − n2, t = m2 + n2.

Therefore,

pr2 = s2 + 2e2 = (m2 − n2)2 + 2(mn)2 = m4 + n4.

Let q be a prime dividing r. Proposition 8.26 says that m �≡ n (mod 2), which
implies that pr2 must be odd. Therefore, q �= 2. Since gcd(m,n) = 1, at least
one of m,n is not divisible by q. It follows that both m,n are not divisible by
q, since m4 + n4 ≡ 0 (mod q). Therefore,

(m/n)4 ≡ −1 (mod q).

It follows that m/n has order 8 in F×
q , so q ≡ 1 (mod 8). Since r is a positive

integer and all prime factors of r are 1 mod 8, we obtain

r ≡ 1 (mod 8).

Therefore, r2 ≡ 1 (mod 16), so

m4 + n4 = pr2 ≡ 9 (mod 16).

But, for an arbitrary integer j, we have j4 ≡ 0, 1 (mod 16). Therefore,

m4 + n4 ≡ 0, 1, 2 (mod 16),

so pr2 �= m4+n4. This contradiction proves that C1,p,p has no rational points.
We now need to show that C1,p,p has q-adic points for all primes q ≤ ∞.

The proof breaks into four cases: q = ∞, q = 2, q = p, and all other q.
The case of the reals is easy. Let u be large enough that u2 > 2p. Then

choose v, w satisfying (8.14).
For q = 2, write

u = 1/2, v = v1/2, w = w1/2.

The equations for C1,p,p become

1 − pv2
1 = 8p, 1 − pw2

1 = −8p.

We need to solve

v2
1 = (1 − 8p)/p, w2

1 = (1 + 8p)/p

in the 2-adics. Since
(1 ± 8p)/p ≡ 1 (mod 8),

and since any number congruent to 1 mod 8 has a 2-adic square root (see
Appendix A), v1, w1 exist. Therefore, C1,p,p has a 2-adic point.
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Now let’s consider q = p. Since p ≡ 1 (mod 4), there is a square root of −1
mod p. Since p ≡ 1 (mod 8), there is a square root of −2 mod p. Therefore,
both 2 and −2 have square roots mod p. Hensel’s lemma (see Appendix A)
implies that both 2 and −2 have square roots in the p-adics. Let

u = 0, v =
√−2, w =

√
2.

Then u, v, w is a p-adic point on C1,p,p.
Finally, we need to consider q �= 2, p,∞. From a more advanced standpoint,

we could say that the curve C1,p,p is a curve of genus 1 and that Hasse’s
theorem holds for such curves. If we use the estimates from Hasse’s theorem,
then we immediately find that C1,p,p has points mod q for all q (except maybe
for a few small q, since we are not looking at the points at infinity on C1,p,p).
However, we have only proved Hasse’s theorem for elliptic curves, rather than
for arbitrary genus 1 curves. In the following, we’ll use Hasse’s theorem only
for elliptic curves and show that C1,p,p has points mod q. Hensel’s lemma
then will imply that there is a q-adic point.

Subtracting the two equations defining C1,p,p allows us to put the equations
into a more convenient form:

w2 − v2 = 4, u2 − pv2 = 2p. (8.15)

Suppose we have a solution (u0, v0, w0) mod q. It is impossible for both u0

and w0 to be 0 mod q.
Suppose u0 ≡ 0 (mod q). Then w0 �≡ 0 (mod q). Also, v0 �≡ 0 (mod q).

Let u = 0. Since −pv2
0 ≡ 2p (mod q), Hensel’s lemma says that there exists

v ≡ v0 (mod q) in the q-adics such that −pv2 = 2p. Applying Hensel’s lemma
again gives the existence of w ≡ w0 satisfying w2−v2 = 4. Therefore, we have
found a q-adic point. Similarly, if w0 ≡ 0 (mod q), there is a q-adic point.
Finally, suppose u0 �≡ 0 (mod q) and w0 �≡ 0 (mod q). Choose any v ≡ v0

(mod q). Now use Hensel’s lemma to find u,w. This yields a q-adic point.
It remains to show that there is a point mod q. Let n be a quadratic

nonresidue mod q. Then every element of F×
q is either of the form u2 or nu2.

Consider the curve

C ′ : w2 − v2 = 4, nu2 − pv2 = 2p.

Let N be the number of points mod q on C1,p,p and let N ′ be the number of
points mod q on C ′. (We are not counting points at infinity.)

LEMMA 8.29
N + N ′ = 2(q − 1).

PROOF Let x �≡ 0 (mod q). Solving

w + v ≡ x, w − v ≡ 4/x (mod q)
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yields a pair (v, w) for each x. There are q − 1 choices for x, hence there are
q − 1 pairs (v, w) satisfying w2 − v2 = 4. Let (v, w) be such a pair. Consider
the congruences

u2 ≡ 2p + pv2 (mod q) and nu2 ≡ 2p + pv2 (mod q).

If 2p + pv2 �≡ 0 (mod q), then exactly one of these has a solution, and it has
2 solutions. If 2p + pv2 ≡ 0 (mod q), then both congruences have 1 solution.
Therefore, each of the q − 1 pairs (v, w) contributes 2 to the sum N + N ′, so
N + N ′ = 2(q − 1).

The strategy now is the following. If N > 0, we’re done. If N ′ > 0,
then C ′ can be transformed into an elliptic curve with approximately N ′

points. Hasse’s theorem then gives a bound on N ′, which will show that
N = 2(q − 1) − N ′ > 0, so there must be points on C1,p,p.

LEMMA 8.30
Ifq ≥ 11,then N > 0.

PROOF If N = 0 then N ′ = 2(q−1) > 0, by Lemma 8.29. In Section 2.5.4,
we showed how to start with the intersection of two quadratic surfaces and
a point and obtain an elliptic curve. Therefore, we can transform C ′ to
an elliptic curve E′. By Hasse’s theorem, E′ has less than q + 1 + 2

√
q

points. We need to check that every point on C ′ gives a point on E′. In the
parameterization

v =
4t

1 − t2
, w =

2 + 2t2

1 − t2
(8.16)

of w2 − v2 = 4, the value t = ∞ corresponds to (v, w) = (0,−2). All of
the other points (v, w) correspond to finite values of t. No (finite) pair (v, w)
corresponds to t = ±1 (the lines through (0, 2) of slope t = ±1 are parallel to
the asymptotes of the hyperbola). Substituting the parameterization (8.16)
into nu2 − pv2 = 2p yields the curve

Q′ : u2
1 =

2p

n
(t4 + 6t2 + 1),

where u1 = (1 − t2)u. A point on C ′ with (v, w) �= (0,−2) yields a finite
point on the quartic curve Q′. Since C ′ has 2(q − 1) > 1 points mod q, there
is at least one finite point on Q′. Section 2.5.3 describes how to change Q′

to an elliptic curve E′ (the case where Q′ is singular does not occur since Q′

is easily shown to be nonsingular mod q when q �= 2, p). Every point mod q
on Q′ (including those at infinity, if they are defined over Fq) yields a point
(possibly ∞) on E′ (points at infinity on Q′ yield points of order 2 on E′).
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Therefore, the number of points on C ′ is less than or equal to the number of
points on E′. By Hasse’s theorem,

2(q − 1) = N ′ ≤ q + 1 + 2
√

q.

This may be rearranged to obtain

(
√

q − 1)2 ≤ 4,

which yields q ≤ 9. Therefore, if q ≥ 11, we must have N �= 0.

It remains to treat the cases q = 3, 5, 7. First, suppose p is a square mod
q. There are no points on C1,p,p with coordinates in F3, for example, so we
introduce denominators. Let’s try

u = u1/q, v = 1/q, w = w1/q.

Then we want to solve

w2
1 = 1 + 4q2, u2

1 = p + 2pq2.

Since p is assumed to be a square mod q, Hensel’s lemma implies that there
are q-adic solutions u1, w1.

Now suppose that p is not a square mod q. Divide the second equation in
(8.15) by p to obtain

w2 − v2 = 4,
1
p
u2 − v2 = 2.

Let n be any fixed quadratic nonresidue mod q, and write 1/p ≡ nx2 (mod q).
Letting u1 = xu, we obtain

w2 − v2 = 4, nu2
1 − v2 = 2.

For q = 3 and q = 5, we may take n = 2 and obtain

w2 − v2 ≡ 4, 2u2
1 − v2 ≡ 2 (mod q).

This has the solution (u1, v, w) = (1, 0, 2). As above, Hensel’s lemma yields a
q-adic solution.

For q = 7, take n = 3 to obtain

w2 − v2 ≡ 4, 3u2
1 − v2 ≡ 2 (mod 7).

This has the solution (u1, v, w) = (3, 2, 1), which yields a 7-adic solution.
Therefore, we have shown that there is a q-adic solution for all q ≤ ∞. This

completes the proof of Theorem 8.28.
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8.9 Galois Cohomology

In this section, we give the definition of the full Shafarevich-Tate group.
This requires reinterpreting and generalizing the descent calculations in terms
of Galois cohomology. Fortunately, we only need the first two cohomology
groups, and they can be defined in concrete terms.

Let G be a group and let M be an additive abelian group on which G acts.
This means that each g ∈ G gives a automorphism g : M → M . Moreover,

(g1g2)(m) = g1(g2(m))

for all m ∈ M and all g1, g2 ∈ G. We call such an M a G-module. One
possibility is that g is the identity map for all g ∈ G. In this case, we say that
the action of G is trivial.

If G is a topological group, and M has a topology, then we require that the
action of G on M be continuous. We also require all maps to be continuous.
In the cases below where the groups have topologies, this will always be the
case, so we will not discuss this point further.

A homomorphism φ : M1 → M2 of G-modules is a homomorphism of
abelian groups that is compatible with the action of G:

φ(gm1) = g φ(m1)

for all g ∈ G and all m1 ∈ M1. Note that φ(m1) is an element of M2, so
g φ(m1) is the action of g on an element of M2. An exact sequence

0 → M1 → M2 → M3 → 0

is a short way of writing that the map from M1 to M2 is injective, the map from
M2 to M3 is surjective, and the image of M1 → M2 is the kernel of M2 → M3.
The most common situation is when M1 ⊆ M2 and M3 = M2/M1.

More generally, a sequence of abelian groups and homomorphisms

· · · → A → B → C → · · ·
is said to be exact at B if the image of A → B is the kernel of B → C. Such
a sequence is said to be exact if it is exact at each group in the sequence.

Define the zeroth cohomology group to be

H0(G,M) = MG = {m ∈ M | gm = m for all g ∈ G}.
For example, if G acts trivially, then H0(G,M) = M .

Define the cocycles

Z(G,M) =
{ maps f : G → M | f(g1g2) = f(g1) + g1 f(g2) for all g1, g2 ∈ G}.
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The maps f are (continuous) maps of sets that are required to satisfy the
given condition. Note that g1 f(g2) means that we evaluate f(g2) and obtain
an element of M , then act on this element of M by the automorphism g1.
The set Z is sometimes called the set of twisted homomorphisms from G
to M . It is a group under addition of maps.

We note one important case. If G acts trivially on M , then

Z(G,M) = Hom(G,M)

is the set of group homomorphisms from G to M .
There is an easy way to construct elements of Z(G,M). Let m be a fixed

element of M and define
fm(g) = gm − m.

Then fm gives a map from G to M . Since

fm(g1g2) = g1(g2m) − m

= g1m − m + g1(g2m − m)
= fm(g1) + g1 fm(g2),

we have fm ∈ Z(G,M). Let

B(G,M) = {fm |m ∈ M}.

Then B(G,M) ⊆ Z(G,M) is called the set of coboundaries. Define the
first cohomology group

H1(G,M) = Z/B.

In the important special case where G acts trivially, B(G,M) = 0 since
gm − m = 0 for all g,m. Therefore

H1(G,M) = Hom(G,M)

is simply the set of group homomorphisms from G to M .
A homomorphism φ : M1 → M2 of G-modules induces a map

φ∗ : Hj(G,M1) → Hj(G,M2)

of cohomology groups for j = 0, 1. For H0, this is simply the restriction of φ
to MG

1 . Note that if gm1 = m1, then g φ(m1) = φ(gm1) = φ(m1), so φ maps
MG

1 into MG
2 . For H1, we obtain φ∗ by taking an element f ∈ Z and defining

(φ∗(f))(g) = φ(f(g)).

It is easy to see that this induces a map on cohomology groups.
The main property we need is the following.
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PROPOSITION 8.31
An exactsequence

0 → M1 → M2 → M3 → 0

ofG-m odulesinducesa long exactsequence

0 → H0(G,M1) → H0(G,M2) → H0(G,M3)
→ H1(G,M1) → H1(G,M2) → H1(G,M3)

ofcohom ology groups.

For a proof, see any book on group cohomology, for example [132], [21],
or [6]. The hardest part of the proposition is the existence of the map from
H0(G,M3) to H1(G,M1).

Suppose now that we have an elliptic curve defined over Q. Let n be
a positive integer. Multiplication by n gives an endomorphism of E. By
Theorem 2.22, it is surjective from E(Q) → E(Q), since Q is algebraically
closed. Therefore, we have an exact sequence

0 → E[n] → E(Q) n→ E(Q) → 0. (8.17)

Let
G = Gal(Q/Q)

be the Galois group of Q/Q. The reader who doesn’t know what this group
looks like should not worry. No one does. Much of modern number theory
can be interpreted as trying to understand the structure of this group. The
one property we need at the moment is that

H0(G,E(Q)) = E(Q)G = E(Q).

Applying Proposition 8.31 to the exact sequence (8.17) yields the long exact
sequence

0 → E(Q)[n] → E(Q) n→ E(Q)

→ H1(G,E[n]) → H1(G,E(Q)) n→ H1(G,E(Q)).

This induces the short exact sequence

0 → E(Q)/nE(Q) → H1(G,E[n]) → H1(G,E(Q))[n] → 0, (8.18)

where we have written A[n] for the n-torsion in an abelian group A. This
sequence is similar to the sequence

0 → E(Q)/2E(Q) → S2 → 2 → 0

that we met in Section 8.7. In the remainder of this section, we’ll show how the
two sequences relate when n = 2 and also consider the situation for arbitrary
n.
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First, we give a way to construct elements of H1(G,E(Q)). Let C be a
curve defined over Q such that C is isomorphic to E over Q. This means that
there is a map φ : E → C given by rational functions with coefficients in Q
and an inverse function φ−1 : C → E also given by rational functions with
coefficients in Q. Let g ∈ G, and let φg denote the map obtained by applying
g to the coefficients of the rational functions defining φ. Since C is defined
over Q, the map φg maps E to gC = C. Note that

g(φ(P )) = (φg)(gP ) (8.19)

for all P ∈ E(Q), since the expression g(φ(P )) means we apply g to ev-
erything, while φg means applying g to the coefficients of φ and gP means
applying g to P .

We have to be a little careful when applying g1g2. The rule is

φg1g2 = (φg2)g1 ,

since applying g1g2 to the coefficients of φ means first applying g2, then ap-
plying g1 to the result.

We say that a map φ is defined over Q if φg(P ) = φ(P ) for all P ∈ E(Q)
and all g ∈ G (this is equivalent to saying that the coefficients of the rational
functions defining φ can be taken to be in Q, though proving this requires
results such as Hilbert’s Theorem 90).

The map φ−1φg gives a map from E to E. We assume the following:
Assum ption:Assume that there is a point Tg ∈ E(Q) such that

φ−1(φg(P )) = P + Tg (8.20)

for all P ∈ E(Q). Equation (8.20) can be rewritten as

φg(P ) = φ(P + Tg) (8.21)

for all P ∈ E(Q). If we let P = (φg)−1(Q) for a point Q ∈ C(Q), then the
assumption becomes

φ−1(Q) = (φg)−1(Q) + Tg, (8.22)

which says that φ−1 and (φg)−1 differ by a translation. We’ll give an example
of such a map φ below.

LEMMA 8.32

Define τφ : G → E(Q) by τφ(g) = Tg.Then τφ ∈ Z(G,E(Q)).

© 2008 by Taylor & Francis Group, LLC



248 CHAPTER 8 ELLIPTIC CURVES OVER Q

PROOF

g−1
1 φ(P + Tg1g2) = g−1

1 φg1g2(P )
= φg2(g−1

1 P ) (by (8.19))
= φ(g−1

1 P + Tg2) (by (8.21))
= g−1

1 φg1(P + g1Tg2) (by (8.19))
= g−1

1 φ(P + g1Tg2 + Tg1) (by (8.21)).

Applying g1 then φ−1 yields

Tg1g2 = g1Tg2 + Tg1 .

This is the desired relation.

Suppose we have curves Ci and maps φi : E → Ci, for i = 1, 2, as above.
We say that the pairs (C1, φ1) and (C2, φ2) are equivalent if there is a map
θ : C1 → C2 defined over Q and a point P0 ∈ E(Q) such that

φ−1
2 θφ1(P ) = P + P0 (8.23)

for all P ∈ E(Q). In other words, if we identify C1 and C2 with E via φ1 and
φ2, then θ is simply translation by P0.

PROPOSITION 8.33
The pairs (C1, φ1) and (C2, φ2) are equivalentifand only ifthe cocycles τφ1

and τφ2 di er by a coboundary. This m eans thatthere is a pointP1 ∈ E(Q)
such that

τφ1(g) − τφ2(g) = gP1 − P1

forallg ∈ G.

PROOF For i = 1, 2, denote τφi
(g) = T i

g, so

φg
i (P ) = φi(P + T i

g) (8.24)

for all P ∈ E(Q). Suppose the pairs (C1, φ1) and (C2, φ2) are equivalent, so
there exists θ : C1 → C2 and P0 as above. For any P ∈ E(Q), we have

P + T 1
g + P0 = φ−1

2 θφ1(P + T 1
g ) (by (8.23))

= φ−1
2 θφg

1(P ) (by (8.24))
= φ−1

2 φg
2(φ

−1
2 θφ1)g(P ) (since θg = θ)

= (φ−1
2 θφ1)g(P ) + T 2

g (by (8.20))

= g(φ−1
2 θφ1)(g−1P ) + T 2

g (by (8.19))

= g(g−1P + P0) + T 2
g (by (8.23))

= P + gP0 + T 2
g .
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Therefore,
T 1

g − T 2
g = τφ1(g) − τφ2(g) = gP0 − P0.

Conversely, suppose there exists P1 such that

τφ1(g) − τφ2(g) = gP1 − P1. (8.25)

Define θ : C1 → C2 by

θ(Q) = φ2(φ−1
1 (Q) + P1).

Clearly, θ satisfies (8.23). We need to show that θ is defined over Q. If
Q ∈ C(Q), then

θg(Q) = gθ(g−1Q) (by (8.19))
= gφ2

(
φ−1

1 (g−1Q) + P1

)
= φg

2((φ
g
1)

−1(Q) + gP1)
= φ2(φ−1

2 φg
2)((φ

g
1)

−1(Q) + gP1)
= φ2

(
(φg

1)
−1(Q) + gP1 + T 2

g

)
(by (8.24))

= φ2

(
φ−1

1 (Q) − T 1
g (g) + gP1 + T 2

g

)
(by (8.22))

= φ2(φ−1
1 (Q) + P1) (by (8.25))

= θ(Q).

Therefore, θ is defined over Q, so the pairs (C1, φ1) and (C2, φ2) are equivalent.

Proposition 8.33 says that we have a map

equivalence classes of pairs (C, φ) ↪→ H1(G,E(Q)).

It can be shown that this is a bijection (see [109]). The most important
property for us is the following.

PROPOSITION 8.34
Letτφ correspondtothepair(C, φ).Then τφ ∈ B(G,E(Q)) (= coboundaries)
ifand only ifC hasa rationalpoint(thatis,a pointwith coordinatesin Q).

PROOF Let P ∈ E(Q). Then

gP + Tg = φ−1φg(gP ) = φ−1(gφ(P ))

and
P = φ−1(φ(P )).

Therefore,
Tg = P − gP ⇐⇒ gφ(P ) = φ(P ).
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If C has a rational point Q, choose P such that φ(P ) = Q. Then gQ = Q for
all g implies that

Tg = g(−P ) − (−P )

for all g ∈ G. Conversely, if Tg = g(−P ) − (−P ) for all g then gφ(P ) = φ(P )
for all g ∈ G, so φ(P ) is a rational point.

Propositions 8.33 and 8.34 give us a reinterpretation in terms of cohomol-
ogy groups of the fundamental question of when certain curves have rational
points.

Example 8.12
Consider the curve C1,p,p from Section 8.8. It was given by the equations

x = u2

x − 2p = pv2

x + 2p = pw2.

These were rewritten as

w2 − v2 = 4, u2 − pv2 = 2p.

The method of Section 2.5.4 changes this to

C : s2 = 2p(t4 + 6t2 + 1).

Finally, the transformation

t =
√

2p (x + 2p)
y

, s = −
√

2p +
2t2(x − p)√

2p
=
√

2p
x2 + 4px − 4p2

x(x − 2p)

(use the formulas of Section 2.5.3, plus a minor change of variables) changes
the equation to

E : y2 = x(x − 2p)(x + 2p).

We want to relate the curve C1,p,p from Section 8.8 to a cohomology class in
H1(G, E(Q)). The map

φ : E → C

(x, y) �→ (t, s)

gives a map from E to C. Since the equations for E and C have coefficients
in Q, these curves are defined over Q. However, φ is not defined over Q.

A short computation shows that

(x, y) + (−2p, 0) = (x1, y1)
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on E, where

x1 = 2p
2p − x

2p + x
, y1 =

−8p2y

(x + 2p)2
.

Another calculation shows that

φ(x1, y1) = (−t,−s).

Let g ∈ G be such that g(
√

2p) = −√
2p. Then φg is the transformation

obtained by changing
√

2p to −√
2p in the formulas for φ. Therefore,

φg(x, y) = (−t,−s) = φ(x1, y1).

We obtain
φ−1φg(x, y) = (x, y) + (−2p, 0).

Now suppose g ∈ G satisfies g
(√

2p
)

= +
√

2p. Then φg = φ, so

φ−1φg(x, y) = (x, y).

Putting everything together, we see that the pair (C, φ) is of the type con-
sidered above. We obtain an element of H1(G,E[2]) that can be regarded as
an element of H1(G,E(Q)). The cocycle τφ is given by

τφ(g) = Tg =
{∞ if g

(√
2p
)

= +
√

2p
(−2p, 0) if g

(√
2p
)

= −√
2p

The cohomology class of τφ is nontrivial in H1(G,E(Q)), and hence also in
H1(G,E[2]), because C has no rational points. Note that τφ is a homomor-
phism from G to E[2]. This corresponds to the fact that G acts trivially on
E[2] in the present case, so H1(G,E[2]) = Hom(G,E[2]). The kernel of τ is
the subgroup of G of index 2 that fixes Q(

√
2p).

In general, if E is given by y2 = (x− e1)(x− e2)(x− e3) with e1, e2, e3 ∈ Q,
then a 2-descent yields curves Ca,b,c, as in Section 8.2. These curves yield
elements of H1(G,E[2]). The curves that have rational points give cocycles
in Z(G,E(Q)) that are coboundaries. We also saw in the descent procedure
that a rational point on a curve Ca,b,c comes from a rational point on E. This
discussion is summarized by the exact sequence

0 → E(Q)/2E(Q) → H1(G,E[2]) → H1(G,E(Q))[2] → 0.

All of the preceding applies when Q is replaced by a p-adic field Qp with
p ≤ ∞. We have an exact sequence

0 → E(Qp)/2E(Qp) → H1(Gp, E[2]) → H1(Gp, E(Qp))[2] → 0,

where
Gp = Gal(Qp/Qp).
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The group Gp can be regarded as a subgroup of G. Recall that cocycles in
Z(G,E[2]) are maps from G to E[2] with certain properties. Such maps may
be restricted to Gp to obtain elements of Z(Gp, E[2]). A curve Ca,b,c yields an
element of H1(G,E[2]). This yields an element of H1(Gp, E[2]) that becomes
trivial in H1(Gp, E(Qp)) if and only if Ca,b,c has a p-adic point.

In Section 8.7, we defined S2 to be those triples (a, b, c) such that Ca,b,c

has a p-adic point for all p ≤ ∞. This means that S2 is the set of triples
(a, b, c) such that the corresponding cohomology class in H1(G,E[2]) becomes
trivial in H1(Gp, E(Qp)) for all p ≤ ∞. Moreover, 2 is S2 modulo those
triples coming from points in E(Q). All of this can be expressed in terms
of cohomology. We can also replace 2 by an arbitrary n ≥ 1. Define the
Shafarevich-Tate group to be

= Ker

⎛⎝H1(G,E(Q)) →
∏

p≤∞
H1(Gp, E(Qp))

⎞⎠
and define the n-Selmer group to be

Sn = Ker

⎛⎝H1(Gp, E[n]) →
∏

p≤∞
H1(Gp, E(Qp))

⎞⎠ .

The Shafarevich-Tate group can be thought of as consisting of equivalence
classes of pairs (C, φ) such that C has a p-adic point for all p ≤ ∞. This
group is nontrivial if there exists such a C that has no rational points. In
Section 8.8, we gave an example of such a curve. The n-Selmer group Sn can
be regarded as the generalization to n-descents of the curves Ca,b,c that arise
in 2-descents. It is straightforward to use the definitions to deduce the basic
descent sequence

0 → E(Q)/nE(Q) → Sn → [n] → 0,

where [n] is the n-torsion in . When one is doing descent, the goal is to
obtain information about E(Q)/nE(Q). However, the calculations take place
in Sn. The group [n] is the obstruction to transferring information back to
E(Q)/nE(Q).

The group Sn depends on n. It is finite (we proved this in the case where n =
2 and E[2] ⊆ E(Q)). The group is independent of n. Its n-torsion [n] is
finite since it is the quotient of the finite group Sn. It was conjectured by Tate
and Shafarevich in the early 1960s that is finite; this is still unproved in
general. The first examples where was proved finite were given by Rubin
in 1986 (for all CM curves over Q with analytic rank 0; see Section 14.2) and
by Kolyvagin in 1987 (for all elliptic curves over Q with analytic rank 0 or 1).
No other examples over Q are known.
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Exercises

8.1 Show that each of the following elliptic curves has the stated torsion
group.

(a) y2 = x3 − 2; 0
(b) y2 = x3 + 8; Z2

(c) y2 = x3 + 4; Z3

(d) y2 = x3 + 4x; Z4

(e) y2 = x3 − 432x + 8208; Z5

(f) y2 = x3 + 1; Z6

(g) y2 = x3 − 1323x + 6395814; Z7

(h) y2 = x3 − 44091x + 3304854; Z8

(i) y2 = x3 − 219x + 1654; Z9

(j) y2 = x3 − 58347x + 3954150; Z10

(k) y2 = x3 − 33339627x + 73697852646; Z12

(l) y2 = x3 − x; Z2 ⊕ Z2

(m) y2 = x3 − 12987x − 263466; Z4 ⊕ Z2

(n) y2 = x3 − 24003x + 1296702; Z6 ⊕ Z2

(o) y2 = x3 − 1386747x + 368636886; Z8 ⊕ Z2

Parameterizations of elliptic curves with given torsion groups can be
found in [67].

8.2 Let E be an elliptic curve over Q given by an equation of the form
y2 = x3 + Cx2 + Ax + B, with A,B,C ∈ Z.

(a) Modify the proof of Theorem 8.1 to obtain a homomorphism

λr : Er/E3r −→ Zp2r

(see [68, pp. 51-52]).
(b) Show that (x, y) ∈ E(Q) is a torsion point, then x, y ∈ Z.

8.3 (a) Show that the map λr, applied to the curve y2 = x3, is the map of
Theorem 2.30 divided by pr and reduced mod p4r.

(b) Consider the map λr of Exercise 8.2, applied to the curve E : y2 =
x3 + ax2. Let ψ be as in Theorem 2.31. The map λrψ

−1 gives a
map

y + αx

y − αx
�→ p−r x

y
(mod p2r).

Use the Taylor series for log((1 + t)/(1− t)) to show that the map
(2α)λrψ

−1 is p−r times the logarithm map, reduced mod p2r.
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8.4 Let E be given by y2 = x3 + Ax + B with A,B ∈ Z. Let P = (x, y) be
a point on E.

(a) Let 2P = (x2, y2). Show that

y2
(
4x2(3x2 + 4A) − 3x2 + 5Ax + 27B

)
= 4A3 + 27B2.

(b) Show that if both P and 2P have coordinates in Z, then y2 divides
4A3 + 27B2. This gives another way to finish the proof of the
Lutz-Nagell theorem.

8.5 Let E be the elliptic curve over Q given by y2 + xy = x3 + x2 − 11x.
Show that the point

P =
(

11
4

, −11
8

)
is a point of order 2. This shows that the integrality part of Theorem 8.7
(see also Exercise 8.2), which is stated for Weierstrass equations, does
not hold for generalized Weierstrass equations. However, since changing
from generalized Weierstrass form to the form in Exercise 8.2 affects
only powers of 2 in the denominators, only the prime 2 can occur in the
denominators of torsion points in generalized Weierstrass form.

8.6 Show that the Mordell-Weil group E(Q) of the elliptic curve y2 = x3−x
is isomorphic to Z2 ⊕ Z2.

8.7 Suppose E(Q) is generated by one point Q of infinite order. Suppose
we take R1 = 3Q, which generates E(Q)/2E(Q). Show that the process
with P0 = Q and

Pi = Rji
+ 2Pi+1,

as in Section 8.3, never terminates. This shows that a set of represen-
tatives of E(Q)/2E(Q) does not necessarily generate E(Q).

8.8 Show that there is a set of representatives of E(Q)/2E(Q) that gener-
ates E(Q). (Hint:This mostly follows from the Mordell-Weil theorem.
However, it does not handle the odd order torsion. Use Corollary 3.13
to show that the odd order torsion in E(Q) is cyclic. In the set of rep-
resentatives, use a generator of this cyclic group for the representative
of the trivial coset.)

8.9 Let E be an elliptic curve defined over Q and let n be a positive integer.
Assume that E[n] ⊆ E(Q). Let P ∈ E(Q) and let Q ∈ E(Q) be such
that nQ = P . Define a map δP : Gal(Q/Q) → E[n] by δP (σ) = σQ−Q.

(a) Let σ ∈ Gal(Q/Q). Show that σQ − Q ∈ E[n].

(b) Show that δP is a cocycle in Z(G,E[n]).
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(c) Suppose we choose Q′ with nQ′ = P , and thus obtain a cocycle
δ′P . Show that δP − δ′P is a coboundary.

(d) Suppose that δP (σ) is a coboundary. Show that there exists Q ∈
E(Q) such that nQ = P .

This shows that we have an injection E(Q)/nE(Q) → H1(G,E[n]).
This is the map of Equation 8.18.
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Chapter 9
Elliptic Curves over C

The goal of this chapter is to show that an elliptic curve over the complex
numbers is the same thing as a torus. First, we show that a torus is isomor-
phic to an elliptic curve. To do this, we need to study functions on a torus,
which amounts to studying doubly periodic functions on C, especially the
Weierstrass ℘-function. We then introduce the j-function and use its proper-
ties to show that every elliptic curve over C comes from a torus. Since most
of the fields of characteristic 0 that we meet can be embedded in C, many
properties of elliptic curves over fields of characteristic 0 can be deduced from
properties of a torus. For example, the n-torsion on a torus is easily seen to
be isomorphic to Zn ⊕ Zn, so we can deduce that this holds for all elliptic
curves over algebraically closed fields of characteristic 0 (see Corollary 9.22).

9.1 Doubly Periodic Functions

Let ω1, ω2 be complex numbers that are linearly independent over R. Then

L = Zω1 + Zω2 = {n1ω1 + n2ω2 |n1, n2 ∈ Z}

is called a lattice. The main reason we are interested in lattices is that C/L
is a torus, and we want to show that a torus gives us an elliptic curve.

The set
F = {a1ω1 + a2ω2 | 0 ≤ ai < 1, i = 1, 2}

(see Figure 9.1) is called a fundamental parallelogram for L. A differ-
ent choice of basis ω1, ω2 for L will of course give a different fundamental
parallelogram. Since it will occur several times, we denote

ω3 = ω1 + ω2.

A function on C/L can be regarded as a function f on C such that f(z +
ω) = f(z) for all z ∈ C and all ω ∈ L. We are only interested in meromorphic

257
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0

Ω1

Ω2

Ω3

Figure 9.1

The Fundamental Parallelogram

functions, so we define a doubly periodic function to be a meromorphic
function

f : C → C ∪∞
such that

f(z + ω) = f(z)

for all z ∈ C and all ω ∈ L. Equivalently,

f(z + ωi) = f(z), i = 1, 2.

The numbers ω ∈ L are called the periods of f .
If f is a (not identically 0) meromorphic function and w ∈ C, then we can

write
f(z) = ar(z − w)r + ar+1(z − w)r+1 + · · · ,

with ar �= 0. The integer r can be either positive, negative, or zero. Define
the order and the residue of f at w to be

r = ordwf

a-1 = Reswf.

Therefore, ordwf is the order of vanishing of f at w, or negative the order of
a pole. The order is 0 if and only if the function is finite and nonvanishing at
w. It is not hard to see that if f is doubly periodic, then ordw+ωf = ordwf
and Resw+ωf = Reswf for all ω ∈ L.

A divisor D is a formal sum of points:

D = n1[w1] + n2[w2] + · · · + nk[wk],

where ni ∈ Z and wi ∈ F . In other words, we have a symbol [w] for each
w ∈ F , and the divisors are linear combinations with integer coefficients of
these symbols. The degree of a divisor is

deg(D) =
∑

ni.
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Define the divisor of a function f to be

div(f) =
∑
w∈F

(ordwf)[w].

THEOREM 9.1
Letf beadoublyperiodicfunction forthelatticeL andletF beafundam ental
parallelogram forL.

1. Iff hasno poles,then f isconstant.

2.
∑

w∈F Reswf = 0.

3. Iff isnotidentically 0,

deg(div(f)) =
∑
w∈F

ordwf = 0.

4. Iff isnotidentically 0, ∑
w∈F

w · ordwf ∈ L.

5. Iff isnotconstant,then f : C → C ∪∞ issurjective. Ifn isthe sum
ofthe orders ofthe poles off in F and z0 ∈ C,then f(z) = z0 has n
solutions(counting m ultiplicities).

6. Iff hasonly one pole in F,then thispole cannotbe a sim ple pole.

Allofthe above sum soverw ∈ F have only finitely m any nonzero term s.

PROOF Because f is a meromorphic function, it can have only finitely
many zeros and poles in any compact set, for example, the closure of F .
Therefore, the above sums have only finitely many nonzero terms.

If f has no poles, then it is bounded in the closure of F , which is a compact
set. Therefore, f is bounded in all of C. Liouville’s theorem says that a
bounded entire function is constant. This proves (1).

Recall Cauchy’s theorem, which says that∫
∂F

f(z)dz = 2πi
∑
w∈F

Reswf,

where ∂F is the boundary of F and the line integral is taken in the coun-
terclockwise direction. Write (assuming ω1, ω2 are oriented as in Figure 9.1;
otherwise, switch them in the following)∫

∂F

f(z)dz =∫ ω2

0

f(z)dz +
∫ ω2+ω1

ω2

f(z)dz +
∫ ω1

ω1+ω2

f(z)dz +
∫ 0

ω1

f(z)dz.
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Since f(z + ω1) = f(z), we have∫ ω1

ω1+ω2

f(z)dz =
∫ 0

ω2

f(z)dz = −
∫ ω2

0

f(z)dz.

Similarly, ∫ ω1+ω2

ω2

f(z)dz = −
∫ 0

ω1

f(z)dz.

Therefore, the sum of the four integrals is 0. There is a small technicality
that we have passed over. The function f is not allowed to have any poles on
the path of integration. If it does, adjust the path with a small detour around
such points as in Figure 9.2. The integrals cancel, just as in the above. This
proves (2).

0

Ω1

Ω2

Ω3

�

�

Figure 9.2

Suppose r = ordwf . Then f(z) = (z − w)rg(z), where g(w) is finite and
nonzero. Then

f ′(z)
f(z)

=
r

z − w
+

g′(z)
g(z)

,

so

Resw

(
f ′

f

)
= r.

If f is doubly periodic, then f ′ is doubly periodic. Therefore, (2) applied to
f ′/f yields

2πi
∑
w∈F

ordwf = 2πi
∑
w∈F

Resw

(
f ′

f

)
= 0.

This proves (3).
For (4), we have

2πi
∑
w∈F

w · ordwf = 2πi
∑
w∈F

Resw z

(
f ′

f

)
=
∫

∂F

z
f ′

f
dz.
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However, in this case, the function zf ′/f is not doubly periodic. The integral
may be written as a sum of four integrals, as in the proof of (2). The double
periodicity of f and f ′ yield∫ ω1

ω1+ω2

z
f ′(z)
f(z)

dz =
∫ 0

ω2

(z + ω1)
f ′(z)
f(z)

dz

= −
∫ ω2

0

z
f ′(z)
f(z)

dz − ω1

∫ ω2

0

f ′(z)
f(z)

dz.

But
1

2πi

∫ ω2

0

f ′(z)
f(z)

dz

is the winding number around 0 of the path

z = f(tω2), 0 ≤ t ≤ 1.

Since f(0) = f(ω2), this is a closed path. The winding number is an integer,
so ∫ ω2

0

z
f ′(z)
f(z)

dz +
∫ ω1

ω1+ω2

z
f ′(z)
f(z)

dz

= −ω1

∫ ω2

0

f ′(z)
f(z)

dz ∈ 2πiZω1.

Similarly, ∫ ω1+ω2

ω2

z
f ′(z)
f(z)

dz +
∫ 0

ω1

z
f ′(z)
f(z)

dz ∈ 2πiZω2.

Therefore,
2πi

∑
w∈F

w · ordwf ∈ 2πiL.

This proves (4).
To prove (5), let z0 ∈ C. Then h(z) = f(z) − z0 is a doubly periodic

function whose poles are the same as the poles of f . By (3), the number
of zeros of h(z) in F (counting multiplicities) equals the number of poles
(counting multiplicities) of h, which is n. This proves (5).

For (6), suppose f has only a simple pole, say at w, and no others. Then
Reswf �= 0 (otherwise, the pole doesn’t exist). The sum in (2) has only one
term, and it is nonzero. This is impossible, so we conclude that either the
pole cannot be simple or there must be other poles.

REMARK 9.2 As we saw in the proof of (5), part (3) says that the number
of zeros of a doubly periodic function equals the number of poles. This is a
general fact for compact Riemann surfaces (such as a torus) and for projective
algebraic curves (see [42, Ch. 8, Prop. 1] or [49, II, Cor. 6.10]).
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If (6) were false for a function f , then f would give a bijective (by (5)) map
from the torus to the Riemann sphere (= C∪∞). This is impossible for many
topological reasons (the torus has a hole but the sphere doesn’t).

So far, we do not have any examples of nonconstant doubly periodic func-
tions. This situation is remedied by the Weierstrass ℘-function.

THEOREM 9.3
Given a lattice L,define the W eierstrass℘-function by

℘(z) = ℘(z;L) =
1
z2

+
∑
ω∈L
ω �=0

(
1

(z − ω)2
− 1

ω2

)
. (9.1)

Then

1. The sum defining ℘(z) converges absolutely and uniform ly on com pact
setsnotcontaining elem entsofL.

2. ℘(z) ism erom orphic in C and hasa double pole ateach ω ∈ L.

3. ℘(−z) = ℘(z) forallz ∈ C.

4. ℘(z + ω) = ℘(z) forallω ∈ L.

5. The setofdoubly periodic functions forL isC(℘, ℘′). In other words,
every doubly periodicfunction isa rationalfunction of℘ and itsderiva-
tive ℘′.

PROOF Let C be a compact set, and let M = Max{|z| | z ∈ C}. If z ∈ C
and |ω| ≥ 2M , then |z − ω| ≥ |ω|/2 and |2ω − z| ≤ 5|ω|/2, so∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ =
∣∣∣∣ z(2ω − z)
(z − ω)2ω2

∣∣∣∣
≤ M(5|ω|/2)

|ω|4/4
=

10M

|ω|3 .
(9.2)

The preceding calculation explains why the terms 1/ω2 are included. With-
out them, the terms in the sum would be comparable to 1/ω2. Subtracting
this 1/ω2 makes the terms comparable to 1/ω3. This causes the sum to con-
verge, as the following lemma shows.

LEMMA 9.4
Ifk > 2 then ∑

ω∈L
ω �=0

1
|ω|k

© 2008 by Taylor & Francis Group, LLC



SECTION 9.1 DOUBLY PERIODIC FUNCTIONS 263

converges.

PROOF Let F be a fundamental parallelogram for L and let D be the
length of the longer diagonal of F . Then |z| ≤ D for all z ∈ F . Let ω =
m1ω1 + m2ω2 ∈ L with |ω| ≥ 2D. If x1, x2 are real numbers with mi ≤ xi <
mi + 1, then ω and x1ω1 + x2ω2 differ by an element of F , so

|m1ω1 + m2ω2| ≥ |x1ω1 + x2ω2| − D ≥ |x1ω1 + x2ω2| − 1
2
|m1ω1 + m2ω2|,

since |m1ω1 + m2ω2| ≥ 2D. Therefore,

|m1ω1 + m2ω2| ≥ 2
3
|x1ω1 + x2ω2|.

Similarly,
|x1ω1 + x2ω2| ≥ D.

Comparing the sum to an integral yields∑
|ω|≥2D

1
|ω|k ≤ (1/area of F )

∫∫
|x1ω1+x2ω2|≥D

(3/2)k

|x1ω1 + x2ω2|k dx1dx2.

The change of variables defined by u + iv = x1ω1 + x2ω2 changes the integral
to

C

∫∫
|u+iv|≥D

1
(u2 + v2)k/2

du dv = C

∫ 2π

θ=0

∫ ∞

r=D

1
rk

r dr dθ < ∞,

where C = (3/2)k/(area of F ). Therefore, the sum for |ω| ≥ 2D converges.
Since there are only finitely many ω with |ω| < 2D, we have shown that the
sum converges.

Lemma 9.4 and Equation 9.2 imply that the sum of the terms in Equa-
tion 9.1 with |ω| ≥ 2M converges absolutely and uniformly for z ∈ C. Since
only finitely many terms have been omitted, we obtain (1). Since a uniform
limit of analytic functions is analytic, ℘(z) is analytic for z �∈ L. If z ∈ L,
then the sum of the terms for ω �= z is analytic near z, so the term 1/(z−ω)2

causes ℘ to have a double pole at z. This proves (2).
To prove (3), note that ω ∈ L if and only if −ω ∈ L. Therefore, in the sum

for ℘(−z), we can take the sum over −ω ∈ L. The terms of this sum are of
the form

1
(−z + ω)2

− 1
(−ω)2

=
1

(z − ω)2
− 1

ω2
.

Therefore the sum for ℘(−z) equals the sum for ℘(z).
The proof of (4) would be easy if we could ignore the terms 1/ω2, since

changing z to z + ω would simply shift the summands. However, these terms
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are needed for convergence. With some care, one could justify rearranging the
sum, but it is easier to do the following. Differentiating ℘(z) term by term
yields

℘′(z) = −2
∑
ω∈L

1
(z − ω)3

.

Note that ω = 0 is included in the sum. This sum converges absolutely (by
comparison with the case k = 3 in Lemma 9.4) when z �∈ L, and changing z
to z + ω shifts the terms in the sum. Therefore,

℘′(z + ω) = ℘′(z).

This implies that there is a constant cω such that

℘(z + ω) − ℘(z) = cω,

for all z �∈ L. Setting z = ω/2 yields

cω = ℘(−ω/2) − ℘(ω/2) = 0,

by (3). Therefore ℘(z + ω) = ℘(z). This proves (4).
Let f(z) be any doubly periodic function. Then

f(z) =
f(z) + f(−z)

2
+

f(z) − f(−z)
2

expresses f(z) as the sum of an even function and an odd function. Therefore,
it suffices to prove (5) for even functions and for odd functions. Since ℘(−z) =
℘(z), it follows that ℘′(−z) = −℘′(z), so ℘′(z) is an odd function. If f(z)
is odd, then f(z)/℘′(z) is even. Therefore, it suffices to show that an even
doubly periodic function is a rational function of ℘(z).

Let f(z) be an even doubly periodic function. We may assume that f is
not identically zero; otherwise, we’re done. By changing f , if necessary, to

af + b

cf + d

for suitable a, b, c, d with ad− bc �= 0, we may arrange that f(z) does not have
a zero or a pole whenever 2z ∈ L (this means that we want f(0) �= 0, ∞ and
f(ωi/2) �= 0 for i = 1, 2, 3). If we prove (af +b)/(cf +d) is a rational function
of ℘, then we can solve for f and obtain the result for f .

Since f(z) is even and doubly periodic, f(ω3 − z) = f(z), so

ordwf = ordω3−wf.

We can therefore put the finitely many elements in F where f(z) = 0 or
where f(z) has a pole into pairs (w,ω3 − w). Since we have arranged that
w �= ω3/2, the two elements of each pair are distinct. There is a slight
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problem if w lies on a side of F . Suppose w = xω1 with 0 < x < 1. Then
ω3 − w = (1 − x)ω1 + ω2 �∈ F . In this case, we translate by ω2 to get
(1−x)ω1 ∈ F . Since w �= ω1/2, we have x �= 1/2, hence xω1 �= (1−x)ω1, and
again the two elements of the pair are distinct. The case w = xω2 is handled
similarly.

For a fixed w, the function ℘(z)−℘(w) has zeros at z = w and z = ω3 −w.
By Theorem 9.1(5), these are the only two zeros in F and they are simple
zeros. Therefore, the function

h(z) =
∏

(w, ω3−w)

(℘(z) − ℘(w))ordwf

(the product is over pairs (w,ω3 − w)) has a zero of order ordwf at w and
at ω3 − w when ordwf > 0 and has a pole of the same order as f when
ordwf < 0. Since

∑
ordwf = 0 by Theorem 9.1, the poles at z ∈ L of the

factors in the product cancel. Therefore, f(z)/h(z) has no zeros or poles in F .
By Theorem 9.1(1), f(z)/h(z) is constant. Since h(z) is a rational function
of ℘(z), so is f(z). This completes the proof of Theorem 9.3.

In order to construct functions with prescribed properties, it is convenient
to introduce the Weierstrass σ-function. It is not doubly periodic, but it
satisfies a simple transformation law for translation by elements of L.

PROPOSITION 9.5
Let

σ(z) = σ(z;L) = z
∏
ω∈L
ω �=0

(
1 − z

ω

)
e(z/w)+ 1

2 (z/w)2 .

Then

1. σ(z) isanalytic forallz ∈ C

2. σ(z) hassim ple zerosateach ω ∈ L and hasno otherzeros

3. d2

dz2 log σ(z) = −℘(z)

4. given ω ∈ L,there exista = aω and b = bω such that

σ(z + ω) = eaz+bσ(z)

forallz ∈ C.

PROOF The exponential factor is included to make the product converge.
A short calculation yields the power series expansion

(1 − u)eu+ 1
2 u2

= 1 + c3u
3 + c4u

4 + · · · .
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Therefore, there is a constant C such that

|(1 − u)eu+ 1
2 u2 − 1| ≤ C|u|3

for u near 0. In particular, this inequality holds when u = z/ω for |ω| suffi-
ciently large and z in a compact set. Recall that if a sum

∑ |an| converges,
then the product

∏
(1+an) converges. Moreover, if (1+an) �= 0 for all n, then

the product is nonzero. Since
∑ |z/ω|3 converges by Lemma 9.4 with k = 3,

the product defining σ(z) converges uniformly on compact sets. Therefore,
σ(z) is analytic. This proves (1). Part (2) follows since the product of the
factors, omitting one ω, is nonzero at z = ω.

To prove (3), differentiate the logarithm of the product for σ(z) to obtain

d

dz
log σ(z) =

1
z

+
∑
ω∈L
ω �=0

(
1

z − ω
+

1
ω

+
z

ω2

)
.

Taking one more derivative yields the sum for −℘(z). This proves (3).
Let ω ∈ L. Since

d2

dz2
log

σ(z + ω)
σ(z)

= 0,

there are constants a = aω and b = bω such that

log
σ(z + ω)

σ(z)
= az + b.

Exponentiating yields (4). We can restrict z in the above to lie in a small re-
gion in order to avoid potential complications with branches of the logarithm.
Then (4) holds in this small region, and therefore for all z ∈ C, by uniqueness
of analytic continuation.

We can now state exactly when a divisor is a divisor of a function. The
following is a special case of what is known as the Abel-Jacobi theorem,
which states when a divisor on a Riemann surface, or on an algebraic curve,
is the divisor of a function.

THEOREM 9.6
LetD =

∑
ni[wi] be a divisor. Then D is the divisor ofa function ifand

only ifdeg(D) = 0 and
∑

niwi ∈ L.

PROOF Parts (3) and (4) of Theorem 9.1 are precisely the statements
that if D is the divisor of a function then deg(D) = 0 and

∑
niwi ∈ L.

Conversely, suppose deg(D) = 0 and
∑

niwi = � ∈ L. Let

f(z) =
σ(z)

σ(z − �)

∏
i

σ(z − wi)ni .
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If ω ∈ L, then

f(z + ω)
f(z)

= eaωz+bω−aω(z−�)−bω e
∑

ni(aω(z−wi)+bω) = 1,

since
∑

ni = 0 and
∑

niwi = �. Therefore, f(z) is doubly periodic. The
divisor of f is easily seen to be D, so D is the divisor of a function.

Doubly periodic functions can be regarded as functions on the torus C/L,
and divisors can be regarded as divisors for C/L. If we let C(L)× denote the
doubly periodic functions that do not vanish identically and let Div0(C/L)
denote the divisors of degree 0, then much of the preceding discussion can be
expressed by the exactness of the sequence

0 −→ C× −→ C(L)× div−→ Div0(C/L) sum−→ C/L −→ 0. (9.3)

The “sum” function adds up the complex numbers representing the points in
the divisor mod L. The exactness at C(L)× expresses the fact that a function
with no zeros and no poles, hence whose divisor is 0, is a constant. The
exactness at Div0(C/L) is Theorem 9.6. The surjectivity of the sum function
is easy. If w ∈ C, then sum([w] − [0]) = w mod L.

9.2 Tori are Elliptic Curves

The goal of this section is to show that a complex torus C/L is naturally
isomorphic to the complex points on an elliptic curve.

Let L be a lattice, as in the previous section. For integers k ≥ 3, define the
Eisenstein series

Gk = Gk(L) =
∑
ω∈L
ω �=0

ω−k. (9.4)

By Lemma 9.4, the sum converges. When k is odd, the terms for ω and −ω
cancel, so Gk = 0.

PROPOSITION 9.7

For 0 < |z| < Min 0�=ω∈L(|ω|),

℘(z) =
1
z2

+
∞∑

j=1

(2j + 1)G2j+2z
2j .
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PROOF When |z| < |ω|,

1
(z − ω)2

− 1
ω2

= ω−2

(
1

(1 − (z/ω))2
− 1

)
= ω−2

( ∞∑
n=1

(n + 1)
zn

ωn

)
.

Therefore,

℘(z) =
1
z2

+
∑
ω �=0

∞∑
n=1

(n + 1)
zn

ωn+2
.

Summing over ω first, then over n, yields the result.

THEOREM 9.8
Let℘(z) be the W eierstrass℘-function fora lattice L.Then

℘′(z)2 = 4℘(z)3 − 60G4℘(z) − 140G6.

PROOF From Proposition 9.7,

℘(z) = z−2 + 3G4z
2 + 5G6z

4 + · · ·
℘′(z) = −2z−3 + 6G4z + 20G6z

3 + · · · .

Cubing and squaring these two relations yields

℘(z)3 = z−6 + 9G4z
−2 + 15G6 + · · ·

℘′(z)2 = 4z−6 − 24G4z
−2 − 80G6 + · · · .

Therefore,

f(z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6 = c1z + c2z
2 + · · ·

is a power series with no constant term and with no negative powers of z.
But the only possible poles of f(z) are at the poles of ℘(z) and ℘′(z), namely,
the elements of L. Since f(z) is doubly periodic and, as we have just shown,
has no pole at 0, f(z) has no poles. By Theorem 9.1, f(z) is constant. Since
the power series for f(z) has no constant term, f(0) = 0. Therefore, f(z) is
identically 0.

It is customary to set

g2 = 60G4

g3 = 140G6.
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The theorem then says that

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3. (9.5)

Therefore, the points (℘(z), ℘′(z)) lie on the curve

y2 = 4x3 − g2x − g3.

It is traditional to leave the 4 as the coefficient of x3, rather than performing a
change of variables to make the coefficient of x3 equal to 1. The discriminant
of the cubic polynomial is 16(g3

2 − 27g2
3).

PROPOSITION 9.9
Δ = g3

2 − 27g2
3 �= 0.

PROOF Since ℘′(z) is doubly periodic, ℘′(ωi/2) = ℘′(−ωi/2). Since
℘′(−z) = −℘′(z), it follows that

℘′(ωi/2) = 0, i = 1, 2, 3. (9.6)

Therefore, each ℘(ωi/2) is a root of 4x3 − g2x − g3, by (9.5). If we can show
that these roots are distinct, then the cubic polynomial has three distinct
roots, which means that its discriminant is nonzero. Let

hi(z) = ℘(z) − ℘(ωi/2).

Then hi(ωi/2) = 0 = h′
i(ωi/2), so hi vanishes to order at least 2 at ωi/2. Since

hi(z) has only one pole in F , namely the double pole at z = 0, Theorem 9.1(5)
implies that ωi/2 is the only zero of hi(z). In particular,

hi(ωj/2) �= 0, when j �= i.

Therefore, the values ℘(ωi/2) are distinct.

The proposition implies that

E : y2 = 4x3 − g2x − g3

is the equation of an elliptic curve, so we have a map from z ∈ C to the
points with complex coordinates (℘(z), ℘′(z)) on an elliptic curve. Since ℘(z)
and ℘′(z) depend only on z mod L (that is, if we change z by an element of
L, the values of the functions do not change), we have a function from C/L
to E(C). The group C/L is a group, with the group law being addition of
complex numbers mod L. In concrete terms, we can regard elements of C/L
as elements of F . When we add two points, we move the result back into F by
subtracting a suitable element of L. For example, (.7ω1 + .8ω2)+(.4ω1 + .9ω2)
yields .1ω1 + .7ω2.
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THEOREM 9.10
LetL be a lattice and letE be the elliptic curve y2 = 4x3 − g2x − g3. The
m ap

Φ : C/L −→ E(C)
z �−→ (℘(z), ℘′(z))
0 �−→ ∞

isan isom orphism ofgroups.

PROOF The surjectivity is easy. Let (x, y) ∈ E(C). Since the function
℘(z) − x has a double pole, Theorem 9.1 implies that it has zeros, so there
exists z ∈ C such that ℘(z) = x. Theorem 9.8 implies that

℘′(z)2 = y2,

so ℘′(z) = ±y. If ℘′(z) = y, we’re done. If ℘′(z) = −y, then ℘′(−z) = y and
℘(−z) = x, so −z �→ (x, y).

Suppose ℘(z1) = ℘(z2) and ℘′(z1) = ℘′(z2), and z1 �≡ z2 mod L. The only
poles of ℘(z) are for z ∈ L. Therefore, if z1 is a pole of ℘, then z1 ∈ L and
z2 ∈ L, so z1 ≡ z2 mod L. Now assume z1 is not a pole of ℘, so z1 is not in
L. The function

h(z) = ℘(z) − ℘(z1)

has a double pole at z = 0 and no other poles in F . By Theorem 9.1, it has
exactly two zeros. Suppose z1 = ωi/2 for some i. From Equation 9.6, we
know that ℘′(ωi/2) = 0, so z1 is a double root of h(z), and hence is the only
root. Therefore z2 = z1. Finally, suppose z1 is not of the form ωi/2. Since
h(−z1) = h(z1) = 0, and since z1 �≡ −z1 mod L, the two zeros of h are z1

and −z1 mod L. Therefore, z2 ≡ −z1 mod L. But

y = ℘′(z2) = ℘′(−z1) = −℘′(z1) = −y.

This means that ℘′(z1) = y = 0. But ℘′(z) has only a triple pole, so has only
three zeros in F . From Equation 9.6, we know that these zeros occur at ωi/2.
This is a contradiction, since z �= ωi/2. Therefore, z1 ≡ z2 mod L, so Φ is
injective.

Finally, we need to show that Φ is a group homomorphism. Let z1, z2 ∈ C
and let

Φ(zi) = Pi = (xi, yi).

Assume that both P1, P2 are finite and that the line through P1, P2 intersects
E in three distinct finite points (this means that P1 �= ±P2, that 2P1+P2 �= ∞,
and that P1 + 2P2 �= ∞). For a fixed z1, this excludes finitely many values of
z2. There are two reasons for these exclusions. The first is that the addition
law on E has a different formula when the points are equal. The second is
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that we do not need to worry about the connection between double roots
in the algebraic calculations and double roots of the corresponding analytic
functions.

Let y = ax + b be the line through P1, P2. Let P3 = (x3, y3) be the third
point of intersection of this line with E and let (x3, y3) = P3 = Φ(z3) with
z3 ∈ C. The formulas for the group law on E show that

x3 =
1
4

(
y2 − y1

x2 − x1

)2

− x1 − x2

=
1
4

(
℘′(z2) − ℘′(z1)
℘(z2) − ℘(z1)

)2

− ℘(z1) − ℘(z2).

The function
�(z) = ℘′(z) − a℘(z) − b

has zeros at z = z1, z2, z3. Since �(z) has a triple pole at 0, and no other
poles, it has three zeros in F . Therefore,

div(�) = [z1] + [z2] + [z3] − 3[0].

By Theorem 9.1(4), z1 + z2 + z3 ∈ L. Therefore,

℘(z1 + z2) = ℘(−z3) = ℘(z3) = x3.

We obtain

℘(z1 + z2) =
1
4

(
℘′(z2) − ℘′(z1)
℘(z2) − ℘(z1)

)2

− ℘(z1) − ℘(z2). (9.7)

By continuity, this formula, which we proved with certain values of the zi

excluded, now holds for all zi for which it is defined.
We now need to consider the y-coordinate. This means that we need to

compute ℘′(z1 +z2). We sketch the method (the interested and careful reader
may check the details). Differentiating (9.7) with respect to z2 yields an
expression for ℘′(z1 + z2) in terms of x1, x2, y1, y2, and ℘′′(z2). We need to
express ℘′′ in terms of ℘ and ℘′. Differentiating (9.5) yields

2℘′′℘′ = (12℘2 − g2)℘′.

Dividing by ℘′(z) (this is all right if ℘′(z) �= 0; the other cases are filled in by
continuity) yields

2℘′′(z2) = 12℘(z2)2 − g2. (9.8)

Substituting this into the expression obtained for ℘′(z1 +z2) yields an expres-
sion for ℘′(z1 + z2) in terms of ℘(z1), ℘′(z1), ℘(z2), ℘′(z2). Some algebraic
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manipulation shows that this equals the value for −y3 obtained from the ad-
dition law for (x1, y1) + (x2, y2) = (x3,−y3). Therefore,

(℘(z1), ℘′(z1)) + (℘(z2), ℘′(z2)) = (℘(z1 + z2), ℘′(z1 + z2)).

This is exactly the statement that

Φ(z1) + Φ(z2) = Φ(z1 + z2). (9.9)

It remains to check (9.9) in the cases where (9.7) is not defined. The
cases where ℘(zi) = ∞ and where z1 ≡ −z2 mod L are easily checked. The
remaining case is when z1 = z2. Let z2 → z1 in (9.7), use l’Hôpital’s rule, and
use (9.8) to obtain

℘(2z1) =
1
4

(
℘′′(z1)
℘′(z1)

)2

− 2℘(z1)

=
1
4

(
6℘(z1)2 − 1

2g2

℘′(z1)

)2

− 2℘(z1) (9.10)

=
1
4

(
6x2

1 − 1
2g2

y1

)2

− 2x1.

This is the formula for the coordinate x3 that is obtained from the addition
law on E. Differentiating with respect to z1 yields the correct formula for the
y-coordinate, as above. Therefore,

Φ(z1) + Φ(z1) = Φ(2z1).

This completes the proof of the theorem.

The theorem shows that the natural group law on the torus C/L matches
the group law on the elliptic curve, which perhaps looks a little unnatural.
Also, the classical formulas (9.7) and (9.10) for the Weierstrass ℘-function,
which look rather complicated, are now seen to be expressing the group law
for E.

9.3 Elliptic Curves over C

In the preceding section, we showed that a torus yields an elliptic curve. In
the present section, we’ll show the converse, namely, that every elliptic curve
over C comes from a torus.

Let L = Zω1 + Zω2 be a lattice and let

τ = ω1/ω2.
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Since ω1 and ω2 are linearly independent over R, the number τ cannot be
real. By switching ω1 and ω2 if necessary, we may assume that the imaginary
part of τ is positive:

�(τ) > 0.

In other words, we assume τ lies in the upper half plane

H = {x + iy ∈ C | y > 0}.

The lattice
Lτ = Zτ + Z

is homothetic to L. This means that there exists a nonzero complex number
λ such that L = λLτ . In our case, λ = ω2.

For integers k ≥ 3, define

Gk(τ) = Gk(Lτ ) =
∑

(m,n) �=(0,0)

1
(mτ + n)k

. (9.11)

We have
Gk(τ) = ωk

2Gk(L),

where Gk(L) is the Eisenstein series defined for L = Zω1 + Zω2 by (9.4). Let

q = e2πiτ .

It will be useful to express certain functions as sums of powers of q. If τ =
x + iy with y > 0, then |q| = e−2πy < 1. This implies that the expressions we
obtain will converge.

PROPOSITION 9.11

Letζ(x) =
∑∞

n=1 n−x and let

σ�(n) =
∑
d|n

d�

be the sum ofthe �th powers ofthe positive divisors ofn. If k ≥ 2 is an
integer,then

G2k(τ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn

= 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑
j=1

j2k−1qj

1 − qj
.
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PROOF We have

π
cos πτ

sin πτ
= πi

eπiτ + e−πiτ

eπiτ − e−πiτ

= πi
q + 1
q − 1

= πi +
2πi

q − 1

= πi − 2πi

∞∑
j=0

qj . (9.12)

Recall the product expansion

sin πτ = πτ

∞∏
n=1

(
1 − τ

n

)(
1 +

τ

n

)
(see [4]). Taking the logarithmic derivative yields

π
cos πτ

sin πτ
=

1
τ

+
∞∑

n=1

(
1

τ − n
+

1
τ + n

)
. (9.13)

Differentiating (9.12) and (9.13) 2k − 1 times with respect to τ yields

−
∞∑

j=1

(2πi)2kj2k−1qj = (−1)2k−1(2k − 1)!
∞∑

n=−∞

1
(τ + n)2k

.

Consider (9.11) with 2k in place of k. Since 2k is even, the terms for (m,n)
and (−m,−n) are equal, so we only need to sum for m = 0, n > 0 and for
m > 0, n ∈ Z, then double the answer. We obtain

G2k(τ) = 2
∞∑

n=1

1
n2k

+ 2
∞∑

m=1

∞∑
n=−∞

1
(mτ + n)2k

= 2ζ(2k) + 2
∞∑

m=1

∞∑
j=1

(2πi)2kj2k−1

(2k − 1)!
qmj

= 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑
m=1

∞∑
j=1

j2k−1qmj .

Let n = mj in the last expression. Then, for a given n, the sum over j can
be regarded as the sum over the positive divisors of n. This yields the first
expression in the statement of the proposition. The expansion

∑
m≥1 qmj =

qj/(1 − qj) yields the second expression.

Recall that we defined g2 = g2(L) = 60G4(L) and g3 = g3(L) = 140G6(L)
for arbitrary lattices L. Restricting to Lτ , we define

g2(τ) = g2(Lτ ), g3(τ) = g3(Lτ ).
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Using the facts that

ζ(4) =
π4

90
and ζ(6) =

π6

945
,

we obtain

g2(τ) =
4π4

3
(1 + 240q + · · · ) =

4π4

3

⎛⎝1 + 240
∞∑

j=1

j3qj

1 − qj

⎞⎠
g3(τ) =

8π6

27
(1 − 504q + · · · ) =

8π6

27

⎛⎝1 − 504
∞∑

j=1

j5qj

1 − qj

⎞⎠ .

Since Δ = g3
2 − 27g2

3 , a straightforward calculation shows that

Δ(τ) = (2π)12(q + · · · ).

Define

j(τ) = 1728
g3
2

Δ
.

Then j(τ) = 1
q + · · · . Including a few more terms in the above calculations

yields

j(τ) =
1
q

+ 744 + 196884q + 21493760q2 + · · · .

For computational purposes, this series converges slowly since the coefficients
are large. It is usually better to use the following.

PROPOSITION 9.12

j(τ) = 1728

(
1 + 240

∑∞
j=1

j3qj

1−qj

)3

(
1 + 240

∑∞
j=1

j3qj

1−qj

)3

−
(
1 − 504

∑∞
j=1

j5qj

1−qj

)2 .

PROOF Substitute the above expressions for g2, g3 into the definition of
the j-function. The powers of π and other constants cancel to yield the present
expression.

It can be shown (see [70, p. 249]) that

Δ = (2π)12q
∞∏

k=1

(1 − qk)24.
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This yields the expression

j =

(
1 + 240

∑∞
j=1

j3qj

1 − qj

)3

q
∏∞

k=1(1 − qk)24
,

which also works very well for computing j.
More generally, if L is a lattice, define

j(L) = 1728
g2(L)3

g2(L)3 − 27g3(L)2
.

If λ ∈ C×, then the definitions of G4 and G6 easily imply that

g2(λL) = λ−4g2(L) and g3(λL) = λ−6g3(L). (9.14)

Therefore
j(L) = j(λL).

Letting L = Zω1 + Zω2 and λ = ω−1
2 , we obtain

j(Zω1 + Zω2) = j(τ),

where τ = ω1/ω2.
Recall that

SL2(Z) =
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad − bc = 1
}

acts on the upper half plane H by(
a b
c d

)
τ =

aτ + b

cτ + d

for all τ ∈ H.

PROPOSITION 9.13

Letτ ∈ H and let

(
a b
c d

)
∈ SL2(Z).Then

j

(
aτ + b

cτ + d

)
= j(τ).

PROOF We first compute what happens with Gk:

Gk

(
aτ + b

cτ + d

)
=

∑
(m,n) �=(0,0)

1
(maτ+b

cτ+d + n)k

= (cτ + d)k
∑

(m,n) �=(0,0)

1
(m(aτ + b) + n(cτ + d))k

= (cτ + d)k
∑

(m,n) �=(0,0)

1
((ma + nc)τ + (mb + nd))k

.
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Since
(

a b
c d

)
has determinant 1, we have

(
a b
c d

)−1

=
(

d −b
−c a

)
.

Let

(m′, n′) = (m,n)
(

a b
c d

)
= (ma + nc,mb + nd).

Then

(m,n) = (m′, n′)
(

d −b
−c a

)
,

so there is a one-to-one correspondence between pairs of integers (m,n) and
pairs of integers (m′, n′). Therefore,

Gk

(
aτ + b

cτ + d

)
= (cτ + d)k

∑
(m′,n′) �=(0,0)

1
(m′τ + n′)k

= (cτ + d)kGk(τ).

Since g2 and g3 are multiples of G4 and G6, we have

g2

(
aτ + b

cτ + d

)
= (cτ + d)4g2(τ), g3

(
aτ + b

cτ + d

)
= (cτ + d)6g3(τ).

Therefore, when we substitute these expressions into the definition of j, all
the factors (cτ + d) cancel.

Let F be the subset of z ∈ H such that

|z| ≥ 1, −1
2
≤ �(z) <

1
2
, z �= eiθ for

π

3
< θ <

π

2
.

Figure 9.3 is a picture of F . Since we will need to refer to it several times, we
let

ρ = e2πi/3.

PROPOSITION 9.14
Given τ ∈ H,there exists (

a b
c d

)
∈ SL2(Z)

such that
aτ + b

cτ + d
= z ∈ F .

M oreover,z ∈ F isuniquely determ ined by τ.
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iΡ

Figure 9.3

The Fundamental Domain for SL2(Z)

The proposition says that F is a fundamental domain for the action of
SL2(Z) on H. For a proof of the proposition, see [104] or [108].

COROLLARY 9.15

LetL ⊂ C be a lattice. There exists a basis {ω1, ω2} ofL with ω1/ω2 ∈ F.
In otherwords,

L = (λ)(Zτ + Z)

forsom e λ ∈ C× and som e uniquely determ ined τ ∈ F.

PROOF Let {α, β} be a basis for L and let τ0 = α/β. By changing the
sign of α if necessary, we may assume that τ0 ∈ H. Let(

a b
c d

)
∈ SL2(Z)

be such that
aτ0 + b

cτ0 + d
= τ ∈ F .

Let
ω1 = aα + bβ, ω2 = cα + dβ.

Since the matrix is in SL2(Z),

L = Zα + Zβ = Zω1 + Zω2 = ω2(Zτ + Z).

This proves the corollary.
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If z ∈ C, recall that ordzf is the order of f at z. That is,

f(τ) = (τ − z)ordz(f)g(τ),

with g(z) �= 0,∞. We can also define the order of f at i∞. Suppose

f(τ) = anqn + an+1q
n+1 + · · · , (9.15)

with n ∈ Z and an �= 0, and assume that this series converges for all q close
to 0 (with q �= 0 when n < 0). Then

ordi∞(f) = n.

Note that q → 0 as τ → i∞, so ordi∞(f) expresses whether f vanishes (n > 0)
or blows up (n < 0) as τ → i∞.

PROPOSITION 9.16
Letf be a function m erom orphic in H such thatf isnotidentically zero and
such that

f

(
aτ + b

cτ + d

)
= f(τ) forall

(
a b
c d

)
∈ SL2(Z).

Then

ordi∞(f) +
1
3
ordρ(f) +

1
2
ordi(f) +

∑
z �=i,ρ,i∞

ordz(f) = 0.

REMARK 9.17 The function f can be regarded as a function on the
surface obtained as follows. Identify the left and right sides on F to get a
tube, then fold the part with |z| = 1 at i. Then pinch the open end at i∞ to
a point. This gives a surface that is topologically a sphere. The proposition
expresses the fact that the number of poles of f equals the number of zeros on
such a surface, just as occurred for doubly periodic functions in Theorem 9.1.
The point i is special since a small neighborhood around i contains only half
of a disc inside F . Similarly, a small neighborhood around ρ includes only
1/3 of a disc from F (namely, 1/6 near ρ and 1/6 near 1 + ρ, which is folded
over to meet ρ). This explains the factors 1/2 and 1/3 in the proposition. For
a related phenomenon, see Exercise 9.3.

PROOF Let C be the path shown in Figure 9.4. Essentially, C goes around
the edge of F . However, it consists of a small circular arc past each of ρ, 1+ρ,
and i. If there is a pole or zero of f at a point on the path, we make a small
detour around it and a corresponding detour at the corresponding point on
the other side of F . The arcs near ρ, 1 + ρ, and i have radius ε, where ε is
chosen small enough that there are no zeros or poles of f inside the circles,
except possibly at ρ, 1+ρ, or i. Similarly, the top part of C is chosen to have
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� �

�

Figure 9.4

imaginary part N , where N is large enough that f(z) has no zeros or poles
with imaginary part greater than N , except perhaps at i∞. This is possible
since

f(z) = qn(an + an+1q + · · · ).
Since the series an +an+1q+ · · · is assumed to converge for q small, it is finite
and is approximately equal to an �= 0 for sufficiently small q.

As in the proof of Theorem 9.1, we have

1
2πi

∫
C

f ′(z)
f(z)

dz =
∑
z∈F

z �=i,ρ

ordz(f).

Since
(

1 1
0 1

)
∈ SL2(Z) gives the map z �→ z + 1, we have

f(z) = f(z + 1). (9.16)

Therefore, the integrals over the left and right vertical parts of C are the
same, except that they are in opposite directions, so they cancel each other.

Now we’ll show that the integral over the part of the unit circle to the left of

i cancels the part to the right. This is proved by using the fact that
(

0 −1
1 0

)
∈

SL2(Z) gives the map z �→ −1/z, which interchanges the left and right arcs of
the unit circle. In addition, differentiating the relation f(−1/z) = f(z) yields

f ′

f

(−1
z

)
d

(−1
z

)
=

f ′

f
(z) dz.
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Therefore, the integral over C from ρ to i equals the integral from −1/ρ = 1+ρ
to −1/i = i, which is the negative of the integral from i to 1 + ρ. Therefore,
the two parts cancel.

All that remains are the parts of C near ρ, 1 + ρ, i, and i∞. Near i, we
have f(z) = (z − i)kg(z) for some k, with g(i) �= 0,∞. Therefore,

f ′(z)
f(z)

=
k

z − i
+

g′(z)
g(z)

. (9.17)

The integral over the small semicircle near i is

1
2πi

∫
θ

f ′(i + εeiθ)
f(i + εeiθ)

εieiθ dθ, (9.18)

where θ ranges from slightly more than π to slightly less than 0. (Note that
C is traveled clockwise. Because of the curvature of the unit circle, the limits
are 0 and π only in the limit as ε → 0.) Substitute (9.17) into (9.18) and
let ε → 0. Since g′/g is continuous at i, the integral of g′/g goes to 0. The
integral of k/(z − i) yields

1
2πi

∫ 0

θ=π

ki dθ = −1
2
k = −1

2
ordi(f).

Similarly, the contributions from the parts of C near ρ and 1 + ρ add up to
−(1/3)ordρ(f) (we are using the fact that f(ρ) = f(ρ + 1), by (9.16)).

Finally, the integral along the top part of C is

1
2πi

∫ − 1
2

t= 1
2

f ′(t + iN)
f(t + iN)

dt.

Since f(τ) = qn(an + an+1q + · · · ), we have

f ′(τ)
f(τ)

= 2πin +
2πian+1q + · · ·

an + · · · .

The second term goes to 0 as q → 0, hence as N → ∞. The limit of the
integral as N → ∞ is therefore

1
2πi

∫ − 1
2

t= 1
2

2πin dt = −n = −ordi∞(f).

Combining all of the above calculations yields the theorem.

COROLLARY 9.18
Ifz ∈ C,then there isexactly one τ ∈ F such thatj(τ) = z.

© 2008 by Taylor & Francis Group, LLC



282 CHAPTER 9 ELLIPTIC CURVES OVER C

PROOF First, we need to calculate j(ρ) and j(i). Recall that τ corresponds
to the lattice Lτ = Zτ +Z. Since ρ2 = −1−ρ, it follows easily that ρLρ ⊆ Lρ.
Therefore,

Lρ = ρ3Lρ ⊆ ρ2Lρ ⊆ ρLρ ⊆ Lρ,

so ρLρ = Lρ. It follows from (9.14) that

g2(Lρ) = g2(ρLρ) = ρ−4g2(Lρ) = ρ−1g2(Lρ).

Since ρ �= 1, we have g2(ρ) = g2(Lρ) = 0. Therefore,

j(ρ) = 1728
g2(Lρ)3

g2(Lρ)3 − 27g3(Lρ)2
= 0

(note that the denominator is nonzero, by Proposition 9.9).
Similarly, τ = i corresponds to the lattice Li = Zi + Z, and iLi = Li.

Therefore,
g3(Li) = g3(iLi) = i−6g3(Li) = −g3(Li),

so g3(i) = g3(Li) = 0. Therefore,

j(i) = 1728
g2(Li)3

g2(Li)3 − 27g3(Li)2
= 1728.

We now look at the other values of τ . Consider the function h(τ) = j(τ)−z.
Then h has a pole of order 1 at i∞ and no other poles. By Proposition 9.16,
we have

1
3
ordρ(h) +

1
2
ordi(h) +

∑
z �=i,ρ,∞

ordz(h) = 1.

If z �= 0, 1728, then h has order 0 at ρ and at i. Therefore, h has a unique zero
in F , so j(τ) = z has a unique solution in F . If z = 1728, then (1/2)ordi(h) >
0. Since the order of h at a point is an integer, the order must be 0 when z �=
i, ρ; otherwise, the sum would be larger than 1. Also, there is no combination
of m/2 + n/3 that equals 1 except when either m = 0 or n = 0. Therefore,
j(τ)− 1728 has a double zero at i and no other zero in F . Similarly, j(τ) has
a triple zero at ρ and no other zero in F .

COROLLARY 9.19

Letτ1, τ2 ∈ H.Then j(τ1) = j(τ2) ifandonlyifthereexists
(

a b
c d

)
∈ SL2(Z)

such that
aτ1 + b

cτ1 + d
= τ2.

PROOF Proposition 9.13 gives one direction of the statement. Assume
conversely that j(τ1) = j(τ2). Let τ ′

1, τ
′
2 ∈ F map to τ1, τ2 via the action of
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SL2(Z), as in Proposition 9.14. Then, by Proposition 9.13,

j(τ ′
1) = j(τ1) = j(τ2) = j(τ ′

2).

By Corollary 9.18, τ ′
1 = τ ′

2. Since an element of SL2(Z) maps τ1 to τ ′
1, and

an element of SL2(Z) maps τ ′
1 = τ ′

2 to τ2, the product of these two matrices
(see Exercise 9.2) maps τ1 to τ2, as desired.

There is also a version of Corollary 9.19 for lattices (the j-invariant of a
lattice is defined on page 276).

COROLLARY 9.20
LetL1, L2 ⊂ C be lattices. Then j(L1) = j(L2) ifand only ifthere exists

0 �= λ ∈ C such thatλL1 = L2.

PROOF One direction was proved on page 276. Conversely, suppose
j(L1) = j(L2). Write Li = (λi)(Zτi + Z) with τi ∈ F , as in Corollary 9.15.
Then j(τ1) = j(L1) = j(L2) = j(τ2), so Corollary 9.18 implies that τ1 = τ2.
Let λ = λ2/λ1. Then λL1 = L2.

We can now show that every elliptic curve over C corresponds to a torus.

THEOREM 9.21
Lety2 = 4x3 − Ax − B define an elliptic curve E overC. Then there is a
lattice L such that

g2(L) = A and g3(L) = B.

There isan isom orphism ofgroups

C/L � E(C).

PROOF Let

j = 1728
A3

A3 − 27B2
.

By Corollary 9.18, there exists a lattice L = Zτ +Z such that j(τ) = j(L) = j.
Assume first that g2(L) �= 0. Then j = j(L) �= 0, so A �= 0. Choose λ ∈ C×

such that
g2(λL) = λ−4g2(L) = A.

The equality j = j(L) implies that

g3(λL)2 = B2,

so g3(λL) = ±B. If g3(λL) = B, we’re done. If g3(λL) = −B, then

g3(iλL) = i−6g3(λL) = B and g2(iλL) = i4g2(λL) = A.
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Therefore, either λL or iλL the desired lattice.
If g2(L) = 0, then j = j(L) = 0, so A = 0. Since A3 − 27B2 �= 0 by

assumption and since g2(L)3 − 27g3(L)2 �= 0 by Proposition 9.9, we have
B �= 0 and g3(L) �= 0. Choose μ ∈ C× such that

g3(μL) = μ−6g3(L) = B.

Then g2(μL) = μ−4g2(L) = 0 = A, so μL is the desired lattice.
By Theorem 9.10, the map

C/L −→ E(C)

is an isomorphism.

The elements of L are called the periods of L.
Theorem 9.21 gives us a good way to work with elliptic curves over C. For

example, let n be a positive integer and let E be an elliptic curve over C.
By Theorem 9.21, there exists a lattice L = Zω1 + Zω2 such that C/L is
isomorphic to E(C). It is easy to see that the n-torsion on C/L is given by
the points

j

n
ω1 +

k

n
ω2, 0 ≤ j, k ≤ n − 1.

It follows that
E[n] � Zn ⊕ Zn.

In fact, we can use this observation to give a proof of Theorem 3.2 for all fields
of characteristic 0.

COROLLARY 9.22
LetK be a field ofcharacteristic 0,and letE be an elliptic curve overK.
Then

E[n] = {P ∈ E(K) |nP = ∞} � Zn ⊕ Zn.

PROOF Let L be the field generated by Q and the coefficients of the
equation of E. Then L has finite transcendence degree over Q, hence can be
embedded into C (see Appendix C). Therefore, we can regard E as an elliptic
curve over C. Therefore, the n-torsion is Zn ⊕ Zn.

There is a technical point to worry about. The definition of E[n] that
we have used requires the coordinates of the n-torsion to lie in the algebraic
closure of the base field. How can we be sure that the field K isn’t so large
that it allows more torsion points than C? Suppose that E[n] ⊂ E(K) has
order larger than n2. Then we can choose n2 + 1 of these points and adjoin
their coordinates to L. Then L still has finite transcendence degree over Q,
hence can be embedded into C. The coordinates of the n2 +1 points will yield
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n2+1 points in E(C) that are n-torsion points. This is impossible. Therefore,
E[n] is no larger than it should be.

There is also the reverse possibility. How do we know that K is large enough
to account for all the n-torsion points that we found in E(C)? We need to
show that the n-torsion points in E(C) have coordinates that are algebraic
over L (where L is regarded as a subfield of C). Let P = (x, y) be an n-torsion
point in E(C), and suppose that x and y are transcendental over L (since x
and y satisfy the polynomial defining E, they are both algebraic or both
transcendental over K). Let σ be an automorphism of C such that σ(x) =
x+1, and such that σ is the identity on L. Such an automorphism exists: take
σ to be the desired automorphism of K(x), then use Zorn’s Lemma to extend
σ to all of C (see Appendix C). The points σm(P ) for m = 1, 2, 3, . . . , have
distinct x-coordinates x + 1, x + 2, x + 3, . . . , hence are distinct points. Each
must be an n-torsion point of E in E(C). But there are only n2 such points,
so we have a contradiction. Therefore, the coordinates of the n-torsion points
are algebraic over L, hence are algebraic over K, since L ⊆ K. Therefore, the
passage from K to C does not affect E[n].

Suppose we have an elliptic curve E defined over the real numbers R.
Usually, it is represented by a graph, as in Chapter 2 (see Figure 2.1 on
page 10). It is interesting to see how the torus we obtain relates to this graph.
It can be shown (Exercise 9.5) that the lattice L for E has one of two shapes.
Suppose first that the lattice is rectangular: L = Zω1 + Zω2 with ω1 ∈ iR
and ω2 ∈ R. Then

(℘(z), ℘′(z)) ∈ E(R)

when
(I) z = tω2 with 0 ≤ t < 1,

and also when

(II) z = (1/2)ω1 + tω2 with 0 ≤ t < 1.

The first of these is easy to see: if z is real and the lattice L is preserved by
complex conjugation, then conjugating the defining expression for ℘(z) leaves
it unchanged, so ℘ maps reals to reals. The second is a little more subtle:
conjugating z = (1/2)ω1 + tω2 yields z = −(1/2)ω1 + tω2, which is equivalent
to z mod L. Therefore, the defining expression for ℘(z) is again unchanged
by complex conjugation, so ℘ maps reals to reals.

Fold the parallelogram into a torus by connecting the right and left sides to
form a tube, then connecting the ends. The paths (I) (see Figure 9.5) starts
and ends at points that differ by ω2. Therefore the endpoints are equivalent
mod L, so (I) yields a circle on the torus. Similarly, (I) yields a circle on the
torus.

When the ends of path (I) are disconnected at 0 (which corresponds to ∞
in the Weierstrass form), we obtain a slightly deformed version of the graph
of Figure 2.1(a) on page 10.
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Figure 9.5

The Real Points on C/L

In the case of a skewed parallelogram, that is, when ω2 is real and the
imaginary part of ω1 is half of ω2, the real axis is mapped to the reals, but
the analogue of path (II) is not mapped to the reals. This corresponds to the
situation of Figure 2.1(b) on page 10.

9.4 Computing Periods

Suppose E is an elliptic curve over C. From Theorem 9.21, we know that
E corresponds to a lattice L = Zω1 + Zω2 via the doubly periodic functions
℘ and ℘′, but how do we find the periods ω1 and ω2?

For simplicity, let’s consider the case where E is defined over R and E[2] ⊂
E(R). Then the equation for E can be put in the form

y2 = 4x3 − g2x − g3 = 4(x − e1)(x − e2)(x − e3) with e1 < e2 < e3.

We may assume ω2 ∈ R with ω2 > 0 and ω1 ∈ iR with �(ω1) > 0, as in
Figure 9.5. The graph of E is as in Figure 2.1(a) on page 10. The Weierstrass
℘-function and its derivative map C/L to E via

(x, y) = (℘(z), ℘′(z)).

As z goes from 0 to ω2/2, the function ℘(z) takes on real values, starting with
x = ∞. The first point of order two is encountered when z = ω2/2. Which
point (ei, 0) is it? The graph of the real points of E has two components. The
one connected to ∞ contains the point (e3, 0) of order two, so x = ℘(z) must
run from ∞ to e3 as z goes from 0 to ω2/2. The expansion of ℘′(z) starts
with the term −2/z3, from which it follows that y = ℘′(z) < 0 near z = 0,
hence ℘′(z) < 0 for 0 < z < ω2/2.
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Consider now the integral∫ ∞

e3

dx√
4(x − e1)(x − e2)(x − e3)

.

Substitute x = ℘(z). The denominator becomes
√

℘′(z)2 = −℘′(z) (recall
that ℘′(z) < 0) and the limits of integration are from z = ω2/2 to 0. Adjusting
the direction of integration and the sign yields∫ ω2/2

0

dz =
ω2

2
.

Therefore,

ω2 =
∫ ∞

e3

dx√
(x − e1)(x − e2)(x − e3)

.

The change of variables

x =

(
e3 −

√
(e3 − e1)(e3 − e2)

)
t +

(
e3 +

√
(e3 − e1)(e3 − e2)

)
t + 1

(plus a lot of algebraic manipulation) changes the integral to

ω2 =
2√

e3 − e1 +
√

e3 − e2

∫ 1

−1

dt√
(1 − t2)(1 − k2t2)

,

where

k =
√

e3 − e1 −
√

e3 − e2√
e3 − e1 +

√
e3 − e2

. (9.19)

Since the integrand is an even function, we can take twice the integral over
the interval from 0 to 1 and obtain

ω2 =
4√

e3 − e1 +
√

e3 − e2

∫ 1

0

dt√
(1 − t2)(1 − k2t2)

.

This integral is called an elliptic integral (more precisely, an elliptic integral
of the first kind). It is usually denoted by

K(k) =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

.

In the following, we’ll see how to compute K(k) numerically very accurately
and quickly, but first let’s find an expression for ω1.

When z runs along the vertical line from ω2/2 to ω2/2+ω1/2, the function
℘(z) takes on real values (see Exercise 9.6) from e3 to e2, and its derivative
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℘′(z) takes on purely imaginary values. Reasoning similar to that above
(including the same change of variables) yields

ω1 =
2i√

e3 − e1 +
√

e3 − e2

∫ 1/k

1

dt√
(t2 − 1)(1 − k2t2)

.

Let k′ =
√

1 − k2 and make the substitution

t = (1 − k′2u2)−1/2.

The integral becomes

∫ 1

0

dt√
(1 − t2)(1 − k′2t2)

= K(k′) = K(
√

1 − k2).

Therefore,

ω1 =
2i√

e3 − e1 +
√

e3 − e2
K(

√
1 − k2).

Therefore, both ω1 and ω2 can be expressed in terms of elliptic integrals.

9.4.1 The Arithmetic-Geometric Mean

In this subsection, we introduce the arithmetic-geometric mean. It yields a
very fast and ingenious method, due to Gauss, for computing elliptic integrals.

Start with two positive real numbers a, b. Define an and bn by

a0 = a, b0 = b

an =
1
2
(an−1 + bn−1) (9.20)

bn =
√

an−1bn−1.

Then an is the arithmetic mean (=average) of an−1 and bn−1, and bn is their
geometric mean.
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Example 9.1
Let a =

√
2 and b = 1. Then

a1 = 1.207106781186547524400844362 . . .

b1 = 1.189207115002721066717499970 . . .

a2 = 1.198156948094634295559172166 . . .

b2 = 1.198123521493120122606585571 . . .

a3 = 1.198140234793877209082878869 . . .

b3 = 1.198140234677307205798383788 . . .

a4 = 1.198140234735592207440631328 . . .

b4 = 1.198140234735592207439213655 . . . .

The sequences are converging very quickly to the limit

a∞ = b∞ = 1.198140234735592207439922492 . . . .

The rapid convergence is explained by the following.

PROPOSITION 9.23
Suppose a ≥ b > 0.Then

bn−1 ≤ bn ≤ an ≤ an−1

and

0 ≤ an − bn ≤ 1
2
(an−1 − bn−1). (9.21)

Therefore
M(a, b) = lim

n→∞ an = lim
n→∞ bn

exists.M oreover,ifb ≥ 1 then

an+m − bn+m ≤ 8
(

an − bn

8

)2m

(9.22)

forallm,n ≥ 0.

PROOF The fact that an ≥ bn for all n is the arithmetic-geometric mean
inequality, or the fact that

an − bn =
1
2
(
√

an−1 −
√

bn−1)2 ≥ 0.
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Therefore, since an−1 ≥ bn−1, it follows immediately from (9.20) that

an ≤ 1
2
(an−1 + an−1) = an−1 and bn ≥

√
bn−1bn−1 = bn−1.

Also,

an − bn =
1
2

(√
an−1 −

√
bn−1

)2

≤ 1
2

(√
an−1 −

√
bn−1

)(√
an−1 +

√
bn−1

)
=

1
2
(an−1 − bn−1).

Therefore, an − bn ≤ (1/2)n(a − b), so an − bn → 0. Since the an’s are
a decreasing sequence bounded below by the increasing sequence of bn’s, it
follows immediately that the two sequences converge to the same limit, so
M(a, b) exists. If bn−1 ≥ 1, then √

an−1 +
√

bn−1 ≥ 2, so

an − bn

8
=

1
16

(√
an−1 −

√
bn−1

)2

≤ 1
16

(√
an−1 −

√
bn−1

)2
(√

an−1 +
√

bn−1

)2
4

=
(

an−1 − bn−1

8

)2

.

Inequality 9.22 follows easily by induction.

The limit M(a, b) is called the arithmetic-geometric mean of a and b.
Since

M(ca, cb) = cM(a, b),

we can always rescale a and b to make b ≥ 1. Also, since M(b, a) = M(a, b)
(because a1 and b1 are symmetric in a, b), we may always arrange that a ≥ b.
By Inequality (9.21), an − bn < 1 for sufficiently large n. The numbers an+m

and bn+m give approximations to M(a, b). Inequality (9.22) predicts that
the number of decimal places of accuracy doubles with each iteration. This
phenomenon occurs in the above example.

The reasons we are interested in the arithmetic-geometric mean are the
following two propositions.

PROPOSITION 9.24
Leta, b be positive realnum bers.Define

I(a, b) =
∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

.
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Then

I

(
a + b

2
,
√

ab

)
= I(a, b).

M oreover,

I(a, b) =
π/2

M(a, b)
.

PROOF Let u = b tan θ. The integral becomes

I(a, b) =
∫ ∞

0

du√
(u2 + a2)(u2 + b2)

=
1
2

∫ ∞

−∞

du√
(u2 + a2)(u2 + b2)

.

Therefore,

I

(
a + b

2
,
√

ab

)
=

1
2

∫ ∞

−∞

du√
(u2 + (a+b

2 )2)(u2 + ab)
.

Let

u =
1
2

(
v − ab

v

)
, 0 < v < ∞.

Then v = u +
√

u2 + ab. Since

u2 +
(

a + b

2

)2

=
1

4v2
(v2 + a2)(v2 + b2),

it is straightforward to obtain

I

(
a + b

2
,
√

ab

)
=
∫ ∞

0

dv√
(v2 + a2)(v2 + b2)

= I(a, b).

By induction, we obtain

I(a, b) = I(a1, b1) = I(a2, b2) = · · · .

Let
a∞ = b∞ = M(a, b) = lim

n→∞ an = lim
n→∞ bn.

It is fairly easy to justify taking the limit inside the integral sign to obtain

I(a, b) = lim
n→∞ I(an, bn)

= I(a∞, b∞)

=
∫ π/2

0

dθ√
a2∞ cos2 θ + b2∞ sin2 θ

=
1

M(a, b)

∫ π/2

0

dθ√
cos2 θ + sin2 θ

=
π/2

M(a, b)
.
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PROPOSITION 9.25
If0 < k < 1,then

K(k) = I
(
1,
√

1 − k2
)

= I(1 + k, 1 − k).

PROOF

K(k) =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

=
∫ π/2

0

dθ√
1 − k2 sin2 θ

(let t = sin θ)

=
∫ π/2

0

dθ√
cos2 θ + (1 − k2) sin2 θ

= I(1,
√

1 − k2)
= I(1 + k, 1 − k).

The last equation follows from Proposition 9.24, with a = 1+k and b = 1−k.

Putting everything together, we can now express the periods ω1 and ω2 in
terms of arithmetic-geometric means.

THEOREM 9.26
SupposeE isgiven by

y2 = 4x3 − g2x − g3 = 4(x − e1)(x − e2)(x − e3)

with realnum bers e1 < e2 < e3.Then Zω1 + Zω2 isa lattice forE,where

ω1 =
πi

M (
√

e3 − e1,
√

e2 − e1)

ω2 =
π

M (
√

e3 − e1,
√

e3 − e2)
.

PROOF We have, with k as in (9.19),

ω2 =
4√

e3 − e1 +
√

e3 − e2
K(k)

=
4√

e3 − e1 +
√

e3 − e2
I(1 + k, 1 − k).

Use the definition (9.19) of k and the relation cI(ca, cb) = I(a, b) with

c =
√

e3 − e1 +
√

e3 − e2

2
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to obtain

ω2 = 2I(
√

e3 − e1,
√

e3 − e2)

=
π

M(
√

e3 − e1,
√

e3 − e2)
.

The proof of the formula for ω1 uses similar reasoning to obtain

ω1 =
2i√

e3 − e1 +
√

e3 − e2
K(

√
1 − k2)

=
2i√

e3 − e1 +
√

e3 − e2
I(1, k)

= 2iI(
√

e3 − e1 +
√

e3 − e2,
√

e3 − e1 −
√

e3 − e2).

If we let

a =
√

e3 − e1 +
√

e3 − e2, b =
√

e3 − e1 −
√

e3 − e2,

then (9.20) yields
a1 =

√
e3 − e1, b1 =

√
e2 − e1.

Proposition 9.24 therefore implies that

ω1 = 2iI(
√

e3 − e1,
√

e2 − e1)

=
πi

M(
√

e3 − e1,
√

e2 − e1)
.

Example 9.2
Consider the elliptic curve E given by

y2 = 4x3 − 4x.

Then e1 = −1, e2 = 0, e3 = 1, so

ω1 =
πi

M(
√

2, 1)
= i2.62205755429211981046483959 . . .

ω2 =
π

M(
√

2, 1)
= 2.62205755429211981046483959 . . . .

Therefore, the fundamental parallelogram for the lattice is a square. This also
follows from the fact that E has complex multiplication by Z[i]. See Chapter
10. The number 2.622 . . . can be shown (see Exercise 9.8) to equal∫ 1

−1

dx√
1 − x4

=
Γ(1/4)Γ(1/2)

2 Γ(3/4)
,

where Γ is the gamma function (for its definition, see Section 14.2). This is
a special case of the Chowla-Selberg formula, which expresses the periods of
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elliptic curves with complex multiplication in terms of values of the gamma
function (see [101]).

There are also formulas similar to those of Theorem 9.26 for the case where
g2, g3 ∈ R but 4x3 − g2x − g3 has only one real root. Let e1 be the unique
real root of 4x3 − g2x − g3 and let e′ =

√
3e2

1 − (1/4)g2. Then

ω1 =
2π

M(
√

4e′,
√

2e′ + 3e1)
(9.23)

ω2 = −ω1

2
+

πi

M(
√

4e′,
√

2e′ − 3e1)
. (9.24)

The proof is similar to the one when there are three real roots.
For more on the arithmetic-geometric mean, including how it has been used

to compute π very accurately and how it behaves for complex arguments, see
[17] and [30].

9.5 Division Polynomials

In this section, we prove Theorem 3.6, which gives a formula for n(x, y),
where n > 1 is an integer and (x, y) is a point on an elliptic curve. We’ll
start with the case of an elliptic curve in characteristic zero, then use this to
deduce the case of positive characteristic.

Let E be an elliptic curve over a field of characteristic 0, given by an
equation y2 = x3 + Ax + B. All of the equations describing the group law
are defined over Q(A,B). Since C is algebraically closed and has infinite
transcendence degree over Q, it is easy to see that Q(A,B) may be considered
as a subfield of C. Therefore, we regard E as an elliptic curve defined over
C. By Theorem 9.21, there is a lattice L corresponding to E. Let ℘(z) be the
associated Weierstrass ℘-function, which satisfies the relation

(℘′)2 = 4℘3 − g2℘ − g3,

with g2 = −4A, g3 = −4B. We’ll derive formulas for ℘(nz) and ℘′(nz), then
use x = ℘(z) and y = ℘′(z)/2 to obtain the desired formulas for n(x, y).

LEMMA 9.27
There isa doubly periodic function fn(z) such that

fn(z)2 = n2
∏

0�=u∈(C/L)[n]

(℘(z) − ℘(u)).

The sign offn can be chosen so that
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1. ifn isodd,fn = Pn(℘),wherePn(X) isapolynom ialofdegree (n2−1)/2
with leading coe cientn,

2. if n is even, fn = ℘′ Pn(℘), where Pn(X) is a polynom ialof degree
(n2 − 4)/2 with leading coe cientn/2.

The expansion offn at0 is

fn(z) =
(−1)n+1n

zn2−1
+ · · · .

The zeros of fn are at the points 0 �= u ∈ (C/L)[n], and these are sim ple
zeros.

PROOF The product is over the nonzero n-torsion in C/L. Since ℘(u) =
℘(−u), the factors for u and −u are equal. Suppose n is odd. Then u is
never congruent to −u mod L, so every factor in the product occurs twice.
Therefore, fn can be taken to be n

∏
(℘(z) − ℘(u)), where we use only one

member of each pair (u,−u). This is clearly a polynomial in ℘(z) of degree
(n2 − 1)/2 and leading coefficient n. When n is even, there are three values
of u that are congruent to their negatives mod L, namely, ωj/2 for j = 1, 2, 3.
Since

(℘′)2 = 4
∏
j

(℘ − ℘(ωj/2)),

these factors contribute ℘′/2 to fn. The remaining factors can be paired up,
as in the case when n is odd, to obtain a polynomial in ℘ of degree (n2 − 4)/2
and leading coefficient n. Therefore, fn has the desired form.

Since ℘(z) = z−2 + · · · and ℘′(z) = −2z−3 + · · · , we immediately obtain
the expansion of fn at 0.

Clearly fn has a zero at each nonzero u ∈ (C/L)[n]. There are n2 − 1 such
points. Since the only pole mod L of fn is one of order n2 − 1 at z = 0, and
since the number of zeros equals the number of poles (counting multiplicities),
these zeros must all be simple.

LEMMA 9.28
Letn ≥ 2.Then

℘(nz) = ℘(z) − fn−1(z)fn+1(z)
fn(z)2

.

PROOF Let g(z) = ℘(nz) − ℘(z). We’ll show that g and fn−1fn+1/f2
n

have the same divisors.
The function g(z) has a double pole at each u ∈ (C/L)[n] with u �= 0. At

z = 0, it has the expansion

g(z) =
1

n2z2
− 1

z2
+ · · · ,
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so g also has a double pole at 0. Therefore, g has a total of 2n2 poles, counting
multiplicities.

The function g has a zero at z = w when nw ≡ ±w �≡ 0 (mod L). For such
w,

d

dz
g(z)

∣∣∣∣
z=w

= n℘′(nw) − ℘′(w) = ±n℘′(w) − ℘′(w) = (±n − 1)℘′(w).

Since the zeros of ℘′(z) occur when z = ωj/2, we have g′(w) �= 0 when
w �= ωj/2, so such w are simple zeros of g. Moreover, when n is odd, n(ωj/2) ≡
ωj/2, so the points ωj/2 are at least double zeros of g in this case.

If nw ≡ w (mod L), then (n − 1)w ≡ 0. Let δ = 0 if n is even and δ = 1
if n is odd. There are (n − 1)2 − 1 − 3δ points w with (n − 1)w = 0 and
w �= 0, ωj/2. Similarly, there are (n+1)2 −1−3δ points w with (n+1)w = 0
and w �= 0, ωj/2. There are at least 6δ zeros (counting multiplicities) at the
points ωj/2. Therefore, we have accounted for at least

(n − 1)2 − 1 − 3δ + (n + 1)2 − 1 − 3δ + 6δ = 2n2

zeros. Since g(z) has exactly 2n2 poles, we have found all the zeros and their
multiplicities.

The function
fn−1fn+1

f2
n

has a double pole at each of the zeros of fn. If w �≡ 0 and (n ± 1)w ≡ 0 then
fn±1 has a simple zero at w. If both (n + 1)w ≡ 0 and (n − 1)w ≡ 0, then
2w ≡ 0, so w ≡ ωj/2 for some j. Therefore, fn−1fn+1 has a simple zero at
each w with (n ± 1)w ≡ 0, except for those where w ≡ ωj/2, at which points
it has a double zero. At z = 0, the expansions of the functions yield

fn−1fn+1

f2
n

=(
(−1)n(n − 1)

z(n−1)2−1
+ · · ·

) (
(−1)n+2(n + 1)

z(n+1)2−1
+ · · ·

)/(
(−1)n+1n

zn2−1
+ · · ·

)2

=
(

1 − 1
n2

)
z−2 + · · · ,

so there is a double zero at z = 0. Therefore, −fn−1fn+1/f2
n has the same

divisor as ℘(nz) − ℘(z), so the two functions are constant multiples of each
other. Since their expansions at 0 have the same leading coefficient, they must
be equal. This proves the lemma.

LEMMA 9.29
f2n+1 = fn+2f

3
n − f3

n+1fn−1.
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PROOF As in the proof of Lemma 9.28, we see that

℘((n + 1)z) − ℘(nz) = − f2n+1

f2
n+1f

2
n

since the two sides have the same divisors and their expansions at 0 have the
same leading coefficient. Since

℘((n + 1)z) − ℘(nz) = (℘((n + 1)z) − ℘(z)) − (℘(nz) − ℘(z))

= −fn+2fn

f2
n+1

+
fn+1fn−1

f2
n

,

the result follows by equating the two expressions for ℘((n + 1)z) − ℘(nz).

LEMMA 9.30
℘′f2n = (fn)(fn+2f

2
n−1 − fn−2f

2
n+1).

PROOF As in the proofs of the previous two lemmas, we have

℘((n + 1)z) − ℘((n − 1)z) = − ℘′f2n

f2
n−1f

2
n+1

.

(A little care is needed to handle the points ωj/2.) Since

℘((n + 1)z) − ℘((n − 1)z) = (℘((n + 1)z) − ℘(z)) − (℘((n − 1)z) − ℘(z))

= −fn+2fn

f2
n+1

+
fnfn−2

f2
n−1

,

the result follows.

LEMMA 9.31
Foralln ≥ 1,

fn(z) = ψn

(
℘(z),

1
2
℘′(z)

)
where ψn isdefined in Section 3.2.

PROOF Since ψ1 = 1 and ψ2 = 2y, the lemma is easily seen to be true for
n = 1, 2. From Equations (9.10) and (9.8) in Section 9.2, we have

− f3

(℘′)2
= − f3

f2
2

= ℘(2z) − ℘(z) (9.25)

=
1
4

(
℘′′(z)
℘′(z)

)2

− 2℘(z) − ℘(z)

= −3℘4 − 3
2g2℘

2 − 3g3℘ − 1
16g2

2

(℘′)2
.
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Therefore,

f3 = 3℘4 − 3
2
g2℘

2 − 3g3℘ − 1
16

g2
2

= 3℘4 + 6A℘2 + 12B℘ − A2 = ψ3(℘).

This proves the lemma for n = 3.
By Equation (9.7) in Section 9.2, we have

℘(2z + z) =
1
4

(
℘′(2z) − ℘′(z)
℘(2z) − ℘(z)

)2

− ℘(2z) − ℘(z)

and

℘(2z − z) =
1
4

(
℘′(2z) + ℘′(z)
℘(2z) − ℘(z)

)2

− ℘(2z) − ℘(z).

Therefore,

−f4f2

f2
3

= ℘(3z) − ℘(z)

=
1
4

(
℘′(2z) − ℘′(z)
℘(2z) − ℘(z)

)2

− 1
4

(
℘′(2z) + ℘′(z)
℘(2z) − ℘(z)

)2

= − ℘′(2z)℘′(z)
(℘(2z) − ℘(z))2

= − ℘′(2z)℘′(z)
(−f3/℘′(z)2)2

(by Equation 9.25)

= −℘′(2z)℘′(z)5

f2
3

.

This yields f4f2 = ℘′(2z)℘′(z)5. We know that 1
2℘′(2z) is the y-coordinate of

2(℘(z), 1
2℘′(z)), which means that ℘′(2z) can be expressed in terms of ℘(z)

and ℘′(z), using the formulas for the group law. When this is done, we obtain

f4 = ψ4

(
℘,

1
2
℘′
)

,

so the lemma is true for n = 4.
Since the fn’s satisfy the same recurrence relations as the ψn’s (see Lem-

mas 9.29 and 9.30 and the definition of the ψn’s), and since the lemma holds
for enough small values of n, the lemma now follows for all n.

LEMMA 9.32

℘′(nz) =
f2n

f4
n

.
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PROOF The function ℘′(nz) has triple poles at all points of (C/L)[n].
Therefore, there are 3n2 poles. Since the zeros of ℘′ are at the points in
(C/L)[2] other than 0, the zeros of ℘′(nz) are at the points that are in
(C/L)[2n] but not in (C/L)[n]. There are 3n2 such points. Since the num-
ber of zeros equals the number of poles, all of these zeros are simple. The
expansion of ℘′(nz) at z = 0 is

℘′(nz) =
−2

n3z3
+ · · · .

The function f2n/f4
n is easily seen to have the same divisor as ℘′(nz) and

their expansions at z = 0 have the same leading coefficients. Therefore, the
functions are equal.

Finally, we can prove the main result of this section.

THEOREM 9.33
LetE be an elliptic curve over a field of characteristic not 2, let n be a
positive integer,and let(x, y) be a pointon E.Then

n(x, y) =
(

φn

ψ2
n

,
ωn

ψ3
n

)
,

where φn,ψn,and ωn are defined in Section 3.2.

PROOF First, assume E is defined over a field of characteristic 0. As
above, we regard E as being defined over C. We have

(x, y) =
(

℘(z),
1
2
℘′(z)

)
, n(x, y) =

(
℘(nz),

1
2
℘′(nz)

)
for some z. Therefore,

℘(nz) = ℘(z) − fn−1fn+1

f2
n

=
℘f2

n − fn−1fn+1

f2
n

=
xψ2

n − ψn−1ψn+1

ψ2
n

(by Lemma 9.31)

=
φn

ψ2
n

.

This proves the formula for the x-coordinate.
For the y-coordinate, observe that the definition of ωn can be rewritten as

ωn =
1
2

ψ2n

ψn
.
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Therefore, by Lemmas 9.32 and 9.31,

1
2
℘′(nz) =

1
2

ψ2n

ψ4
n

=
ωn

ψ3
n

.

This completes the proof of the theorem when the characteristic of the field
is 0.

Suppose now that E is defined over a field K of arbitrary characteristic
(not 2) by y2 = x3 + Ax + B. Let (x, y) ∈ E(K). Let α, β, and X be three
independent transcendental elements of C and let Y satisfy Y 2 = X3+αX+β.
There is a ring homomorphism

ρ : Z[α, β,X, Y ] −→ K(x, y)

such that

g(α, β,X, Y ) �→ g(A,B, x, y)

for all polynomials g. Let R = Z[α, β,X, Y ] and let Ẽ be the elliptic curve
over R defined by y2 = x3 + αx + β. We want to say that by Corollary 2.33,
ρ induces a homomorphism

ρ : Ẽ(R) −→ E(K(x, y)).

But we need to have R satisfy Conditions (1) and (2) of Section 2.11. The
easiest way to accomplish this is to let M be the kernel of the map R →
K(x, y). Since K(x, y) is a field, M is a maximal ideal of R. Let RM be the
localization of R at M (this means, we invert all elements of R not in M).
Then R ⊆ RM and the map ρ extends to a map

ρ : RM −→ K(x, y).

Since RM is a local ring, and projective modules over local rings are free, it
can be shown that RM satisfies Condition (2). Since we are assuming that
K(x, y) has characteristic not equal to 2, it follows that 2 is not in M, hence
is invertible in RM. Therefore, RM satisfies Condition (1). Now we can apply
Corollary 2.33.

The point n(X,Y ) in Ẽ(RM) is described by the polynomials ψj , φj , and ωj ,
which are polynomials in X,Y with coefficients in Z[α, β]. Applying ρ shows
that these polynomials, regarded as polynomials in x, y with coefficients in K,
describe n(x, y) on E. Therefore, the theorem holds for E.

As an application of the division polynomials, we prove the following result,
which will be used in Chapter 11.

PROPOSITION 9.34
LetE be an elliptic curve overa field K.Letf(x, y) be a function from E to
K ∪ {∞} and letn ≥ 1 be an integernotdivisible by the characteristic ofK.
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Suppose f(P + T ) = f(P ) for allP ∈ E(K) and allT ∈ E[n]. Then there is
a function h on E such thatf(P ) = h(nP ) forallP.

PROOF The case n = 1 is trivial, so we assume n > 1. Let T ∈ E[n].
There are rational functions R(x, y), S(x, y) depending on T such that

(x, y) + T = (R(x, y), S(x, y)).

Let y2 = x3+Ax+B be the equation of E and regard K(x, y) as the quadratic
extension of K(x) given by adjoining

√
x3 + Ax + B. Since (R,S) lies on E,

we have S2 = R3 + AR + B. The map

σT : K(x, y) → K(x, y)
f(x, y) �→ f(R,S)

is a homomorphism from K(x, y) to itself. Since σ−T is the inverse of σT , the
map σT is an automorphism. Because (x, y) + T �= (x, y) + T ′ when T �= T ′,
we have σT (x, y) �= σT ′(x, y) when T �= T ′. Therefore, we have a group of n2

distinct automorphisms σT , where T runs through E[n], acting on K(x, y). A
basic result in Galois theory says that if G is a group of distinct automorphisms
of a field L, then the fixed field F of G satisfies [L : F ] = |G|. Therefore, the
field F of functions f satisfying the conditions of the proposition satisfies

[K(x, y) : F ] = n2. (9.26)

Let n(x, y) = (gn(x), y hn(x)) for rational functions gn, hn. Then

K(gn(x), y hn(x)) ⊆ F. (9.27)

Moreover,

[K(gn(x), y hn(x)) : K(gn(x))] ≥ 2 (9.28)

since clearly y hn(x) �∈ K(gn(x)). Therefore, by (9.26), (9.27), and (9.28),

[K(x, y) : K(gn(x))] ≥ 2n2.

From Theorem 3.6,

gn(x) =
φn

ψ2
n

,

and φn and ψ2
n are polynomials in x. Therefore, X = x is a root of the

polynomial

P (X) = φn(X) − gn(x)ψ2
n(X) ∈ K[gn(x)][X].

By Lemma 3.5,

φn(X) = Xn2
+ · · ·
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and ψ2
n(X) has degree n2 − 1. Therefore,

P (X) = Xn2
+ · · · ,

so x is of degree at most n2 over K(gn(x)). Since

[K(x, y) : K(x)] = 2,

we obtain
[K(x, y) : K(gn(x))] ≤ 2n2.

Combined with the previous inequality from above, we obtain equality, which
means that we had equality in all of our calculations. In particular,

F = K(gn(x), y hn(x)).

The functions in F are those that are invariant under translation by elements
of E[n]. Those on the right are those that are of the form h(n(x, y)). There-
fore, we have proved the proposition.

9.6 The Torsion Subgroup: Doud’s Method

Let E : y2 = x3 + Ax + B be an elliptic curve defined over Z. The Lutz-
Nagell Theorem (Section 8.1) says that if (x, y) ∈ E(Q) is a torsion point,
then either y = 0 or y2|4A3 + 27B2. This allows us to determine the torsion,
as long as we can factor 4A3 + 27B2, and as long as it does not have many
square factors. In this section, we present an algorithm due to Doud [35] that
avoids these difficulties and is usually much faster in practice.

Let p ≥ 11 be a prime not dividing 4A3+27B2. By Theorem 8.9, the kernel
of the map from the torsion of E(Q) to E(Fp) is trivial. Therefore, the order
of the torsion subgroup of E(Q) divides #E(Fp). If we use a few values of
p and take the greatest common divisor of the values of #E(Fp), then we
obtain a value b that is a multiple of the order of the torsion subgroup of
E(Q). We consider divisors n of b, running from largest divisor to smallest,
and look for a point of order n on E (of course, we should look at only the
values of n allowed by Mazur’s theorem).

In order to work analytically, we multiply the equation for E by 4 to obtain
E1 : y2

1 = 4x3 + 4Ax + 4B, with y1 = 2y.
The period lattice for E1 is generated by ω1 and ω2, with ω2 ∈ R. The

points in the fundamental parallelogram corresponding to real x, y under the
map of Theorem 9.10 lie on the line ω2R, and also on the line 1

2ω1 + ω2R
when the cubic polynomial 4x3 +4Ax+4B has 3 real roots. Doubling a point
on the second line yields a point on the first line. Therefore, if n is odd, all
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n-torsion points come from the line ω2R, hence lie in the subgroup generated
by 1

nω2, so ℘( 1
nω2) must be an integer. If n is even and z ∈ C/(Zω1 + Zω2)

has order n, then z generates the same subgroup of C/(Zω1 + Zω2) as one of
1
nω2 or 1

nω2 + 1
2ω1 or 1

nω2 + 1
2ω1 + 1

2ω2. Therefore, if there is a torsion point
of order n, then at least one of these three values of z must yield an integral
value of x = ℘(z).

The strategy is therefore to evaluate

℘(
1
n

ω2) if n is odd or if 4x3 + 4Ax + 4B has only one real root

℘(
1
n

ω2), ℘(
1
n

ω2 +
1
2
ω1), ℘(

1
n

ω2 +
1
2
ω1 +

1
2
ω2)

if n is even and 4x3 + 4Ax + 4B has 3 real roots

for each divisor of b, starting with the largest n. If we find a numerical value
of x that is close to an integer, we test whether y2 = x3 + Ax + B yields
an integral value of y. It can be checked whether or not (x, y) has order n
by computing n(x, y). If so, then (since n is the largest divisor of b not yet
excluded), we have the largest cyclic subgroup of the torsion group. Since
only the 2-torsion can be noncyclic (Corollary 3.13), we need to see only if
there is a point of order 2 not already in the subgroup generated by (x, y).
If n(x, y) �= ∞, we continue with n and smaller divisors that are still allowed
by Mazur’s theorem and the value of b. We thus obtain all torsion points in
E(Q).

The AGM method (Theorem 9.24) calculates ω1 and ω2 quickly. The fol-
lowing allows us to compute ℘.

PROPOSITION 9.35
Letz ∈ C and letu = e2πiz/ω2. Letτ = ω1/ω2 (with the requirem entthatτ
isin the upperhalfplane)and letq = e2πiτ.Then ℘(z) =(

2πi

ω2

)2
(

1
12

+
u

(1 − u)2
+

∞∑
n=1

qn

(
u

(1 − qnu)2
+

u

(qn − u)2
− 2

(1 − qn)2

))
.

PROOF Let f(z) denote the right-hand side of the equation. Since |q| < 1,
it is easy to see that the series defining f(z) converges uniformly on compact
subsets of C that do not contain points in the lattice ω1Z + ω2Z. Therefore,
f(z) is analytic away from these lattice points. Moreover, it has a double pole
at each lattice point. Using the fact that u = 1 + (2πi/ω2)z + · · · , we find
that the Laurent expansion of f(z) around z = 0 starts (1/z2) + · · · .

Since u is invariant under z �→ z + ω2, so is f(z). Changing z to z + ω1

multiplies u by q. A straightforward calculation shows that f is invariant
under u �→ qu. Therefore f is doubly periodic.

The difference f(z)−℘(z) is a doubly periodic function with no poles except
possibly simple poles at the lattice points. By Theorem 9.1, this implies that

© 2008 by Taylor & Francis Group, LLC



304 CHAPTER 9 ELLIPTIC CURVES OVER C

the difference is a constant; call it C. The roots of the cubic polynomial
4T 3 − g2T − g3 are the x-coordinates of the points of order 2, namely ℘(1

2ω1),
℘(1

2ω2), and ℘( 1
2 (ω1 +ω2)). Since there is no T 2 term, the sum of these three

roots is 0. Therefore,

f(
1
2
ω1) + f(

1
2
ω2) + f(

1
2
(ω1 + ω2)) = 3C.

The following lemma shows that C = 0, which yields the proposition.

LEMMA 9.36

f(
1
2
ω1) + f(

1
2
ω2) + f(

1
2
(ω1 + ω2)) = 0.

PROOF The values of u corresponding to the three values of z are

u = −1, u = q1/2, u = q−1/2.

We may divide by the factor (2πi/ω2)2, hence we ignore it. The sum of
the three terms 1/12 yields 1/4, which cancels the value of u/(1 − u)2 when
u = −1. The final term inside the sum defining f(z) is independent of u and
thus yields

−6
∞∑

n=1

qn

(1 − qn)2
. (9.29)

We now consider the remaining terms.
The value u = −1 (substituted into the sum in f) yields

−2
∞∑

n=1

qn

(1 + qn)2
. (9.30)

Combining (9.29) and (9.30) yields

−8
∞∑

n=1

qn + q2n + q3n

(1 − q2n)2
. (9.31)

The value u = q1/2 (substituted into the sum in f) yields (the value of
u/(1 − u)2 at u = q1/2 is included in the first summation)

∞∑
n=0

qn+ 1
2

(1 − qn+ 1
2 )2

+
∞∑

n=1

qn− 1
2

(qn− 1
2 − 1)2

= 2
∞∑

n=1

qn− 1
2

(1 − qn− 1
2 )2

.

(9.32)
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Similarly, the value u = −q1/2 (substituted into the sum in f) yields

−2
∞∑

n=1

qn− 1
2

(1 − qn− 1
2 )2

. (9.33)

Since
qn− 1

2

(1 − qn− 1
2 )2

− qn− 1
2

(1 + qn− 1
2 )2

=
4q2n−1

(1 − q2n−1)2
,

the sum of (9.31), (9.32), (9.33) is

8
∞∑

n=1

(
−qn + q2n + q3n

(1 − q2n)2
+

q2n−1

(1 − q2n−1)2

)
. (9.34)

Differentiating the series for 1/(1 − X) yields the identity

1
(1 − X)2

=
∞∑

m=1

mXm−1.

Substituting X = q2n−1, multiplying by q2n−1, and summing over n yields
∞∑

n=1

q2n−1

(1 − q2n−1)2
=

∞∑
m=0

∞∑
n=1

mq(2n−1)m (9.35)

=
∞∑

N=1

⎛⎝ ∑
d|N, N/d odd

d

⎞⎠ qN . (9.36)

Similarly, we obtain
∞∑

n=1

qn

(1 − q2n)2
=

∞∑
m=0

∞∑
n=1

mqn(2m−1)

=
∞∑

N=1

⎛⎝ ∑
d|N, d odd

d + 1
2

⎞⎠ qN

(9.37)

and
∞∑

n=1

q3n

(1 − q2n)2
=

∞∑
m=0

∞∑
n=1

mqn(2m+1)

=
∞∑

N=1

⎛⎝ ∑
d|N, d odd

d − 1
2

⎞⎠ qN .

(9.38)

Also, the method yields

∞∑
n=1

q2n

(1 − q2n)2
=

∞∑
N=1

⎛⎝ ∑
d|N, N/d even

d

⎞⎠ qN . (9.39)
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Using (9.35), (9.37), (9.38), and (9.39), we find that (9.34) equals

8
∞∑

N=1

⎛⎝ ∑
d|N, N/d odd

d −
∑

d|N, d odd

d −
∑

d|N, N/d even

d

⎞⎠ qN . (9.40)

We claim that for all N ≥ 1,∑
d|N, N/d odd

d −
∑

d|N, d odd

d −
∑

d|N, N/d even

d = 0.

Write N = 2au with a ≥ 0 and u odd. Then∑
d|N, N/d odd

d =
∑
d1|u

2ad1

∑
d|N, d odd

d =
∑
d|u

d

∑
d|N, N/d even

d =
∑

d2|2a−1u

d2.

If a = 0, the last sum is interpreted to be 0. In this case, the claim is easily
seen to be true. If a ≥ 1, then the divisors of 2a−1u are of the form 2jd3 with
0 ≤ j ≤ a − 1 and d3|u. Therefore,∑

d2|2a−1u

d2 =
∑
d3|u

(1 + 2 + 22 + · · · + 2a−1)d3 = (2a − 1)
∑
d3|u

d3.

The claim follows easily. This completes the proof of the lemma.

Since C = 0, the proof of the proposition is complete.

Example 9.3
Consider the curve

E : y2 = x3 − 58347x + 3954150.

We have 4A2 + 27B2 = −372386507784192, which factors as 21831711, al-
though we do not need this factorization. Since 11 divides this number, we
skip 11 and start with p1 = 13. The number of points in E(F13) is 10. The
number of points in E(F17) is also 10. Either of these facts implies that the
number of torsion points in E(Q) divides 10. Using the AGM, we calculate

ω1 = i0.156713 . . . , ω2 = 0.198602 · · · .

This yields τ = i0.78908 · · · and q = 0.0070274 · · · . We calculate

℘(ω2/10) = 2539.82553 . . . ,

© 2008 by Taylor & Francis Group, LLC



EXERCISES 307

which is not close to an integer. However,

℘(ω2/10 +
1
2
ω1) = −213.00000 . . . .

This yields the point
(x, y) = (−213, 2592)

on E. An easy check shows that this is a point of order 10. Since the order of
the torsion subgroup divides 10, we have determined that the torsion in E(Q)
consists of the multiples of (−213, 2592).

Exercises

9.1 (a) Show that d3 ≡ d5 (mod 12) for all integers d.

(b) Show that
5
∑
d|n

d3 + 7
∑
d|n

d5 ≡ 0 (mod 12)

for all positive integers n.

(c) Show that

g2 =
(2π)4

12
(1 + 240X),

where X =
∑∞

n=1 σ3(n)qn.

(d) Show that

g3 =
(2π)6

216
(1 − 504Y ),

where Y =
∑∞

n=1 σ5(n)qn.

(e) Show that

1728(2π)−12Δ = (1 + 240X)3 − (1 − 504Y )2. (9.41)

(f) Show that the right side of (9.41) is congruent to 144(5X + 7Y )
mod 1728.

(g) Conclude that (2π)−12Δ =
∑∞

n=0 dnqn, with dn ∈ Z.

(h) Compute enough coefficients to obtain that

(2π)−12Δ = q(1 +
∞∑

n=1

enqn)

with en ∈ Z.
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(i) Show that (2π)12/Δ = q−1
∑∞

n=0 fnqn with fn ∈ Z.

(j) Show that

j =
1
q

+
∞∑

n=0

cnqn

with cn ∈ Z.

9.2 Let Mi =
(

ai bi

ci di

)
∈ SL2(Z) for i = 1, 2, 3 with M2M1 = M3. Let

τ1 ∈ F . Let

τ2 =
a1τ1 + b1

c1τ1 + d1
, τ3 =

a2τ2 + b2

c2τ2 + d2
.

Show that
τ3 =

a3τ1 + b3

c3τ1 + d3
.

9.3 Let k ≥ 0 be an integer. Let f be a meromorphic function on the upper
half plane such that f has a q-expansion at i∞ (as in Equation (9.15))
and such that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

for all τ ∈ H and for all
(

a b
c d

)
∈ SL2(Z). Show that

ordi∞(f) +
1
3
ordρ(f) +

1
2
ordi(f) +

∑
z �=i,ρ,i∞

ordz(f) =
k

12
.

9.4 The stabilizer in SL2(Z) of a point z ∈ H is the set of matrices
(

a b
c d

)
such that (az + b)/(cz + d) = z.

(a) Show that the stabilizer of i has order 4.

(b) Show that the stabilizer of ρ has order 6.

(c) Show that the stabilizer of i∞ consists of the matrices of the form

±
(

1 b
0 1

)
with b ∈ Z.

(d) Show that the stabilizer of each z ∈ H has order at least 2.

It can be shown that the stabilizer of each element in the fundamental
domain F has order 2 except for i and ρ.

9.5 Let E : y2 = 4x3 + Ax + B, with A,B ∈ R be an elliptic curve defined
over R. We know by Theorem 9.21 that E(C) � C/L for some lattice
L. The goal of this exercise is to show that L has one of the two shapes
given in part (i) below.
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(a) Let τ ∈ F . Show that j(τ) = j(−τ).

(b) Show that if τ is in the fundamental domain F , then either −τ ∈ F ,
or �(τ) = −1/2, or |τ | = 1 with −1/2 ≤ �(τ) ≤ 0.

(c) Suppose that τ ∈ F and that j(τ) ∈ R. Show that �(τ) = 0,
or �(τ) = −1/2, or |τ | = 1 with −1/2 ≤ �(τ) ≤ 0 (Hint: Use
Corollary 9.18.)

(d) Let τ ∈ H. Show that if |τ | = 1 then �(−1/(τ + 1)) = −1/2.

(e) Let L be a lattice with g2(L) = −A and g3(L) = −B. Show
that there exists τ ′ ∈ H such that �(τ ′) = 0 or −1/2 and j(L) =
j(Zτ ′ + z).

(f) Show that if τ ∈ H is such that �(τ) = 0 or −1/2, then we have
g2(τ), g3(τ) ∈ R.

(g) By Corollary 9.20, there exists λ ∈ C such that L = (λ)(Zτ ′ + Z).
Show that if j �= 0, 1728 then λ2 ∈ R. (Hint: Use Equations
(9.14).)
This shows that L is obtained from the lattice Zτ ′ + Z by an ex-
pansion by |λ| and a rotation by 0, 90◦, 180◦, or 270◦.

(h) Let 0 �= y ∈ R. Let M be the lattice ( 1
2 + iy)Z+Z. Show that iM

has {y + 1
2 i, 2y} as a basis.

(i) Assume that j �= 0, 1728. Show that L has a basis {ω1, ω2} with
ω2 ∈ R and �(ω1) = 0 or 1

2ω2. Therefore, the lattice L is either
rectangular or a special shape of parallelogram.

(j) Use the facts that j(ρ) = 0 and j(i) = 1728 to prove (i) in the
cases that j(E) = 0 and j(E) = 1728. (The condition that λ2 ∈ R
gets replaced by λ6 ∈ R and λ4 ∈ R, respectively. However, the
lattices for τ = ρ and τ = i have extra symmetries.)

9.6 Let L be a lattice that is stable under complex conjugation (that is, if
ω ∈ L then ω ∈ L). This is the same as requiring that the elliptic curve
associated to L is defined over R (see Exercise 9.5).

(a) Show that ℘(z) = ℘(z).

(b) Show that if t ∈ R and if ω2 ∈ R is a real period, then

℘

(
1
2
ω2 + it

)
∈ R.

(Hint: Use (a), the periodicity of ℘, and the fact that ℘(−z) =
℘(z).)

(c) Differentiate the result of (b) to show that ℘′(z) ∈ iR for the
points 1

2ω2 + it in (b). This path, for 0 ≤ t ≤ ω1, corresponds to
x moving along the x-axis between the two parts of the graph in
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Figure 2.1(a) on page 10. The points don’t appear on the graph
because y is imaginary. For the curve in Figure 2.1(b) on page 10, x
moves to the left along the x-axis, from the point on the x-axis back
to the point at infinity, corresponding to the fact that ω1 = 1

2ω2+it
for appropriate t (see Exercise 9.5).

9.7 Define the elliptic integral of the second kind to be

E(k) =
∫ 1

0

√
1 − k2x2

√
1 − x2

dx, −1 < k < 1.

(a) Show that

E(k) =
∫ π/2

0

(1 − k2 sin2 θ)1/2 dθ.

(b) Show that the arc length of the ellipse

x2

a2
+

y2

b2
= 1

with b ≥ a > 0 equals 4bE(
√

1 − (a/b)2).

This connection with ellipses is the origin of the name “elliptic inte-
gral.” The relation between elliptic integrals and elliptic curves, as in
Section 9.4, is the origin of the name “elliptic curve.” For more on
elliptic integrals, see [78].

9.8 Let E be the elliptic curve y2 = 4x3 − 4x. Show that

ω2 =
∫ ∞

1

dx√
x(x2 − 1)

=
1
2

∫ 1

0

t−3/4(1 − t)−1/2 dt = β(1/4, 1/2),

where β(p, q) =
∫ 1

0
tp−1(1 − t)q−1 dt is the beta function. A classical

result says that

β(p, q) =
Γ(p)Γ(q)
Γ(p + q)

.

Therefore,

ω2 =
1
2

Γ(1/4)Γ(1/2)
Γ(3/4)

.
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Chapter 10
Complex Multiplication

The endomorphisms of an elliptic curve E always include multiplication by
arbitrary integers. When the endomorphism ring of E is strictly larger than Z,
we say that E has complex multiplication. As we’ll see, elliptic curves over
C with complex multiplication correspond to lattices with extra symmetry.
Over finite fields, all elliptic curves have complex multiplication, and often the
Frobenius provides one of the additional endomorphisms. In general, elliptic
curves with complex multiplication form an interesting and important class
of elliptic curves, partly because of their extra structure and partly because
of their frequent occurrence.

10.1 Elliptic Curves over C

Consider the elliptic curve E given by y2 = 4x3 − 4x over C. As we saw
in Section 9.4, E corresponds to the torus C/L, where L = Zω + Ziω, for
a certain ω ∈ R. Since L is a square lattice, it has extra symmetries. For
example, rotation by 90◦ sends L into itself. This can be expressed by saying
that iL = L. Using the definition of the Weierstrass ℘-function, we easily see
that

℘(iz) =
1

(iz)2
+
∑
ω �=0

(
1

(iz − ω)2
− 1

ω2

)

=
1

(iz)2
+

∑
iω �=0

(
1

(iz − iω)2
− 1

(iω)2

)
= −℘(z).

Differentiation yields
℘′(iz) = i℘′(z).

On the elliptic curve E, we obtain the endomorphism given by

i(x, y) = (−x, iy).

311
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312 CHAPTER 10 COMPLEX MULTIPLICATION

Therefore, the map
z �→ iz

gives a map

(x, y) = (℘(z), ℘′(z)) �→ (℘(iz), ℘′(iz)) = (−x, iy).

This is a homomorphism from E(C) to E(C) and it is clearly given by rational
functions. Therefore, it is an endomorphism of E, as in Section 2.9. Let

Z[i] = {a + bi | a, b ∈ Z}.
Then Z[i] is a ring, and multiplication by elements of Z[i] sends L into it-
self. Correspondingly, if a + bi ∈ Z[i] and (x, y) ∈ E(C), then we obtain an
endomorphism of E defined by

(x, y) �→ (a + bi)(x, y) = a(x, y) + b(−x, iy).

Since multiplication by a and b can be expressed by rational functions, mul-
tiplication of points by a + bi is an endomorphism of E, as in Section 2.9.
Therefore,

Z[i] ⊆ End(E),

where End(E) denotes the ring of endomorphisms of E. (We’ll show later
that this is an equality.) Therefore, End(E) is strictly larger than Z, so E
has complex multiplication. Just as Z[i] is the motivating example for a lot
of ring theory, so is E the prototypical example for complex multiplication.

We now consider endomorphism rings of arbitrary elliptic curves over C.
Let E be an elliptic curve over C, corresponding to the lattice

L = Zω1 + Zω2.

Let α be an endomorphism of E. Recall that this means that α is a homo-
morphism from E(C) to E(C), and that α is given by rational functions:

α(x, y) = (R(x), yS(x))

for rational functions R,S. The map

Φ : C/L → E(C), Φ(z) = (℘(z), ℘′(z))

(see Theorem 9.10) is an isomorphism of groups. The map

α̃(z) = Φ−1(α(Φ(z)))

is therefore a homomorphism from C/L to C/L. If we restrict to a sufficiently
small neighborhood U of z = 0, we obtain an analytic map from U to C such
that

α̃(z1 + z2) ≡ α̃(z1) + α̃(z2) (mod L)
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for all z1, z2 ∈ U . By subtracting an appropriate element of L, we may
assume that α̃(0) = 0. By continuity, α̃(z) is near 0 when z is near 0. If U is
sufficiently small, we may therefore assume that

α̃(z1 + z2) = α̃(z1) + α̃(z2)

for all z1, z2 ∈ U (since both sides are near 0, they can differ only by the
element 0 ∈ L). Therefore, for z ∈ U , we have

α̃′(z) = lim
h→0

α̃(z + h) − α̃(z)
h

= lim
h→0

α̃(z) + α̃(h) − α̃(z)
h

= lim
h→0

α̃(h) − α̃(0)
h

= α̃′(0).

Let β = α̃′(0). Since α̃′(z) = β for all z ∈ U , we must have

α̃(z) = βz

for all z ∈ U .
Now let z ∈ C be arbitrary. There exists an integer n such that z/n ∈ U .

Therefore,
α̃(z) ≡ nα̃(z/n) = n(βz/n) = βz (mod L),

so the endomorphism α̃ is given by multiplication by β. Since α̃(L) ⊆ L, it
follows that

βL ⊆ L.

We have proved half of the following.

THEOREM 10.1
LetE be an elliptic curve overC corresponding to the lattice L.Then

End(E) � {β ∈ C |βL ⊆ L}.

PROOF We have shown that all endomorphisms are given by numbers
β. We need to show that all such β’s give endomorphisms. Suppose β ∈ C
satisfies βL ⊆ L. Then multiplication by β gives a homomorphism

β : C/L → C/L.

We need to show that the corresponding map on E is given by rational func-
tions in x, y.

The functions ℘(βz) and ℘′(βz) are doubly periodic with respect to L, since
βL ⊆ L. By Theorem 9.3, there are rational functions R and S such that

℘(βz) = R(℘(z)), ℘′(βz) = ℘′(z)S(℘(z)).
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Therefore, multiplication by β on C/L corresponds to the map

(x, y) �→ (R(x), yS(x))

on E. This is precisely the statement that β induces an endomorphism of E.

Theorem 10.1 imposes rather severe restrictions on the endomorphism ring
of E. We’ll show below that End(E) is either Z or an order in an imaginary
quadratic field. First, we need to say what this means. We’ll omit the proofs
of the following facts, which can be found in many books on algebraic number
theory. Let d > 0 be a squarefree integer and let

K = Q(
√−d) = {a + b

√−d | a, b ∈ Q}.
Then K is called an imaginary quadratic field. The largest subring of K
that is also a finitely generated abelian group is

OK =

⎧⎪⎨⎪⎩
Z
[

1+
√−d
2

]
if d ≡ 3 (mod 4)

Z
[√−d

]
if d ≡ 1, 2 (mod 4),

where, in these two cases, Z[δ] = {a+bδ | a, b ∈ Z}. An order in an imaginary
quadratic field is a ring R such that Z ⊂ R ⊆ OK and Z �= R. Such an order
is a finitely generated abelian group and has the form

R = Z + Zfδ,

where f > 0 and where δ = (1 +
√−d)/2 or

√−d, corresponding respectively
to the two cases given above. The integer f is called the conductor of R and
is the index of R in OK . The discriminant of R is

DR =
{−f2d if d ≡ 3 (mod 4)
−4f2d if d ≡ 1, 2 (mod 4).

It is the discriminant of the quadratic polynomial satisfied by fδ.
A complex number β is an algebraic integer if it is a root of a monic

polynomial with integer coefficients. The only algebraic integers in Q are the
elements of Z. If β is an algebraic integer in a quadratic field, then there are
integers b, c such that β2 + bβ + c = 0. The set of algebraic integers in an
imaginary quadratic field K is precisely the ring OK defined above. An order
is therefore a subring (not equal to Z) of the ring of algebraic integers in K.
If β ∈ C is an algebraic number (that is, a root of a polynomial with rational
coefficients), then there is an integer u �= 0 such that uβ is an algebraic integer.

THEOREM 10.2
LetE be an elliptic curve overC. Then End(E) is isom orphic either to Z
orto an order in an im aginary quadratic field.
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PROOF Let L = Zω1 + Zω2 be the lattice corresponding to E, and let

R = {β ∈ C |βL ⊆ L}.
It is easy to see that Z ⊆ R and that R is closed under addition, subtraction,
and multiplication. Therefore, R is a ring. Suppose β ∈ R. There exist
integers j, k,m, n such that

βω1 = jω1 + kω2, βω2 = mω1 + nω2.

Then (
β − j −k
−m β − n

)(
ω1

ω2

)
= 0,

so the determinant of the matrix is 0. This implies that

β2 − (j + n)β + (jn − km) = 0.

Since j, k,m, n are integers, this means that β is an algebraic integer, and
that β lies in some quadratic field K.

Suppose β ∈ R. Then (β − j)ω1 − kω2 = 0 gives a dependence relation
between ω1 and ω2 with real coefficients. Since ω1 and ω2 are linearly inde-
pendent over R, we have β = j ∈ Z. Therefore, R ∩ R = Z.

Suppose now that R �= Z. Let β ∈ R with β �∈ Z. Then β is an algebraic
integer in a quadratic field K. Since β �∈ R, the field K must be imaginary
quadratic, say K = Q(

√−d). Let β′ �∈ Z be another element of R. Then
β′ ∈ K ′ = Q(

√−d′) for some d′. Since β + β′ also must lie in a quadratic
field, it follows (see Exercise 10.1) that K = K ′. Therefore, R ⊂ K, and since
all elements of R are algebraic integers, we have

R ⊆ OK .

Therefore, if R �= Z, then R is an order in an imaginary quadratic field.

Example 10.1
Let E be y2 = 4x3 − 4x. We showed at the beginning of this section that
Z[i] ⊆ End(E). Since End(E) is an order in Q(i) and every such order is
contained in the ring Z[i] of algebraic integers in Q(i), we must have

End(E) = Z[i].

Suppose from now on that E has complex multiplication, which means that
R = End(E) is an order in an imaginary quadratic field K. Rescaling L does
not change R, so we may consider

ω−1
2 L = Z + Zτ,
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with τ ∈ H = {z ∈ C | �(z) > 0}. Let β ∈ R with β �∈ Z. Since 1 ∈ ω−1
2 L, we

have β · 1 = m · 1 + nτ with m,n ∈ Z and n �= 0. Therefore,

τ = (β − m)/n ∈ K. (10.1)

Let u be an integer such that uτ ∈ R. Such an integer exists since τ multiplied
by n is in OK , and R is of finite index in OK . Then

L′ = uω−1
2 L = Zu + Zuτ ⊆ R.

Then L′ is a nonempty subset of R that is closed under addition and sub-
traction, and is closed under multiplication by elements of R (since L′ is a
rescaling of L). This is exactly what it means for L′ to be an ideal of R. We
have proved the first half of the following.

PROPOSITION 10.3
LetR be an order in an im aginary quadratic field. LetL be a lattice such
thatR = End(C/L). Then there exists γ ∈ C× such thatγL is an idealof
R. Conversely,ifL isa subsetofC and γ ∈ C× issuch thatγL isan ideal
ofR,then L isa lattice and R ⊆ End(C/L).

PROOF By End(C/L), we mean End(E), where E is the elliptic curve
corresponding to L under Theorem 9.10.

We proved the first half of the proposition above. For the converse, assume
that γL is an ideal of R. Let 0 �= x ∈ γL. Then

Rx ⊆ γL ⊆ R.

Since R and therefore also Rx are abelian groups of rank 2 (that is, isomorphic
to Z⊕Z), the same must be true for γL. This means that there exist ω′

1, ω
′
2 ∈ L

such that
γL = γZω′

1 + γZω′
2.

Since R contains two elements linearly independent over R, so does Rx, and
therefore so does L. It follows that ω′

1 and ω′
2 are linearly independent over

R. Therefore, L = Zω′
1 + Zω′

2 is a lattice. Since γL is an ideal of R, we have
RγL ⊆ γL, and therefore RL ⊆ L. Therefore R ⊆ End(C/L).

Note that sometimes R is not all of End(C/L). For example, suppose
R = Z[2i] = {a + 2bi | a, b ∈ Z} and let L = Z[i]. Then R is an order in Q(i)
and RL ⊆ L, but End(C/L) = Z[i] �= R.

We say that two lattices L1, L2 are homothetic if there exists γ ∈ C×

such that γL1 = L2. We say that two ideals I1, I2 of R are equivalent if there
exists λ ∈ K× such that λI1 = I2. Regard I1 and I2 as lattices, and suppose
I1 and I2 are homothetic. Then γI1 = I2 for some γ. Choose any x �= 0 in I1.
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Then γx ∈ I2 ⊂ K, so γ ∈ K. It follows that I1 and I2 are equivalent ideals.
Therefore, we have a bijection

Homothety classes of lattices L
with RL ⊆ L

←→ Equivalence classes of
nonzero ideals of R

It can be shown that the set of equivalence classes of ideals is finite (when
R = OK , this is just the finiteness of the class number). Therefore, the set of
homothety classes is finite. This observation has the following consequence.

PROPOSITION 10.4
LetR be an orderin an im aginary quadratic field and letL be a lattice such
thatRL ⊆ L.Then j(L) isalgebraic overQ.

PROOF Let E be the elliptic curve corresponding to L. We may assume
that E is given by an equation y2 = 4x3−g2x−g3. Let σ be an automorphism
of C. Let Eσ be the curve y2 = 4x3−σ(g2)x−σ(g3). If α is an endomorphism
of E, then ασ is an endomorphism of Eσ, where ασ means applying σ to all
of the coefficients of the rational functions describing α. This implies that

End(E) � End(Eσ).

Therefore, the lattice corresponding to Eσ belongs to one of the finitely many
homothety classes of lattices containing R in their endomorphism rings (there
is a technicality here; see Exercise 10.2). Since σ(j(L)) is the j-invariant
of Eσ, we conclude that j(L) has only finitely many possible images under
automorphisms of C. This implies (see Appendix C) that j(L) is algebraic
over Q.

In Section 10.3, we’ll prove the stronger result that j(L) is an algebraic
integer.

COROLLARY 10.5
LetK be an im aginary quadratic field.

1. Letτ ∈ H.Then C/(Zτ +Z) hascom plex m ultiplication by som e order
in K ifand only ifτ ∈ K.

2. Ifτ ∈ H iscontained in K,then j(τ) isalgebraic.

PROOF We have already shown (see (10.1)) that if there is complex mul-
tiplication by an order in K then τ ∈ K. Conversely, suppose τ ∈ K. Then
τ satisfies a relation

aτ2 + bτ + c,
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where a, b, c are integers and a �= 0. It follows that multiplication by aτ maps
the lattice Lτ = Zτ + Z into itself (for example, aτ · τ = −bτ − c ∈ Lτ ).
Therefore, C/Lτ has complex multiplication. This proves (1).

Suppose τ ∈ K. Let R be the endomorphism ring of C/Lτ . By (1), R �= Z,
so R is an order in K. By Proposition 10.4, j(τ) is algebraic. This proves (2).

10.2 Elliptic Curves over Finite Fields

An elliptic curve E over a finite field Fq always has complex multiplication.
In most cases, this is easy to see. The Frobenius endomorphism φq is a root
of

X2 − aX + q = 0,

where |a| ≤ 2
√

q. If |a| < 2
√

q, then this polynomial has only complex roots,
so φq �∈ Z. Therefore,

Z �= Z[φq] ⊆ End(E).

When a = ±2
√

q, the ring of endomorphisms is still larger than Z, so there
is complex multiplication in this case, too. In fact, as we’ll discuss below, the
endomorphism ring is an order in a quaternion algebra, hence is larger than
an order in a quadratic field.

Recall the Hamiltonian quaternions

H = {a + bi + cj + dk | a, b, c, d ∈ Q},
where i2 = j2 = k2 = −1 and ij = k = −ji. This is a noncommutative
ring in which every nonzero element has a multiplicative inverse. If we allow
the coefficients a, b, c, d to be real numbers or 2-adic numbers, then we still
obtain a ring where every nonzero element has an inverse. However, if a, b, c, d
are allowed to be p-adic numbers (see Appendix A), where p is an odd prime,
then the ring contains nonzero elements whose product is 0 (see Exercise 10.4).
Such elements cannot have inverses. Corresponding to whether there are zero
divisors or not, we say that H is split at all odd primes and is ramified at
2 and ∞ (this use of ∞ is the common way to speak about the real numbers
when simultaneously discussing p-adic numbers; see Section 8.8).

In general, a definite quaternion algebra is a ring of the form

Q = {a + bα + cβ + dαβ | a, b, c, d ∈ Q},
where

α2, β2 ∈ Q, α2 < 0, β2 < 0, βα = −αβ

(“definite” refers to the requirement that α2 < 0 and β2 < 0). In such a ring,
every nonzero element has a multiplicative inverse (see Exercise 10.5). If this
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is still the case when we allow p-adic coefficients for some p ≤ ∞, then we say
that the quaternion algebra is ramified at p. Otherwise, it is split at p.

A maximal order O in a quaternion algebra Q is a subring of Q that is
finitely generated as an additive abelian group, and such that if R is a ring
with O ⊆ R ⊆ Q and such that R is finitely generated as an additive abelian
group, then O = R. For example, consider the Hamiltonian quaternions H.
The subring Z + Zi + Zj + Zk is finitely generated as an additive abelian
group, but it is not a maximal order since it is contained in

O = Z + Zi + Zj + Z
1 + i + j + k

2
. (10.2)

It is not hard to show that O is a ring, and it can be shown that it is a
maximal order of H.

The main theorem on endomorphism rings is the following. For a proof, see
[33].

THEOREM 10.6

LetE be an elliptic curve overa finite field ofcharacteristic p.

1. IfE is ordinary (thatis,#E[p] = p),then End(E) is an order in an
im aginary quadratic field.

2. IfE is supersingular (thatis,#E[p] = 1),then End(E) is a m axim al
order in a definite quaternion algebra thatis ram ified atp and ∞ and
issplitatthe otherprim es.

If E is an elliptic curve defined over Q and p is a prime where E has good
reduction, then it can be shown that End(E) injects into End(E mod p).
Therefore, if E has complex multiplication by an order R in an imaginary
quadratic field, then the endomorphism ring of E mod p contains R. If E
mod p is ordinary, then R is of finite index in the endomorphism ring of
E mod p. However, if E mod p is supersingular, then there are many more
endomorphisms, since the endomorphism ring is noncommutative in this case.
The following result shows how to decide when E mod p is ordinary and when
it is supersingular.

THEOREM 10.7

LetE be an elliptic curve defined overQ with good reduction atp. Suppose
E hascom plex m ultiplication by an order in Q(

√−D). If−D is divisible by
p,or if−D is nota square m od p,then E m od p is supersingular. If−D is
a nonzero square m od p,then E m od p isordinary.

For a proof, see [70, p. 182].
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Example 10.2
Let E be the elliptic curve y2 = x3 − x. It has good reduction for all primes
p �= 2. The endomorphism ring R of E is Z[i], where

i(x, y) = (−x, iy)

(see Section 10.1). This endomorphism ring is contained in Q(
√−4), where

we use −D = −4 since it is the discriminant of R. We know that −4 is a
square mod an odd prime p if and only if p ≡ 1 (mod 4). Therefore, E mod
p is ordinary if and only if p ≡ 1 (mod 4). This is exactly what we obtained
in Proposition 4.37.

When p ≡ 3 (mod 4), it is easy to see that the endomorphism ring of E
mod p is noncommutative. Since ip = −i, we have

φp(i(x, y)) = φp(−x, iy) = (−xp,−iyp),

and
i(φp(x, y)) = i(xp, yp) = (−xp, iyp).

Therefore,
iφp = −φpi,

so i and φp do not commute.

The following result, known as Deuring’s Lifting Theorem, shows that
the method given in Theorem 10.7 for obtaining ordinary elliptic curves mod
p with complex multiplication is essentially the only way. Namely, it implies
that an elliptic curve with complex multiplication over a finite field can be
obtained by reducing an elliptic curve with complex multiplication in charac-
teristic zero.

THEOREM 10.8
LetE be an elliptic curve defined over a finite field and letα be an endo-
m orphism ofE. Then there exists an elliptic curve Ẽ defined over a finite
extension K ofQ and an endom orphism α̃ ofẼ such thatE isthe reduction
of Ẽ m od som e prim e idealofthe ring ofalgebraic integers ofK and the
reduction ofα̃ isα.

For a proof in the ordinary case, see [70, p. 184].
It is not possible to extend the theorem to lifting two arbitrary endomor-

phisms simultaneously. For example, the endomorphisms i and φp in the
above example cannot be simultaneously lifted to characteristic 0 since they
do not commute. All endomorphism rings in characteristic 0 are commutative.

Finally, we give an example of a supersingular curve in characteristic 2. In
particular, we’ll show how to identify the maximal order of H in the endo-
morphism ring.
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Example 10.3
Let E be the elliptic curve defined over F2 by

y2 + y = x3.

An easy calculation shows that E(F2) consists of 3 points, so

a = 2 + 1 − #E(F2) = 2 + 1 − 3 = 0.

Therefore, E is supersingular and the Frobenius endomorphism φ2 satisfies

φ2
2 + 2 = 0.

If (x, y) ∈ E(F2), then

2(x, y) = −φ2
2(x, y) = −(x4, y4) = (x4, y4 + 1),

since negation on E is given by

−(x, y) = (x, y + 1).

By Theorem 10.6, the endomorphism ring is a maximal order in a quaternion
algebra ramified at only 2 and ∞. We gave such a maximal order in (10.2)
above. Let’s start by finding endomorphisms corresponding to i, j,k. Let
ω ∈ F4 satisfy

ω2 + ω + 1 = 0.

Define endomorphisms i, j,k by

i(x, y) = (x + 1, y + x + ω)
j(x, y) = (x + ω, y + ω2x + ω)
k(x, y) = (x + ω2, y + ωx + ω).

An easy calculation shows that

i(j(x, y)) = k(x, y), j(i(x, y)) = −k(x, y)

and that
i2 = k2 = k2 = −1.

A straightforward calculation yields

(1 + i + j + k)(x, y) = (ωx4, y4) = φ2
2(ωx, y) = −2(ω(x, y)),

where ω is used to denote the endomorphism (x, y) �→ (ωx, y). Therefore,

1 + i + j + k
2

= −ω ∈ End(E).

It follows that

Z + Zi + Zj + Z
1 + i + j + k

2
⊆ End(E).

In fact, by Theorem 10.6, this is the whole endomorphism ring.
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10.3 Integrality of j-invariants

At the end of Section 10.1, we showed that the j-invariant of a lattice,
or of a complex elliptic curve, with complex multiplication by an order in an
imaginary quadratic field is algebraic over Q. This means that the j-invariant
is a root of a polynomial with rational coefficients. In the present section, we
show that this j-invariant is an algebraic integer, so it is a root of a monic
polynomial with integer coefficients.

THEOREM 10.9
LetR be an orderin an im aginary quadratic field and letL be a lattice with

RL ⊆ L.Then j(L) isan algebraic integer.Equivalently,letE be an elliptic
curve overC with com plex m ultiplication.Then j(E) isan algebraic integer.

The proof of the theorem will occupy the remainder of this section. The
theorem has an amusing consequence. The ring R = Z

[
1+

√−163
2

]
is a prin-

cipal ideal domain (see [16]), so there is only one equivalence class of ideals
of R, namely the one represented by R. The proof of Proposition 10.4 shows
that all automorphisms of C must fix j(R), where R is regarded as a lattice.
Therefore, j(R) ∈ Q. The only algebraic integers in Q are the elements of Z,
so j(R) ∈ Z. Recall that j(τ) is the j-invariant of the lattice Zτ +Z, and that

j(τ) =
1
q

+ 744 + 196884q + 21493760q2 + · · · ,

where q = e2πiτ . When τ = 1+
√−163
2 , we have R = Zτ + Z and

q = −e−π
√

163.

Therefore,

−eπ
√

163 + 744 − 196884e−π
√

163 + 21493760e−2π
√

163 + · · · ∈ Z.

Since
196884e−π

√
163 − 21493760e−2π

√
163 + · · · < 10−12,

we find that eπ
√

163 differs from an integer by less than 10−12. In fact,

eπ
√

163 = 262537412640768743.999999999999250 . . . ,

as predicted. In the days when high precision calculation was not widely
available, it was often claimed as a joke that eπ

√
163 was an integer. Any

calculation with up to 30 places of accuracy seemed to indicate that this was
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the case. This was in contradiction to the Gelfond-Schneider theorem, which
implies that such a number must be transcendental.

We now start the proof of the theorem. If L = Zω1 + Zω2 is a lattice, we
may divide by ω2 and thus assume that

L = Zτ + Z,

with τ ∈ H. If β ∈ R, then βL ⊆ L implies that there exist integers j, k,m, n
with

β

(
τ
1

)
=
(

j k
m n

)(
τ
1

)
.

Let N = jn−km be the determinant of the matrix. Rather than concentrating
only on β, it is convenient to consider all 2 × 2 matrices with determinant N
simultaneously.

LEMMA 10.10
LetN be a positive integer and letSN be the setofm atricesofthe form(

a b
0 d

)
with a, b, d ∈ Z,ad = N,and 0 ≤ b < d. IfM isa 2 × 2 m atrix with integer
entriesand determ inantN,then there isa unique m atrix S ∈ SN such that

MS−1 ∈ SL2(Z).

In otherwords,ifwesay thattwo m atricesM1,M2 areleftSL2(Z)-equivalent
when there exists a m atrix X ∈ SL2(Z) with XM1 = M2,then SN contains
exactly one elem entin each equivalence classofthe setofintegerm atricesof
determ inantN.

PROOF Let
(

p q
r s

)
be an integer matrix with determinant N . Write

−p

r
=

x

y

with gcd(x, y) = 1. There exist w, z ∈ Z such that xz − wy = 1. Then(
z w
y x

)
∈ SL2(Z)

and (
z w
y x

)(
p q
r s

)
=
(∗ ∗

0 ∗
)

.
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Therefore, we may assume at the start that r = 0, and hence ps = N . By

multiplying by
(−1 0

0 −1

)
if necessary, we may also assume that s > 0. Choose

t ∈ Z such that
0 ≤ q + ts < s.

Then (
1 t
0 1

)(
p q
0 s

)
=
(

p q + ts
0 s

)
∈ SN .

Therefore, the elements of SN represent all SL2(Z)-equivalence classes for
matrices of determinant N .

For the uniqueness, suppose that Mi =
(

ai bi

0 di

)
∈ SN for i = 1, 2 are left

SL2(Z)-equivalent. Then,(
a1/a2 (b1a2 − a1b2)/N

0 d1/d2

)
=
(

a1 b1

0 d1

)(
a2 b2

0 d2

)−1

∈ SL2(Z).

Therefore, a1/a2 and d1/d2 are positive integers with product equal to 1, so
they are both equal to 1. Consequently, a1 = a2 and d1 = d2. This implies
that

b1a2 − a1b2

N
=

b1a1 − a1b2

a1d1
=

b1 − b2

d1
.

Since this must be an integer (because the matrix is in SL2(Z)), we have

b1 ≡ b2 (mod d1).

Since 0 ≤ b1, b2 < d1 = d2, we have b1 = b2. Therefore, M1 = M2. This
proves the uniqueness.

For S =
(

a b
0 d

)
∈ SN , the function

(j ◦ S)(τ) = j

(
aτ + b

d

)
is analytic in H. Define

FN (X, τ) =
∏

S∈SN

(X − (j ◦ S)(τ)) =
∑

k

ak(τ)Xk,

so FN is a polynomial in the variable X with coefficients ak(τ) that are ana-
lytic functions for τ ∈ H.

LEMMA 10.11
ak(Mτ) = ak(τ) forallM ∈ SL2(Z).
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PROOF If S ∈ SN , then SM has determinant N , so there exists AS ∈
SL2(Z) and a uniquely determined MS ∈ SN such that ASMS = SM . If
S1, S2 ∈ SN and MS1 = MS2 , then

A−1
S1

S1M = MS1 = MS2 = A−1
S2

S2M,

which implies that AS2A
−1
S1

S1 = S2. By the uniqueness part of Lemma 10.10,
S1 = S2. Therefore, the map S �→ MS is an injection on the finite set SN ,
hence is a permutation of the set. Since j ◦ A = j for A ∈ SL2(Z), we have

FN (X,Mτ) =
∏

S∈SN

(X − j(SMτ))

=
∏

S∈SN

(X − j(ASMSτ))

=
∏

S∈SN

(X − j(MSτ))

=
∏

S∈SN

(X − j(Sτ))

= FN (X, τ).

The next to last equality expresses the fact that S �→ MS is a permutation of
SN , hence does not change the product over all of SN .

Since FN is invariant under τ �→ Mτ , the same must hold for its coefficients
ak(τ).

LEMMA 10.12
Foreach k,there existsan integer n such that

ak(τ) ∈ q−nZ[[q]],

whereZ[[q]] denotespowerseriesin q with integercoe cients.In otherwords,
ak(τ) can be expressed as a Laurentseries with only finitely m any negative
term s,and the coe cientsare integers.

PROOF The j-function has the expansion

j(τ) =
1
q

+ 744 + 196884q + · · · =
∞∑

k=−1

ckqk = P (q),

where the coefficients ck are integers (see Exercise 9.1). Therefore,

j((aτ + b)/d) =
∞∑

k=−1

ck(ζbe2πiaτ/d)k = P (ζbe2πiaτ/d),
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where ζ = e2πi/d. Fix a and d with ad = N .

CLAIM 10.13
d−1∏
b=0

(X − P (ζbe2πiaτ/d)) =
d∑

k=0

pk(e2πiaτ/d)Xk

isa polynom ialin X whose coe cientspk are Laurentseriesin e2πiaτ/d with
integer coe cients.

In the statement of the claim and in the following, a Laurent series will
always be one with only finitely many negative terms (in other words, a power
series plus finitely many terms with negative exponents). Everything in the
claim is obvious except the fact that the coefficients of the Laurent series pk

are integers. One proof of this is as follows. The coefficients of each pk lie in
Z[ζ]. The Galois group of Q(ζ)/Q permutes the factors of the product, hence
leaves the coefficients of pk unchanged. Therefore, they are in Q. But the
elements of Z[ζ] ∩Q are algebraic integers in Q, hence are in Z. This proves
the claim.

For a proof of the claim that does not use Galois theory, consider the matrix

Z =

⎛⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

⎞⎟⎟⎟⎠ .

Let 0 ≤ b < d and let

vb =

⎛⎜⎜⎜⎜⎜⎝
1
ζb

ζ2b

...
ζb(d−1)

⎞⎟⎟⎟⎟⎟⎠ .

Then Zvb = ζbvb. It follows that

P (e2πiaτ/dZ)vb = P (ζbe2πiaτ/d)vb.

Therefore, the numbers P (ζbe2πiaτ/d), for 0 ≤ b < d, are a complete set of
eigenvalues for the d×d matrix P (e2πiaτ/dZ), so the characteristic polynomial
is

d−1∏
b=0

(X − P (ζbe2πiaτ/d)).

But the entries of the matrix P (e2πiaτ/dZ) are Laurent series in e2πiaτ/d with
integer coefficients. Therefore, the coefficients of the characteristic polynomial
are power series in e2πiaτ/d with integer coefficients. This proves the claim.
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Since ad = N for each matrix in SN ,

e2πiaτ/d = e2πia2τ/N .

Therefore, the pk(τ) in the claim can be regarded as a Laurent series in
e2πiτ/N . The claim implies that the coefficients ak(τ) of FN (X, τ) are Laurent
series in e2πiτ/N with integer coefficients. To prove the lemma, we need to
remove the N . The matrix (

1 1
0 1

)
∈ SL2(Z)

acts on H by τ �→ τ + 1. Lemma 10.11 implies that ak(τ) is invariant under
τ �→ τ + 1. Since (e2πiτ/N )� is invariant under τ �→ τ + 1 only when N |�, the
Laurent series for ak must be a Laurent series in (e2πiτ/N )N = e2πiτ . This
proves Lemma 10.12.

PROPOSITION 10.14
Letf(τ) be analytic for τ ∈ H,and suppose

f

(
aτ + b

cτ + d

)
= f(τ)

forall

(
a b
c d

)
∈ SL2(Z) and allτ ∈ H.Also,assum e

f(τ) ∈ q−nZ[[q]]

forsom e integer n.Then f(τ) isa polynom ialin j with integer coe cients:

f(τ) ∈ Z[j].

PROOF Recall that
j(τ) − 1

q
∈ Z[[q]].

Write
f(τ) =

bn

qn
+ · · · ,

with bn ∈ Z. Then

f(τ) − bnjn =
bn−1

qn−1
+ · · · ,

with bn−1 ∈ Z. Therefore,

f(τ) − bnjn − bn−1j
n−1 =

bn−2

qn−2
+ · · · .
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Continuing in this way, we obtain

g(τ) = f(τ) − bnjn − · · · b0 ∈ qZ[[q]]

for integers bn, . . . , b0. The function g(τ) is analytic in H and vanishes at i∞.
Also, g(τ) is invariant under the action of SL2(Z). Proposition 9.16 says that
if g is not identically zero then a sum of the orders of g at various points is 0.
But these orders are all nonnegative since g is analytic. Moreover, the order
of g at i∞ is positive. Therefore the sum of the orders must be positive, hence
cannot be zero. The only possibility is that g is identically zero. This means
that

g(τ) = f(τ) − bnjn − · · · b0 = 0,

so f(τ) ∈ Z[j].

Combining Lemma 10.12 and Proposition 10.14, we obtain the first part of
the following.

THEOREM 10.15
LetN be a positive integer.

1. There isa polynom ialwith integer coe cients

ΦN (X,Y ) ∈ Z[X,Y ]

such thatthe coe cientofthe highestpowerofX is1 and such that

FN (X, τ) = ΦN (X, j(τ)).

2. IfN isnota perfectsquare,then

HN (X) = ΦN (X,X) ∈ Z[X]

isnonconstantand the coe cientofitshighestpowerofX is±1.

PROOF We have already proved the first part. For the second part, we
know that

HN (j) = ΦN (j, j) = FN (j, τ) =
∏

S∈SN

(j − j ◦ S)

is a polynomial in j with integer coefficients. We need to look at the coefficient

of the highest power of j. Let S =
(

a b
0 d

)
∈ SN . If we expand the factor

j − j ◦ S as a Laurent series in e2πiτ/N , the first term for j is

e−2πiτ = (e−2πiτ/N )N
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and the first term for j ◦ S is

ζ−be−2πiaτ/d = ζ−b(e−2πiτ/N )a2
.

Since N is not a perfect square, N �= a2. Therefore, these terms represent
different powers of e2πiτ/N , so they cannot cancel each other. One of them
must be the first term of the expansion of j − j ◦ S, which therefore has
coefficient 1 or −ζb. In particular, for each factor j − j ◦ S, the coefficient of
the first term of the expansion is a root of unity. The coefficient of the first
term of the expansion of HN (j) is the product of these roots of unity, hence
a root of unity. Also, since the terms don’t cancel each other, the first term
of each factor contains a negative power of e2πiτ/N . Therefore, the first term
of the expansion HN (j) is a negative power of q, so HN (X) is nonconstant.

Suppose HN (X) = uX� + lower terms. We know that u ∈ Z. Since the
Laurent series for j starts with 1/q,

HN (j) = uq−� + higher terms.

We have shown that u is a root of unity. Since it is an integer, u = ±1. This
completes the proof of (2).

The modular polynomial ΦN (X,Y ) has rather large coefficients. For
example,

Φ2(X,Y ) = −X2Y 2 + X3 + Y 3 + 24 · 3 · 31XY (X + Y )
+34 · 53 · 4027XY − 24 · 34 · 53(X2 + Y 2)
+28 · 37 · 56(X + Y ) − 212 · 39 · 59,

and

Φ3(X,Y ) = X4 − X3Y 3 + 2232X3Y 2 − 1069956X3Y + 36864000X3

+2232X2Y 3 + 2587918086X2Y 2 + 8900222976000X2Y

+452984832000000X2 − 1069956XY 3 + 8900222976000XY 2

−770845966336000000XY + 1855425871872000000000X + Y 4

+36864000Y 3 + 452984832000000Y 2 + 1855425871872000000000Y

For ΦN for higher N , see [50], [53], [54].
We can now prove Theorem 10.9. Let R be an order in an imaginary

quadratic field and let L be a lattice with RL ⊆ L. By multiplying L by a
suitable factor, we may assume that

L = Z + Zτ

with τ ∈ H. The order R is of finite index in OK for some imaginary quadratic
field K = Q(

√−d). Since
√−d ∈ OK , there is a nonzero integer n such that

n
√−d ∈ R. Therefore, n

√−dL ⊆ L, so

n
√−d · τ = tτ + u, n

√−d · 1 = vτ + w (10.3)

© 2008 by Taylor & Francis Group, LLC



330 CHAPTER 10 COMPLEX MULTIPLICATION

for some integers t, u, v, w. Dividing the two equations yields

τ =
tτ + u

vτ + w
.

As in the proof of Theorem 10.2, the two equations in (10.3) yield

(n
√−d)2 − (t + w)(n

√−d) + (tw − uv) = 0.

Therefore, n
√−d is a root of X2 − (t + w)X + (tw − uv) and is also a root of

X2 + n2d. If these are not the same polynomial, we can subtract them and
find that n

√−d is a root of a polynomial of degree at most 1 with integer
coefficients, which is impossible. Therefore the two polynomials are the same,
so

det
(

t u
v w

)
= tw − uv = n2d.

By Lemma 10.10, there exist M ∈ SL2(Z) and S1 ∈ Sn2d such that(
t u
v w

)
= MS1.

Then

j(τ) = j

(
tτ + u

vτ + w

)
= j(MS1τ) = j(S1τ),

since j ◦ M = j. Therefore,

Hn2d(j(τ)) =
∏

S∈Sn2d

(j(τ) − j(Sτ)) = 0,

since j(τ) − j(S1τ) = 0 is one of the factors.
Assume now that d �= 1. Since n2d is not a square, Theorem 10.15 implies

that the highest coefficient of Hn2d(X) is ±1. Changing the sign of HN if
necessary, we find that j(τ) is a root of a monic polynomial with integer
coefficients. This means that j(L) = j(τ) is an algebraic integer.

If d = 1, then K = Q(i). Replace
√−d in the above argument with 1 + i.

The argument works with a minor modification; namely, n(1 + i) is a root of
X2−2nX +2n2. This yields tw−uv = 2n2, which is not a square. Therefore,
we can apply Theorem 10.15 to conclude that j(τ) is an algebraic integer.
This completes the proof of Theorem 10.9.

10.4 Numerical Examples

Suppose we want to evaluate

x = j

(
1 +

√−171
2

)
.
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This is the j-invariant of an elliptic curve that has complex multiplication
by Z

[
1+

√−171
2

]
. The others are j(τ2), j(τ3), j(τ4), which are given below,

along with j
(

1+
√−19
2

)
, which corresponds to an elliptic curve with a larger

endomorphism ring. We can evaluate x numerically using Proposition 9.12.
This yields

j

(
1 +

√−171
2

)
=

−694282057876536664.01228868670830742604436745364124466 . . . .

This number is an algebraic integer by Theorem 10.9. Suppose we want a
polynomial that has x as its root. One way to do this is to find the Galois
conjugates of x, namely, the other roots of a polynomial satisfied by x. We’ll
show how to proceed for this particular x, then describe the general method.

Let τ0 = (1 +
√−171)/2. Then

K = Q(τ0) = Q(
√−171) = Q(

√−19).

Let

R = Z
[
1 +

√−171
2

]
⊂ Z

[
1 +

√−19
2

]
= OK .

The endomorphism ring of the lattice R ⊂ C is R. As we showed in the
proof of Proposition 10.4, the Galois conjugates of j(R) are j-invariants of
lattices with the same endomorphism ring, namely R. These have the form
j(I), where I is an ideal of R. However, I cannot be an ideal for any order
larger than R since then I has an endomorphism ring larger than R.

If I is an ideal of R, it has the form

I = γ(Zτ + Z)

for some γ ∈ C× and some τ ∈ H. By an appropriate change of basis, we can
assume τ ∈ F , the fundamental domain for SL2(Z) acting on the upper half
plane. See Proposition 9.15. As we saw in Equation 10.1, τ ∈ K. Let

aτ2 + bτ + c = 0,

with a, b, c ∈ Z. We may assume that gcd(a, b, c) = 1 and that a > 0. The
fact that I is an ideal for R but not for any larger order can be shown to
imply that the discriminant is exactly −171:

b2 − 4ac = −171.

(On the other hand, the polynomial X2 +X +5 has a root τ = (1+
√−19)/2,

which corresponds to the ideal 3OK ⊂ R. This is an ideal not only of R, but
also of OK .) The fact that τ ∈ F means that
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1. −a < b ≤ a

2. a ≤ c,

3. if a = c then b ≥ 0.

The first of these expresses the condition that −1/2 ≤ �(τ) < 1/2, while the
second says that |τ | ≥ 1. The case where a = c corresponds to τ lying on the
unit circle, and b > 0 says that it lies on the left half. It can be shown (see
[16]) that there is a one-to-one correspondence between the ideals I that we
are considering (endomorphism ring exactly R) and those triples satisfying
a > 0, gcd(a, b, c) = 1, b2 − 4ac = −171, and conditions (1), (2), and (3).
Let’s count these triples. The strategy is to consider (b2 + 171)/4 and try to
factor it as ac with a, b, c satisfying (1), (2), and (3):

b (b2 + 171)/4 a c

1 43 1 43
±3 45 5 9
5 49 7 7

The triple (a, b, c) = (3, 3, 15), which arose in the above calculations, is not
listed since gcd(a, b, c) �= 1 (and it corresponds to the ideal 3OK , which is an
ideal for the larger ring OK , as mentioned above). There are no values for
a, c when b = ±7. When |b| ≥ 9, the condition |b| ≤ a ≤ c can no longer be
satisfied. We have therefore found all triples. They correspond to values of τ ,
call them τ1, τ2, τ3, τ4:

(a, b, c) = (1, 1, 43) ←→ τ1 =
−1 +

√−171
2

(a, b, c) = (5, 3, 9) ←→ τ2 =
−3 +

√−171
10

(a, b, c) = (5,−3, 9) ←→ τ3 =
3 +

√−171
10

(a, b, c) = (7, 5, 7) ←→ τ4 =
−5 +

√−171
14

.

Note that j(τ0) = j(τ1) since τ0 = τ1 + 1. Compute the values

j(τ2) = −417.33569403605596400916623167906655644314607149466 . . .

+i3470.100833725097578092463768970644185234184993550 . . .

j(τ3) = −417.33569403605596400916623167906655644314607149466 . . .

−i3470.100833725097578092463768970644185234184993550 . . .

j(τ4) = 154.683676758820235444376830811774357548921993728906 . . . .
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We can now form the polynomial

(X − j(τ1))(X − j(τ2))(X − j(τ3))(X − j(τ4))
= X4 + 694282057876537344X3 + 472103267541360574464X2

+8391550371275812148084736X − 1311901521779155773721411584.

Since we are working with decimals, the numerical coefficients we obtain are
not exact integers. But, since the roots j(τk) are a complete set of Galois
conjugate algebraic integers, it follows that the coefficients are true integers.
Therefore, if the computations are done with enough accuracy, we can round
off to obtain the above polynomial.

We now describe the general situation. If we start with τ0 = x+y
√−d
z ,

then we can use a matrix in SL2(Z) to move τ0 to τ1 ∈ F , and we have
j(τ0) = j(τ1). Therefore, let’s assume τ0 ∈ F . Find integers a, b, c such that

aτ2
0 + bτ0 + c = 0

and a > 0, gcd(a, b, c) = 1. Let b2−4ac = −D. Now repeat the procedure used
above, with D in place of 171, and obtain values τ1, . . . , τh. The polynomial
satisfied by j(τ0) = j(τ1) is

r∏
k=1

(X − j(τk)) ∈ Z[X].

The above techniques can be used to find elliptic curves over finite fields
with given orders. For example, suppose we want an elliptic curve E over Fp,
for some prime p, such that

N = #E(Fp) = 54323

(N is a prime). Because of Hasse’s theorem, we must have p fairly close to N .
The strategy is to choose a prime p, then let ap = p+1−N and −D = a2

p−4p.
We then find the polynomial P (X) whose roots are the j-invariants of elliptic
curves with complex multiplication by the order R of discriminant −D. Find
a root of P (X) mod p. Such a root will be the j-invariant of an elliptic curve
E mod p that has complex multiplication by R.

The roots of
X2 − apX + p = 0

lie in R (since a2
p − 4p = −D) and therefore correspond to endomorphisms of

E. It can be shown that one of these endomorphisms is the Frobenius map (up
to sign; see below). Therefore, we have found the characteristic polynomial
of the Frobenius map. It follows that

#E(Fp) = p + 1 − ap = N,
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as desired. There is a slight complication caused by the fact that we might
end up with −ap in place of ap. We’ll discuss this below.

In order to keep the number of τk’s small, we want D, in the above notation,
to be small. This means that we should have ap near ±2

√
p. A choice that

works well for us is

p = 54787, ap = 465, D = 2923.

There are six values τk, corresponding to the polynomials aX2 + bX + c with

(a, b, c) = (1, 1, 731), (17,±1, 43), (11,±5, 67), (29, 21, 29).

We obtain a polynomial P (X) of degree 6 with integer coefficients, as above.
One of the roots of P (X) mod p is j = 46514. Recall (see Section 2.7) that

y2 = x3 +
3j

1728 − j
x +

2j

1728 − j
(10.4)

is an elliptic curve E1 with j-invariant equal to j. In our case, we obtain

y2 = x3 + 10784x + 43714 (mod 54787).

The point Q = (1, 36185) lies on E1. However, we find that

54323Q �= ∞, 55253Q = ∞.

Since
55253 = p + 1 + 465,

we discover that we have obtained a curve E1 with ap = −465 instead of ap =
465. This curve has complex multiplication by the order R of discriminant
−D (note that −D = a2

p − 4p, so the sign of ap is irrelevant for D), so it is
natural for it to appear. To obtain the desired curve, we twist by a quadratic
nonresidue mod p (see Exercise 4.10). A quick computation shows that 2 is
not a square mod p, so we look at the curve E defined by

y2 = x3 + 4 · 10784x + 8 · 43714 (mod 54787).

This has N points mod p. Just to be sure, we can compute

54323 (3, 38039) = ∞.

Since 54323 is prime, we find that 54323 divides the number of points in
E(Fp). But

2 · 54323 > p + 1 + 2
√

p,

so Hasse’s theorem implies that

#E(Fp) = 54323.
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The above technique can be used to produce an elliptic curve E and a prime
p such that E(Fp) is a desired group (when such a curve exists). For example,
suppose we want

E(Fp) � Z2 ⊕ Z2 ⊕ Z63.

We take
N = 252, p = 271, ap = 20,

so N = p + 1 − ap. We choose

τ =
−1 +

√−171
2

.

As we’ll see below, this choice imposes certain congruence conditions on the
Frobenius map that force E(Fp) to have the desired form. We computed the
polynomial satisfied by j(τ) above. This polynomial has the root 5 mod 271.
Putting this value into the formula (10.4) yields the elliptic curve E given by

y2 = x3 + 70x + 137 (mod 271).

It has 252 points and has complex multiplication by the order

R = Z
[
1 +

√−171
2

]
of discriminant −171 = a2

p − 4p. The characteristic polynomial of the Frobe-
nius endomorphism φp is

X2 − 20X + 271,

so φp corresponds to a root 10 ± √−171. The choice of sign is irrelevant
for our purposes (it corresponds to how we choose to identify R with the
endomorphism ring), so we assume

φp = 10 +
√−171.

Therefore,

φp = 1 + 2
(

4 +
1 +

√−171
2

)
≡ 1 (mod 2R).

It follows that φp acts as the identity on points of order 2, so E(Fp) has a
subgroup isomorphic to Z2 ⊕ Z2. In fact,

E[2] = {∞, (40, 0), (56, 0), (175, 0)} ⊂ E(Fp).

Since 252 = 4 × 63,
E(Fp) � Z2 ⊕ Z2 ⊕ Z63.

If we instead want the group to be cyclic of order 252, we could use R′ =
Z[
√−171] so that φp would not be congruent to 1 mod 2 or mod 3. We would
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then find a new set of τk corresponding to the discriminant −4 · 171, a new
j-invariant mod p, and a new E.

If we had used R′′ = Z
[

1+
√−19
2

]
, then we would have obtained an elliptic

curve with group isomorphic to Z6 ⊕ Z42, since φp ≡ 1 (mod 6R′′) in this
case.

This technique has many uses. For example, in [100], the curve E defined
by

y2 = x3 + 3x − 31846 (mod 158209)

was dedicated to Arjen Lenstra on the occasion of his thesis defense on May
16, 1984. The curve satisfies

E(F158209) � Z5 ⊕ Z16 ⊕ Z1984.

(If the defense had been one month later, such a dedication would have been
impossible.) Finding elliptic curves with groups that are cyclic of large prime
order is very useful in cryptography (see Chapter 6). Finding elliptic curves of
a given order is also useful in primality proving (see Section 7.2). A detailed
discussion of the problem, with improvements on the method presented here,
is given in [73]. See also [7], [8].

10.5 Kronecker’s Jugendtraum

The Kronecker-Weber theorem says that if K/Q is a finite Galois extension
with abelian Galois group, then

K ⊆ Q(e2πi/n)

for some integer n. This can be viewed as saying that the abelian extensions of
Q are generated by the values of an analytic function, namely e2πiz, at rational
numbers. Kronecker’s Jugendtraum (youthful dream) is that the abelian
extensions of an arbitrary number field might similarly be generated by special
values of a naturally occurring function. This has been accomplished for
imaginary quadratic fields. Some progress has also been made for certain other
fields by Shimura using complex multiplication of abelian varieties (higher
dimensional analogues of elliptic curves).

If E is an elliptic curve given by y2 = x3 + Ax + B, then its j-invariant is
given by j = 6912A3/(4A3 + 27B2). Therefore, if E is defined over a field L,
then the j-invariant of E is contained in L. Conversely, if j �= 0, 1728 lies in
some field L, then the elliptic curve

y2 = x3 +
3j

1728 − j
x +

2j

1728 − j
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is defined over L and has j-invariant equal to j ∈ L. Therefore, for any j there
is an elliptic curve with j-invariant equal to j defined over the field generated
by j.

THEOREM 10.16
LetK = Q(

√−D) be an im aginary quadratic field,letOK be the ring of
algebraic integersin K,and letj = j(OK),whereOK isregarded asa lattice
in C. LetE be an elliptic curve defined overK(j) with j-invariantequalto
j.

1. Assum eK �= Q(i),Q(e2πi/3).LetF be the field generated overK(j) by
the x-coordinatesofthe torsion pointsin E(Q).Then F/K hasabelian
Galois group, and every extension ofK with abelian Galois group is
contained in F.

2. IfK = Q(i),the resultof(1) holds when F is the extension generated
by the squaresofthe x-coordinatesofthe torsion points.

3. IfK = Q(e2πi/3),the resultof(1) holds when F is the extension gen-
erated by the cubesofthe x-coordinatesofthe torsion points.

For a proof, see, for example, [111, p. 135] or [103]. Note that j(OK)
is algebraic, by Proposition 10.4. The j-invariant determines the lattice for
the elliptic curve up to homothety (Corollary 9.20), so an elliptic curve with
invariant j(OK) automatically has complex multiplication by OK .

The x-coordinates of the torsion points are of the form

℘(r1ω1 + r2ω2), r1, r2 ∈ Q,

where ℘ is the Weierstrass ℘-function for the lattice for E. Therefore, the
abelian extensions of K are generated by j(OK) and special values of the
function ℘. This is very much the analogue of the Kronecker-Weber theorem.

There is much more that can be said on this subject. See, for example,
[111] and [70].

Exercises

10.1 Let K = Q(
√

d) and K ′ = Q(
√

d′) be quadratic fields. Let β ∈ K
and β′ ∈ K ′ and assume β, β′ �∈ Q. Suppose that β + β′ lies in a
quadratic field. Show that K = K ′. (Hint: It suffices to consider the
case β = a

√
d and β′ = b

√
d′. Let α = β + β′. Show that if α is a root

of a quadratic polynomial with coefficients in Q, then we can solve for√
d, say, in terms of

√
d′ and obtain

√
d ∈ K ′.)
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10.2 Let R be an order in an imaginary quadratic field. Regard R as a subset
of C. Show that if r ∈ R, then its complex conjugate r is also in R.

This means that if L is a lattice with complex multiplication by R, then
there are two ways to embed R into the endomorphisms of L, namely
via the assumed inclusion of R in C and also via the complex conjugate
embedding (that is, if r ∈ R and � ∈ L, define r ∗ � = r�). This means
that when we say that R is contained in the endomorphism ring of a
lattice or of an elliptic curve, we should specify which embedding we
are using. For elliptic curves over C, this is not a problem, since we
can implicitly regard R as a subset of C and take the action of R on L
as being the usual multiplication. But for elliptic curves over fields of
positive characteristic, we cannot use this complex embedding.

10.3 Use the fact that Z
[

1+
√−43
2

]
is a principal ideal domain to show that

eπ
√

43 is very close to an integer.

10.4 Let x = a + bi + cj + dk lie in the Hamiltonian quaternions.

(a) Show that

(a + bi + cj + dk)(a − bi − cj − dk) = a2 + b2 + c2 + d2.

(b) Show that if x �= 0, then there exists a quaternion y such that
xy = 1.

(c) Show that if we allow a, b, c, d ∈ Q2 (= the 2-adics), then a2 + b2 +
c2 + d2 = 0 if and only if a = b = c = d = 0. (Hint: Clearing
denominators reduces this to showing that a2 + b2 + c2 + d2 ≡ 0
(mod 8) implies that a, b, c,≡ 0 (mod 8).)

(d) Show that if x, y are nonzero Hamiltonian quaternions with 2-adic
coefficients, then xy �= 0.

(e) Let p be an odd prime. Show that the number of squares a2 mod p,
including 0, is (p + 1)/2 and that the number of elements of Fp of
the form 1 − b2 (mod p) is also (p + 1)/2.

(f) Show that if p is a prime, then a2 + b2 + 1 ≡ 0 (mod p) has a
solution a, b.

(g) Use Hensel’s lemma (see Appendix A) to show that if p is an odd
prime, then there exist a, b ∈ Qp such that a2 + b2 + 1 = 0. (The
hypotheses of Hensel’s lemma are not satisfied when p = 2.)

(h) Let p be an odd prime. Show that there are nonzero Hamiltonian
quaternions x, y with p-adic coefficients such that xy = 0.

10.5 Show that a nonzero element in a definite quaternion algebra has a
multiplicative inverse. (Hint: Use the ideas of parts (1) and (2) of
Exercise 10.4.)
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Chapter 11
Divisors

11.1 Definitions and Examples

Let E be an elliptic curve defined over a field K. For each point P ∈ E(K),
define a formal symbol [P ]. A divisor D on E is a finite linear combination
of such symbols with integer coefficients:

D =
∑

j

aj [Pj ], aj ∈ Z.

A divisor is therefore an element of the free abelian group generated by the
symbols [P ]. The group of divisors is denoted Div(E). Define the degree
and sum of a divisor by

deg(
∑

j

aj [Pj ]) =
∑

j

aj ∈ Z

sum(
∑

j

aj [Pj ]) =
∑

j

ajPj ∈ E(K).

The sum function simply uses the group law on E to add up the points that are
inside the symbols. The divisors of degree 0 form an important subgroup of
Div(E), denoted Div0(E). The sum function gives a surjective homomorphism

sum : Div0(E) → E(K).

The surjectivity is because

sum([P ] − [∞]) = P.

The kernel consists of divisors of functions (see Theorem 11.2 below), which
we’ll now describe.

Assume E is given by y2 = x3 + Ax + B. A function on E is a rational
function

f(x, y) ∈ K(x, y)

339
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that is defined for at least one point in E(K) (so, for example, the rational
function 1/(y2 − x3 − Ax − B) is not allowed). The function takes values in
K ∪ {∞}.

There is a technicality that is probably best described by an example. Sup-
pose y2 = x3 − x is the equation of the elliptic curve. The function

f(x, y) =
x

y

is not defined at (0, 0). However, on E,

x

y
=

y

x2 − 1
,

which is defined and takes on the value 0 at (0, 0). Similarly, the function y/x
can be changed to (x2 − 1)/y, which takes on the value ∞ at (0, 0). It can
be shown that a function can always be transformed in this manner so as to
obtain an expression that is not 0/0 and hence gives a uniquely determined
value in K ∪ {∞}.

A function is said to have a zero at a point P if it takes the value 0 at P ,
and it has a pole at P if it takes the value ∞ at P . However, we need more
refined information, namely the order of the zero or pole. Let P be a point.
It can be shown that there is a function uP , called a uniformizer at P , with
u(P ) = 0 and such that every function f(x, y) can be written in the form

f = ur
P g, with r ∈ Z and g(P ) �= 0,∞.

Define the order of f at P by

ordP (f) = r.

Example 11.1
On y2 = x3 −x, it can be shown that the function y is a uniformizer at (0, 0).
We have

x = y2 1
x2 − 1

,

and 1/(x2 − 1) is nonzero and finite at (0, 0). Therefore,

ord(0,0)(x) = 2, and ord(0,0)(x/y) = 1.

This latter fact agrees with the above computation that showed that x/y
vanishes at (0, 0).

Example 11.2
At any finite point P = (x0, y0) on an elliptic curve, the uniformizer uP can
be taken from the equation of a line that passes through P but is not tangent
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to E. A natural choice is uP = x − x0 = 0 when y0 �= 0 and uP = y when
y0 = 0. For example, let P = (−2, 8) on the curve y2 = x3 + 72. The line

x + 2 = 0

passes through P , so we take uP (x, y) = x + 2. The function

f(x, y) = x + y − 6

vanishes at P . Let’s find its order of vanishing at P . The equation for the
curve can be rewritten as

(y + 8)(y − 8) = (x + 2)3 − 6(x + 2)2 + 12(x + 2).

Therefore,

f(x, y) = (x + 2) + (y − 8) = (x + 2)
(

1 +
(x + 2)2 − 6(x + 2) + 12

y + 8

)
.

The function in parentheses is finite and does not vanish at P , so ordP (f) = 1.
The function

t(x, y) =
3
4
(x + 2) − y + 8

comes from the tangent line to E at P . We have

t(x, y) = (x + 2)
(

3
4
− (x + 2)2 − 6(x + 2) + 12

y + 8

)
=

(x + 2)
4(y + 8)

(−4(x + 2)2 + 24(x + 2) + 3(y − 8)
)

=
(x + 2)2

4(y + 8)

(
−4(x + 2) + 24 + 3

(x + 2)2 − 6(x + 2) + 12
y + 8

)
.

The expression in parentheses is finite and does not vanish at P , so ordP (t) =
2. In general, the equation of a tangent line will yield a function that vanishes
to order at least 2 (equal to 2 unless 3P = ∞ in the group law of E, in which
case the order is 3).

Example 11.3
The point at infinity is a little harder to deal with. If the elliptic curve E is
given by

y2 = x3 + Ax + B,

a uniformizer at ∞ is u∞ = x/y. This choice is motivated by the complex
situation: The Weierstrass function ℘ gives the x-coordinate and 1

2℘′ gives
the y-coordinate. Recall that the point 0 ∈ C/L corresponds to ∞ on E.
Since ℘ has a double pole at 0 and ℘′ has a triple pole at 0, the quotient ℘/℘′

has a simple zero at 0, hence can be used as a uniformizer at 0 in C/L.
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Let’s compute the order of x and y. Rewriting the equation for E as(
x

y

)2

= x−1

(
1 +

A

x2
+

B

x3

)−1

shows that x/y vanishes at ∞ and that

ord∞(x) = −2

(given that x/y is a uniformizer). Since y = x · (y/x), we have

ord∞(y) = −3.

Note that the orders of x and y at ∞ agree with what we expect from looking
at the Weierstrass ℘-function.

If f is a function on E that is not identically 0, define the divisor of f to
be

div(f) =
∑

P∈E(K)

ordP (f)[P ] ∈ Div(E).

This is a finite sum, hence a divisor, by the following.

PROPOSITION 11.1
LetE be an elliptic curve and letf be a function on E thatisnotidentically
0.

1. f hasonly finitely m any zerosand poles

2. deg(div(f)) = 0

3. Iff hasno zerosor poles(so div(f) = 0),then f isa constant.

For a proof, see [42, Ch.8, Prop. 1] or [49, II, Cor. 6.10]. The complex
analytic analogue of the proposition is Theorem 9.1. Note that it is important
to look at points with coordinates in K. It is easy to construct nonconstant
functions with no zeros or poles at the points in E(K), and it is easy to
construct functions that have zeros but no poles in E(K) (see Exercise 11.1).

The divisor of a function is said to be a principal divisor.
Suppose P1, P2, P3 are three points on E that lie on the line ax+by+c = 0.

Then the function
f(x, y) = ax + by + c

has zeros at P1, P2, P3. If b �= 0 then f has a triple pole at ∞. Therefore,

div(ax + by + c) = [P1] + [P2] + [P3] − 3[∞].
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The line through P3 = (x3, y3) and −P3 is x − x3 = 0. The divisor of the
function x − x3 is

div(x − x3) = [P3] + [−P3] − 2[∞]. (11.1)

Therefore,

div
(

ax + by + c

x − x3

)
= div(ax+by+c)−div(x−x3) = [P1]+[P2]− [−P3]− [∞].

Since P1 + P2 = −P3 on E, this may be rewritten as

[P1] + [P2] = [P1 + P2] + [∞] + div
(

ax + by + c

x − x3

)
.

The following important result is the analogue of Theorem 9.6.

THEOREM 11.2
LetE be an elliptic curve. LetD be a divisor on E with deg(D) = 0. Then
there isa function f on E with

div(f) = D

ifand only if
sum(D) = ∞.

PROOF We have just shown that a sum [P1] + [P2] can be replaced by
[P1 + P2] + [∞] plus the divisor of a function, call it g. Note also that

sum(div(g)) = P1 + P2 − (P1 + P2) −∞ = ∞.

Equation (11.1) shows that [P1]+[P2] equals 2[∞] plus the divisor of a function
when P1 + P2 = ∞. Therefore, the sum of all the terms in D with positive
coefficients equals a single symbol [P ] plus a multiple of [∞] plus the divisor
of a function. A similar result holds for the sum of the terms with negative
coefficients. Therefore, there are points P and Q on E, a function g1, and an
integer n such that

D = [P ] − [Q] + n[∞] + div(g1).

Also, since g1 is the quotient of products of functions g with sum(div(g)) = ∞,
we have

sum(div(g1)) = ∞.

Since deg(div(g1)) = 0 by Proposition 11.1, we have

0 = deg(D) = 1 − 1 + n + 0 = n.
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Therefore,
D = [P ] − [Q] + div(g1).

Also,
sum(D) = P − Q + sum(div(g1)) = P − Q.

Suppose sum(D) = ∞. Then P − Q = ∞, so P = Q and D = div(g1).
Conversely, suppose D = div(f) for some function f . Then

[P ] − [Q] = div(f/g1).

The following lemma implies that P = Q, and hence sum(D) = ∞. This
completes the proof of Theorem 11.2.

LEMMA 11.3
LetP,Q ∈ E(K) and suppose there existsa function h on E with

div(h) = [P ] − [Q].

Then P = Q.

Since the proof is slightly long, we postpone it until the end of this section.

COROLLARY 11.4
The m ap

sum : Div0(E)
/
(principaldivisors)−→ E(K)

isan isom orphism ofgroups.

PROOF Since sum([P ]− [∞]) = P , the sum map from Div0(E) to E(K) is
surjective. The theorem says that the kernel is exactly the principal divisors.

Corollary 11.4 shows that the group law on E(K) corresponds to the very
natural group law on Div0(E) mod principal divisors.

Example 11.4
The proof of the theorem gives an algorithm for finding a function with a
given divisor (of degree 0 and sum equal to ∞). Consider the elliptic curve E
over F11 given by

y2 = x3 + 4x.

Let
D = [(0, 0)] + [(2, 4)] + [(4, 5)] + [(6, 3)] − 4[∞].
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Then D has degree 0 and an easy calculation shows that sum(D) = ∞. There-
fore, D is the divisor of a function. Let’s find the function. The line through
(0, 0) and (2, 4) is y − 2x = 0. It is tangent to E at (2, 4), so

div(y − 2x) = [(0, 0)] + 2[(2, 4)] − 3[∞].

The vertical line through (2, 4) is x − 2 = 0, and

div(x − 2) = [(2, 4)] + [(2,−4)] − 2[∞].

Therefore,

D = [(2,−4)] + div
(

y − 2x

x − 2

)
+ [(4, 5)] + [(6, 3)] − 3[∞].

Similarly, we have

[(4, 5)] + [(6, 3)] = [(2, 4)] + [∞] + div
(

y + x + 2
x − 2

)
,

which yields

D = [(2,−4)] + div
(

y − 2x

x − 2

)
+ [(2, 4)] + div

(
y + x + 2

x − 2

)
− 2[∞].

Since we have already calculated div(x − 2), we use this to conclude that

D = div(x − 2) + div
(

y − 2x

x − 2

)
+ div

(
y + x + 2

x − 2

)
= div

(
(y − 2x)(y + x + 2)

x − 2

)
.

This function can be simplified. The numerator is

(y − 2x)(y + x + 2) = y2 − xy − 2x2 + 2y − 4x

= x3 − xy − 2x2 + 2y (since y2 = x3 + 4x)
= (x − 2)(x2 − y).

Therefore,
D = div(x2 − y).

ProofofLem m a 11.3:
Suppose P �= Q and div(h) = [P ] − [Q]. Then, for any constant c, the

function h − c has a simple pole at Q and therefore, by Proposition 11.1, it
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has exactly one zero, which must be simple. Let f be any function on E. If
f does not have a zero or pole at Q, then

g(x, y) =
∏

R∈E(K)

(h(x, y) − h(R))ordR(f)

has the same divisor as f (since we are assuming that ordQ(f) = 0, the factor
for R = Q is defined to be 1). The only thing to check is that the poles of
h(x, y) at Q cancel out. Each factor has a pole at (x, y) = Q of order ordR(f)
(or a zero if ordR(f) < 0). Since

∑
R ordR(f) = 0, these cancel.

Since f and g have the same divisor, the quotient f/g has no zeros or poles,
and is therefore constant. It follows that f is a rational function of h.

If f has a zero or pole at Q, the factor for R = Q in the above product
is not defined. However, f · hordR(f) has no zero or pole at Q. The above
reasoning shows that it is therefore a rational function of h, so the same holds
for f .

We have shown that every function on E(K) is a rational function of h.
In particular, x and y are rational functions of h. The following result shows
that this is impossible. This contradiction means that we must have P = Q.

LEMMA 11.5
LetE be an elliptic curve overK (ofcharacteristic not2)given by

y2 = x3 + Ax + B.

Lett be an indeterm inate.There are no nonconstantrationalfunctionsX(t)
and Y (t) in K(t) such that

Y (t)2 = X(t)3 + AX(t) + B.

PROOF Factor the cubic polynomial as

x3 + Ax + B = (x − e1)(x − e2)(x − e3),

where e1, e2, e3 ∈ K are distinct. Suppose X(t), Y (t) exist. Write

X(t) =
P1(t)
P2(t)

, Y (t) =
Q1(t)
Q2(t)

,

where P1, P2, Q1, Q2 are polynomials in t. We may assume that P1(t), P2(t)
have no common roots, and that Q1(t), Q2(t) have no common roots. Sub-
stituting into the equation for E yields

Q1(t)2P2(t)3 = Q2(t)2
(
P1(t)3 + AP1(t)P2(t)2 + BP2(t)3

)
.

Since the right side is a multiple of Q2(t)2, so is the left side. Since Q1, Q2

have no common roots, P 3
2 must be a multiple of Q2

2. A common root of
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P2 and P 3
1 + AP1P

2
2 + BP 3

2 would be a root of P 3
1 . Since P1 and P2 have

no roots in common, this is impossible. Therefore, Q2
2 must be a multiple of

P 3
2 . Therefore, P 3

2 and Q2
2 are multiples of each other, hence are constant

multiples of each other. By adjusting P1 and Q1 if necessary, we may assume
that

P 3
2 = Q2

2.

Canceling these from the equation yields

Q2
1 = P 3

1 + AP1P
2
2 + BP 3

2 = (P1 − e1P2)(P1 − e2P2)(P3 − e3P2).

Suppose i �= j and P1 − eiP2 and P1 − ejP2 have a common root r. Then r is
a root of

ej(P1 − eiP2) − ei(P1 − ejP2) = (ej − ei)P1 (11.2)

and of

(P1 − eiP2) − (P1 − ejP2) = (ej − ei)P2. (11.3)

Since ej − ei �= 0, this means that r is a common root of P1 and P2, which
is a contradiction. Therefore P1 − eiP2 and P1 − ejP2 have no common roots
when i �= j. Since the product

(P1 − e1P2)(P1 − e2P2)(P1 − e3P2)

is the square of a polynomial, each factor must be a square of a polynomial
in K[t] (it might seem that each factor is a constant times a square, but
all constants are squares in the algebraically closed field K, hence can be
absorbed into the squares of polynomials).

Since P 3
2 = Q2

2, we find that P2 must also be a square of a polynomial.

LEMMA 11.6
LetP1 and P2 be polynom ialsin K[t] with no com m on roots. Suppose there
are four pairs (ai, bi), 1 ≤ i ≤ 4,with ai, bi ∈ K satisfying

1. foreach i,atleastone ofai, bi isnonzero

2. ifi �= j,then there doesnotexistc ∈ K
×
with (ai, bi) = (caj , cbj)

3. aiP1 + biP2 isa square ofa polynom ialfor 1 ≤ i ≤ 4.

Then P1, P2 are constantpolynom ials.

PROOF The assumptions imply that any two of the vectors (ai, bi) are
linearly independent over K and therefore span K

2
. Suppose that at least

one of P1, P2 is nonconstant. We may assume that P1, P2 are chosen so that

Max(deg(P1), deg(P2)) > 0
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is as small as possible. Since P1, P2 have no common roots, it is easy to see
that they must be linearly independent over K. Let

aiP1 + biP2 = R2
i , 1 ≤ i ≤ 4. (11.4)

Note that when i �= j, the polynomial R2
i cannot be a constant multiple of

R2
j , since otherwise the linear independence of P1, P2 would imply that (ai, bi)

is a constant multiple of (aj , bj).
Since the vectors (a3, b3) and (a4, b4) are linear combinations of (a1, b1) and

(a2, b2), there are constants c1, c2, d1, d2 ∈ K such that

R2
3 = c1R

2
1 − d1R

2
2, R2

4 = c2R
2
1 − d2R

2
2.

If (c1, d1) is proportional to (c2, d2), then R2
3 is a constant times R2

4, which is
not possible. Therefore, (c1, d1) and (c2, d2) are not proportional. Moreover,
since (a1, b1) and (a2, b2) are linearly independent, Equation (11.4) for i = 1, 2
can be solved for P1 and P2, showing that P1 and P2 are linear combinations
of R2

1 and R2
2. Therefore, a common root of R1 and R2 is a common root of

P1 and P2, which doesn’t exist. It follows that R1 and R2 have no common
roots. It follows easily (by using equations similar to (11.2) and (11.3)) that

√
c1R1 +

√
d1R2 and

√
c1R1 −

√
d1R2

have no common roots. Since their product is square, namely R2
3, each factor

must be a square. Similarly, both
√

c2R1 +
√

d2R2 and
√

c2R1 −
√

d2R2 must
be squares. Therefore, R1, R2 are polynomials satisfying the conditions of the
lemma for the pairs

(
√

c1,
√

d1), (
√

c1,−
√

d1), (
√

c2,
√

d2), (
√

c2,−
√

d2).

Since (c1, d1) and (c2, d2) are not proportional, neither of the first two pairs
is proportional to either of the last two pairs. If (

√
c1,

√
d1) is proportional to

(
√

c1,−
√

d1), then either c1 or d1 is zero, which means that R2
3 is a constant

multiple of either R2
1 or R2

2. This cannot be the case, as pointed out above.
Similarly, the last two pairs are not proportional.

Equation (11.4) implies that

Max(deg(P1), deg(P2)) ≥ 2Max(deg(R1), deg(R2)).

Since R1 and R2 are clearly nonconstant, this contradicts the minimality
of Max(deg(P1), deg(P2)). Therefore, all polynomials P1, P2 satisfying the
conditions of the lemma must be constant. This proves Lemma 11.6.

Returning to the proof of Lemma 11.5, we have polynomials P1, P2 and
pairs

(1,−e1), (1,−e2), (1,−e3), (0, 1)
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satisfying the conditions of Lemma 11.6. Therefore, P1 and P2 must be con-
stant. But X(t) = P1/P2 is nonconstant, so we have a contradiction. This
completes the proof of Lemma 11.5.

As pointed out above, Lemma 11.5 completes the proof of Lemma 11.3.

11.2 The Weil Pairing

The goal of this section is to construct the Weil pairing and prove its basic
properties that were stated in Section 3.3. Recall that n is an integer not
divisible by the characteristic of the field K, and that E is an elliptic curve
such that

E[n] ⊆ E(K).

We want to construct a pairing

en : E[n] × E[n] → μn,

where μn is the set of nth roots of unity in K (as we showed in Section 3.3,
the assumption E[n] ⊆ E(K) forces μn ⊂ K).

Let T ∈ E[n]. By Theorem 11.2, there exists a function f such that

div(f) = n[T ] − n[∞]. (11.5)

Choose T ′ ∈ E[n2] such that nT ′ = T . We’ll use Theorem 11.2 to show that
there exists a function g such that

div(g) =
∑

R∈E[n]

([T ′ + R] − [R]).

We need to verify that the sum of the points in the divisor is ∞. This follows
from the fact that there are n2 points R in E[n]. The points R in

∑
[T ′ + R]

and
∑

[R] cancel, so the sum is n2T ′ = nT = ∞. Note that g does not depend
on the choice of T ′ since any two choices for T ′ differ by an element R ∈ E[n].
Therefore, we could have written

div(g) =
∑

nT ′′=T

[T ′′] −
∑

nR=∞
[R].

Let f ◦ n denote the function that starts with a point, multiplies it by n,
then applies f . The points P = T ′ +R with R ∈ E[n] are those points P with
nP = T . It follows from (11.5) that

div(f ◦ n) = n

(∑
R

[T ′ + R]

)
− n

(∑
R

[R]

)
= div(gn).
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Therefore, f ◦ n is a constant multiple of gn. By multiplying f by a suitable
constant, we may assume that

f ◦ n = gn.

Let S ∈ E[n] and let P ∈ E(K). Then

g(P + S)n = f(n(P + S)) = f(nP ) = g(P )n.

Therefore, g(P + S)/g(P ) ∈ μn. In fact, g(P + S)/g(P ) is independent of P .
The proof of this is slightly technical: In the Zariski topology, g(P + S)/g(P )
is a continuous function of P and E is connected. Therefore, the map to the
finite discrete set μn must be constant.

Define the Weil pairing by

en(S, T ) =
g(P + S)

g(P )
. (11.6)

Since g is determined up to a scalar multiple by its divisor, this definition is
independent of the choice of g. Note that (11.6) is independent of the choice
of the auxiliary point P . The main properties of en are given in the following
theorem, which was stated in Section 3.3.

THEOREM 11.7
LetE bean ellipticcurvedefined overa fieldK and letn bea positiveinteger.
Assum e thatthe characteristic ofK doesnotdivide n.Then the W eilpairing

en : E[n] × E[n] → μn

satisfiesthe following properties:

1. en isbilinear in each variable.Thism eansthat

en(S1 + S2, T ) = en(S1, T )en(S2, T )

and
en(S, T1 + T2) = en(S, T1)en(S, T2)

forallS, S1, S2, T, T1, T2 ∈ E[n].

2. en is nondegenerate in each variable. This m eans thatifen(S, T ) = 1
for allT ∈ E[n] then S = ∞ and also that if en(S, T ) = 1 for all
S ∈ E[n] then T = ∞.

3. en(T, T ) = 1 forallT ∈ E[n].

4. en(T, S) = en(S, T )−1 forallS, T ∈ E[n].
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5. en(σS, σT ) = σ(en(S, T )) for allautom orphism s σ ofK such thatσ is
the identity m ap on the coe cients ofE (ifE is in W eierstrass form ,
thism eansthatσ(A) = A and σ(B) = B).

6. en(α(S), α(T )) = en(S, T )deg(α) for allseparable endom orphism s α of
E. Ifthe coe cients ofE lie in a finite field Fq,then the statem ent
also holds when α is the Frobenius endom orphism φq. (Actually, the
statem entholdsforallendom orphism sα,separable ornot.See [38].)

PROOF (1) Since en is independent of the choice of P , we use (11.6) with
P and with P + S1 to obtain

en(S1, T )en(S2, T ) =
g(P + S1)

g(P )
g(P + S1 + S2)

g(P + S1)

=
g(P + S1 + S2)

g(P )
= en(S1 + S2, T ).

This proves linearity in the first variable.
Suppose T1, T2, T3 ∈ E[n] with T1 + T2 = T3. For 1 ≤ i ≤ 3, let fi, gi be

the functions used above to define en(S, Ti). By Theorem 11.2, there exists a
function h such that

div(h) = [T3] − [T1] − [T2] + [∞].

Equation (11.5) yields

div
(

f3

f1f2

)
= ndiv(h) = div(hn).

Therefore, there exists a constant c ∈ K
×

such that

f3 = cf1f2h
n.

This implies that
g3 = c1/n(g1)(g2)(h ◦ n).

The definition of en yields

en(S, T1 + T2) =
g3(P + S)

g3(P )
=

g1(P + S)
g1(P )

g2(P + S)
g2(P )

h(n(P + S))
h(nP )

= en(S, T1) en(S, T2),

since nS = ∞, so h(n(P + S)) = h(nP ). This proves linearity in the second
variable.
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(2) Suppose T ∈ E[n] is such that en(S, T ) = 1 for all S ∈ E[n]. This means
that g(P + S) = g(P ) for all P and for all S ∈ E[n]. By Proposition 9.34,
there is a function h such that g = h ◦ n. Then

(h ◦ n)n = gn = f ◦ n.

Since multiplication by n is surjective on E(K), we have hn = f . Therefore,

ndiv(h) = div(f) = n[T ] − n[∞],

so div(h) = [T ] − [∞]. By Theorem 11.2, we have T = ∞. This proves
half of (2). The nondegeneracy in S follows immediately from (4) plus the
nondegeneracy in T .

(3) Let τjT represent adding jT , so f ◦ τjT denotes the function P �→
f(P + jT ). The divisor of f ◦ τjT is n[T − jT ] − n[−jT ]. Therefore,

div

⎛⎝n−1∏
j=0

f ◦ τjT

⎞⎠ =
n−1∑
j=0

(n[(1 − j)T ] − n[−jT ]) = 0.

This means that
∏n−1

j=0 f ◦ τjT is constant. The nth power of the function∏n−1
j=0 g ◦ τjT ′ is the above product of f ’s composed with multiplication by n,

hence is constant. Since⎛⎝n−1∏
j=0

g ◦ τjT ′

⎞⎠n

=
n−1∏
j=0

f ◦ n ◦ τjT ′

=
n−1∏
j=0

f ◦ τjT ◦ n (since nT ′ = T ).

Since we have proved that this last product is constant, it follows that
∏n−1

j=0 g◦
τjT ′ is constant (we are again using the connectedness of E in the Zariski
topology). Therefore, it has the same value at P and P + T ′, so

n−1∏
j=0

g(P + T ′ + jT ′) =
n−1∏
j=0

g(P + jT ′).

Canceling the common terms (we assume P is chosen so that all terms are
finite and nonzero) yields

g(P + nT ′) = g(P ).

Since nT ′ = T , this means that

en(T, T ) =
g(P + T )

g(P )
= 1.
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(4) By (1) and (3),

1 = en(S + T, S + T ) = en(S, S) en(S, T ) en(T, S) en(T, T )
= en(S, T ) en(T, S).

Therefore en(T, S) = en(S, T )−1.
(5) Let σ be an automorphism of K such that σ is the identity on the

coefficients of E. Apply σ to everything in the construction of en. Then

div(fσ) = n[σT ] − n[∞]

and similarly for gσ, where fσ and gσ denote the functions obtained by ap-
plying σ to the coefficients of the rational functions defining f and g (cf.
Section 8.9). Therefore,

σ(en(S, T )) = σ

(
g(P + S)

g(P )

)
=

gσ(σP + σS)
gσ(σP )

= en(σS, σT ).

(6) Let {Q1, . . . , Qk} = Ker(α). Since α is a separable morphism, k =
deg(α) by Proposition 2.21. Let

div(fT ) = n[T ] − n[∞], div(fα(T )) = n[α(T )] − n[∞]

and
gn

T = fT ◦ n, gn
α(T ) = fα(T ) ◦ n.

As in (3), let τQ denote adding Q. We have

div(fT ◦ τ−Qi
) = n[T + Qi] − n[Qi].

Therefore,

div(fα(T ) ◦ α) = n
∑

α(T ′′)=α(T )

[T ′′] − n
∑

α(Q)=∞
[Q]

= n
∑

i

([T + Qi] − [Qi])

= div(
∏

i

(fT ◦ τ−Qi
)).

For each i, choose Q′
i with nQ′

i = Qi. Then

gT (P − Q′
i)

n = fT (nP − Qi).

Consequently,

div

(∏
i

(gT ◦ τ−Q′
i
)n

)
= div(

∏
i

fT ◦ τ−Qi
◦ n)

= div(fα(T ) ◦ α ◦ n)
= div(fα(T ) ◦ n ◦ α)
= div(gα(T ) ◦ α)n.

© 2008 by Taylor & Francis Group, LLC



354 CHAPTER 11 DIVISORS

Therefore,
∏

i gT ◦ τ−Q′
i

and gα(T ) ◦ α have the same divisor and hence differ
by a constant C.

The definition of en yields

en(α(S), α(T )) =
gα(T )(α(P + S))

gα(T )(α(P ))

=
∏

i

gT (P + S − Q′
i)

gT (P − Q′
i)

(the constant C cancels out)

=
∏

i

en(S, T )

(since both P and P − Q′
i give the same value of en)

= en(S, T )k = en(S, T )deg(α).

When α = φq is the Frobenius endomorphism, then (5) implies that

en(φq(S), φq(T )) = φq(en(S, T )) = en(S, T )q,

since φq is the qth power map on elements of Fq. From Lemma 2.20, we have
that q = deg(φq), which proves (6) when α = φq. This completes the proof of
Theorem 11.7.

11.3 The Tate-Lichtenbaum Pairing

In this section, we give an alternative definition of the Tate-Lichtenbaum
pairing and the modified Tate-Lichtenbaum pairing, which were introduced in
Chapter 3. In Section 11.6.2, we show that these two definitions are equivalent.

THEOREM 11.8
LetE be an elliptic curve over Fq. Letn be an integer such thatn|q − 1.
LetE(Fq)[n] denote the elem entsofE(Fq) oforderdividing n,and letμn =
{x ∈ Fq |xn = 1}.Then there are nondegenerate bilinear pairings

〈· , ·〉n : E(Fq)[n] × E(Fq)/nE(Fq) → F×
q /(F×

q )n

and
τn : E(Fq)[n] × E(Fq)/nE(Fq) → μn.

The first pairing of the theorem is called the Tate-Lichtenbaum pairing.
We’ll refer to τn as the modified Tate-Lichtenbaum pairing. The pairing
τn is better suited for computations since it gives a definite answer, rather than
a coset in F×

q mod nth powers. As pointed out in Chapter 3, we should write
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〈P,Q + nE(Fq)〉n, and similarly for τn, since an element of E(Fq)/nE(Fq)
has the form Q + nE(Fq). However, we’ll simply write 〈P,Q〉n and τn(P,Q).

PROOF The essential idea is the following. Let P ∈ E(Fq)[n] and let
div(f) = n([P ] − [∞]). Let Q ∈ E(Fq) and choose a divisor DQ =

∑
ai[Qi]

that is equivalent to [Q] − [∞] modulo principal divisors and that does not
contain P or ∞. Then

〈P,Q〉n = f(DQ) =
∏

i

f(Qi)ai .

However, we want to be more careful about our choices of divisors and func-
tions, so we need a few preliminary results.

Let P ∈ E(Fq)[n]. Let DP be a divisor of degree 0 such that sum(DP ) = P .
This means that DP − [P ] + [∞] has degree 0 and sum equal to ∞, hence is
the divisor of a function, by Theorem 11.2. Therefore, DP is equivalent to
[P ] − [∞] mod principal divisors.

We also assume that φ(DP ) = DP , where φ is the qth power Frobenius.
This means that φ permutes the points in DP in such a way that the divisor is
unchanged. This is the case, for example, if all the points occurring in DP are
in E(Fq). The next lemma shows that we have a lot of choices for choosing
divisors.

LEMMA 11.9
LetE be an elliptic curve overFq and letD1 be a divisorsuch thatφ(D1) =

D1. LetS ⊂ E(Fq) be a finite setofpoints. Then there exists a divisorD
such thatφ(D) = D,the divisorsD and D1 di erby a principaldivisor,and
D containsno pointsfrom S.

PROOF Let D1 =
∑d

j=1 cj [Pj ]. Since the points Pj lie in some finite
group E(Fqk), there is an integer M ≥ 1 such that MPj = ∞ for all j. Let
m ≡ 1 (mod M) and let T ∈ E(Fqm). Then φm(T ) = T , so φ permutes the
set {T, φ(T ), . . . , φm−1(T )}. Let

D =
m−1∑
i=0

d∑
j=1

cj

(
[Pj + φi(T )] − [φi(T )]

)
.

Since φ(D1) = D1, for each j we have φ(Pj) = Pj′ and cj = cj′ for some j′.
It follows that the summands are permuted by φ, so φ(D) = D. Since m ≡ 1
(mod M), we have

sum

(
m−1∑
i=0

([Pj + φi(T )] − [φi(T )])

)
= mPj = Pj .
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Therefore, sum(D1−D) = 0 and deg(D1−D) = 0, which implies that D1−D
is principal.

If D contains a point from S, then either φi(T ) ∈ S or Pj + φi(T ) ∈ S
for some i, j. This means that T is in a set obtained by translating φ−i(S)
by either ∞ or one of the points φ−i(Pj). Let s = #S. There are at most
m(d + 1)s points in the union of these sets. By Hasse’s theorem, E(Fqm)
contains at least qm + 1− 2qm/2 points. Since #E(Fqm)−m(d + 1)s → ∞ as
m → ∞, we can, by varying m, choose T not in these sets and thus obtain a
divisor containing no points from S.

Suppose that we have chosen DP . By Theorem 11.2, there exists a function
f such that

div(f) = nDP .

But we want a little more. Let fφ denote the result of applying φ to the
coefficients of a rational function defining f . Then φ(f(X)) = fφ(φ(X)) for
all X ∈ E(Fq).

LEMMA 11.10
LetD′ be a principaldivisorwith φ(D′) = D′.Then there exists f such that

div(f) = D′ and fφ = f (so f isdefined overFq).

PROOF Start with any f1 (defined over Fq) such that div(f1) = D′. Then

div(fφ
1 ) = φ(D′) = D′ = div(f1),

so fφ
1 /f1 = c ∈ F

×
q is constant. Choose d ∈ F

×
q such that c = dq−1 = φ(d)/d.

Then
φ(d)/d = c = fφ

1 /f1.

Therefore,
((1/d)f1)φ = (1/φ(d))fφ

1 = (1/d)f1.

Since d is constant, the function f = (1/d)f1 has the same divisor as f1. This
proves the lemma.

Now let DQ =
∑

i ai[Qi] be a divisor of degree 0 such that sum(DQ) = Q
and such that DP and DQ have no points in common. Assume that φ(DQ) =
DQ. Let f satisfy fφ = f and div(f) = nDP . Define

〈P,Q〉n = f(DQ) (mod (F×
q )n),

where, for any function f whose divisor has no points in common with DQ,
we define

f(DQ) =
∏

i

f(Qi)ai .

© 2008 by Taylor & Francis Group, LLC



SECTION 11.3 THE TATE-LICHTENBAUM PAIRING 357

Note that once we have chosen DP , the function f is determined up to a
constant multiple. Since 0 = deg(DQ) =

∑
i ai, any such constant cancels out

in the definition of the pairing.
We need to see what happens when we change the choice of DP or DQ.

Suppose D′
P and D′

Q are divisors of degree 0 with sums P and Q, and that
φ(D′

Q) = D′
Q and φ(D′

P ) = D′
P . Then

D′
P = DP + div(g), D′

Q = DQ + div(h),

for some functions g and h. By Lemma 11.10, we may assume that g, h are
defined over Fq. We have div(f ′) = nD′

P for some function f ′ defined over
Fq.

First, assume that D′
Q has no points in common with DP and D′

P and that
D′

P also has no points in common with DQ. Since

div(f ′) = div(fgn),

f ′ = cfgn for some constant c. Let’s use f ′ and D′
Q to define a pairing, and

denote it by 〈· , ·〉′n. We obtain

〈P, Q〉′n = f ′(D′
Q) = f(D′

Q) g(D′
Q)n = f(DQ) f(div(h)) g(D′

Q)n.

Note that the constant c canceled out since deg(D′
Q) = 0. We now need the

following result, which is usually called Weil reciprocity.

LEMMA 11.11
Letf and h be two functions on E and suppose thatdiv(f) and div(h) have
no pointsin com m on.Then

f(div(h)) = h(div(f)).

For a proof, see [59, p. 427] or [109].
In our situation, Weil reciprocity yields

〈P, Q〉′n = f(DQ)h(div(f)) g(D′
Q)n

= f(DQ)h(DP )n g(D′
Q)n.

Since φ(h(DP )) = h(φ(DP )) = h(DP ) and similarly for g(D′
Q), we have

h(DP ), g(D′
Q) ∈ F×

q . Therefore,

〈P, Q〉′n ≡ 〈P, Q〉n (mod (F×
q )n),

so the pairing is independent mod nth powers of the choice of DP and DQ.
For the general case where DP , D′

P and DQ, D′
Q could have points in com-

mon, use Lemma 11.9 to choose disjoint divisors D′′
P and D′′

Q that are disjoint
from all of these divisors. Then

〈P, Q〉′n ≡ 〈P, Q〉′′n ≡ 〈P, Q〉n (mod (F×
q )n).
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Therefore, the pairing is independent mod nth powers of the choice of DP

and DQ.
If Q1 and Q2 are two points and DQ1 and DQ2 are corresponding divisors,

then
DQ1 + DQ2 ∼ [Q1] − [∞] + [Q2] − [∞] ∼ [Q1 + Q2] − [∞]

where ∼ denotes equivalence of divisors mod principal divisors. The last
equivalence is the fact that the sum function in Corollary 11.4 is a homomor-
phism of groups. Consequently,

〈P,Q1 + Q2〉n = f(DQ1)f(DQ2) = 〈P, Q1〉n〈P, Q2〉n.

Therefore, the pairing is linear in the second variable.
If P1, P2 ∈ E(Fq)[n], and DP1 , DP2 are corresponding divisors and f1, f2

are the corresponding functions, then

DP1 + DP2 ∼ [P1] − [∞] + [P2] − [∞] ∼ [P1 + P2] − [∞].

Therefore, we can let DP1+P2 = DP1 + DP2 . We have

div(f1f2) = nDP1 + nDP2 = nDP1+P2 ,

so f1f2 can be used to compute the pairing. Therefore,

〈P1 + P2, Q〉n = f1(DQ)f2(DQ) = 〈P1, Q〉n〈P2, Q〉n.

Consequently, the pairing is linear in the first variable.
The nondegeneracy is much more difficult to prove. This will follow from

the main results of Sections 11.7 and 11.6.2; namely, the present pairing is the
same as the pairing defined in Chapter 3, and that pairing is nondegenerate.

Since F×
q is cyclic of order q − 1, the (q − 1)/n-th power map gives an

isomorphism
F×

q /(F×
q )n −→ μn.

Therefore, define
τn(P,Q) = 〈P,Q〉(q−1)/n

n .

The desired properties of the modified Tate-Lichtenbaum pairing τn follow
immediately from those of the Tate-Lichtenbaum pairing.

11.4 Computation of the Pairings

In Section 11.1, we showed how to express a divisor of degree 0 and sum
∞ as a divisor of a function. This method suffices to compute the Weil and
Tate-Lichtenbaum pairings for small examples. However, for larger examples,
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a little care is needed to avoid massive calculations. Also, the definition given
for the Weil pairing involves a function g whose divisor includes contributions
from all of the n2 points in E[n]. When n is large, this can cause compu-
tational difficulties. The following result gives an alternate definition of the
Weil pairing en.

THEOREM 11.12
LetS, T ∈ E[n].LetDS and DT be divisorsofdegree 0 such that

sum(DS) = S and sum(DT ) = T

and such thatDS and DT have no points in com m on. Let fS and fT be
functionssuch that

div(fS) = nDS and div(fT ) = nDT .

Then the W eilpairing isgiven by

en(S, T ) =
fT (DS)
fS(DT )

.

(Recallthatf(
∑

ai[Pi]) =
∏

i f(Pi)ai.)

The proof is given in Section 11.6.1.

REMARK 11.13 Some authors define the Weil pairing as fS(DT )/fT (DS),
thus obtaining the inverse of the value we use.

A natural choice of divisors is

DS = [S] − [∞], DT = [T + R] − [R]

for some randomly chosen point R. Then we have

en(S, T ) =
fS(R)fT (S)

fS(T + R)fT (∞)
.

Example 11.5
Let E be the elliptic curve over F7 defined by

y2 = x3 + 2.

Then
E(F7)[3] � Z3 ⊕ Z3.

In fact, this is all of E(F7). Let’s compute

e3((0, 3), (5, 1)).
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Let
D(0,3) = [(0, 3)] − [∞], D(5,1) = [(3, 6)] − [(6, 1)].

The second divisor was obtained by adding R = (6, 1) to (5, 1) to obtain
(3, 6) = (5, 1) + (6, 1). A calculation (see Section 11.1) shows that

div(y − 3) = 3D(0,3), div
(

4x − y + 1
5x − y − 1

)
= 3D(5,1).

Therefore, we take

f(0,3) = y − 3, f(5,1) =
4x − y + 1
5x − y − 1

.

We have

f(0,3)

(
D(5,1)

)
=

f(0,3)(3, 6)
f(0,3)(6, 1)

=
6 − 3
1 − 3

≡ 2 (mod 7).

Similarly,
f(5,1)(D(0,3)) = 4

(to evaluate f(5,1)(∞), see below). Therefore,

e3((0, 3), (5, 1)) =
4
2
≡ 2 (mod 7).

The number 2 is a cube root of unity, since 23 ≡ 1 (mod 7).
There are several ways to evaluate f(5,1)(∞). The intuitive way is to observe

that y has a pole of order 3 at ∞ while x has a pole of order 2. Therefore,
the terms −y in the numerator and denominator dominate as (x, y) → ∞, so
the ratio goes to 1. Another way is to change to homogeneous form and use
projective coordinates:

f(5,1)(x : y : z) =
4x − y + z

5x − y + z
.

Then
f(5,1)(∞) = f(5,1)(0 : 1 : 0) = 1.

The Tate-Lichtenbaum pairing can be calculated as

〈P,Q〉n =
f(Q + R)

f(R)

for appropriate f (depending on P ) and R (as long as there are enough points
in E(Fq) to choose R �= P,−Q,P − Q,∞) . We can express the Weil pairing
in terms of this pairing:

en(S, T ) =
〈T, S〉n
〈S, T 〉n ,
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ignoring the ambiguities (i.e., up to nth powers) in the definition of the terms
on the right side, since they cancel out.

Therefore, we see that computing the Weil pairing and computing the Tate-
Lichtenbaum pairing both reduce to finding a function f with

div(f) = n[P + R] − n[R]

for points P ∈ E[n] and R ∈ E and evaluating f(Q1)/f(Q2) for points Q1, Q2.
The following algorithm due to Victor Miller [83] shows how to do this effi-
ciently.

The idea is to use successive doubling (see page 18) to get to n. But the
divisors j[P +R]−j[R] for j < n are not divisors of functions, so we introduce
the divisors

Dj = j[P + R] − j[R] − [jP ] + [∞]. (11.7)

Then Dj is the divisor of a function, by Theorem 11.2:

div(fj) = Dj . (11.8)

Suppose we have computed fj(Q1)/fj(Q2) and fk(Q1)/fk(Q2). We show
how to compute fj+k(Q1)/fj+k(Q2). Let

ax + by + c = 0

be the line through jP and kP (the tangent line if jP = kP ), and let x+d = 0
be the vertical line through (j + k)P . Then (see the proof of Theorem 11.2),

div
(

ax + by + c

x + d

)
= [jP ] + [kP ] − [(j + k)P ] − [∞].

Therefore,

div(fj+k) = Dj+k = Dj + Dk + div
(

ax + by + c

x + d

)
= div

(
fjfk

ax + by + c

x + d

)
.

This means that there exists a constant γ such that

fj+k = γfjfk
ax + by + c

x + d
.

Therefore,

fj+k(Q1)
fj+k(Q2)

=
fj(Q1)
fj(Q2)

fk(Q1)
fk(Q2)

(ax + by + c)/(x + d)|(x,y)=Q1

(ax + by + c)/(x + d)|(x,y)=Q2

. (11.9)

We conclude that passing from fj and fk to fj+k can be done quite quickly.
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For example, this means that if we know fj(Q1)/fj(Q2) for j = 2i, we
can quickly calculate the same expression for j = 2i+1. Also, once we have
computed some of these, we can combine them to obtain the values when j is
a sum of powers of 2. This is what happens when we do successive doubling
to reach n. Therefore, we can compute fn(Q1)/fn(Q2) quickly. But

div(fn) = n[P + R] − n[R] − [nP ] + [∞] = n[P + R] − n[R],

since nP = ∞. Therefore, fn is the function f whose values we are trying to
compute, so we have completed the calculation.

The above method can be described in algorithmic form as follows. Let
P ∈ E[n] and let R,Q1, Q2 be points on E. Let fj be as in (11.8). Define

vj = fj(Q1)/fj(Q2)

to be the value of fj at the divisor [Q1] − [Q2].

1. Start with i = n, j = 0, k = 1. Let f0 = 1 and compute f1 with divisor
[P + R] − [P ] − [R] + [∞].

2. If i is even, let i = i/2 and compute v2k = f2k(Q1)/f2k(Q2) in terms of
vk, using (11.9). Then change k to 2k, but do not change j. Save the
pair (vj , vk) for the new value of k.

3. If i is odd, let i = i − 1, and compute vj+k = fj+k(Q1)/fj+k(Q2) in
terms of vj and vk, using (11.9). Then change j to j + k, but do not
change k. Save the pair (vj , vk) for the new value of j.

4. If i �= 0, go to step 2.

5. Output vj .

The output will be vn = fn(Q1)/fn(Q2) (this can be proved by induction).

Example 11.6
Suppose we want to calculate v13. At the end of each computation, we have
the following values of i, j, k, (vj , vk):

1. i = 13, j = 0, k = 1, (v0, v1)

2. i = 12, j = 1, k = 1, (v1, v1)

3. i = 6, j = 1, k = 2, (v1, v2)

4. i = 3, j = 1, k = 4, (v1, v4)

5. i = 2, j = 5, k = 4, (v5, v4)

6. i = 1, j = 5, k = 8, (v5, v8)
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7. i = 0, j = 13, k = 8, (v13, v8)

Example 11.7
Let E be the elliptic curve

y2 = x3 − x + 1

over F11, and let n = 5. There are 10 points in E(F11). The point P = (3, 6)
has order 5. Let’s compute 〈P, P 〉5. Therefore, in the definition of the Tate-
Lichtenbaum pairing, we have P = Q = (3, 6). Let

DP = [(3, 6)] − [∞], DQ = [(1, 1)] − [(0, 1)] = [Q1] − [Q2].

The divisor DQ was constructed by adding (0, 1) to Q to obtain (1, 1). This
was done so that DP and DQ have no points in common. We now use the
algorithm to compute fP (DQ), where

div(fP ) = 5DP .

In Equation (11.7), we have R = ∞, so D0 = D1 = 0. Therefore, we take
f0 = f1 = 1. The algorithm proceeds as follows.

1. Start with i = 5, j = 0, k = 1, v0 = 1, v1 = 1.

2. Since i = 5 is odd, compute vj+k = v1, which is already known to be 1.
Update the values of i, j, k to obtain i = 4, j = 1, k = 1, v1 = 1, v1 = 1.

3. Since i = 4 is even, compute the line tangent to E at kP = P . This
is 4x − y + 5 = 0. The vertical line through 2kP = 2P is x + 1 = 0.
Therefore, Equation (11.9) becomes

v2 = v2
1 · 4x − y + 5

x + 1

∣∣∣∣
DQ

= 1 · 1 = 1.

Here we performed the calculation

(4x − y + 5)|DQ
=

(4x − y + 5)|(1,1)

(4x − y + 5)|(0,1)

=
8
4

= 2

and similarly (x + 1)|DQ
= 2. Update to obtain i = 2, j = 1, k = 2, v1 =

1, v2 = 1.

4. Since i = 2 is even, use the computation of 4P = 2P + 2P to obtain

v4 = v2 · v2 · x + y + 2
x − 3

∣∣∣∣
DQ

= 1 · 1 · 2 = 2.

Update to obtain i = 1, j = 1, k = 4, v1 = 1, v4 = 2.
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5. Since i = 1 is odd, use the computation of 5P = P + 4P to obtain

v5 = v1 · v4 · (x − 3)|DQ
= 1 · 2 · (2/3) ≡ 5 (mod 11).

Therefore, the Tate-Lichtenbaum pairing of P with P is

〈P, P 〉5 = v5 = 5 (mod (F×
11)

5),

and the modified Tate-Lichtenbaum pairing is

τ5(P, P ) = 〈P, P 〉(11−1)/5
5 ≡ 3 (mod 11).

Note that, in contrast to the Weil pairing, the Tate-Lichtenbaum pairing of a
point with itself can be nontrivial.

11.5 Genus One Curves and Elliptic Curves

Let C be a nonsingular algebraic curve defined over a field K. The curve C
is given as the roots in P2

K
of a polynomial, or as the intersection of surfaces

in P3
K

, for example, and is assumed not to be the union of two smaller such
curves. We can define divisors and divisors of functions on C in the same way
as we did for elliptic curves. Let

D1 =
∑

ai[Pi], D2 =
∑

bi[Pi]

be divisors on C. We say that

D1 ≥ D2 ⇐⇒ ai ≥ bi for all i.

We say that

D1 ∼ D2 ⇐⇒ D1 − D2 = div(f) for some function f.

For a divisor D, define

L(D) = {functions f | div(f) + D ≥ 0} ∪ {0}.
Then L(D) is a vector space over K. Define

�(D) = dimL(D).

For example, let D = 3[P ] − 2[Q]. A function f in the linear space L(D) has
at most a triple pole at P and at least a double zero at Q. Also, f cannot
have any poles other than at P , but it can have zeros other than at Q.

PROPOSITION 11.14
LetC bea nonsingularalgebraiccurvedefined overa fieldK,and letD,D1,
and D2 be divisorson C.
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1. Ifdeg D < 0,then L(D) = 0.

2. IfD1 ∼ D2 then L(D1) � L(D2).

3.L(0) = K.

4. �(D) < ∞.

5. Ifdeg(D) = 0 then �(D) = 0 or 1.

PROOF Proposition 11.1 holds for all curves (see [38]), not just elliptic
curves, and we’ll use it in this more general context throughout the present
proof. For example, we need that deg(div(f)) = 0 for functions f that are
not identically 0.

If L �= 0, then there exists f �= 0 with

div(f) + D ≥ 0,

which implies that

deg(D) = deg(div(f) + D) ≥ 0.

This proves (1).
If D1 ∼ D2, then D1 = D2 + div(g) for some g. The map

L(D1) → L(D2)
f �→ fg

is easily seen to be an isomorphism. This proves (2).
If 0 �= f ∈ L(0), then div(f) ≥ 0. Since deg(div(f)) = 0, we must have

div(f) = 0, which means that f has no zeros or poles. The analogue of
Proposition 11.1 says that f must be a constant. Therefore,

L(0) = K

and �(0) = 1. This proves (3) and also proves (4) for D = 0.
We can get from 0 to an arbitrary divisor by adding or subtracting one point

at a time. We’ll show that each such modification changes the dimension by
at most one. Therefore, the end result will be a finite dimensional vector
space.

Suppose that D1, D2 are two divisors with D2 = D1 + [P ] for some point
P . Then

L(D1) ⊆ L(D2).

Suppose there exist g, h ∈ L(D2) with g, h �∈ L(D1). Let −n be the coefficient
of [P ] in D2. Then both g and h must have order n at P . (The order of g
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must be at least n. If it is larger, then g ∈ L(D1). Similarly for h.) Let u be
a uniformizer at P . Write

g = ung1, h = unh1

with g1(P ) = c �= 0,∞ and h1(P ) = d �= 0,∞. Then

dg − ch = un(dg1 − ch1),

and (dg1 − ch1)(P ) = 0. Therefore, dg − ch has order greater than n at P , so

dg − ch ∈ L(D1).

Therefore any two such elements g, h ∈ L(D2) are linearly dependent mod
L(D1). It follows that

�(D1) ≤ �(D2) ≤ �(D1) + 1.

As pointed out above, this implies (4).
To prove (5), assume deg(D) = 0. If L(D) = 0, we’re done. Otherwise,

there exists 0 �= f ∈ L(D). Then

div(f) + D ≥ 0 and deg(div(f) + D) = 0 + 0 = 0.

Therefore,
div(f) + D = 0.

Since D ∼ div(f) + D = 0, we have

L(D) � L(0) = K,

by (2) and (3). Therefore, �(D) = 1. This proves (5).

A very fundamental result concerning divisors is the following.

THEOREM 11.15 (Riemann-Roch)
Given an algebraiccurveC,thereexistsan integerg (called the genus ofC)
and a divisorK (called a canonical divisor)such that

�(D) − �(K − D) = deg(D) − g + 1

foralldivisorsD.

For a proof, see [42] or [49]. The divisor K is the divisor of a differential on
C.

COROLLARY 11.16

deg(K) = 2g − 2.
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PROOF Letting D = 0 and D = K in the Riemann-Roch theorem, then
using (3) in Proposition 11.14, yields

�(K) = g, and �(K) = deg(K) − g + 2.

Therefore,
deg(K) = 2g − 2,

as desired.

COROLLARY 11.17
Ifdeg(D) > 2g − 2,then �(D) = deg(D) − g + 1.

PROOF Since deg(K−D) < 0, Proposition 11.14 (1) says that �(K−D) =
0. The Riemann-Roch theorem therefore yields the result.

COROLLARY 11.18
LetP,Q be pointson C.Ifg ≥ 1 and [P ] − [Q] ∼ 0,then P = Q.

PROOF By assumption, [P ]− [Q] = div(f) for some f . Assume [P ] �= [Q].
Since fn has a pole of order n at Q, and since functions with different orders
of poles at Q are linearly independent, the set

{1, f, f2, . . . , f2g−1}
spans a subspace of L((2g − 1)[Q]) of dimension 2g. Therefore,

2g ≤ �((2g − 1)[Q]) = (2g − 1) − g + 1 = g,

by Corollary 11.17. Since g ≥ 1, this is a contradiction. Therefore, P = Q.

Our goal is to show that a curve C of genus one is isomorphic over K to
an elliptic curve given by a generalized Weierstrass equation. The following
will be used to construct the functions needed to map from C to the elliptic
curve.

COROLLARY 11.19
IfC hasgenus g = 1 and deg(D) > 0,then

�(D) = deg(D).

PROOF This is simply a restatement of Corollary 11.17 in the case g = 1.
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Choose a point P ∈ C(K). If P ∈ C(K), then it is possible to perform
the following construction using only numbers from K rather than from K.
This corresponds to the situation in Chapter 2, where we used rational points
to put certain curves into Weierstrass form. However, we’ll content ourselves
with working over K.

Corollary 11.19 says that

�(n[P ]) = n for all n ≥ 1.

Since K ⊆ L([P ]), which has dimension 1, we have

L([P ]) = K.

Since �(2[P ]) = 2 > �([P ]), there exists a function f ∈ L(2[P ]) having a
double pole at P and no other poles. Since �(3[P ]) = 3 > �(2[P ]), there exists
a function g ∈ L(3[P ]) with a triple pole at P and no other poles. Since
functions with different order poles at P are linearly independent, we can use
f and g to give bases for several of the spaces L(n[P ]):

L([P ]) = span(1)
L(2[P ]) = span(1, f)
L(3[P ]) = span(1, f, g)
L(4[P ]) = span(1, f, g, f2)
L(5[P ]) = span(1, f, g, f2, fg).

We can write down 7 functions in the 6-dimensional space L(6[P ]), namely

1, f, g, f2, fg, f3, g2.

These must be linearly dependent, so there exist a0, a1, a2, a3, a4, a6 ∈ K with

g2 + a1fg + a3g = a0f
3 + a2f

2 + a4f + a6. (11.10)

Note that the coefficient of g2 must be nonzero, hence can be assumed to
be 1, since the remaining functions have distinct orders of poles at P and
are therefore linearly independent. Similarly, a0 �= 0. By multiplying f by a
suitable constant, we may assume that

a0 = 1.

Let E be the elliptic curve defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

We have a map

ψ : C(K) → E(K)
Q �→ (f(Q), g(Q))
P �→ ∞.
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PROPOSITION 11.20
ψ isa bijection.

PROOF Suppose Q1 �= Q2 are such that ψ(Q1) = ψ(Q2), hence

f(Q1) = f(Q2) = a and g(Q1) = g(Q2) = b

for some a, b. Since f − a has a double pole at P and g − b has a triple pole
at P ,

div(f − a) = [Q1] + [Q2] − 2[P ]
div(g − b) = [Q1] + [Q2] + [R] − 3[P ]

for some R. Subtracting yields

[R] − [P ] = div((g − b)/(f − a)) ∼ 0.

By Corollary 11.18, this means that R = P . Therefore,

div(g − b) = [Q1] + [Q2] − 2[P ],

so g has only a double pole at P . This contradiction proves that ψ is an
injection.

To prove surjectivity, let (a, b) ∈ E(K). We want to find P with ψ(P ) =
(a, b). Since f − a has a double pole at P and since the divisor of a function
has degree 0, there are (not necessarily distinct) points Q1, Q2 ∈ C(K) such
that

div(f − a) = [Q1] + [Q2] − 2[P ].

For a given x-coordinate a, there are two possible y-coordinates b and b′ for
points on E. If g(Qi) = b for some i = 1, 2, we have ψ(Qi) = (a, b) and we’re
done. Therefore, suppose

g(Q1) = g(Q2) = b′.

Then ψ(Q1) = ψ(Q2) = (a, b′). Since ψ is injective, Q1 = Q2, so

div(f − a) = 2[Q1] − 2[P ].

Let u be a uniformizing parameter at Q1. Then

f − a = u2f1, g − b′ = ug1

with f1(Q1) �= 0,∞ and g1(Q1) �= ∞ (possibly g1(Q1) = 0). Substituting into
(11.10) and using the fact that (a, b′) ∈ E yields

(ug1)(2b′ + a1a + a3) = u2h
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for some function h. Dividing by u and evaluating at Q1 shows that

g1(Q1) = 0 or 2b′ + a1a + a3 = 0.

If g1(Q1) = 0, then g − b′ has at least a double root at Q1, so

div(g − b′) = 2[Q1] + [R] − 3[P ]

for some R. Therefore,

div((g − b′)/(f − a)) = [R] − [P ].

By Corollary 11.18, R = P . This means that g − b′ has only a double pole at
P , which is a contradiction. Therefore, g1(Q1) �= 0, so

0 = 2b′ + a1a + a3 =
∂

∂y
(y2 + a1ay + a3y − a3 − a2a

2 − a4a − a6)
∣∣∣∣
y=b′

.

This means that b′ is a double root, so b = b′. Therefore, ψ(Q1) = (a, b′) =
(a, b). Therefore, ψ is surjective.

It is possible to show that not only ψ, but also ψ−1, is given by rational
functions. See [109, p. 64]. Since C is assumed to be nonsingular, this implies
that the equation for E is nonsingular, so E is actually an elliptic curve.

It is also possible to show that elliptic curves always have genus one. There-
fore, over algebraically closed fields, genus one curves, with a base point P
specified, are the same as elliptic curves, with P being the origin for the group
law. Over nonalgebraically closed fields, the situation is more complicated. A
genus one curve C such that C(K) is nonempty is an elliptic curve, but there
are genus one curves C such that C(K) is empty (see Section 8.8). These
curves are not elliptic curves over K, but become elliptic curves over certain
extensions of K.

11.6 Equivalence of the Definitions of the Pair-
ings

In Sections 11.2 and 11.4, we gave two definitions of the Weil pairing. In this
section, we show that these definitions are equivalent. Similarly, in Sections
3.4 and 11.3, we gave two definitions of the Tate-Lichtenbaum pairing. We
show these are equivalent.
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11.6.1 The Weil Pairing

In this section we give the proof of Theorem 11.12, which says that the two
definitions of the Weil pairing are equivalent. We let en denote the pairing
defined in Section 11.2 and show that it equals the alternative definition.

PROOF The following proof is based on a calculation of Weil [131, pp.
240-241].

Let V,W ∈ E[n2]. Let

div(fnV ) = n[nV ] − n[∞], gn
nV = fnV ◦ n,

be as in the definition of the Weil pairing. Define

c(nV, vW ) =
fnV +nW (X)

fnV (X)fnW (X − nV )
, d(V,W ) =

gnV +nW (X)
gnV (X)gnW (X − V )

,

where the right-hand sides are functions of the variable point X on E. The
fact that the notation does not include X on the left-hand sides is justified
by the following.

LEMMA 11.21
c(nV, nW ) and d(V,W ) are constants,and

d(V,W )n = c(nV, nW ).

PROOF Using the expressions for div(fnX),div(gX) on page 349, we see
that div(c(nV, nW )) = 0 and div(d(V,W )) = 0. Therefore, they are constants.
Since gn

nV = fnV ◦ n, we have

d(V,W )n =
fnV +nW (nX)

fnV (nX)fnW (nX − nV )
= c(nV, nW ),

because c(nV, nW ) is independent of X.

The next few results relate the Weil pairing to c and d. The points U, V,W
represent elements of E[n2].

LEMMA 11.22
d(V,W + nU) = d(V,W ) and d(V + nU,W ) = d(V,W )en(nU, nW ).

PROOF Since n(W + nU) = nW , the functions gn(W+nU) and gnW are
equal. Therefore,

d(V,W + nU) =
gnV +nW (X)

gnV (X)gnW (X − V )
= d(V,W ).
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Similarly,

d(V + nU,W ) =
gnV +nW (X)

gnV (X)gnW (X − V − nU)

=
gnV +nW (X)

gnV (X)gnW (X − V )
gnW (X − V )

gnW (X − V − nU)
= d(V,W )en(nU, nW ),

where the last equality uses the definition of the Weil pairing (Equation
(11.6)).

LEMMA 11.23
d(U, V )
d(V,U)

=
d(V,W )d(U + W,V )
d(V,U + W )d(W,V )

.

PROOF The definition of d applied twice yields

gnU+(nV +nW )(X) = d(U, V + W )gnU (X)gnV +nW (X − U)
= d(U, V + W )gnU (X)d(V,W )gnV (X − U)gnW (X − U − V ).

Similarly,

g(nU+nV )+nW (X) = d(U + V,W )gnU+nV (X)gnW (X − U − V )
= d(U + V,W )d(U, V )gnU (X)gnV (X − U)gnW (X − U − V ).

Since gnU+(nV +nW ) = g(nU+nV )+nW , we can cancel like terms and obtain

d(U, V + W )d(V,W ) = d(U + V,W )d(U, V ). (11.11)

Interchange U and V in (11.11) and divide to obtain

d(U, V )
d(V,U)

=
d(U, V + W )d(V,W )
d(V,U + W )d(U,W )

. (11.12)

Now switch V and W in 11.11, solve for d(U,W ), and substitute in (11.12) to
obtain the result.

LEMMA 11.24
LetS, T ∈ E[n].Then

en(S, T ) =
c(S, T )
c(T, S)

.

PROOF Choose U, V ∈ E[n2] so that nU = S, nV = T . The left-hand
side of the formula in the previous lemma does not depend on W . Therefore
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we can evaluate the right-hand side at W = jU for 0 ≤ j < n and multiply
the results to obtain

c(nU, nV )
c(nV, nU)

=
(

d(U, V )
d(V,U)

)n

=
n−1∏
j=0

d(V, jU)d(U + jU, V )
d(V,U + jU)d(jU, V )

.

All the factors in this product cancel except some of those for j = 0 and
j = n − 1. We obtain

c(S, T )
c(T, S)

=
d(V,∞)d(nU, V )
d(V, nU)d(∞, V )

.

In the first equation of Lemma 11.22, set W = ∞ to obtain d(V, nU) =
d(V,∞). In the second equation of Lemma 11.22, set V = ∞ and then set
W = V to obtain d(nU, V ) = d(∞, V )e(nU, nV ). This yields the result.

We now proceed with the proof of the theorem. The definition of c shows
that

en(S, T ) =
c(S, T )
c(T, S)

=
fT (X)fS(X − T )
fS(X)fT (X − S)

, (11.13)

which is independent of X. Let

D′
S = [S] − [∞], D′

T = [X0] − [X0 − T ],

where X0 is chosen so that D′
S and D′

T are disjoint divisors. Let F ′
S(X) =

fS(X) and F ′
T (X) = 1/fT (X0 − X). Then

div(F ′
S) = n[S] − n[∞] = nD′

S , div(F ′
T ) = n[X0] − n[X0 − T ] = nD′

T .

Therefore, (11.13) yields

en(S, T ) =
F ′

T (D′
S)

F ′
S(D′

T )
.

This shows that the theorem is true for the choice of divisors D′
S and D′

T .
We now need to consider arbitrary choices. Let DS be any divisor of degree
0 such that sum(DS) = S and let DT be any divisor of degree 0 such that
sum(DT ) = T . Then DS = div(h1) + D′

S and DT = div(h2) + D′
T for some

functions h1, h2. Let FS = hn
1F ′

S and FT = hn
2F ′

T . Then nDS = div(FS) and
nDT = div(FT ). First, assume that the divisors D′

S and DS are disjoint from
D′

T and DT . Then

FT (DS)
FS(DT )

=
h2(DS)nF ′

T (DS)
h1(DT )nF ′

S(DT )
=

h2(div(h1))nh2(D′
S)nF ′

T (div(h1))F ′
T (D′

S)
h1(div(h2))nh1(D′

T )nF ′
S(div(h2))F ′

S(D′
T )

.
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By Weil reciprocity (Lemma 11.11), h2(div(h1)) = h1(div(h2)). Also, Weil
reciprocity yields

h2(D′
S)n = h2(nD′

S) = h2(div(F ′
S)) = F ′

S(div(h2))

and similarly h1(D′
T )n = F ′

T (div(h1)). Therefore, we obtain

FT (DS)
FS(DT )

=
F ′

T (D′
S)

F ′
S(D′

T )
= en(S, T ).

If D′
S and DS are not necessarily disjoint from D′

T and DT , we can proceed
in two steps. First, let

D′′
S = [X1 + S] − [X1], D′′

T = [Y1 + T ] − [Y1],

where X1 and Y1 are chosen so that D′
S and D′′

S are disjoint from D′
T and

D′′
T and so that D′′

S and DS are disjoint from D′′
T and DT . The preceding

argument shows that

FT (DS)
FS(DT )

=
F ′′

T (D′′
S)

F ′′
S (D′′

T )
=

F ′
T (D′

S)
F ′

S(D′
T )

= en(S, T ).

This completes the proof.

For other proofs, see [69, Section 6.4] and [51].

11.6.2 The Tate-Lichtenbaum Pairing

In Section 3.4, we defined the (modified) Tate-Lichtenbaum pairing in terms
of the Weil pairing. In Section 11.3, we gave an alternative definition in terms
of divisors.

THEOREM 11.25
The pairings τn defined in Theorem 3.17 and Theorem 11.8 are equal.

PROOF Let the notation be as in Theorem 3.17. In particular, Q ∈ E(Fq)
and nR = Q. Choose a function g such that

div(g) = n[R] − [Q] − (n − 1)[∞].

Let gφ denote the function obtained by applying φ to all the coefficients of the
rational function defining g, so φ(g(X)) = gφ(φX) for all points X ∈ E(Fq).
Since φ(Q) = Q,

div(gφ) = n[φ(R)] − [Q] − (n − 1)[∞].
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Therefore,
div(g/gφ) = n[R] − n[φ(R)].

Let P ∈ E(Fq)[n]. By Lemma 11.9, we may choose a divisor DP of degree
0 such that sum(DP ) = P , such that DP is disjoint from ∞, Q, and R, and
such that φ(DP ) = DP (this means that φ permutes the points in DP ).

Let div(f) = nDP . We assume that f is chosen as in Lemma 11.10, so
f(φ(R)) = φ(f(R)). In Theorem 11.12, let S = P , T = R − φR, DS = DP ,
DT = [R] − [φR], FS = f , and FT = g/gφ. Then

τn(P,Q) = en(P,R − φ(R)) =
(g/gφ)(DP )

f([R] − [φ(R)])

= φ

(
f(R)
g(DP )

)(
g(DP )
f(R)

)
=
(

f(R)
g(DP )

)q−1

,

since φ raises elements of Fq to the qth power. But

f(R)n

f(Q)
f(∞)
f(∞)n

= f(div(g)) = g(div(f)) = g(DP )n,

where the second equality is Weil reciprocity. Therefore,(
f(R)
g(DP )

)n

=
f(Q)
f(∞)

f(∞)n.

Raising this to the power (q − 1)/n yields

τn(P,Q) =
(

f(R)
g(DP )

)q−1

=
(

f(Q)
f(∞)

)(q−1)/n

f(∞)q−1.

But f(∞) ∈ Fq since fφ = f and φ(∞) = ∞. Therefore, f(∞)q−1 = 1.
Define the divisor DQ = [Q] − [∞]. We obtain

τn(P,Q) = f(DQ)(q−1)/n,

as desired. Since we have shown in the proof of Theorem 11.8 that the value
of τn is independent of the choice of divisors, this completes the proof.

11.7 Nondegeneracy of the Tate-Lichtenbaum
Pairing

In this section we prove that the Tate-Lichtenbaum pairing is nondegen-
erate. The proof here is partly based on a paper of Schaefer [96]. First, we
make a few remarks on pairings in general.
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Let n ≥ 1 and let A and B be two finite abelian groups (written additively)
such that na = 0 for all a ∈ A and nb = 0 for all b ∈ B. Let 〈 , 〉 : B×A → μn

be a bilinear pairing. If we fix a ∈ A, then

ψa : b �−→ 〈b, a〉

gives a homomorphism from B to μn. Let Hom(B,μn) denote the set of
all group homomorphisms from B to μn. We can make Hom(B,μn) into an
abelian group by defining the product of α, β ∈ Hom(B,μn) by (α · β)(b) =
α(b) · β(b) for all b ∈ B.

LEMMA 11.26

IfB isa finitegroup (written additively)such thatnb = 0 forallb ∈ B,then
#Hom(B,μn) = #B.

PROOF First, suppose B = Zm, with m | n. If α ∈ Hom(B,μn), then

α(1)m = α(1 + · · · + 1) = α(0) = 1.

So α(1) is one of the m elements in μm ⊆ μn. Since 1 generates Zm, the
value of α(1) determines α(b) for all b. Moreover, any choice of α(1) ∈ μm

determines a well-defined homomorphism by b �→ α(1)b. Therefore, there is a
bijection between Hom(Zm, μn) and μm, so #Hom(Zm, μn) = m = #B.

Now consider an arbitrary finite abelian group B. By Theorem B.3 (Ap-
pendix B), B � Zm1 ⊕ · · · ⊕ Zms

. Since nb = 0 for all b ∈ B, we must have
mi|n for all i. There is a map

Φ : Hom(Zm1 , μn) ⊕ · · · ⊕ Hom(Zm1 , μn) −→ Hom (Zm1 ⊕ · · · ⊕ Zms
, μn) ,

(11.14)

where the isomorphism maps the s-tuple (α1, α2, . . . , αs) to the homomor-
phism given by

(b1, b2, . . . , bs) �−→ α1(b1)α2(b2) · · ·αs(bs).

The map
α �−→ (α1, α2, . . . , α2),

where αi(bi) = α(0, 0, . . . , bi, . . . , 0), is the inverse of Φ, so Φ is a bijection.
Since the group on the left side of (11.14) has order m1m2 · · ·ms = #B, we
obtain the lemma.

Part (b) of the next lemma makes our task easier since it allows us to deduce
nondegeneracy in one argument from nondegeneracy in the other.
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LEMMA 11.27
Assum e thatthe pairing 〈 , 〉 : B ×A → μn isnondegenerate in A (thatis,if
〈b, a〉 = 1 forallb ∈ B,then a = 0).
(a)The m ap A → Hom(B,μn) given by a �→ ψa isinjective.
(b)If#A = #B,then the pairing isalso nondegenerate in B.

PROOF Suppose ψa is the trivial homomorphism. This means that 〈b, a〉 =
ψa(b) = 1 for all b ∈ B. The nondegeneracy in A implies that a = 0. This
proves (a).

Let
B1 = {b ∈ B | 〈b, a〉 = 1 for all a ∈ A}.

Then each a ∈ A gives a well-defined homomorphism βa : B/B1 → μn

given by βa(b mod B1) = 〈b, a〉. If βa is the trivial homomorphism, then
〈b, a〉 = 1 for all b ∈ B, which means that a = 0. Therefore, A injects
into Hom(B/B1, μn), which has order #B/#B1, by Lemma 11.26. Since
#A = #B, we must have #B1 = 1. But B1 = 0 is exactly what it means for
the pairing to be nondegenerate in B. This proves (b).

A converse of part (b) of Lemma 11.27 holds.

LEMMA 11.28
Suppose 〈 , 〉 : B × A → μn is nondegenerate in both A and B. Then #A =

#B.In fact,A � Hom(B,μn) and B � Hom(A,μn).

PROOF By Lemma 11.27, we have an injection from A to Hom(B,μn),
so #A ≤ #Hom(B,μn) = #B. Reversing the roles of A and B, we have
#B ≤ #Hom(A,μn) = #A. Therefore, #A = #B, and the injections are
isomorphisms.

LEMMA 11.29
LetM be a finite abelian group and letα : M → M be a hom om orphism .
Then

#Ker α = #M/#α(M).

PROOF By Theorem B.6 (in Appendix B),

#M = (#Ker α)(#α(M)).

The result follows.

The following technical lemma is the key to proving the nondegeneracy of
the Tate-Lichtenbaum pairing.
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LEMMA 11.30

LetA and B be finite abelian groups (written additively) such thatnx = 0
for allx ∈ A and for allx ∈ B. Suppose thatthere is a nondegenerate (in
both argum ents)bilinear pairing

〈 , 〉 : B × A → μn,

whereμn isthegroup ofnth rootsofunity(in som efield).LetC bea subgroup
ofB.Define

ψ : A −→
∏
c∈C

μn

a �−→ (· · · , 〈c, a〉, · · · ) .

Then

#ψ(A) = #C.

PROOF The pairing is nondegenerate, so A � Hom(B,μn). Clearly,

Ker ψ = {a ∈ A | 〈c, a〉 = 1 for all c ∈ C}.

Identifying A with the set of homomorphisms from B to μn, we see that

Ker ψ = {f ∈ Hom(B,μn) | f(C) = 1}.

But a homomorphism that sends C to 1 is exactly the same as a homo-
morphism from B/C to μn. The set of such homomorphisms has order
#(B/C) = #B/#C. Therefore (see Theorem B.6 in Appendix B)

#ψ(A) = #A/#Ker ψ = #A/#(B/C) = #C,

since #A = #B. This proves the lemma.

We can now apply the above to the elliptic curve E. Let

ψ : E[n] −→
∏

P∈E(Fq)[n]

μn

Q �−→ (· · · , en(P,Q), · · · ) .

LEMMA 11.31

Letφ = φq be the qth power Frobenius endom orphism ofE. Then Ker ψ =
(φ − 1)E[n].
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PROOF Let Q ∈ E[n]. Then

ψ(φQ) = (· · · , en(P, φQ), · · · )
= (· · · , en(φP, φQ), · · · ) (since φP = P for P ∈ E(Fq)[n])

=
(· · · , en(P,Q)φ, · · · ) (by part (5) of Theorem 11.7)

= (· · · , en(P,Q), · · · ) (since μn ⊂ Fq)
= ψ(Q).

Therefore, ψ((φ − 1)Q) = 1, so (φ − 1)E[n] ⊆ Ker ψ. By Lemma 11.30, with
A = B = E[n] and C = E(Fq)[n], we have #ψ(E[n]) = #E(Fq)[n]. Let
Ker (φ − 1)|E[n] denote the kernel of the restriction of φ − 1 to E[n]. Then

#E(Fq)[n] = #Ker (φ − 1)|E[n] (since Ker(φ − 1) = E(Fq))
= #E[n]/#((φ − 1)E[n]) (by Lemma 11.29)
≥ #E[n]/#(Ker ψ) (since (φ − 1)E[n] ⊆ Ker ψ)
= #ψ(E[n]) = #E(Fq)[n].

Therefore, we must have equality everywhere. In particular, Ker ψ = (φ −
1)E[n].

We can now prove that the Tate-Lichtenbaum pairing is nondegenerate. Let
Q ∈ E(Fq). Write Q = nR with R ∈ E(Fq). Suppose that

τn(P,Q) = en(P,R − φR) = 1 for all P ∈ E(Fq)[n].

Then R − φR ∈ Ker ψ = (φ − 1)E[n]. This means that there exists T ∈ E[n]
such that R − φR = φT − T , hence φ(R + T ) = R + T . Since the points
fixed by φ have coordinates in Fq, this implies that R + T ∈ E(Fq). Since
Q = nR = n(R + T ), we have Q ∈ nE(Fq). Therefore,

τn : E(Fq)[n] × E(Fq)/nE(Fq) −→ μn

is nondegenerate in the second variable. Since the groups E(Fq)[n] and
E(Fq)/nE(Fq) have the same order (by Lemma 11.29 with α = n), Lemma
11.27 implies that the pairing is also nondegenerate in the first variable. This
completes the proof of the nondegeneracy of the Tate-Lichtenbaum pairing.

Exercises

11.1 Let E be the elliptic curve y2 = x3 − x over Q.

(a) Show that f(x, y) = (y4 + 1)/(x2 + 1)3 has no zeros or poles in
E(Q).
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(b) Show that g(x, y) = y4/(x2 + 1)3 has no poles in E(Q) but does
have zeros in E(Q).

(c) Find the divisors of f and g (over Q).

11.2 Let E be an elliptic curve over a field K and let m,n be positive integers
that are not divisible by the characteristic of K. Let S ∈ E[mn] and
T ∈ E[n]. Show that

emn(S, T ) = en(mS, T ).

11.3 Suppose f is a function on an algebraic curve C such that div(f) =
[P ] − [Q] for points P and Q. Show that f gives a bijection of C with
P1.

11.4 Show that part (3) of Proposition 11.1 follows from part (2). (Hint:Let
P0 be any point and look at the function f − f(P0).)
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Chapter 12
Isogenies

Isogenies, which are homomorphisms between elliptic curves, play a funda-
mental role in the theory of elliptic curves since they allow us to relate one
elliptic curve to another. In the first section, we describe the analytic theory
over the complex numbers. In subsequent sections, we obtain similar results
in the algebraic setting. Finally, we sketch how isogenies can be used to count
points on elliptic curves over finite fields.

12.1 The Complex Theory

Let E1 = C/L1 and E2 = C/L2 be elliptic curves over C. Let α ∈ C be
such that αL1 ⊆ L2. Then

[α] : E1 −→ E2

z �−→ αz

gives a homomorphism from E1 to E2 (we need αL1 ⊆ L2 to make the map
well-defined). A map of the form [α] with α �= 0 is called an isogeny from
E1 to E2. If there exists an isogeny from E1 to E2, we say that E1 and E2

are isogenous.

LEMMA 12.1
Ifα �= 0,then αL1 isoffinite index in L2.

PROOF Let {ω(k)
1 , ω

(k)
2 } be a basis for Lk, for k = 1, 2. Write

αω
(1)
i = ai1ω

(2)
1 + ai2ω

(2)
2

with aij ∈ Z. If det(aij) = 0 then (a11, a12) is a rational multiple of (a21, a22),
which implies that αω

(1)
1 is a rational multiple of αω

(1)
2 . This is impossible

since ω
(1)
1 and ω

(1)
2 are linearly independent over R.

381
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Regard each ω
(k)
i as a two-dimensional vector over R. Then the area of the

fundamental parallelogram of Lk is |det(ω(k)
1 , ω

(k)
2 )|. Since

det
(
αω

(1)
1 , αω

(1)
2

)
= det(aij) det

(
ω

(2)
1 , ω

(2)
2

)
,

the index of αL1 in L2, which is the ratio of the areas of the fundamental
parallelograms, equals |det(aij)|.

REMARK 12.2 A potential source of confusion is the following. Suppose
a lattice L1 is contained in L2, so L2 is a larger lattice than L1. Let F1 and F2

be fundamental parallelograms for these lattices. Then F2 is sm allerthan F1.
For example, let L1 = 2Z + 2iZ and L2 = Z + iZ. Then L1 ⊂ L2. The unit
square is a fundamental parallelogram for L2, while the square with corners
at 0, 2, 2i, 2 + 2i is a fundamental parallelogram for L1.

Define the degree of [α] to be the index [L2 : αL1]. If α = 0, define
the degree to be 0. If N is the degree, we say that C/L1 and C/L2 are N -
isogenous. The existence of the dual isogeny, defined below, shows that if E1

and E2 are N -isogenous, then E2 and E1 are N -isogenous, so this relation is
symmetric.

PROPOSITION 12.3
Ifα �= 0,then #Ker([α]) = deg([α]).

PROOF Let z ∈ C. Then [α](z) = 0 ⇐⇒ αz ∈ L2, so

Ker([α]) = α−1L2/L1 � L2/αL1,

where the isomorphism is given by multiplication by α. Therefore, the order
of the kernel is the index, which is the degree.

If Ker([α]) = α−1L2/L1 is cyclic, we say that [α] is a cyclic isogeny.
In general, Ker([α]) is a finite abelian group with at most two generators
(coming from the generators of L2), so it has the form Zn1 ⊕ Zn2 with n1|n2

(see Appendix B). Therefore, the isogeny equals multiplication by n1 on E1

composed with a cyclic isogeny whose kernel has order n2/n1 (Exercise 12.2).
Let α �= 0 and let N = deg([α]). Define the dual isogeny

[̂α] : C/L2 −→ C/L1

to be the map given by multiplication by N/α. We need to show this is well
defined: Since N = [L2 : αL1], we have NL2 ⊆ αL1. Therefore, (N/α)L2 ⊆
L1, as desired.
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We have the fundamental relation:

[̂α] ◦ [α] = deg([α]),

where the integer deg([α]) denotes integer multiplication on C/L1. It is easy
to show (see Exercise 12.3) that

̂̂
[α] = [α]

and that
[α] ◦ [̂α] = deg([̂α]) = deg([α]),

which is integer multiplication on C/L2.
A situation that arises frequently is when α = 1. This means that we have

L1 ⊆ L2 and the isogeny is simply the map

z mod L1 �−→ z mod L2.

The kernel is L2/L1. An arbitrary isogeny [α] can be reduced to this situation
by composing with the isomorphism C/L2 → C/α−1L2 given by multiplica-
tion by α−1.

PROPOSITION 12.4
LetC ⊂ E1 = C/L be a finite subgroup. Then there existan elliptic curve

E2 = C/L2 and an isogeny from E1 to E2 whose kernelisC.

PROOF C can be written as L2/L1 for some subgroup L2 of C containing
L1. If N is the order of C, then NL2 ⊆ L1, so L1 ⊆ L2 ⊆ (1/N)L1. By the
discussion following Theorem B.5 in Appendix B, L2 is a lattice. Therefore,
C/L1 → C/L2 is the desired isogeny.

Given two elliptic curves and an integer N , there is a way to decide if
they are N -isogenous. Recall the modular polynomial ΦN (X,Y ) (see Theo-
rem 10.15 and page 324), which satisfies

ΦN (j(τ1), j(τ2)) =
∏

S∈SN

(j(τ1) − j(S(τ2))) ,

where SN is the set of matrices
(

a b
0 d

)
with a, b, d positive integers satisfying

ad = N and 0 ≤ b < d.

THEOREM 12.5
LetN be a positive integerand letΦN (X,Y ) be theNth m odularpolynom ial,
as in Theorem 10.15. LetEi = C/Li have j-invariantji for i = 1, 2. Then
E1 isN-isogenousto E2 ifand only ifΦN (j1, j2) = 0.
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PROOF Write jk = j(τk) for some τk. Suppose ΦN (j1, j2) = 0. Then

j(τ1) = j(S(τ2)) for some S =
(

a b
0 d

)
∈ SN . By Corollary 9.19, there

exists M =
(

s t
u v

)
∈ SL2(Z) such that (sτ1 + t)/(uτ1 + v) = S(τ2). Writing

τ1 = ω1/ω2 for some basis {ω1, ω2} of L1, we see that (sω1+tω2)/(uω1+vω2) =
S(τ2). But {sω1 + tω2, uω1 + vω2} is another basis for L1 since M ∈ SL2(Z).
We conclude that there exist bases {ω(i)

1 , ω
(i)
2 } of Li, for i = 1, 2, such that

ω
(1)
1

ω
(1)
2

= S(τ2) =
aω

(2)
1 + bω

(2)
2

dω
(2)
2

.

Let α = (aω
(2)
1 + bω

(2)
2 )/ω

(1)
1 . Then αω

(1)
2 = dω

(2)
2 . Therefore αω

(1)
i , for

i = 1, 2, is a linear combination with integer coefficients of the basis elements
of L2, so αL1 ⊆ L2. As we saw in the proof of Lemma 12.1, the index

[L2 : αL1] is the determinant of
(

a b
0 d

)
, which is N . Therefore, [α] gives an

N -isogeny from C/L1 to C/L2.
Conversely, suppose that there is an N -isogeny [α] from C/L1 to C/L2.

Write

α

(
ω

(1)
1

ω
(1)
2

)
= (aij)

(
ω

(2)
1

ω
(2)
2

)
,

as in Lemma 12.1. By Lemma 10.10, we can write(
a11 a12

a21 a22

)
=
(

b11 b12

b21 b22

)(
a b
0 d

)
with (bij) ∈ SL2(Z). Let (

ω′
1

ω′
2

)
= (bij)−1

(
ω

(1)
1

ω
(1)
2

)
.

Then

α

(
ω′

1

ω′
2

)
=
(

a b
0 d

)(
ω

(2)
1

ω
(2)
2

)
.

Therefore,
ω′

1

ω′
2

=
aω

(2)
1 + bω

(2)
2

dω
(2)
2

=
aτ2 + b

d
,

where τ2 = ω
(2)
1 /ω

(2)
2 . The fact that (bij) ∈ SL2(Z) implies that {ω′

1, ω
′
2} is a

basis of L1. Since j1 = j(ω′
1/ω′

2), we obtain

j1 = j(S(τ2)), where S =
(

a b
0 d

)
.
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Therefore, ΦN (j1, j2) = 0.

Example 12.1
The curve E1 : y2 = 4(x3−2x+1) has j-invariant j1 = 55296/5 and the curve
E2 : y2 = 4(x3 − 7x − 6) has j2 = 148176/25. A calculation (the polynomial
Φ2 is given on page 329) shows that

Φ2

(
55296

5
,
148176

25

)
= 0,

so there is a 2-isogeny from E1 to E2. The AGM method (Section 9.4.1)
allows us to compute the period lattices:

L1 = Z(2.01890581997842 . . . )i + Z(2.96882494684477 . . . )
L2 = Z(2.01890581997842 . . . )i + Z(1.48441247342238 . . . ).

The real period for E1 is twice the real period for E2, and the complex periods
are equal. The map C/L1 → C/L2 given by z �→ z gives the 2-isogeny. There
is also a 2-isogeny C/L2 → C/L1 given by z �→ 2z. We have the factorization

Φ2

(
x,

148176
25

)
=
(

x − 132304644
5

)(
x − 55296

5

)(
x − 236276

125

)
.

Therefore, E2 is also isogenous to elliptic curves with j-invariants 132304644/5
and 236276/125.

We now prove that all nonconstant maps between elliptic curves over C are
linear. This has the interesting consequence that a nonconstant map taking
0 to 0 is of the form [α], hence is a homomorphism.

THEOREM 12.6
LetE1 = C/L1 and E2 = C/L2 be elliptic curves over C. Suppose that
f : E1 → E2 isan analytic m ap (thatis,f can be expressed asa powerseries
in a neighborhood ofeach pointofE1).Then there existα, β ∈ C such that

f(z mod L1) = αz + β mod L2

for allz ∈ C. In particular,iff(0 mod L1) = 0 mod L2 and f is notthe
0-m ap,then f isan isogeny.

PROOF We can lift f to a continuous map f̃ : C → C satisfying

f(z mod L1) = f̃(z) mod L2

for all z ∈ C (see Exercise 12.13). Moreover, f̃ can be expressed as a power
series in the neighborhood of each point in C (this is the definition of f being
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an analytic map). Let ω ∈ L1. Then the function

f̃(z + ω) − f̃(z)

reduces to 0 mod L2. Since it is continuous and takes values in the discrete
set L2, it is constant. Therefore, its derivative is 0, so f̃ ′(z + ω) = f̃ ′(z) for
all z. This means that f̃ ′ is a holomorphic doubly periodic function, hence
constant, by Theorem 9.1. Therefore, f̃(z) = αz +β for some α, β, as desired.

In anticipation of the algebraic situation, and recalling that endomorphisms
of elliptic curves are given by rational functions, we prove the following.

PROPOSITION 12.7
LetE1 = C/L1 and E2 = C/L2 be elliptic curves over C,let℘i(z) be the
W eierstrass℘-function forEi,and let[α] be an isogeny from E1 to E2.Then
there are rationalfunctionsR1(x), R2(x) such that

℘2(αz) = R1 (℘1(z)) , ℘′
2(αz) = ℘′

1 (z)R2(℘1(z)) .

PROOF We have αL1 ⊆ L2. Let f(z) = ℘2(αz). Let ω ∈ L1. Then
αω ∈ L2, so

f(z + ω) = ℘2(αz + αω) = ℘2(αz) = f(z)

for all z. Therefore, z �→ ℘2(αz) is a rational function of ℘1 and ℘′
1 by

Theorem 9.3. In fact, the end of the proof of Theorem 9.3 shows that, since
℘2(αz) is an even function, it is a rational function of ℘1(z). Differentiation
yields the statement about ℘′

2(αz).

Recall that z mod L1 corresponds to (℘1(z), ℘1(z)′) on the curve E1 : y2
1 =

4x3
1 − g2x1 − g3. The proposition says that [α] : E1 → E2 corresponds to

(x1, y1) �−→ (x2, y2) = (R1(x1), y1R2(x1)) .

12.2 The Algebraic Theory

Let E1 : y2
1 = x3

1 + A1x1 + B1 and E2 : y2
2 = x3

2 + A2x2 + B2 be elliptic
curves over a field K (later we will also work with generalized Weierstrass
equations). An isogeny from E1 to E2 is a nonconstant homomorphism
α : E1(K) → E2(K) that is given by rational functions. This means that
α(P + Q) = α(P ) + α(Q) for all P,Q ∈ E1(K) and that there are rational
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functions R1, R2 such that if α(x1, y1) = (x2, y2), then

x2 = R1(x1, y1), y2 = R2(x1, y1)

for all but finitely many (x1, y1) ∈ E1(K). The technicalities for the points
where R1 and R2 are not defined are dealt with in the same way as for
endomorphisms, as in Section 2.9. In fact, when E1 = E2, an isogeny is a
nonzero endomorphism.

As in Section 2.9, we may write α in the form

(x2, y2) = α(x1, y1) = (r1(x1), y1 r2(x1)) ,

where r1, r2 are rational functions. If the coefficients of r1, r2 lie in K, we say
that α is defined over K. Write

r1(x) = p(x)/q(x)

with polynomials p(x) and q(x) that do not have a common factor. Define
the degree of α to be

deg(α) = Max{deg p(x), deg q(x)}.
If the derivative r′1(x) is not identically 0, we say that α is separable.

PROPOSITION 12.8
Letα : E1 → E2 be an isogeny.Ifα isseparable,then

deg α = #Ker(α).

Ifα isnotseparable,then

deg α > #Ker(α).

In particular,the kernelofan isogeny isa finite subgroup ofE1(K).

PROOF The proof is identical to the proof of Proposition 2.21.

PROPOSITION 12.9
Letα : E1 → E2 be an isogeny.Then α : E1(K) → E2(K) issurjective.

PROOF The proof is identical to the proof of Theorem 2.22.

Example 12.2
Let p be an odd prime, let A1, B1 be in a field of characteristic p, and let
E1 : y2

1 = x3
1 + A1x1 + B1 and E2 : y2

2 = x3
2 + Ap

1x2 + Bp
1 . Define φ by

(x2, y2) = φ(x1, y1) = (xp
1, yp

1).
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Suppose x1, y1 ∈ K satisfy y2
1 = x3

1 +A1x1 +B1. Raising this equation to the
p-th power yields

(yp
1)2 = (xp

1)
3 + Ap

1(x
p
1) + Bp

1 .

Since x2 = xp
1 and y2 = yp

1 , this means that φ maps E1(K) to E2(K). It is
easy to see that φ is a homomorphism (as in Lemma 2.20). We have

r1(x) = xp and r2(x) = (y2)(p−1)/2 = (x3 + A1x + B1)(p−1)/2.

Therefore, deg(φ) = deg r1 = p. If Q �= ∞ is a point of E1, then φ(Q) �= ∞,
so Ker(φ) is trivial. The fact that the degree is larger than the cardinality of
the kernel corresponds to the fact that φ is not separable.

Example 12.3
Let E1 : y2

1 = x3
1+ax2

1+bx1 be an elliptic curve over some field of characteristic
not 2. We require b �= 0 and a2 − 4b �= 0 in order to have E1 nonsingular.
Then (0, 0) is a point of order 2. Let E2 be the elliptic curve y2

2 = x3
2−2ax2

2 +
(a2 − 4b)x2. Define α by

(x2, y2) = α(x1, y1) =
(

y2
1

x2
1

,
y1(x2

1 − b)
x2

1

)
.

It is straightforward to check that α maps points of E1(K) to points of E2(K).
It is more difficult to show that α is a homomorphism. However, this fact
follows from Theorem 12.10 below. (We need to verify that α(∞) = ∞. For
this, see Exercise 12.4.)

We have

r1(x) =
x3 + ax2 + bx

x2
=

x2 + ax + b

x
,

so deg α = 2 and α is separable. This means that there are two points in the
kernel. Writing r1(x) = x + a + (b/x), we see that these two points must be
∞ and (0, 0), since all other points have finite images (for another proof that
α(0, 0) = ∞, see Exercise 12.5).

THEOREM 12.10
LetE1 and E2 be elliptic curves over a field K. Letα : E1(K) → E2(K)
be a nonconstantm ap given by rationalfunctions.Ifα(∞) = ∞,then α isa
hom om orphism ,and therefore an isogeny.

PROOF Recall that, by Corollary 11.4, there are group isomorphisms

ψi : Ei(K) −→ Div0(Ei)/(principal divisors)

given by P �→ [P ] − [∞]. Define α∗ : Div0(E1) → Div0(E2) by

α∗ :
∑

bj [Pj ] �−→
∑

bj [α(Pj)].
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Clearly, α∗ is a group homomorphism.

LEMMA 12.11
α∗ m apsprincipaldivisorsto principaldivisors.

PROOF Writing (x2, y2) = α(x1, y1), where (xi, yi) are coordinates for
Ei, allows us to regard K(x2, y2) as a subfield of K(x1, y1) (see the proof
of Proposition 12.12). The norm map for this extension maps elements of
K(x1, y1)× to elements of K(x2, y2)×, and yields a map from principal divisors
on E1 to principal divisors on E2. The main part of the proof of the lemma is
showing that this norm map is the same as the map α∗ on principal divisors.
For this, see [43, Prop. 1.4].

Therefore, α∗ gives a well-defined map

α∗ : Div0(E1)/(principal divisors) −→ Div0(E2)/(principal divisors).

If P ∈ E1(K), then

α∗(ψ1(P )) = α∗([P ] − [∞]) = [α(P )] − [∞] = ψ2(α(P )).

Therefore,
α = ψ−1

2 ◦ α∗ ◦ ψ1.

Since all three maps on the right are homomorphisms, so is α.

The following tells us that an elliptic curve isogenous to an elliptic curve E
is essentially uniquely determined by the kernel of the isogeny to it. This may
seem obvious from the viewpoint of group theory since the group of points
on the isogenous curve is isomorphic to E(K)/C, where C is the kernel of
the isogeny. But we are asking for more: we want the uniqueness of the
curve as an algebraic variety. We say that two elliptic curves E2, E3 are
isomorphic if there are group homomorphisms β : E2(K) → E3(K) and
γ : E3(K) → E2(K) such that β and γ are given by rational functions and
such that γ ◦ β = id on E2 and β ◦ γ = id on E3.

PROPOSITION 12.12
LetE1, E2, E3 be elliptic curves over a field K and suppose thatthere exist
separable isogenies α2 : E1 → E2 and α3 : E1 → E3 defined over K. If
Ker α2 = Ker α3,then E2 is isom orphic to E3 overK. In fact,there is an
isom orphism β : E2 → E3 such thatβ ◦ α2 = α3.

PROOF This proof will use some concepts from field theory and Galois
theory. It may be skipped by readers unfamiliar with these subjects.
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Assume for simplicity that the elliptic curves are in Weierstrass form: Ei :
y2

i = x3
i +Aixi+Bi. The isogeny α2 can be described by (x2, y2) = α2(x1, y1) =

(r1(x1), y1r2(x1)), where r1 and r2 are rational functions with coefficients in
the field K. This allows us to regard K(x2, y2) as a subfield of K(x1, y1).
Write r1(x1) = p(x1)/q(x1), where p and q are polynomials with no common
factors. Then p(T ) − x2q(T ) ∈ K(x2)[T ] is irreducible of degree N = deg α2

(see Exercise 12.7). Therefore, the extension K(x1)/K(x2) has degree N .
By Lemma 11.5, yi =

√
x3

i + Aixi + Bi �∈ K(xi). Therefore, [K(xi, yi) :
K(xi)] = 2. It follows that

2[K(x1, y1) : K(x2, y2)] = [K(x1, y1) : K(x2, y2)][K(x2, y2) : K(x2)]

= [K(x1, y1) : K(x1)][K(x1) : K(x2)] = 2N,

so [K(x1, y1) : K(x2, y2)] = N .
Let Q be in the kernel of α2. Translation by Q gives a map

σQ : (x1, y1) �→ (x1, y1) + Q = (f(x1, y1), g(x1, y1)) .

This is an automorphism of K(x1, y1) (see Exercise 12.9). Since

σQ(x2, y2) = σQ (α2(x1, y1)) = α2((x1, y1) + Q) = α2(x1, y1) = (x2, y2),

this automorphism acts as the identity on the field K(x2, y2). A result from
field theory says that if G is a finite group of automorphisms of a field L,
then the subfield of elements fixed by G is of degree #G below L (see, for
example, [71]). If α2 is separable, there are N(= deg α2) automorphisms given
by translation by elements of the kernel of α2, so the fixed field of this group
is of degree N below K(x1, y1). Since K(x2, y2) is contained in this fixed field,
and [K(x1, y1) : K(x2, y2)] = N , the fixed field is exactly K(x2, y2).

The same analysis applies to α3. If α2 and α3 are separable with the same
kernel, then K(x2, y2) and K(x3, y3) are the fixed field of the same group of
automorphisms, hence

K(x2, y2) = K(x3, y3).

Therefore, x2, y2 are rational functions of x3, y3, and x3, y3 are rational func-
tions of x2, y2. Write

x2 = R1(x3, y3), y2 = R2(x3, y3)

for rational functions R1, R2. Then

γ : (x3, y3) �→ (x2, y2) = (R1(x3, y3), R2(x3, y3))

gives a map E3 → E2. Similarly, there exists β : E2 → E3, and γ◦β = id on E2

and β ◦ γ = id on E3. By translating the images of β and γ (that is, change
β to β − β(∞), and similarly for γ), we may assume that β(∞) = ∞ and
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γ(∞) = ∞. By Theorem 12.10, these maps are homomorphisms. Therefore,
β is an isomorphism, so E2 and E3 are isomorphic, as claimed. Moreover,

β ◦ α2(x1, y1) = β(x2, y2) = (x3, y3) = α3(x1, y1),

so β ◦ α2 = α3.

REMARK 12.13 If α2 and α3 are defined over K, then it is possible to
show that E2 and E3 are isomorphic over K. See [109, Exercise 3.13].

A very important property of isogenies is the existence of dual isogenies.
We already proved this in the case of elliptic curves over C. In the following,
we treat elliptic curves over arbitrary fields.

THEOREM 12.14

Letα : E1 → E2 be an isogeny ofelliptic curves. Then there exists a dual
isogeny α̂ : E2 → E1 such thatα̂ ◦ α ism ultiplication by deg α on E1.

PROOF We give the proof only in the case that deg α is not divisible
by the characteristic of the field K. The proof in the general case involves
working with inseparable extensions of fields. See [109].

Let N = deg α. Then Ker(α) ⊂ E1[N ], and α(E1[N ]) is a subgroup of
E1 of order N . We show in Theorem 12.16 that there exists an isogeny
α2 : E2 → E3, for some E3, such that Ker(α3) = α(E1[N ]). Then α2 ◦ α has
kernel equal to E1[N ]. The map E1 → E1 given by multiplication by N has
the same kernel. By Proposition 12.12, there is an isomorphism β : E3 → E1

such that β ◦ α2 ◦ α is multiplication by N . Let α̂ = β ◦ α2.

The map α̂ is unique, its degree is deg α, and α ◦ α̂ equals multiplication
by deg(α) on E2. See Exercise 12.10.

If α and β are isogenies from E1 to E2, then α+β is defined by (α+β)(P ) =
α(P )+β(P ). If α �= −β, this is an isogeny. It can be shown that α̂ + β = α̂+β̂.
See [109].

REMARK 12.15 There is an inseparable isogeny for which the dual
isogeny can be constructed easily. If E is an elliptic curve over the finite
field Fq, then the qth power Frobenius endomorphism can be regarded as an
isogeny of degree q from E to itself. We know that φ2 − aφ + q = 0 for some
integer a. Therefore,

(a − φ) ◦ φ = q = deg φ,

so φ̂ = a − φ is the dual isogeny for φ.
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12.3 Vélu’s Formulas

We now consider the algebraic version of Proposition 12.4. Since it is often
convenient to translate a point in the kernel of an isogeny to the origin, for
example, we work with the general Weierstrass form. The explicit formulas
given in the theorem are due to Vélu [123].

THEOREM 12.16

LetE be an elliptic curve given by the generalized W eierstrassequation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

with allai in som e field K. LetC be a finite subgroup ofE(K). Then there
existsan elliptic curveE2 and a separable isogeny α from E to E2 such that
C = Ker α.
Fora pointQ = (xQ, yQ) ∈ C with Q �= ∞,define

gx
Q = 3x2

Q + 2a2xQ + a4 − a1yQ

gy
Q = −2yQ − a1xQ − a3

vQ =
{

gx
Q (if 2Q = ∞)

2gx
Q − a1g

y
Q (if 2Q �= ∞)

uQ = (gy
Q)2.

LetC2 be the points oforder 2 in C. Choose R ⊂ C such thatwe have a
disjointunion

C = {∞} ∪ C2 ∪ R ∪ (−R)

(in otherwords,foreach pairofnon-2-torsion pointsP,−P ∈ C,putexactly
one ofthem in R).LetS = R ∪ C2.Set

v =
∑
Q∈S

vQ, w =
∑
Q∈S

(uQ + xQvQ).

Then E2 hasthe equation

Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6,

where

A1 = a1, A2 = a2, A3 = a3

A4 = a4 − 5v, A6 = a6 − (a2
1 + 4a2)v − 7w.
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The isogeny isgiven by

X = x +
∑
Q∈S

(
vQ

x − xQ
+

uQ

(x − xQ)2

)

Y = y −
∑
Q∈S

(
uQ

2y + a1x + a3

(x − xQ)3
+ vQ

a1(x − xQ) + y − yQ

(x − xQ)2
+

a1uQ − gx
Qqy

Q

(x − xQ)2

)
.

PROOF As in Section 8.1, let t = x/y and s = 1/y. Then t has a simple
zero and s has a third order zero at ∞ (see Example 11.3). Dividing the
relation y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6 by y3 and rearranging yields

s = t3 − a1st + a2st
2 − a3s

2 + a4s
2t + a6s

3. (12.1)

If we substitute this value for s into the right hand side of (12.1), we obtain

s = t3 − a1(t3 − a1st + a2st
2 − a3s

2 + a4s
2t + a6s

3)t

+ a2(t3 − a1st + a2st
2 − a3s

2 + a4s
2t + a6s

3)t2 + · · · .

Continuing this process, we eventually obtain

1
y

= s = t3
(
1 − a1t + (a2

1 + a2)t2 − (a3
1 + 2a1a2 + a3)t3 + · · · )

and
y = t−3 + α1t

−2 + α2t
−1 + α3 + α4t + α5t

2 + α6t
3 + O(t4),

where

α1 = a1, α2 = −a2, α3 = a3, α4 = −(a1a3 + a4),

α5 = a2a3 + a2
1a3 + a1a4,

α6 = −(a2
1a4 + a3

1a3 + a2a4 + 2a1a2a3 + a2
3 + a6),

and where O(t4) denotes a function that vanishes to order at least 4 at ∞.
Since x = ty, we also obtain

x = t−2 + α1t
−1 + α2 + α3t + α4t

2 + α5t
3 + α6t

4 + O(t5).

Substituting these expressions for x, y into the formulas given for X,Y yields
expressions for X,Y in terms of t. A calculation shows that

Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6 + O(t),

where the Ai are as given in the statement of the theorem. Since X and Y
are rational functions of x, y, they are functions on E. The only poles of X
and Y are at the points in C, as can be seen from the explicit formulas for
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X,Y . Therefore the function Y 2 + A1XY + A3Y − X3 − A2X
2 − A4X − A6

can have poles only at the points of C. It vanishes at ∞, since it is O(t). We
want to show that it also vanishes at the nontrivial points of C. A calculation
(see Exercise 12.6) shows that

X(P ) = x(P ) +
∑

∞�=Q∈C

[x(P + Q) − x(Q)] (12.2)

Y (P ) = y(P ) +
∑

∞�=Q∈C

[y(P + Q) − y(Q)] . (12.3)

In particular, X and Y are invariant under translation by elements of C.
Therefore, Y 2 + A1XY + A3Y − X3 − A2X

2 − A4X − A6 is invariant under
translation by elements of C. Since it vanishes at ∞, it vanishes at all points of
C. Hence it has no poles. This means that it is constant (see Proposition 11.1).
Since it vanishes at ∞, it is 0. This proves that X and Y satisfy the desired
generalized Weierstrass equation. The following shows that this equation gives
a nonsingular curve.

LEMMA 12.17
E2 isnonsingular.

PROOF For simplicity, assume that the characteristic of K is not 2. By
completing the square, we may reduce to the case where A1 = A3 = 0, so the
equation of E2 is

Y 2 = X3 + A2X
2 + A4X + A6 = (X − e1)(X − e2)(X − e3).

We need to show that e1, e2, e3 are distinct. Suppose that e1 = e2. Then

X − e3 =
(

Y

X − e1

)2

.

Let F = Y/(X − e1), which is a function on E.
The function X − e3 on E has double poles at the points of C and no other

poles. Therefore, its square root, namely F , has simple poles at the points of
C and no other poles. Note that F is invariant under translation by elements
of C, since both X and Y are. Let a ∈ K. Since F − a has N poles, where
N = #C, it has N zeros. If P is one of these zeros, then P + Q is also a zero
for each Q ∈ C. This gives all of the N zeros, so we conclude that F = a
occurs for exactly N distinct points of E.

We now need a special case of what is known as the Riemann-Hurwitz
formula. Consider an algebraic curve C defined by a polynomial equation
G(x, y) = 0 over an algebraically closed field K. Let F (x, y) be a rational
function on C. Let n be the number of poles of F , counted with multiplicity.
If a ∈ K, then F−a has n poles, hence n zeros. It can be shown that if F is not
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a pth power, where p is the characteristic of K, then for all but finitely many
a, these n zeros are distinct (if F is a pth power, then F −a = (F 1/p −a1/p)p,
so the roots cannot be distinct; that is why this case is excluded). We say
that n is the degree of F . If F − a has n distinct zeros for each a and F has
n distinct poles, then we say that F is unramified.

PROPOSITION 12.18 (Riemann-Hurwitz)

LetC1, C2 be curves ofgenus g1, g2 defined over an algebraically closed field
K,and letF : C1 → C2 be an unram ified rationalm ap ofdegree n.Then

2g1 − 2 = n(2g2 − 2).

PROOF See [49]. More generally, the Riemann-Hurwitz formula can be
extended to cover the case where F is ramified.

In our case, F is a function from the elliptic curve E, which has genus 1,
to the projective line P1, which has genus 0. By the above discussion, F is
unramified of degree n. Therefore, 0 = −2n, which is a contradiction.

We conclude that e1, e2, e3 must be distinct and therefore that E2 is non-
singular. This completes the proof of Lemma 12.17.

We have shown that α : (x, y) �→ (X,Y ) gives a map from E to E2. Equa-
tions (12.2), (12.3) show that the points in the subgroup C are exactly the
points mapping to ∞. In particular, since ∞ maps to ∞, Theorem 12.10
shows that α is an isogeny. Its kernel is C. By Exercise 12.8, α is separable.
This completes the proof of Theorem 12.16.

Example 12.4

Let E be given by y2 = x3 + ax2 + bx, with b �= 0 and a2 − 4b �= 0 (these
conditions make the curve nonsingular). The point (0, 0) is a point of order 2,
so this point, along with ∞, gives a subgroup of order 2. The set S is {(0, 0)}.
For Q = (0, 0), we have vQ = gx

Q = a4 = b and gy
Q = 0, so uQ = 0. Therefore,

X = x +
b

x
, Y = y − by

x2
.

The curve E2 is given by the equation

Y 2 = X3 + aX2 − 4bX − 4ab.

Let

X3 = X + a = x +
ax + b

x
=

y2

x2
, Y3 = Y = y − by

x2
= y

x2 − b

y
.
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Then we obtain the elliptic curve E3 given by

Y 2
3 = X3

3 − 2aX2
3 + (a2 − 4b)X3.

The map α : E → E3 is the same as the isogeny of Example 12.3.
The elliptic curve E3 has (0, 0) as a point of order 2. Repeating the proce-

dure for E3 yields an isogeny to the elliptic curve

E4 : Y 2
4 = X3

4 + 4aX2
4 + 16bX4

with

X4 = X3 +
−2aX3 + a2 − 4b

X2
3

, Y4 = Y3 − (a2 − 4b)Y3

X2
3

.

Let X5 = X4/4, Y5 = Y4/8. Then

Y 2
5 = X3

5 + aX2
5 + bX5,

which is the equation of our original elliptic curve E. A calculation shows
that in the map E → E,

x �→ X5 =
(

3x2 + 2ax + b

2y

)2

− a − 2x,

which is exactly the formula for the x-coordinate of 2(x, y). A similar calcu-
lation for the y-coordinate tells us that the map E → E is multiplication by
2.

In summary, we have an isogeny α : E → E3 and an isogeny α̂ : E3 → E
such that α̂ ◦ α is multiplication by 2. The map α̂ is an example of a dual
isogeny.

12.4 Point Counting

In Section 4.5, we discussed the method of Schoof for counting the number
of points on an elliptic curve over a finite field. In the present section, we
briefly sketch some work of Elkies and Atkin that uses isogenies to improve
the efficiency of Schoof’s algorithm.

Let E be an elliptic curve defined over Fp. The p-power Frobenius endo-
morphism satisfies φ2−aφ+p = 0 for some integer a, and #E(Fp) = p+1−a.
Therefore, to count the number of points in E(Fp), it suffices to find a.

Let � �= p be prime. Since the case � = 2 can be treated as in Section 4.5,
assume � is odd. The goal is to compute a (mod �). As in Schoof’s algorithm,
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if this is done for sufficiently many �, then we obtain a. As described in Section
4.5, the Frobenius acts on the �-torsion E[�] as a matrix

(φ)� =
(

s t
u v

)
.

By Proposition 4.11, a ≡ Trace((φ)�) and p ≡ det((φ)�) (mod �). Suppose
there is a basis of E[�] such that

(φ)� =
(

λ b
0 μ

)
for some integers λ and μ. This means that there is a subgroup C of E[�]
such that φ(P ) = λP for all P ∈ C. Moreover,

T 2 − aT + p ≡ (T − λ)(T − μ) (mod �).

Conversely, if T 2 − aT + p has a root λ mod �, then there is a subgroup C
such that φ(P ) = λP for all P ∈ C (this is the result from linear algebra that
the eigenvalues are the roots of the characteristic polynomial of a matrix).

Let C be a subgroup such that φq(P ) = λP for all P ∈ C, so the qth-power
Frobenius permutes the elements of C. Consider the isogeny with kernel C
constructed in Theorem 12.16. The formula for the isogenous curve E2 is
symmetric in the coordinates of the points of C. Since φq permutes these co-
ordinates, it leaves invariant the coefficients of equation of E2. Consequently,
the j-invariant j2 of E2 is fixed by φq and therefore lies in Fq. Similarly, the
monic polynomial whose roots are the x-coordinates of the points in C has
coefficients that lie in Fq. There are (�−1)/2 such coordinates, so we obtain a
polynomial F�(x) of degree (�− 1)/2. Recall that the �th division polynomial
ψ�(x), whose roots are the x-coordinates of all the points in E[�], has degree
(�2 − 1)/2. Therefore, F�(x) is a factor of ψ�(x) of degree much smaller than
ψ�(x).

In Schoof’s algorithm, the most time-consuming parts are the computations
mod ψ�(x). The ideas in Section 4.5 allow us to work mod F�(x) instead, and
find a λ such that φ(P ) = λP for some P �= ∞ in C. Since the degree of
F�(x) is much smaller than the degree of ψ�(x), the computations proceed
much faster. Since λμ ≡ p (mod �), we have

a ≡ Trace((φ)�) ≡ λ +
p

λ
(mod �),

so we obtain a mod �.
Finding F�(x) efficiently is rather complicated. See [12] or [99] for details.

Determining whether λ and μ exist is more straightforward and uses the
modular polynomial Φ�(X,Y ) (see Theorem 10.15). Recall that Φ�(X,Y ) has
integer coefficients. If j1, j2 ∈ C, then Φ�(j1, j2) = 0 if and only there is
an isogeny of degree � from an elliptic curve with j-invariant j1 to one with
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invariant j2. It is easy to see from the construction of Φ�(x) that its degree is
�+1, corresponding to the �+1 subgroups in E[�] of order �+1. Since Φ� has
integer coefficients, we can regard it as a polynomial mod p. The following
analogue of Theorem 12.5 holds.

THEOREM 12.19

Let � �= p be prim e,let j1, j2 ∈ Fp,and letE1, E2 be elliptic curves with
invariants j1, j2. Then Φ�(j1, j2) = 0 ifand only ifthere is an isogeny from
E1 to E2 ofdegree �.

PROPOSITION 12.20

LetE bean ellipticcurvedefinedoverFp.Assum ethatE isnotsupersingular
and thatits j-invariantj isnot0 or1728.Let� �= p be prim e.

1. Let j1 ∈ Fp be a rootofthe polynom ialΦ�(j, T ),letE1 be an elliptic
curveofinvariantj1,andletC bethekernelofthecorrespondingisogeny
E → E1 ofdegree �.Letr ≥ 1.There existsν ∈ Z such thatφrP = νP
forallP ∈ C ifand only ifj1 ∈ Fpr.

2. The polynom ialΦ�(j, T ) factorsinto linearfactorsoverFpr ifand only
ifthere exists ν ∈ Z such thatφrP = νP forallP ∈ E[�].

PROOF If φrP = νP for all P ∈ C, then, as discussed previously, the
j-invariant j1 of the isogenous curve is in Fpr . Similarly, if φrP = νP for all
P ∈ E[�], then all �-isogenous curves have j-invariants in Fpr , so all roots of
Φ�(j, T ) are in Fpr .

For proofs of the converse statements, see [99].

REMARK 12.21 The restriction to j �= 0, 1728 is necessary. See Exercise
12.11.

By computing gcd (T p − T,Φ�(j, T )) as a polynomial in F�, we obtain a
polynomial whose roots are the roots of Φ�(j, T ) in F�. Finding a root j1
of this polynomial allows us to construct a curve with j-invariant j1 (using
the formula on page 47) that is �-isogenous to E. As mentioned previously,
a rather complicated procedure, described in [12] and [99], yields the desired
factor F�(x) of the division polynomial ψ�(x).

Example 12.5

Consider the elliptic curve E : y2 = x3 + x + 7 over F23. The group E[3] is
generated by P1 = (1, 3) and P2 = (14,

√
5), where

√
5 ∈ F232 . Let φ be the

23rd power Frobenius endomorphism. Then φ(P1) = P1 and φ(P2) = −P2.
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Therefore, the subgroups C1 = {∞, P1,−P1} and C2 = {∞, P2,−P2} are such
that φ(P ) = λiP for all P ∈ Ci, where λ1 = 1 and λ2 = −1.

The polynomials F�(x) are x− 1 for C1 and x− 14 for C2. They are factors
of the third division polynomial

ψ3(x) ≡ 3x3 + 3x2 + 9x + 1 ≡ (x − 1)(3x + 4)(x2 + 15x + 6) (mod 23).

Either of λ1, λ2 can be used to obtain a mod 3:

a ≡ λi +
23
λi

≡ 0 (mod 3).

Therefore, #E(F23) = 23 + 1 − a ≡ 0 (mod 3). Since x3 + x + 7 has
x = −3 as a root mod 23, E(F23) contains a point of order 2. Therefore,
#E(F23) ≡ 0 (mod 6). The Hasse bounds tell us that 15 ≤ #E(F23) ≤ 33,
hence #E(F23) = 18, 24, or 30. In fact, counting points explicitly shows that
the group has order 18.

Let Ei be the image of the isogeny with kernel Ci. The j-invariant of E is
18. The modular polynomial Φ3(18, T ) factors as

Φ3(18, T ) ≡ (T + 1)(T + 3)(T 2 + 2T + 10) (mod 23)

(the polynomial Φ3 is given on page 329). Therefore, there are two 3-isogenous
curves whose j-invariants are in F23. They have j = −1 and j = −3. One of
these is E1 and the other is E2. Which is which? (Exercise 12.14).

The following result, due to Atkin, shows that the possible factorizations of
Φ�(j, T ) mod � are rather limited.

THEOREM 12.22
LetE bean ellipticcurvedefined overFp.Assum ethatE isnotsupersingular
and thatits j-invariantj isnot0 or1728.Let� �= p be prim e.Let

Φ�(j, T ) ≡ f1(T ) · · · fs(T ) (mod �)

bethefactorization ofΦ�(j, T ) into irreduciblepolynom ialsm od �.Thedegrees
ofthe factorsare one ofthe following:

1. 1 and � (and s = 2)

2. 1, 1, r, r, . . . , r (and s = 2 + (� − 1)/r)

3. r, r, . . . , r (and s = (� + 1)/r).

In (1),a2−4p ≡ 0 (mod �).In (2),a2−4p isa squarem od �.In (3),a2−4p
isnota square m od �.In cases(2)and (3),

a2 ≡ (ζ + 2 + ζ−1)p (mod �) forsom e prim itive rth rootofunity ζ ∈ F�.
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PROOF The matrix (φ)� has characteristic polynomial F (T ) = T 2−aT +p.
If F (T ) factors into distinct linear factors (T − λ)(T − μ) mod �, then we
can find a basis of E[�] that diagonalizes (φ)�. An eigenvector for λ is a
point P that generates a subgroup C1 such that φ(P ) = λP for all P ∈ C1.
The eigenvalue μ yields a similar subgroup C2. Since λ and μ are the only
two eigenvalues, C1 and C2 are the only two subgroups on which φ acts by
multiplication by an integer. By Proposition 12.20, there are exactly two
corresponding j-invariants in Fp that are roots of Φ�(j, T ). Let j3 �= j1, j2 be
another root of Φ�(j, T ), and let r be the smallest integer such that j3 ∈ Fpr .
By part (1) of Proposition 12.20, there is a subgroup C3 of E[�] and an integer
ν such that φr(P ) = νP for all P ∈ C3. Moreover, C3 is the kernel of the
isogeny to a curve of invariant j3 �= j1, j2, hence C3 �= C1, C2. This means
that C1, C2, C3 are distinct eigenspaces of the 2× 2 matrix (φ)r

� , so (φ)r
� must

be scalar. Consequently, all subgroups C of order � are eigenspaces of (φ)r
� .

Part (1) of Proposition 12.20 implies that all roots of Φ�(j, T ) lie in Fpr . We
have therefore proved that all roots lie in the same field as j3. Since j3 was
arbitrary, r is equal for all roots j3 �= j1, j2. Since the minimal r such that
j3 ∈ Fpr is the degree of the irreducible factor that has j3 as a root, all
irreducible factors of Φ�(j, T ), other than T − j1 and T − j2, have degree r.
This is Case (2). Since T 2 − aT + p factors in F�, its discriminant a2 − 4p is
a square (this follows from the quadratic formula).

If F (T ) = (T − λ)2 for some μ, then either (φ)� is the scalar matrix λI, or
there is a basis for E[�] such that

(φ)� =
(

λ 1
0 λ

)
.

(This is the nondiagonal case of Jordan canonical form.) In the first case,
part (2) of Proposition 12.20 implies that Φ�(j, T ) factors into linear factors
in Fp, and a2 − 4p ≡ 0 (mod �), which is a square. This is the case r = 1 in
Case (2). In the other case, an easy induction shows that(

λ 1
0 λ

)k

=
(

λk kλk−1

0 λk

)
.

This is nondiagonal when k < � and diagonal when k = �. Therefore, the
smallest r such that (φ)r

� has two independent eigenvectors is r = �, and (φ)�
� is

scalar. The reasoning used in Case (2) shows that Φ�(j, T ) has an irreducible
factor of degree �. This yields Case (1). Since F (T ) has a repeated root,
a2 − 4p ≡ 0 (mod �).

Finally, suppose F (T ) is irreducible over F�. Then a2 − 4p is not a square
mod �. There are no nontrivial eigenspaces over F�, so there are no linear
factors of Φ�(j, T ) over F�. Let λ and μ be the two roots of F (T ). They lie
in F�2 and are quadratic conjugates of each other. The eigenvalues of (φ)k

�

are λk and μk. Let k be the smallest exponent so that λk ∈ F�. This is the
smallest k such that (φ)k

� has an eigenvalue in Fp, and therefore Fpk is the
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smallest field containing a root of Φ�(j, T ), by Proposition 12.20. Since λk

and μk are quadratic conjugates and lie in F�, they are equal. Therefore, (φ)k
�

is scalar, so all roots of Φ�(j, T ) lie in Fpk , but none lies in any smaller field.
It follows that all the irreducible factors of Φ�(j, T ) have degree r = k. This
is Case (3).

In all three cases, the eigenvalues (or diagonal elements in Case (1)) of
(φ)� are λ and μ = p/λ. We have a = Trace((φ)�) = λ + μ. Moreover,
λr = μr = pr/λr since (φ)r

� is scalar. Therefore, λ2r = pr, hence λ2 = pζ for
an rth root of unity ζ. This implies that

a2 =
(
λ +

p

λ

)2

= λ2 + 2p +
p2

λ2
= p

(
ζ + 2 + ζ−1

)
.

Suppose we are in Case (2) or (3). If ζk = 1 for some k < r, then λ2k = pk =
λkμk, so λk = μk. This means that (φ)k

� is scalar, which contradicts the fact
that r is the smallest k with this property. Therefore, ζ is a primitive rth root
of unity. (Note that in Case (1), we have ζ = 1 and there are no primitive �th
roots of unity in F�.) This completes the proof of the theorem.

In Example 12.5, the factorization of Φ3 had factors of degrees 1, 1, 2, which
is case (2) of the theorem with r = 2.

The primes � corresponding to Cases (1) and (2) are called Elkies primes.
Those for Case (3) are called Atkin primes. Atkin primes put restrictions
on the value of a mod �, but they allow many more possibilities than the
Elkies primes, which, after some more work, allow a determination of a mod
�. However, Atkin showed how to combine information obtained from the
Atkin primes with the information obtained from Elkies primes to produce an
efficient algorithm for computing a mod � (see [12, Section VII.9]).

12.5 Complements

Isogenies occur throughout the theory of elliptic curves. In Section 8.6,
Fermat’s infinite descent involved two elliptic curves that are 2-isogenous. In
fact, the descent procedure of Section 8.2 can sometimes be refined using an
isogeny and its dual isogeny. This is what is happening in Section 8.6. See
[109] for the general situation.

Let E1, E2 be elliptic curves over Fq. If they are isogenous over Fq, then
#E1(Fq) = #E2(Fq) (Exercise 12.12). The amazing fact that the converse is
true was proved by Tate. In other words, if #E1(Fq) = #E2(Fq) then E1, E2

are isogenous over Fq. The condition #E1(Fq) = #E2(Fq) can be interpreted
as saying that E1 and E2 have the same zeta function (see Section 14.1), so
we see that the zeta function uniquely determines the isogeny class over Fq

of an elliptic curve.
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A similar situation holds over Q, as was proved by Faltings in 1983. Namely,
if E1, E2 are elliptic curves over Q, then the L-series of E1 (see Section 14.2)
equals the L-series of E2 if and only if E1 and E2 are isogenous over Q. This
theorem arose in his proof of Mordell’s conjecture that an algebraic curve of
genus at least 2 has only finitely many rational points.

Exercises

12.1 Let L be the lattice Z + Zi.

(a) Show that [1 + i] : C/L → C/L is an isogeny. List the elements of
the kernel and conclude that the isogeny has degree 2.

(b) Let 0 �= a + bi ∈ Z + Zi. Show that [a + bi] : C/L → C/L is an
isogeny of degree a2 + b2. (Hint:The proof of Lemma 12.1 shows
that the degree is the determinant of a + bi acting on the basis
{1, i} of L.)

12.2 Let E = C/L be an elliptic curve defined over C. Let n be a positive
integer. Let [α] : C/L → C/L1 be an isogeny and assume that E[n] ⊆
Ker α. By multiplying by α−1, we may assume that the isogeny is given
by the map z �→ z and that L ⊆ L1, so L1/L is the kernel of the isogeny.
For convenience, we continue to denote the isogeny by [α].

(a) Show that E[n] = 1
nL/L.

(b) Let α1 : C/L → C/ 1
nL be the map given by z �→ z. Show that

there is an isomorphism β : C/ 1
nL � C/L such that β ◦ α1 = [n]

(= multiplication by n on E).

(c) Observe that α factors as α2 ◦α1, where α1 is as in (b), and where
α2 : C/ 1

nL → C/L1 is given by z �→ z. Let α3 = α2 ◦ β−1.
Conclude that α factors as α3 ◦ [n].

(d) Let γ : E → E1 be an isogeny with Ker γ � Zn1⊕Zn2 with n1|n2.
Show that γ equals multiplication by n1 on E composed with a
cyclic isogeny whose kernel has order n2/n1.

12.3 Let [α] : C/L1 → C/L2 be an isogeny, as in Section 12.1.

(a) Show that deg([̂α]) = deg([α]) (Hint: multiplication by N/α cor-
responds to the matrix N(aij)−1, in the notation of the proof of
Lemma 12.1).

(b) Show that
̂̂
[α] = [α].
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12.4 Let E1 : y2
1 = x3

1 + ax2
1 + bx1 be an elliptic curve over some field of

characteristic not 2 with b �= 0 and a2 − 4b �= 0. Let E2 be the elliptic
curve y2

2 = x3
2 − 2ax2

2 + (a2 − 4b)x2. Define α by

(x2, y2) = α(x1, y1) =
(

y2
1

x2
1

,
y1(x2

1 − b)
x2

1

)
.

Let si = 1/yi and ti = xi/yi. Then ti and si are 0 at ∞ (in fact, ti has a
simple zero at ∞ and si has a triple zero at ∞, but we won’t use this).
We want to show that α(∞) = ∞. To do this, whenever we encounter
an expression 0/0 or ∞/∞, we rewrite it so as to obtain an expression
in which every part is defined.

(a) Show that

s2 =
s1

1 − b(s1/t1)2
, t2 =

s1

t21

1
1 − b(s1/t1)2

.

(b) Show that s1/t1 = t21 + as1t1 + bs2
1, so s1/t1 is 0 at ∞.

(c) Write

s1

t21
= t1 + as1 + b

(
s1

t1

)2

t1.

Show that s1/t21 has the value 0 at ∞.

(d) Show that α maps ∞ on E1 to ∞ on E2.

12.5 Let E1, E2, α, s2, t2 be as in Exercise 12.4.

(a) Show that

s2 =
x1y1

(x2
1 + ax1 + b)(x2

1 − b)
, t2 =

y1

x2
1 − b

.

(b) Conclude that α(0, 0) = ∞.

12.6 Let E be an elliptic curve given by a generalized Weierstrass equation
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6. Let P = (xP , yP ) and Q =
(xQ, yQ) be points on E. Let xP+Q, yP+Q denote the x and y coordinates
of the point P + Q.

(a) Show that if 2Q = ∞, then uQ = 0 and

xP+Q−xQ =
vQ

xP − xQ
, yP+Q−yQ = −a1(xP − xQ) + yP − yQ

(xP − xQ)2
vQ.
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(b) Show that if 2Q �= ∞, then

xP+Q − xQ + xP−Q − x−Q =
vQ

(xP − xQ)2
+

uQ

(xP − xQ)3
,

yP+Q − yQ + yP−Q − y−Q

= −uQ
2yP + a1xP + a3

(xP − xQ)3
− vQ

a1(xP − xQ) + yP − yQ

(xP − xQ)2

− a1uQ − gx
Qgy

Q

(xP − xQ)2
.

(c) Show that, in the notation of Theorem 12.16,

X(P ) = x(P ) +
∑

∞�=Q∈C

[x(P + Q) − x(Q)]

Y (P ) = y(P ) +
∑

∞�=Q∈C

[y(P + Q) − y(Q)] .

12.7 Let p(T ), q(T ) be polynomials with coefficients in a field K with no
common factor. Let X be another variable. Show that the polynomial
F (T ) = p(T ) − Xq(T ), regarded as a polynomial with coefficients in
K(X), is irreducible. (Hint: By Gauss’s Lemma (see, for example,
[71]), if F (T ) factors, it factors with coefficients that are polynomials
in X (that is, we do not need to consider polynomials with rational
functions as coefficients).)

12.8 Recall that in Vélu’s formulas,

X = x +
∑
Q∈S

(
vQ

x − xQ
+

uQ

(x − xQ)2

)
.

(a) Show that gy
Q = 0 if and only if 2Q = ∞. Show that if 2Q = ∞,

then gx
Q �= 0 (Hint: the curve is nonsingular). Conclude that if

2Q = ∞ then vQ �= 0, and that uQ �= 0 if and only if 2Q �= ∞.

(b) Write the rational function defining X as p(x)/q(x), where p, q are
polynomials with no common factor. Show that q(x) contains the
product of (x − xQ)2 for all points Q ∈ S with 2Q �= ∞ and that
it contains (x− xQ) for each point Q ∈ S with 2Q = ∞. Conclude
that deg q = #C − 1.

(c) Show that X − x has the form r(x)/q(x) with deg r < deg q.

(d) Use the fact that
p(x)
q(x)

= x +
r(x)
q(x)

to prove that deg p = #C. This shows that the isogeny constructed
in Theorem 12.16 is separable.
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12.9 Let E be an elliptic curve over a field K and let Q ∈ E(K). Translation
by Q gives a map (x, y) �→ (x, y) + Q = (f(x, y), g(x, y)), and therefore
a homomorphism of fields

σ : K(x, y) → K(x, y), x �→ f(x, y), y �→ g(x, y).

Show that σ has an inverse and therefore that σ is an automorphism of
K(x, y).

12.10 Let E1, E2 be elliptic curves over a field K and let α : E1 → E2 be an
isogeny such that deg(α) is not divisible by the characteristic of K.

(a) Suppose E3 is an elliptic curve over K and that β1 : E2 → E3 and
β2 : E2 → E3 are isogenies such that β1 ◦ α = β2 ◦ α. Show that
β1 = β2.

(b) Show that the map α̂ is the unique isogeny E2 → E1 such that
α̂ ◦ α is multiplication by deg α.

(c) Let f : A → B and g : B → C be surjective homomorphisms
of abelian groups. Show that #Ker(g ◦ f) = #Ker(g)#Ker(f).
Deduce that deg α̂ = deg α.

(d) Show that α ◦ α̂ equals multiplication by deg(α) on E2. (Hint:
[n] ◦ α = α ◦ [n] = α ◦ α̂ ◦ α; now use (a).)

(e) Show that ̂̂α = α.

12.11 Consider the elliptic curve E : y2 = x3 − 1 over F7. It has j-invariant
0.

(a) Show that the 3rd division polynomial (see page 81) is ψ3(x) =
x(x3 − 4).

(b) Show that the subgroups of order 3 on E are

C1 = {∞, (0,±i)}, C2 = {∞, (41/3,±
√

3)},
C3 = {∞, (2 · 41/3,±

√
3)}, C4 = {∞, (4 · 41/3,±

√
3)},

where i =
√−1 ∈ F49. Note that 23 = 1 in F7, so 2 is a cube root

of unity.

(c) Show that the 3rd modular polynomial satisfies Φ3(0, T ) ≡ T (T −
3)3 (mod 7).

(d) Let ζ : E → E by (x, y) �→ (2x,−y). Then ζ is an endomorphism
of E. Show that C1 is the kernel of the endomorphism 1 + ζ.
Therefore C1 is the kernel of the isogeny 1 + ζ : E → E. Since
j(E) = 0, this corresponds to the root T = 0 of Φ3(0, T ) mod 7.

(e) Let φ = φ7 be the 7th power Frobenius map. Show that φ has the
eigenvalue −1 on C1.
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(f) Show that φ(41/3) �= 41/3. (Hint:what x satisfy φ(x) = x?) Con-
clude that none of C2, C3, C4 is an eigenspace for φ.

(g) Let E1 be an elliptic curve with j = 3 that is 3-isogenous to E (it
exists by Theorem 12.19). Show that there does not exist ν ∈ Z
such that φP = νP for all P in the kernel of the isogeny. This
shows that the restriction j �= 0 is needed in Proposition 12.20.

12.12 Let E1, E2 be elliptic curves defined over Fq and suppose there is an
isogeny α : E1 → E2 of degree N defined over Fq.

(a) Let � be a prime such that � � qN and let n ≥ 1. Show that α gives
an isomorphism E1[�n] � E2[�n].

(b) Use Proposition 4.11 to show that #E1(Fq) = #E2(Fq).

12.13 Let f : C/L1 → C/L2 be a continuous map. This yields a continuous
map f̂ : C → C/L2 such that f̂(z) = f(z mod L1). Let f̂(0) = z0. Let
z1 ∈ C and choose a path γ(t), 0 ≤ t ≤ 1, from 0 to z1.

(a) Let 0 ≤ t1 ≤ 1. Show that there exists a complex-valued continuous
function h(t) defined in a small interval containing t1, say (t1 −
ε, t1+ε)∩[0, 1] for some ε, such that h(t) mod L2 = f̂(γ(t)). (Hint:
Represent C/L2 using a translated fundamental parallelogram that
contains f(γ(t1)) in its interior.)

(b) As t1 runs through [0, 1], the small intervals in part (a) give a
covering of the interval [0, 1]. Since [0, 1] is compact, there is a
finite set of values t

(1)
1 < · · · < t

(n)
1 whose intervals I1, . . . , In cover

all of [0, 1]. Suppose that for some t0 with 0 ≤ t0 < 1, we have
a complex-valued continuous function g(t) on [0, t0] such that g(t)
mod L2 = f̂(γ(t)). Show that if [0, t0]∩ Ij is nonempty, and if h(t)
is the function on Ij constructed in part (a), then there is an � ∈ L2

such that g(t) = h(t)− � for all t ∈ [0, t0]∩ Ij . (Hint:g(t)− h(t) is
continuous and L2 is discrete.)

(c) Show that there exists a continuous function g : [0, 1] → C such
that g(t) mod L2 = f̂(γ(t)) for all t ∈ [0, 1].

(d) Define f̃(z1) = g(1), where z1 and g are as above. Show that this
definition is independent of the choice of path γ. (Hint: Deform
one path into another continuously. The value of g(1) can change
only by a lattice point.)

(e) Show that the construction of f̃ yields a continuous function f̃ :
C → C such that f(z mod L1) = f̃(z) mod L2 for all z ∈ C.

12.14 Consider the elliptic curves E1, E2 in Example 12.5. Use Vélu’s formulas
(Section 12.3) to compute the equations of E1 and E2. Decide which
has j = −1 and which has j = −3.
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Chapter 13
Hyperelliptic Curves

Given an algebraic curve, we can form its Jacobian, namely the group of
divisors of degree 0 modulo principal divisors. As we saw in Corollary 11.4,
the Jacobian of an elliptic curve gives the same group as the elliptic curve.
However, for other curves, we get something new. In this chapter, we discuss
hyperelliptic curves, for which the theory can be carried out rather explicitly.

In [62], Koblitz suggested using hyperelliptic curves to build cryptosystems.
Of course, whenever we have a group, we can build cryptosystems whose
security depends on the difficulty of solving the discrete logarithm problem
in the group. But computations in the group, for example adding elements,
need to be fast if the cryptosystem is to have practical value. In Section
13.3, we discuss Cantor’s algorithm, which allows us to compute in Jacobians
of hyperelliptic curves. In Section 13.4, we show how a form of the index
calculus can be used to attack the discrete logarithm for these Jacobians. It
turns out that this attack is effective when the genus (an invariant attached
to the curve; see Theorem 11.15) is large. Therefore, it appears that the best
curves for cryptography have genus 2. For much more on hyperelliptic curves,
see [27], for example.

13.1 Basic Definitions

Let K be a field. Throughout Sections 13.1, 13.2, and 13.3, we assume that
K is algebraically closed, so that all points we consider have coordinates in K.
Let g ≥ 1 be an integer and let h(x) and f(x) be polynomials with coefficients
in K such that deg f = 2g + 1 and deg h ≤ g. Also, assume that f is monic
(that is, the coefficient of x2g+1 is 1). The curve C given by the equation

C : y2 + h(x)y = f(x) (13.1)

is called a hyperelliptic curve of genus g if it is nonsingular for all x, y ∈
K. This means that no point (x, y) on the curve, with x, y ∈ K, satisfies
2y + h(x) = 0 = f ′(x) − yh′(x). When g = 1, we obtain an elliptic curve in

407
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408 CHAPTER 13 HYPERELLIPTIC CURVES

generalized Weierstrass form. It can be shown that the genus of C (in the
sense of Theorem 11.15) is g.

If the characteristic of K is not 2, we can complete the square on the left
side and put the curve into the form

C : y2 = f(x), (13.2)

with f monic of degree 2g + 1. The nonsingularity condition states that no
point on the curve satisfies 2y = 0 = f ′(x). Since y = 0 means that f(x) = 0,
this is equivalent to saying that no x satisfies f(x) = 0 = f ′(x). In other
words, f(x) has no multiple roots, just as for the Weierstrass form of an
elliptic curve. For simplicity, we work with the form (13.2) throughout this
chapter.

There is one point at infinity, given by (0 : 1 : 0) and denoted ∞. If g ≥ 2,
this point is singular, but this has no effect on what we do in this chapter.

Technical point: Various results that we need to apply to C require that
the curve be nonsingular. Therefore, it is necessary to remove the singularity
at infinity. This is done by taking what is called the normalization of C.
Fortunately, the resulting nonsingular curve agrees with C at the affine (that
is, non-infinite) points and has a unique point at infinity (see, for example,
[106]), which we again denote ∞. In the following, we will be working with
functions and divisors. It will be easy to see what happens at the affine points.
The behavior at ∞, which might seem harder to understand, is forced. For
example, the function x − a, where a is a constant, has two zeros, namely
(a,

√
f(a)) and (a,−√f(a)). Since the function has no other zeros or poles in

the affine plane, and the degree of its divisor is 0, it must have a double pole at
∞. Similarly, any polynomial in x, y gives a function that has no poles in the
affine plane, so the poles are at ∞. In fact, it can be shown that the rational
functions on C with no poles except possibly at ∞ are the polynomials in x, y.
In summary, in most situations we can work with ∞ without worry. However,
the point (more accurately, a neighborhood of the point) is more complicated
than it might appear.

REMARK 13.1 There are also hyperelliptic curves given by equations of
the forms (13.1) and (13.2) with deg f = 2g + 2. However, these will not be
used in this chapter. Therefore, throughout this chapter, hyperelliptic curve
will mean a curve with deg f = 2g + 1.

Let P = (x, y) be a point on C. Define

w(P ) = (x,−y),

which is also a point on C. The map w : P �→ w(P ) is called the hyperelliptic
involution. It satisfies w(w(P )) = P for all points P on C. On elliptic curves,
w is multiplication by −1.
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13.2 Divisors

We continue to assume that C is a hyperelliptic curve given by (13.2) over
an algebraically closed field K of characteristic not equal to 2.

In general, a line intersects C in 2g + 1 points. Therefore, when g ≥ 2, we
cannot use the method from elliptic curves to make the points on C into a
group, since the line through two points intersects the curve in 2g−1 additional
points, rather than in a unique third point. Instead, we form the group of
divisors of degree 0 modulo principal divisors (that is, modulo divisors of
functions on C).

In order to discuss divisors of functions, we need to make precise the order
of vanishing of a function at a point. Let P = (a, b) be a point on C and let t
be a function that has a simple zero at P . If H(x, y) is a function on C, write
H = trG, where G(P ) �= 0,∞. Then H has a zero of order r at P (if r < 0,
then H has a pole of order |r|). If P = (a, b) with b �= 0, it can be shown that
t = x − a has a simple zero at P . If b = 0, then x − a has a double zero, but
t = y works since the function y has a simple zero. The intuition is that the
line x − a = 0 intersects the curve C nontangentially at (a, b) except when
b = 0, where it is a vertical tangent to the curve. Since tangency corresponds
to higher order vanishing (as in Section 2.4), we need to use y instead, since
the horizontal line y = 0 intersects C at (a, 0) nontangentially.

The functions we will work with are polynomials in x and y. Since y2 =
f(x), we can replace y2 with f(x). By induction, any polynomial in x, y can
be reduced to a function of the form A(x) + B(x)y, where A(x) and B(x) are
polynomials in x.

We need to consider two special forms of functions.

PROPOSITION 13.2
(a)LetA(x) =

∏
j(x − aj)cj.Then

div(A(x)) =
∑

j

cj

(
[Pj ] + [w(Pj)] − 2[∞]

)
,

where Pj =
(
aj ,

√
f(aj)

)
and w(Pj) =

(
aj ,−

√
f(aj)

)
.

(b)LetV (x) be a polynom ial.Let

f(x) − V (x)2 =
∏
j

(x − aj)
dj .

Then the function y − V (x) hasdivisor

div
(
y − V (x)

)
=
∑

j

dj

(
[(aj , bj)] − [∞]

)
,
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where bj = V (aj).Ifbj = 0,then dj = 1.

PROOF Let a ∈ K. Consider the function given by the polynomial
H(x, y) = x−a. If f(a) �= 0, this function has simple zeros at P = (a,

√
f(a))

and at w(P ) = (a,−√f(a)). The only possible pole of x − a is at ∞. Since
the number of zeros equals the number of poles (Proposition 11.1), there is a
double pole at ∞. Therefore,

div(x − a) = [P ] + [w(P )] − 2[∞].

If f(a) = 0, then

x − a = y2 x − a

f(x)
.

Since f(x) has no multiple roots, (x−a)/f(x) does not have a zero or a pole at
(a, 0). Therefore, x− a has a double zero at (a, 0). Note that w(a, 0) = (a, 0),
so we can also write div(x − a) in the form [P ] + [w(P )] − 2[∞] in this case.

If A(x) =
∏

j(x − aj)cj , then div(A(x)) =
∑

j cj ([Pj ] + [w(Pj)] − 2[∞]),

where Pj =
(
aj ,

√
f(aj)

)
(for either choice of sign for the square root). We

will use this for polynomials A(x), but it also applies when cj < 0 is allowed,
hence when A(x) is a rational function.

Consider now a function of the form y−V (x), where V (x) is a polynomial.
Let P = (a, b) be a point on C with b �= 0. Assume that y − V (x) has a zero
at P , so V (a) = b. Since b �= 0, we have V (a)+b �= 0, so the function y+V (x)
does not have a zero at P . Therefore, the order of vanishing of y−V (x) at P
is the same as the order of vanishing of(

y + V (x)
)(

y − V (x)
)

= y2 − V (x)2 = f(x) − V (x)2.

We conclude that, when b �= 0 and b = V (a), the coefficient of (a, b) in
div(y − V ) equals the multiplicity of x − a in the factorization of f − V 2.

Now suppose (a, 0) is a point on C at which y − V (x) has a zero. This
means that f(a) = 0 and V (a) = 0. Since the function x−a has a double zero
at (a, 0), the function V (x) has at least a double zero at (a, 0). But y has a
simple zero at (a, 0), so the function y−V (x) has only a simple zero at (a, 0).
Suppose (x− a)2 is a factor of the polynomial f(x)−V (x)2. Since (x− a)2 is
a factor of V (x)2, it is also a factor of f(x), which is not possible since f(x)
has no multiple roots. Therefore, the polynomial f(x) − V (x)2 has x − a as
a simple factor. In other words, if V (a) = 0 and (a, 0) is on C, the divisor of
y − V (x) contains [(a, 0)] with coefficient 1, and the polynomial f(x)− V (x)2

has x − a as a simple factor.
So far, we have proved that every zero of y − V gives a root of f − V 2. We

need to show that f − V 2 has no other roots. Write

div(y − V ) =
∑

j

dj ([(aj , bj)] − [∞]) .
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Then

div(y + V ) =
∑

j

dj ([(aj ,−bj)] − [∞]) =
∑

j

dj ([w(aj , bj)] − [∞]) .

Since

div(f−V 2) = div(y+V )+div(y−V ) =
∑

j

dj ([(aj , bj)] + [(aj ,−bj)] − 2[∞]) ,

we must have f − V 2 =
∏

j(x − aj)dj , by part (a). Therefore, every root of

f − V 2 yields a term in div(y − V ). This completes the proof.

Part (a) of the proposition has a converse. If D =
∑

cj [Pj ] is a divisor, let
w(D) =

∑
cj [w(Pj)].

PROPOSITION 13.3

LetD bea divisorofdegree0.Then D+w(D) isa principaldivisor;in fact,
itisthe divisorofa rationalfunction in x.

PROOF Write D =
∑

j cj [Pj ], where possibly some Pj is ∞. Since deg D =
0, we have

∑
j cj = 0, so D =

∑
j cj ([Pj ] − [∞]). If some Pj = ∞, that

term can now be omitted, so we may assume Pj �= ∞ for all j. Therefore,
D+w(D) =

∑
j cj ([Pj ] + [w(Pj)] − 2[∞]), which is the divisor of a polynomial

in x, by Proposition 13.2.

A divisor of the form D =
∑

j cj ([Pj ] − [∞]), with Pj = (aj , bj), is called
semi-reduced if the following hold:

1. cj ≥ 0 for all j

2. if bj = 0, then cj = 0 or 1

3. if [Pj ] with bj �= 0 occurs in the sum (that is, cj > 0), then [w(Pj)] does
not occur.

If, in addition,
∑

j cj ≤ g, then D is called reduced.
Proposition 13.2 implies that div (y − V (x)) is semi-reduced for every poly-

nomial V (x).
Let D1 =

∑
j cj ([Pj ] − [∞]) and D2 =

∑
j dj ([Pj ] − [∞]) be two divisors

with cj ≥ 0 and dj ≥ 0. Define

gcd(D1, D2) =
∑

j

min{cj , dj} ([Pj ] − [∞]) .
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PROPOSITION 13.4
LetD =

∑
j cj ([Pj ] − [∞]) be a sem i-reduced divisor. LetPj = (aj , bj) and

U(x) =
∏

j(x − aj)cj. LetV (x) be a polynom ialsuch thatbj = V (aj) for all
j.Then

D = gcd
(
div(U(x)), div(y − V (x)

) ⇐⇒ f(x) − V (x)2 isa m ultiple ofU(x)

(thatis f(x) − V (x)2 isa polynom ialm ultiple ofU(x)).

PROOF In the notation of Proposition 13.2(b), dj ≥ cj for all j if and
only if f(x)−V (x)2 is a multiple of U(x). The gcd is D if and only if dj ≥ cj

for all j, which yields the result. It is worth mentioning what happens at the
points (aj , bj) in D where bj = 0. Since D is semi-reduced, cj = 1 for these
points. Although div(x−aj) contains 2[Pj ]−2[∞], the gcd contains [Pj ]− [∞]
only once since div(y − V (x)) contains [Pj ] − [∞] only once.

The following result is central to our treatment of divisors for hyperelliptic
curves, since it allows us to represent divisors concretely as pairs of polyno-
mials.

THEOREM 13.5
There is a one-to-one correspondence between sem i-reduced divisors D =∑

j cj ([Pj ] − [∞]) and pairsofpolynom ials (U(x), V (x)) satisfying

1. U(x) ism onic,

2. deg U(x) =
∑

j cj and deg V (x) < deg U(x),

3. V (x)2 − f(x) isa m ultiple ofU(x).

Underthiscorrespondence,D = gcd
(
div(U(x)), div(y − V (x)

)
.

PROOF Given a pair (U, V ), we obtain a divisor D as the gcd, as in the
statement of the theorem. Since div(y − V (x)) is semi-reduced, the gcd is
semi-reduced. Proposition 13.4 tells us that deg U(x) =

∑
j cj , as desired.

Conversely, suppose we have a semi-reduced divisor D. Let Pj = (aj , bj) be
a point occurring in D. We can construct U(x) as in Proposition 13.4, but
we need to find V (x) such that V (aj) = bj for all j and such that V 2 − f is
a multiple of U . For this, we use a square root algorithm.

Write U(x) =
∏

j(x − aj)cj . Suppose that, for each j, we have Vj(x) such
that Vj(aj) = bj and Vj(x)2 ≡ f(x) (mod (x−aj)cj ). The Chinese remainder
theorem for polynomials (Exercise 13.10) tells us that there is a polynomial
V (x) such that V (x) ≡ Vj(x) (mod (x−aj)cj ) for all j. Then V (x)2−f(x) ≡ 0
(mod (x−aj)cj ) for all j. This implies that V (x)2−f(x) is a multiple of U(x).
Also, V (x) ≡ Vj(x) (mod x − aj) implies that V (aj) = Vj(aj) = bj .
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The problem is now reduced to solving congruences of the form W (x)2 ≡
f(x) (mod (x−a)c) with W (a) = b, where b2 = f(a). The solutions W will be
the desired polynomials Vj . If b = 0, then f(a) = 0 and, by Proposition 13.2,
we know that c = 1, so we can take W (x) = 0. This yields

W (x)2 = 02 = f(a) ≡ f(x) (mod (x − a))

since f(x) ≡ f(a) (mod (x − a)) for any polynomial f(x). Suppose now that
b �= 0. Let W1(x) = b. Then W1(x)2 = b2 = f(a), so W1(x)2 − f(x) is 0 at
x = a, hence is 0 mod x − a. Now suppose that 1 ≤ n < c and that we have
found Wn(x) such that Wn(x)2 ≡ f(x) (mod (x−a)n) and Wn(a) = b. Write

Wn+1(x) = Wn(x) + k(x − a)n

for some constant k to be determined. Then

Wn+1(x)2 − f(x) ≡ Wn(x)2 − f(x) + 2k(x − a)nWn(x) (mod (x − a)n+1).

Since Wn(x)2 − f(x) is a multiple of (x − a)n, we can form the polynomial
P (x) =

(
Wn(x)2 − f(x)

)
/(x−a)n. Let k = −P (a)/2. Then Wn+1(x)2−f(x)

is a multiple of (x − a)n+1. Continuing in this way, we obtain a function
W (x) = Wc(x) that has the desired properties. (Rem ark: This method is
actually the same as Newton’s method for finding numerical approximations
to solutions of equations.)

As mentioned previously, we combine the functions Vj(x) via the Chinese
remainder theorem to obtain V (x). Now that we have a function V (x) with
V (x)2−f(x) divisible by U(x), we can reduce V mod U to get a new function
V with deg V (x) < deg U(x). We have therefore found the desired pair (U, V ).

Finally, we need to show that V (x) is uniquely determined by D. Suppose
V1(x) and V2(x) are two such polynomials. The functions y − Vi(x) vanish
to order at least cj at Pj , and therefore their difference V2(x) − V1(x) must
also vanish to this order. Therefore, V2(x) − V1(x) has at least

∑
j cj =

deg U(x) zeros, counting multiplicity. But deg(V2(x) − V1(x)) < deg U(x), so
V1(x) − V2(x) must be identically 0. This completes the proof.

The next result shows that the reduced divisors represent all divisor classes
of degree 0.

PROPOSITION 13.6
LetD be a divisor ofdegree 0 on C. There exists a unique reduced divisor

D1 such thatD − D1 isa principaldivisor.

PROOF Recall the Riemann-Roch theorem (Theorem 11.15): For any
divisor D,

�(D) − �(K − D) = deg(D) − g + 1.
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Replace D with D + g[∞]. Then

�(D + g[∞]) = �(K − D − g[∞]) + 1 ≥ 1,

since �(K − D − g[∞]) ≥ 0. This means that there is a function F �= 0 such
that

div(F ) + D + g[∞] ≥ 0.

Let D1 = div(F ) + D, which is in the same divisor class as D. Then D1 +
g[∞] ≥ 0 and deg(D1) = 0. Since adding a multiple of [∞] to D1 makes
all coefficients nonnegative, and since deg(D1) = 0, it follows easily that the
only point in D1 with negative coefficients is [∞] and that there are at most g
other points in the sum. If D1 contains both [P ] and [w(P )] for some P , then
subtracting an appropriate multiple of the principal divisor [P ]+[w(P )]−2[∞]
removes either [P ] or [w(P )] from D1 and leaves the other with a nonnegative
coefficient. Therefore, we may assume that D1 is reduced, and hence D1 is
the required divisor.

We now show that D1 is unique. Suppose D −D1 = div(F ) and D −D2 =
div(G) with both D1 and D2 reduced. Then

D1 + w(D2) = D + w(D) − div(F ) − w(div(G)),

which is principal, since D + w(D) is principal (Proposition 13.3) and w
applied to a principal divisor yields a principal divisor (Exercise 13.4). Write
D1 + w(D2) = div(H). Then

div(H) + 2g[∞] =
(
D1 + g[∞]

)
+ w

(
D2 + g[∞]

) ≥ 0,

so H ∈ L(2g[∞]) (see Section 11.5).
The Riemann-Roch theorem says that

�(2g[∞]) − �(K − 2g[∞]) = 2g − g + 1 = g + 1.

Since deg(K−2g[∞]) = −2 < 0 by Corollary 11.16, we have �(K−2g[∞]) = 0
by Proposition 11.14. Therefore, �(2g[∞]) = g + 1. Since xj ∈ L(2j[∞]), the
set

{1, x, x2, . . . , xg}
gives g + 1 functions in L(2g[∞]). They are linearly independent since they
have poles of distinct orders. Therefore, they form a basis of L(2g[∞]). This
means that every element can be written as a polynomial in x of degree at
most g.

We conclude that D1 +w(D2) = div(H), where H is a polynomial in x. As
we showed earlier, this means that

D1 + w(D2) =
∑

j

cj([Pj ] + [w(Pj)] − 2[∞])
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for some points Pj and some integers cj . Since D1 and w(D2) are reduced,
[Pj ] occurs in one of D1 and w(D2), and [w(Pj)] occurs in the other. By
switching the names of Pj and w(Pj), if necessary, we may assume that

D1 =
∑

j

([Pj ] − [∞]) and w(D2) =
∑

j

([w(Pj)] − [∞]).

This implies that D1 = D2, as desired.

We refer to elements of the group of divisors of degree 0 modulo principal
divisors as divisor classes of degree 0. The set of divisor classes of degree
0 can be given the structure of an algebraic variety, called the Jacobian
variety J of C. Over the complex numbers, the Jacobian has the structure
of a g-dimensional complex torus Cg/L, where L is a lattice in g-dimensional
complex space (the case g = 1 is the case of elliptic curves treated in Chapter
9). The addition of divisor classes corresponds to addition of points in Cg/L.

Let P1, P2 be points on C. Since [P1]− [∞] and [P2]− [∞] are reduced, the
uniqueness part of Proposition 13.6 implies that these two divisors are not
equivalent modulo principal divisors. Therefore, the map

C −→ J

P �−→ [P ] − [∞]

gives an injective mapping of C into its Jacobian. In the case of elliptic curves,
this is an isomorphism (Corollary 11.4).

THEOREM 13.7
There is a one-to-one correspondence between divisor classes ofdegree 0 on

C and pairs (U(x), V (x)) ofpolynom ialssatisfying

1. U ism onic.

2. deg V < deg U ≤ g.

3. V 2 − f(x) isa m ultiple ofU.

PROOF By Proposition 13.6, every divisor class of degree 0 is represented
by a unique reduced divisor. By Theorem 13.5, these divisors are in one-to-
one correspondence with the pairs (U, V ) as in the statement of the present
theorem.

REMARK 13.8 The pair (U, V ) is called the Mumford representation
of the corresponding divisor class. In many situations, it is easier to work with
the Mumford representations than directly with the divisor classes. In the next
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section, we describe an algorithm that produces the Mumford representation
for the sum of two divisor classes of degree 0.

If we start with a divisor of degree 0 where [∞] is the only point with
a negative coefficient, then it is easy to find a semi-reduced divisor in the
same divisor class; namely, we remove divisors of suitable polynomials in
x. However, the proof of Proposition 13.6 does not immediately give an
algorithm for changing the semi-reduced divisor to the reduced divisor in the
same divisor class. Nevertheless, if we work with the pair (U, V ) associated to
the semi-reduced divisor, there is a straightforward procedure that produces
the pair corresponding to the reduced divisor.

THEOREM 13.9 (Reduction Procedure)
Let (U, V ) be a pair representing a sem i-reduced divisorD ofdegree 0. Do
the following:

1. LetŨ = (f − V 2)/U.

2. Let Ṽ ≡ −V (mod Ũ) with deg(Ṽ ) < deg Ũ.

3. LetU = Ũ and V = Ṽ .

4. M ultiply U by a constantto m ake U m onic.

5. Ifdeg(U) > g,go back to step 1.Otherwise,continue.

6. Output(U, V ).

The reduction procedure term inates,and the outputis the pair representing
the reduced divisor in the divisor classofD.

PROOF The divisor of U(x) is D + w(D). The divisor of y − V (x) is
D+E, where E has the form

∑
j ej ([Qj ] − [∞]) for some points Qj and some

coefficients ej ≥ 0. The divisor of y + V (x) is w(D + E). Since

UŨ = f − V 2 = (y + V )(y − V ),

we have

D + w(D) + div(Ũ) = div(U) + div(Ũ) = D + E + w(D + E).

Therefore,

div(Ũ) = E + w(E). (13.3)

Since div(y + V ) = w(D) + w(E),

gcd
(
div(Ũ), div(y + V )

)
= w(E) (13.4)
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(as remarked earlier, a divisor of the form div(y + V ) is semi-reduced, so it
cannot contain contributions from both E and w(E)). But

D − div(y − V ) = −E = w(E) − div(Ũ),

so w(E) is in the same divisor class as D. We claim that (Ũ , Ṽ ) represents
w(E). By (13.3), the degree of Ũ equals

∑
ej , the number of summands

in E. Since Ṽ 2 ≡ (−V )2 ≡ f (mod Ũ), Theorem 13.5 implies that (Ũ , Ṽ )
represents a divisor. By (13.4), it represents w(E).

Finally, suppose deg(U) ≥ g + 1. Then deg(f) < 2 deg(U) and deg(V 2) <
2 deg(U), so deg(U)+deg(Ũ) = deg(f−V 2) < 2 deg(U). Therefore, deg(Ũ) <
deg(U). This means that the degree decreases at every iteration of steps (1)
through (4) until we obtain a polynomial of degree at most g. At this point,
the corresponding divisor is reduced and we are done.

13.3 Cantor’s Algorithm

Although very useful from a theoretical point of view, the description of
the points of the Jacobian J in terms of divisor classes of degree 0 is not very
useful from a computational point of view. On the other hand, the Mumford
representation gives a very concrete representation of points of J . In this
section, we present an algorithm due to David Cantor [22] for adding divisor
classes that are given by their Mumford representations. The algorithm has
its origins in Gauss’s theory of composition of quadratic forms.

THEOREM 13.10 (Cantor’s algorithm)
LetD1 and D2 be divisors ofdegree 0, whose classes correspond to pairs

(U1, V1) and (U2, V2),asin Theorem 13.7.

1. Let d = gcd(U1, U2, V1 + V2). Find polynom ials h1, h2, h3 such that
d = U1h1 + U2h2 + (V1 + V2)h3.

2. LetV0 = (U1V2h1 + U2V1h2 + (V1V2 + f)h3) /d.

3. LetU = U1U2/d2 and V ≡ V0 (mod U) with deg V < deg U.

4. LetŨ = (f − V 2)/U and Ṽ ≡ −V (mod Ũ),with deg(Ṽ ) < deg Ũ.

5. LetU = Ũ and V = Ṽ .

6. M ultiply U by a constantto m ake U m onic.

7. Ifdeg(U) > g,go back to step 4.Otherwise,continue.

© 2008 by Taylor & Francis Group, LLC



418 CHAPTER 13 HYPERELLIPTIC CURVES

8. Output(U, V ).

Thepair (U, V ) istheM um ford representation ofthedivisorclassofD1 +D2.

PROOF By modifying D1 and D2 by principal divisors, we may assume
that Di = gcd(div(Ui),div(y−Vi)), for i = 1, 2. The algorithm consists of two
parts. The first part, which is steps (1), (2), and (3), constructs a pair (U, V ).
It essentially corresponds to D1+D2, but terms of the form [P ]+[w(P )]−2[∞]
need to be removed. This is the role of the polynomial d(x). The second part,
steps (4) through (7), lowers the degree of U(x) so that deg U(x) ≤ g.

First, we need to check that V0 in step (2) is a polynomial. Since U1, U2

are multiples of d, it remains to show that V1V2 + f is a multiple of d. But

V1V2 + f = V1(V1 + V2) +
(
f − V 2

1

) ≡ 0 (mod d),

since V1 + V2 is a multiple of d and since f − V 2
1 is a multiple of U1, hence a

multiple of d. Therefore, V0 is a polynomial.
We now show that gcd (U(x), y − V0(x)) equals the semi-reduction of D1 +

D2, namely, D1 +D2 with any terms of the form [P ]+[w(P )]−2[∞] removed.
To do so, we need to explain the definition of V0(x). Consider a point P =
(a, b) and let the coefficient of [P ] − [∞] in Di be ri ≥ 0. The functions Ui

and y − Vi vanish to order at least ri at P . Therefore, the products

U1U2, (y − V1)U2, (y − V2)U1, (y − V1)(y − V2) = f + V1V2 − (V1 + V2)y

vanish to order at least r1 + r2 at P . The coefficients of y in the last three
functions are U2, U1,−(V1 + V2), and the polynomial d is the gcd of these.
The linear combination for d in step (1) implies that

(y − V2)U1h1 + (y − V1)U2h2 + ((V1 + V2)y − f − V1V2) h3

= dy − dV0.

Therefore, (y − V0)d vanishes to order at least r1 + r2 at P .
We now need to consider in detail what happens at each point P = (a, b).

It is convenient to work with both P and w(P ) = (a,−b) at the same time.
For simplicity, let (U, y − V ) denote the divisor gcd(div(U),div(y − V )).

Write

(U1, y − V1) = D1 = r1 ([P ] − [∞]) + s1 ([w(P )] − [∞]) + · · ·
(U2, y − V2) = D2 = r2 ([P ] − [∞]) + s2 ([w(P )] − [∞]) + · · · .

Since D1 and D2 are semi-reduced, either r1 = 0 or s1 = 0, and either r2 = 0
or s2 = 0.

We need to show that the coefficients of [P ] − [∞] and of [w(P )] − [∞] in
the semi-reduction of D1 + D2 match those in (U, y − V0), where U is the
polynomial obtained in step (3). There are several cases to consider.
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If r1 = s1 = r2 = s2 = 0, then U(P ) �= 0. Therefore, P and w(P ) do not
occur in (U, y − V0) and they do not occur in D1 + D2.

If some ri or si is positive, we can rename the points and divisors so that
r1 > 0, and r1 = Max(r1, s1, r2, s2). Then s1 = 0. Henceforth, we assume
this is the case.

If r2 = s2 = 0, then d(P ) �= 0. The order of U at P is the order of U1 at P ,
which is r1. Since (y−V0)d has order at least r1 at P , so does y−V0. Therefore,
(U, y − V0) contains r1 ([P ] − [∞]). Since (U, y − V0) is semi-reduced, it does
not contain [w(P )] − [∞] (except when P = w(P )). Therefore, D1 + D2 and
(U, y − V0) agree at the terms involving [P ] − [∞] and [wP ] − [∞].

If r2 > 0 and b = 0, then U1 and U2 have simple zeros as polynomials (and
double zeros as functions on C) at a by Proposition 13.2. Also, V1 + V2 has
a zero at a, so the gcd d has a simple zero at a. Therefore, U = U1U2/d2 has
no zero at a, so the divisor corresponding to (U, V ) does not contain P . Since
U1(a) = U2(a) = 0, the divisors D1 and D2 both contain P = (a, 0) = w(P ).
By Proposition 13.2, they each contain [P ]− [∞] with coefficient 1. Therefore,
D1 + D2 contains 2 ([P ] − [∞]), which is principal and can be removed. The
resulting divisor does not contain P . Therefore, (U, y − V0) and the semi-
reduction of D1 + D2 agree at terms containing P .

From now on, assume that b �= 0. If r2 > 0, then s2 = 0. Since V1(a) =
V2(a) = b �= 0, we have V1 +V2 �= 0 at P . Therefore, d(P ) �= 0. Therefore, the
order of U at P is r1 +r2. As pointed out previously, the order of (y−V0)d at
P is at least r1 + r2, so the order of y −V0 at P is at least r1 + r2. Therefore,
(U, y − V0) contains (r1 + r2) ([P ] − [∞]), which matches D1 + D2. Since
(U, y−V0) is semi-reduced, it has no terms with w(P ). Neither does D1 +D2.

Finally, suppose s2 > 0. Then r2 = 0. Then y − V1 has order at least r1

at P and y − V2 has order at least s2 at w(P ). Therefore, V2(a) = −b, so
y − V2 takes the value 2b �= 0 at P . Since (y + V2)(y − V2) = f − V 2

2 is a
multiple of U2, which has order s2 at P , the order of y + V2 at P is at least
s2. Therefore, the order at P of V1 + V2 = (V1 − y) + (y + V2) is at least
min(r1, s2) = s2, by the choice of r1. It follows that d, which is the gcd of U1,
U2, and V1 + V2, has order exactly s2 at P , since this minimum is attained
for U2. The order of U at P is therefore r1 + s2 − 2s2 = r1 − s2. We know
that (y − V0)d has order at least r1 at P . Similarly, it has order at least s2

at w(P ). Therefore, y − V0 has order at least r1 − s2 at P . If r1 − s2 > 0,
then (U, y − V0) contains (r1 − s2) ([P ] − [∞]). Since it is semi-reduced, it
does not contain [w(P )] − [∞]. If r1 − s2 = 0, then U(P ) �= 0, so (U, y − V0)
contains neither P nor w(P ). Therefore, (U, y − V0) agrees at P and w(P )
with D1+D2−s2 ([P ] + [w(P )] − 2[∞]), hence agrees with the semi-reduction
of D1 + D2.

We have therefore proved that (U, y−V0) and the semi-reduction of D1+D2

agree at all terms, so they are equal. Since (U, y − V ) = gcd(U, y − V0), this
completes the proof that the divisor represented by (U, V ) is in the divisor
class of D1 + D2.

Note that we have proved that y − V0 vanishes at least to the order of
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vanishing of U at each point (a, V0(a)). By Proposition 13.4, f − V 2
0 is a

multiple of U . Since V ≡ V0 (mod U), f − V 2 is also a multiple of U , as
required.

Steps (4) through (7) are the reduction algorithm. Theorem 13.9 says that
this process yields the desired reduced divisor.

Example 13.1
Consider the curve C : y2 = x5 − 1 over F3. Let’s compute(

x2 − x + 1,−x + 1
)

+ (x − 1, 0) .

We have U1 = x2 − x + 1, U2 = x − 1, V1 + V2 = −x + 1. The gcd of these is
1, and

(x2 − x + 1) · 1 + (x − 1) · (−x) + (−x + 1) · 0 = 1,

so we may take h1 = 1, h2 = −x, h3 = 0. We obtain

U = (x2 − x + 1)(x − 1) = x3 + x2 − x − 1,

V ≡ 0 + (x − 1)(−x + 1)(−x) + 0 = x3 + x2 + x ≡ −x + 1 (mod U).

The reduction procedure yields

Ũ =
(x5 − 1) − (−x + 1)2

U
= x2 − x − 1

and Ṽ = x − 1. Therefore,(
x2 − x + 1,−x + 1

)
+ (x − 1, 0) =

(
x2 − x − 1, x − 1

)
.

13.4 The Discrete Logarithm Problem

Up to now, we have been working over an algebraically closed field. But now
we consider a curve and divisors defined over a finite field Fq. We continue
to assume that q is not a power of 2, so we can use (13.2) instead of (13.1).
We take f(x) in (13.2) to be a polynomial with coefficients in Fq and with
no multiple roots in Fq. Let φ be the q-th power Frobenius map. A divisor
D is said to be defined over Fq if φ(D) = D (where φ([P ]) is defined to be
[φ(P )] and φ([∞]) = [∞]). This means that φ can permute the summands of
D as long as it leaves the overall sum unchanged. A divisor class is said to
be defined over Fq if φ(D) − D is a principal divisor for some (equivalently,
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all) divisors D in the divisor class. These correspond to the points on the
Jacobian variety that are defined over Fq. We denote this set by J(Fq).

Suppose D is a divisor of degree 0 such that φ(D) is in the same divisor class
as D. The divisor class of D contains a unique reduced divisor R, and the
divisor class of φ(D) contains φ(R) (proof: D−R = div(F ), so φ(D)−φ(R) =
div(φ(F ))), and φ(R) is also reduced. The uniqueness implies that R = φ(R).
Therefore, the divisor class contains a divisor fixed by φ. The reduced divisor
R corresponds to a unique pair (U, V ) of polynomials. The divisor φ(R)
corresponds to the pair (Uφ, V φ), where Uφ denotes the polynomial obtained
by applying φ to the coefficients of U . Since φ(R) = R, we have Uφ = U
and V φ = V , because the pair corresponding to a divisor is unique. It follows
that a divisor class that is mapped to itself by φ corresponds to a unique
pair (U, V ) of polynomials, with U, V ∈ Fq[x] (= the set of polynomials with
coefficients in Fq). Conversely, if U, V ∈ Fq[x], then gcd (div(U),div(y − V ))
is fixed by φ, hence yields a divisor class fixed by φ. We have proved the
following.

PROPOSITION 13.11

There isa one-to-one correspondence between J(Fq) and pairs (U, V ) ofpoly-
nom ialswith coe cientsin Fq satisfying

1. U ism onic.

2. deg V < deg U ≤ g.

3. V 2 − f(x) isa m ultiple ofU.

Since there are only finitely many polynomials U ∈ Fq[x] of degree at most
g, there are only finitely many divisor classes of degree 0 that are defined over
Fq. In other words, J(Fq) is finite. It is easy to see that it is closed under
addition, so it forms a group. Alternatively, Cantor’s algorithm clearly takes
pairs of polynomials defined over Fq to pairs defined over Fq. In fact, we
could ignore the geometry completely and consider a group whose elements
are suitable pairs of polynomials and whose law of composition is given by
Cantor’s algorithm. This defines a group (although the associativity might
be difficult to prove without the geometric interpretation).

Example 13.2

Let’s consider the case where deg U = 1. Then U = x − a for some a, and
V = b for some b ∈ Fq. Also, f(x) ≡ f(a) (mod x − a), so b2 = V 2 ≡ f(a),
hence b2 = f(a). This means that (a, b) is a point on the curve. The divisor
class for (U, V ) is defined over Fq if and only if the polynomials x − a and
b have coefficients in Fq, which happens if and only if the point (a, b) has
coordinates in Fq.
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Example 13.3
Let D = gcd(div(U),div(y − V )), which corresponds to (U, V ), and suppose
that deg U = 2 where U is an irreducible polynomial in Fq[x]. We can factor
U as (x − a1)(x − a2) over Fq2 . Then

D = [(a1, V (a1))] + [a2, V (a2))] − 2[∞].

Since a1, a2 �∈ Fq, the points (ai, V (ai)) are not defined over Fq. However, φ

interchanges [(a1, V (a1))] and [(a2, V (a2))], hence φ(D) = D.

Example 13.4
Let’s consider the curve C : y2 = x5 − 1 over F3. The points in C(F3) are

{∞, (1, 0), (−1, 1), (−1,−1)}.

Denote the elements of F9 as a + bi with a, b ∈ {−1, 0, 1} and i =
√−1. The

elements of C(F9) are

∞, (1, 0), (−1, 1), (−1,−1), (0, i), (0,−i),
(−1 + i, 1 + i), (−1 + i,−1 − i), (−1 − i, 1 − i), (−1 − i,−1 + i).

The pairs of polynomials (U, V ) corresponding to reduced divisors are

D ≡ (x2 − 1, x − 1), 2D ≡ (x2 − x + 1, x − 1), 3D ≡ (x2 − x − 1, x − 1),
4D ≡ (x + 1,−1), 5D ≡ (x − 1, 0), 6D ≡ (x + 1, 1),

7D ≡ (x2 − x − 1,−x + 1), 8D ≡ (x2 − x + 1,−x + 1),

9D ≡ (x2 − 1,−x + 1), 10D ≡ (1, 0)

(where “≡” denotes congruence modulo principal divisors). These can be
found by exhaustively listing all polynomials U of degree at most 2 with coef-
ficients in F3, and finding solutions to V 2 ≡ x5 − 1 (mod U) when they exist.
The pair (x + 1, 1) corresponds to the divisor gcd (div(x + 1),div(y − 1)) =
[(−1, 1)] − [∞]. The pair (x2 − x − 1, x − 1) corresponds to the divisor
[(−1 + i, 1 + i)] + [(−1 − i, 1 − i)] − 2[∞]. This can be seen as follows. The
roots of x2 −x− 1 are x = −1 + i and x = −1− i. The polynomial V = x− 1
tells us that the y-coordinates satisfy y = x − 1, which yields y = 1 + i and
y = 1 − i. The points (−1 + i, 1 + i) and (−1 − i, 1 − i) are not defined
over F3 individually. However, they are interchanged by the Frobenius map,
which maps i �→ i3 = −i, so the divisor is left unchanged by Frobenius and
is therefore defined over F3. Similarly, the pair (x2 + 2x + 2, 2x + 1) corre-
sponds to the divisor [(−1+ i,−1− i)]+ [(−1− i,−1+ i)]− 2[∞]. The divisor
[(0, i)] + [(0,−i)]− 2[∞] is also defined over F3. What does it correspond to?
Observe that it is not reduced since w(0, i) = (0,−i). Therefore, it must be
reduced first. Since it is of the form [P ] + [w(P )] − 2[∞], it is principal, so
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it reduces to the trivial divisor, corresponding to the pair (1, 0). In fact, it is
the divisor of the function x on C.

Koblitz [62] proposed the discrete logarithm problem in groups of the form
J(Fq) as the basis for cryptosystems such as those in Chapter 6. The first
question is how large is J(Fq)? It was proved by Weil, as a generalization of
Hasse’s Theorem, that

(
√

q − 1)2g ≤ #J(Fq) ≤ (
√

q + 1)2g
.

Therefore, the “square root” attacks such as Baby Step, Giant Step and the
ρ and λ methods from Chapter 5 work in time around qg/2, which is approx-
imately the square root of the order of the group. However, for Jacobians of
hyperelliptic curves, there is an index calculus that is faster than the square
root algorithms when g ≥ 3. (On the other hand, for g = 2, it is possible
that the corresponding cryptosystems are more secure than those for elliptic
curves.) We now describe the method.

Recall that in the index calculus over the integers mod p, we needed the
notions of B-smoothness and of factorization into small primes. The following
result lets us define a similar notion for divisors.

PROPOSITION 13.12
Let(U, V ) bea pairofpolynom ialsin Fq[x] representing a sem i-reduced divi-
sor.FactorU(x) =

∏
i Ui(x) into polynom ialsin Fq[x].LetVi ≡ V (mod Ui)

with deg Vi < deg Ui. Then (Ui, Vi) representsa sem i-reduced divisorDi and∑
i Di = D.IfD isreduced,so iseach Di.

PROOF Since V 2
i ≡ V 2 ≡ f (mod Ui), the pair (Ui, Vi) represents a

divisor, so all that needs to be proved is that
∑

i Di = D.
Write Ui(x) =

∏
j(x − aj)cj with aj ∈ Fq. Then

gcd (div(Ui),div(y − Vi)) =
∑

j

cj ([Pj ] − [∞]) ,

where Pj = (aj , Vj(aj)). But Vi = V + Uiki for some polynomial ki, so

Vi(aj) = V (aj) + Ui(aj)ki(aj) = V (aj).

Therefore, the points that appear in the divisors Di for the pairs (Ui, Vi) are
those that appear in the divisor for (U, V ). The multiplicities of the points
in the sum of the Di add up to those in D since

∏
i Ui = U . Therefore,∑

i Di = D.

The degree of a semi-reduced divisor is the degree of the corresponding
polynomial U . We call a semi-reduced divisor prime if it has degree at least
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1, it is defined over Fq, and it cannot be written as a sum of semi-reduced
divisors of smaller degree, each defined over Fq. By the proposition, this is
equivalent to U being an irreducible polynomial in Fq[x].

We say that a semi-reduced divisor is B-smooth if it is the sum of prime
divisors of degree ≤ B.

In the case of elliptic curves, this concept is not useful, since each rational
divisor of degree 0 is in the same divisor class as a 1-smooth divisor. See
Exercise 13.8. However, it turns out to be quite useful for larger g.

Suppose we have divisor classes represented by divisors D1 and D2, and
we are given that D2 is in the same class as kD1 for some integer k. The
discrete logarithm problem is to find k.

The first index calculus attack on the discrete logarithm problem for hy-
perelliptic curves was given by Adleman, DeMarrais, and Huang [3]. Various
refinements have been proposed. The variation we present below is essen-
tially due to Harley and Gaudry. Improvements by Thériault [120] yield an
algorithm whose running time is bounded by a constant (depending on the
arbitrarily small number ε) times g5q2+ε−(4/(2g+1)). For g ≥ 3, this is faster
than the square root algorithms when q is large. Therefore, the best curves
for cryptographic applications are probably those with g = 2.

We assume that D1, D2 are reduced and represented by (Ui, Vi) for i = 1, 2.
Fix a bound B (often, B = 1). List all the irreducible polynomials T (x) ∈
Fq[x] of degree ≤ B. For each such polynomial T , find a polynomial W (x)
such that W 2 ≡ f (mod T ), if one exists (see Exercise 13.11). The resulting
list of polynomials (Tj ,Wj), 1 ≤ j ≤ s, is the factor base. Note that we
include only one of (T,W ) and (T,−W ), since they are inverses of each other
(Exercise 13.5).

Let N = #J(Fq). We assume that N is known since this is the case in
most cryptographic algorithms. However, there are index calculus methods
that determine N . See [3].

The algorithm proceeds as follows:

1. Start with a “matrix” M with no rows and s columns.

2. Choose random integers m and n.

3. Compute the pair (U, V ) for the sum mD1 + nD2 using Cantor’s algo-
rithm.

4. If U does not factor into irreducible polynomials of degree ≤ B, go back
to Step 2. Otherwise, let U =

∏
T ci

i be the factorization of U into
irreducible polynomials from the factor base.

5. The factorization in Step 4 yields a decomposition

mD1 + nD2 ≡
s∑

i=1

(±ci)Di (mod principal divisors)
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where Di is the divisor corresponding to (Ti,Wi) and where +ci is chosen
if Wi ≡ V (mod Ti) and −ci is chosen if −Wi ≡ V (mod Ti). Append
the row r = (±c1, . . . ,±cs) to the matrix M .

6. If the number r of rows of M is less than s, return to Step 2. If r ≥ s,
continue to step 7.

7. Let ri denote the ith row of M . Find a relation
∑

diri ≡ 0 (mod N)
among the rows of M , with di ∈ Z.

8. Let mi, ni be the values of m,n from Step 2 that yield the row ri. Let
m0 =

∑
dimi and n0 =

∑
dini.

9. If gcd(m0, N) = 1, let k ≡ −n0m
−1
0 (mod N).

10. If gcd(m0, N) �= 1, continue to do Steps 2 through 9 and find more rela-
tions among the rows until a relation is found that yields gcd(m0, N) =
1.

11. Output k.

REMARK 13.13 What the algorithm does is compute relations

m1D1 + n1D2 ≡ c11D1 + · · · + c1sDs

· · · · · · · · ·
mrD1 + nrD2 ≡ cr1D1 + · · · + crsDs

Adding the appropriate rows corresponding to a relation among the rows
yields

m0D1 + n0D2 ≡ 0 · D1 + · · · + 0 · Ds.

Dividing by −m0 yields D1 ≡ −(n0/m0)D2.

REMARK 13.14 The Pollard ρ method (Section 5.2.2) also looks at
sums mD1 +nD2 and looks for a match between the divisors obtained for two
different pairs (m,n). This corresponds to a relation of two rows being equal
in the present method. The possibility of much more general relations among
the rows makes the present method much faster than the ρ method. In the ρ
method, the random integers m,n are chosen by a type of random walk. This
is also a good way to proceed in the present method.

Example 13.5

Consider the curve C : y2 = x5 − 1 over F3. Let D1 = (x2 − 1, x − 1) and
D2 = (x2 − x − 1,−x + 1). The problem is to find k such that D2 = kD1.
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Take (x − 1, 0) and (x + 1,−1) as the factor base. Calculations yield

3D1 + 5D2 = ((x + 1)2,−x + 1) = 2(x + 1,−1)
4D1 + 3D2 = (x − 1, 0)
D1 + 4D2 = (x2 − 1,−x + 1) = (x − 1, 0) + (x + 1,−1).

If we take (first row) + 2(second row) − 2(third row), we obtain

9D1 + 3D2 = 0.

Since the group J(F3) has order 10 (see Example 13.4), multiplication by 3
yields

7D1 = D2.

Exercises

13.1 Let C be the curve in Example 13.4. Use Cantor’s algorithm to show
that (x, i) + (x,−i) = (1, 0).

13.2 Let E be the elliptic curve y2 = x3 − 2.

(a) Use Cantor’s algorithm to compute the sum of pairs (x − 3, 5) +
(x − 3, 5).

(b) Compute the sum (3, 5) + (3, 5) on E. Compare with (a). More
generally, see Exercise 13.9 below.

13.3 Let C be the hyperelliptic curve y2 = x5 − 5x3 + 4x + 1.

(a) Show that div(y − 1) = [(−1, 1)] + [(−2, 1)] + [(1, 1)] + [(2, 1)] +
[(0, 1)] − 5[∞]

(b) Show that div(x) = [(0, 1)] + [(0,−1)] − 2[∞].

(c) Find a reduced divisor equivalent modulo principal divisors to
[(−1, 1)] + [(−1,−1)] + [(1, 1)] + [(2, 1)] + [(0, 1)] − 5[∞].

13.4 (a) Let F (x, y) be a function on a hyperelliptic curve and let G(x, y) =
F (x,−y). What is the relation between div(F ) and div(G)?

(b) Let D be a principal divisor. Show that w(D) is also a principal
divisor. Give two proofs, one using (a) and the second using the
fact that D + w(D) is principal.

13.5 Let (U, V ) be the pair corresponding to a semi-reduced divisor D. Show
that (U,−V ) is the pair for w(D).

© 2008 by Taylor & Francis Group, LLC



EXERCISES 427

13.6 Let (U, V ) be the pair corresponding to a semi-reduced divisor.

(a) Use Cantor’s algorithm to show that (U, V ) + (1, 0) = (U, V ).

(b) Use Cantor’s algorithm to show that (U, V ) + (U,−V ) = (1, 0).

13.7 Let C be a hyperelliptic curve and let D be a divisor of degree 0.

(a) Show that if 3D is principal then 2D is equivalent to w(D) mod
principal divisors.

(b) Let P �= ∞ be a point on C. Show that if the genus of C is at least
2 then 3 ([P ] − [∞]) is not principal. (Hint: Use the uniqueness
part of Proposition 13.6.)
This shows that the image of C in its Jacobian intersects the 3-
torsion on the Jacobian trivially.

13.8 Let E be an elliptic curve defined over a field K and let (U, V ) be a pair
of polynomials with coefficients in K corresponding to a semi-reduced
divisor class.

(a) Show that the reduction algorithm applied to (U, V ) yields either
the pair (1, 0) or a pair (x − a, b), with a, b ∈ K.

(b) Show that (1, 0) corresponds to the divisor 0, and (x − a, b) corre-
sponds to the divisor [(a, b)] − [∞].

13.9 Let E be an elliptic curve, regarded as a hyperelliptic curve. Show that
Cantor’s algorithm corresponds to addition of points on E by showing
that (x−a1, b1)+(x−a2, b2) yields (x−a3, b3), where (a1, b1)+(a2, b2) =
(a3, b3).

13.10 Let f1(T ), . . . , fn(T ) be polynomials (with coefficients in some field K)
that are pairwise without common factors, and let a1(T ), . . . , an(T ) be
arbitrary polynomials with coefficients in K. For each i, let Fi(T ) =∏

j �=i fj . Since gcd(fi, Fi) = 1, there exists gi(T ) with gi(T )Fi(T ) ≡ 1
(mod fi) (this can be proved using the Euclidean algorithm). Let

A(T ) = a1(T )g1(T )F1(T ) + · · · + an(T )gn(T )Fn(T ).

Show that A ≡ ai (mod fi) for all i. (Rem ark: This is the Chinese
Remainder Theorem for polynomials.)

13.11 Let q be a power of an odd prime. Let U(T ) be an irreducible polynomial
in Fq[T ] of degree n. Then Fq[T ]/(U(T )) is a field with qn elements.
Let f(T ) ∈ Fq[T ] with f(T ) �≡ 0 (mod U(T )). Show that there exists
V (T ) ∈ Fq[T ] such that V 2 ≡ f (mod U) if and only if f (qn−1)/2 ≡ 1
(mod U). (Hint: The multiplicative group of a finite field is cyclic.)
(Rem ark. There are algorithms for finding square roots in finite fields.
See [25].)
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Chapter 14
Zeta Functions

14.1 Elliptic Curves over Finite Fields

Let E be an elliptic curve over a finite field Fq. Let

Nn = #E(Fqn)

be the number of points on E over the field Fqn . The Z-function of E is
defined to be

ZE(T ) = exp

( ∞∑
n=1

Nn

n
Tn

)
.

Here exp(t) =
∑

tn/n! is the usual exponential function. The Z-function
encodes certain arithmetic information about E as the coefficients of a gen-
erating function. The presence of the exponential function is justified by the
simple form for ZE(T ) in the following result.

PROPOSITION 14.1

LetE bean ellipticcurvedefined overFq,and let#E(Fq) = q+1−a.Then

ZE(T ) =
qT 2 − aT + 1

(1 − T )(1 − qT )
.

PROOF Factor X2 − aX + q = (X − α)(X − β). Theorem 4.12 says that

Nn = qn + 1 − αn − βn.

429
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Therefore, using the expansion − log(1 − t) =
∑

tn/n, we have

ZE(T ) = exp

( ∞∑
n=1

Nn

n
Tn

)

= exp

( ∞∑
n=1

(qn + 1 − αn − βn)
Tn

n

)

= exp (− log(1 − qT ) − log(1 − T ) + log(1 − αT ) + log(1 − βT ))

=
(1 − αT )(1 − βT )
(1 − T )(1 − qT )

=
qT 2 − aT + 1

(1 − T )(1 − qT )
.

Note that the numerator of ZE(T ) is the characteristic polynomial of the
Frobenius endomorphism, as in Chapter 4, with the coefficients in reverse
order.

A function ZC(T ) can be defined in a similar way for any curve C over a
finite field, and, more generally, for any variety over a finite field. It is always
a rational function (proved by E. Artin and F. K. Schmidt for curves and by
Dwork for varieties).

The zeta function of E is defined to be

ζE(s) = ZE(q−s),

where s is a complex variable. As we’ll see below, ζE(s) can be regarded as
an analogue of the classical Riemann zeta function

ζ(s) =
∞∑

n=1

1
ns

.

One of the important properties of the Riemann zeta function is that it sat-
isfies a functional equation relating the values at s and 1 − s:

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1 − s).

A famous conjecture for ζ(s) is the Riemann Hypothesis, which predicts that
if ζ(s) = 0 with 0 ≤ �(s) ≤ 1 then �(s) = 1/2 (there are also the “trivial”
zeros at the negative even integers). The elliptic curve zeta function ζE(s) also
satisfies a functional equation, and the analogue of the Riemann Hypothesis
holds.
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THEOREM 14.2
LetE be an elliptic curve defined overa finite field.

1. ζE(s) = ζE(1 − s)

2. IfζE(s) = 0,then �(s) = 1/2.

PROOF The proof of the first statement follows easily from Proposi-
tion 14.1:

ζE(s) =
q1−2s − aq−s + 1

(1 − q−s)(1 − q1−s)

=
1 − aqs−1 + q−1+2s

(qs − 1)(qs−1 − 1)

= ζE(1 − s).

Since the numerator of ZE(T ) is (1 − αT )(1 − βT ), we have

ζE(s) = 0 ⇐⇒ qs = α or β.

By the quadratic formula,

α, β =
a ±

√
a2 − 4q

2
.

Hasse’s theorem (Theorem 4.2) says that

|a| ≤ 2
√

q,

hence a2 − 4q ≤ 0. Therefore, α and β are complex conjugates of each other,
and

|α| = |β| =
√

q.

If qs = α or β, then
q�(s) = |qs| =

√
q.

Therefore, �(s) = 1/2.

There are infinitely many solutions to qs = α. However, if s0 is one such
solution, all others are of the form s0 + 2πin/ log q with n ∈ Z. A similar
situation holds for β.

If C is a curve, or a variety, over a finite field, then an analogue of Theo-
rem 14.2 holds. For curves, the functional equation was proved by E. Artin
and F. K. Schmidt, and the Riemann Hypothesis was proved by Weil in the
1940s. In 1949, Weil announced what became known as the Weil conjectures,
which predicted that analogues of Proposition 14.1 and Theorem 14.2 hold for

© 2008 by Taylor & Francis Group, LLC



432 CHAPTER 14 ZETA FUNCTIONS

varieties over finite fields. The functional equation was proved in the 1960s
by M. Artin, Grothendieck, and Verdier, and the analogue of the Riemann
Hypothesis was proved by Deligne in 1973. Much of Grothendieck’s algebraic
geometry was developed for the purpose of proving these conjectures.

Finally, we show how ζE(s) can be defined in a way similar to the Riemann
zeta function. Recall that the Riemann zeta function has the Euler product
expansion

ζ(s) =
∏
p

(
1 − 1

ps

)−1

when �(s) > 1. The product is over the prime numbers. We obtain ζE(s) if
we replace the primes p by points on E. Consider a point P ∈ E(Fq). Define
deg(P ) to be the smallest n such that P ∈ E(Fqn). The Frobenius map φq

acts on P , and it is not difficult to show that the set

SP = {P, φq(P ), φ2
q(P ), . . . , φn−1

q (P )}

has exactly n = deg(P ) elements and that φn
q (P ) = P . Each of the points in

SP also has degree n.

PROPOSITION 14.3

LetE be an elliptic curve overFq.Then

ζE(s) =
∏
SP

(
1 − 1

qs deg(P )

)−1

,

where the productis over the points P ∈ E(Fq),butwe take only one point
from each setSP.

PROOF If deg(P ) = m, then P and all the other points in SP have
coordinates in Fqm . Since Fqm ⊆ Fqn if and only if m|n, we see that SP

contributes m points to Nn = #E(Fqn) if and only if m|n, and otherwise it
contributes no points to Nn. Therefore,

Nn =
∑
m|n

∑
SP

deg(P )=m

m.
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Substituting this into the definition of Z(T ), we obtain

log Z(T ) =
∞∑

n=1

Nn

n
Tn

=
∞∑

n=1

1
n

Tn
∑
m|n

∑
SP

deg(P )=m

m

=
∞∑

j=1

∞∑
m=1

1
mj

∑
SP

deg(P )=m

mTmj (where mj = n)

=
∞∑

j=1

∑
SP

1
j
T j deg(P )

= −
∑
SP

log(1 − T deg(P )).

Let T = q−s and exponentiate to obtain the result.

14.2 Elliptic Curves over Q

Let E be an elliptic curve defined over Q. By changing variables if necessary,
we may assume that E is defined by y2 = x3 + Ax + B with A,B ∈ Z. For
a prime p, we can reduce the equation y2 = x3 + Ax + B mod p. If E mod
p is an elliptic curve, then we say that E has good reduction mod p. This
happens for all but finitely many primes. For each such p, we have

#E(Fp) = p + 1 − ap,

as in Section 14.1. The L-function of E is defined to be approximately the
Euler product ∏

good p

(
1 − app

−s + p1−2s
)−1

.

This definition is good enough for many purposes. However, for completeness,
we say a few words below about what happens at the primes of bad reduction.
The factor 1−app

−s+p1−2s perhaps seems to be rather artificially constructed.
However, it is just the numerator of the zeta function for E mod p, as in
Section 14.1. It might seem more natural to use the whole mod p zeta function,
but the factors arising from the denominator yield the Riemann zeta function
(with a few factors removed) evaluated at s and at s + 1. Since the presence
of the zeta function would complicate matters, the denominators are omitted
in the definition of LE(s).
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For the primes where there is bad reduction, the cubic x3 + Ax + B has
multiple roots mod p. If it has a triple root, we say that E has additive
reduction mod p. If it has a double root mod p, it has multiplicative re-
duction. Moreover, if the slopes of the tangent lines at the singular point (see
Theorem 2.31) are in Fp, we say that E has split multiplicative reduction
mod p. Otherwise, it has nonsplit multiplicative reduction.

To treat the primes p = 2 and p = 3, we need to use the general Weierstrass
form for E. For simplicity, we have ignored these primes in the preceding
discussion. However, in the example below, we’ll include them.

There are many possible equations for E with A,B ∈ Z. We assume that
A,B are chosen so that the reduction properties of E are as good as possible.
In other words, we assume that A and B are chosen so that the cubic has the
largest obtainable number of distinct roots mod p, and the power of p in the
discriminant 4A3 + 27B2 is as small as possible, for each p. It can be shown
that there is such a choice of A,B. Such an equation is called a minimal
Weierstrass equation for E.

Example 14.1
Suppose we start with E given by the equation

y2 = x3 − 270000x + 128250000.

The discriminant of the cubic is −2831251211, so E has good reduction except
possibly at 2, 3, 5, 11. The change of variables

x = 25x1, y = 125y1

transforms the equation into

y2
1 = x3

1 − 432x1 + 8208.

The discriminant of the cubic is −2831211, so E also has good reduction at
5. This is as far as we can go with the standard Weierstrass model. To treat
2 and 3 we need to allow generalized Weierstrass equations. The change of
variables

x1 = 9x2 − 12, y1 = 27y2

changes the equation to
y2
2 = x3

2 − 4x2
2 + 16.

The discriminant of the cubic is −2811, so E has good reduction at 3. Since
any change of variables can be shown to change the discriminant by a square,
this is the best we can do, except possibly at the prime 2. The change of
variables

x2 = 4x3, y2 = 8y3 + 4

changes the equation of E to

y2
3 + y3 = x3

3 − x2
3.
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This is nonsingular at 2 (since the partial derivative with respect to y is
2y +1 ≡ 1 �≡ 0 (mod 2)). Therefore, E has good reduction at 2. We conclude
that E has good reduction at all primes except p = 11, where it has bad
reduction. The equation y2

3 +y3 = x3
3−x2

3 is the minimal Weierstrass equation
for E.

Let’s analyze the situation at 11 more closely. The polynomial in x2 factors
as

x3
2 − 4x2

2 + 16 = (x2 + 1)2(x2 + 5).

Therefore, E has multiplicative reduction at 11. The method of Section 2.10
shows that the slopes of the tangent lines at the singular point (x2, y2) =
(−1, 0) are ±2, which lie in F11. Therefore, E has split multiplicative reduc-
tion at 11.

We now give the full definition of the L-series of E. For a prime p of bad
reduction, define

ap =

⎧⎨⎩ 0 if E has additive reduction at p
1 if E has split multiplicative reduction at p

−1 if E has nonsplit multiplicative reduction at p.

The numbers ap for primes of good reduction are those given above: ap =
p + 1 − #E(Fp). Then the L-function of E is the Euler product

LE(s) =
∏

bad p

(
1 − app

−s
)−1 ∏

good p

(
1 − app

−s + p1−2s
)−1

.

The estimate |ap| < 2
√

p easily implies that the product converges for �(s) >
3/2 (see Exercise 14.3).

Each good factor can be expanded in the form

(1 − app
−s + p1−2s)−1 = 1 + app

−s + ap2p−2s + · · · ,

where the ap on the left equals the ap on the right (so this is not bad notation)
and

ap2 = a2
p − p. (14.1)

The product over all p yields an expression

LE(s) =
∞∑

n=1

ann−s.

If n =
∏

j p
ej

j , then

an =
∏
j

a
p

ej
j

. (14.2)
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This series for LE(s) converges for �(s) > 3/2. It is natural to ask whether
LE(s) has an analytic continuation to all of C and a functional equation, as is
the case with the Riemann zeta function. As we’ll discuss below, the answer
to these questions is yes. However, the proof is much too deep to be included
in this book (but see Chapter 15 for a discussion of the proof).

To study the analytic properties of LE(s), we introduce a new function.
Let τ ∈ H, the upper half of the complex plane, as in Chapter 9, and let
q = e2πiτ . (This is the standard notation; there should be no possibility of
confusion with the q for finite fields of Chapter 4.) Define

fE(τ) =
∞∑

n=1

anqn.

This is simply a generating function that encodes the number of points on E
mod the various primes. It converges for τ ∈ H and satisfies some amazing
properties.

Let N be a positive integer and define

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)
}

.

Then Γ0(N) is a subgroup of SL2(Z).
The following result was conjectured by Shimura and has been known by

various names, for example, the Weil conjecture, the Taniyama-Shimura-
Weil conjecture, and the Taniyama-Shimura conjecture. All three
mathematicians played a role in its history.

THEOREM 14.4 (Breuil, Conrad, Diamond, Taylor, Wiles)
LetE be an elliptic curve defined overQ. There exists an integerN such

that,for allτ ∈ H,
1.

fE

(
aτ + b

cτ + d

)
= (cτ + d)2fE(τ) forall

(
a b
c d

)
∈ Γ0(N)

2.
fE(−1/(Nτ)) = ±Nτ2fE(τ).

For a sketch of the proof of this result, see Chapter 15. The theorem (if
we include statements about the behavior at cusps on the real axis) says that
fE(τ) is a modular form (in fact, a cusp form; see Section 15.2) of weight
2 and level N . The smallest possible N is called the conductor of E. A
prime p divides this N if and only if E has bad reduction at p. When E has
multiplicative reduction, p divides N only to the first power. If E has additive
reduction and p > 3, then p2 is the exact power of p dividing N . The formulas
for p = 2 and 3 are slightly more complicated in this case. See [117].
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The transformation law in (1) can be rewritten as

fE

(
aτ + b

cτ + d

)
d

(
aτ + b

cτ + d

)
= fE(τ) dτ

(this is bad notation: d represents both an integer and the differentiation
operator; it should be clear which is which). Therefore,

fE(τ) dτ

is a differential that is invariant under the action of Γ0(N).
Once we have the relation (1), the second relation of the theorem is perhaps

not as surprising. Every function satisfying (1) is a sum of two functions
satisfying (2), one with a plus sign and one with a minus sign (see Exercise
14.2). Therefore (2) says that fE lies in either the plus space or the minus
space.

Taniyama first suggested the existence of a result of this form in the 1950s.
Eichler and Shimura then showed that if f is a cusp form (more precisely, a
newform) of weight 2 (and level N for some N) such that all the coefficients
an are integers, then there is an elliptic curve E with fE = f . This is the
converse of the theorem, but it gave the first real evidence that Taniyama’s
suggestion was reasonable. In 1967, Weil made precise what the integer N
must be for any given elliptic curve. Since there are only finitely many modu-
lar forms f of a given level N that could arise from elliptic curves, this meant
that the conjecture (Taniyama’s suggestion evolved into a conjecture) could
be investigated numerically. If the conjecture had been false for some explicit
E, it could have been disproved by computing enough coefficients to see that
fE was not on the finite list of possibilities. Moreover, Weil showed that if
functions like LE(s) (namely LE and its twists) have analytic continuations
and functional equations such as the one given in Corollary 14.5 below, then
fE must be a modular form. Since most people believe that naturally defined
L-functions should have analytic continuations and functional equations, this
gave the conjecture more credence. Around 1990, Wiles proved that there are
infinitely many distinct E (that is, with distinct j-invariants) satisfying the
theorem. In 1994, with the help of Taylor, he showed that the theorem is true
for all E such that there is no additive reduction at any prime (but multi-
plicative reduction is allowed). Such curves are called semistable. Finally,
in 2001, Breuil, Conrad, Diamond, and Taylor [20] proved the full theorem.

Let’s assume Theorem 14.4 and show that LE(s) analytically continues and
satisfies a functional equation. Recall that the gamma function is defined
for �(s) > 0 by

Γ(s) =
∫ ∞

0

ts−1e−t dt.

Integration by parts yields the relation sΓ(s) = Γ(s + 1), which yields the
meromorphic continuation of Γ(s) to the complex plane, with poles at the
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nonpositive integers. It also yields the relation Γ(n) = (n − 1)! for positive
integers n.

COROLLARY 14.5
LetE and N be asin Theorem 14.4.Then

(
√

N/2π)sΓ(s)LE(s) = ∓(
√

N/2π)2−sΓ(2 − s)LE(2 − s)

foralls ∈ C (and both sidescontinue analytically to allofC).The sign here
isthe opposite ofthe sign in (2)ofTheorem 14.4.

PROOF Using the definition of the gamma function, we have

(
√

N/2π)sΓ(s)LE(s) =
∞∑

n=1

an(
√

N/2πn)s

∫ ∞

0

ts−1e−t dt

=
∞∑

n=1

an

∫ ∞

0

(u
√

N)se−2πnu du

u
(let t = 2πnu)

=
∫ ∞

0

(u
√

N)sfE(iu)
du

u

=
∫ 1/

√
N

0

(u
√

N)sfE(iu)
du

u
+
∫ ∞

1/
√

N

(u
√

N)sfE(iu)
du

u
.

(The interchange of summation and integration to obtain the third equality
is justified since the sum for f(iu) converges very quickly near ∞.) Let ε be
the sign in part (2) of Theorem 14.4. Then

fE(i/(Nu)) = ε(iu)2fE(iu) = −εu2fE(iu).

Therefore, let u = 1/Nv to obtain∫ 1/
√

N

0

(u
√

N)sfE(iu)
du

u
= −ε

∫ ∞

1/
√

N

(v
√

N)2−sfE(iv)
dv

v
.

This implies that

(
√

N/2π)sΓ(s)LE(s) =∫ ∞

1/
√

N

(u
√

N)sfE(iu)
du

u
− ε

∫ ∞

1/
√

N

(v
√

N)2−sfE(iv)
dv

v
.

Since f(iu) → 0 exponentially as u → ∞, it follows easily that both integrals
converge and define analytic functions of s. Under s �→ 2 − s, the right side,
hence the left side, is multiplied by −ε. This is precisely what the functional
equation claims.
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Example 14.2
Let E be the elliptic curve y2+y = x3−x2 considered in the previous example.
If we compute the number Np of points on E mod p for various primes, we
obtain, with ap = p + 1 − Np,

a2 = −2, a3 = −1, a5 = 1, a7 = −2, a13 = 4, . . .

(except for p = 2, 3, 5, the numbers ap can be calculated using any of the
equations in the previous example). The value

a11 = 1

is specified by the formulas for bad primes. We then calculate the coefficients
for composite indices. For example,

a6 = a2a3 = 2, a4 = a2
2 − 2 = 2

(see (14.2) and (14.1)). Therefore,

fE(τ) = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + · · · .

It can be shown that

f(τ) = q
∞∏

j=1

(1 − qj)2(1 − q11j)2

is a cusp form of weight 2 and level N = 11. In fact, it is the only such form,
up to scalar multiples. The product for f can be expanded into an infinite
series

f(τ) = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + · · · .

It can be shown that f = fE (see [61]).
The L-series for E satisfies the functional equation

(
√

11/2π)sΓ(s)LE(s) = +(
√

11/2π)2−sΓ(2 − s)LE(2 − s).

In the early 1960s, Birch and Swinnerton-Dyer performed computer exper-
iments to try to understand the relation between the number of points on
an elliptic curve mod p as p ranges through the primes and the number of
rational points on the curve. Ignoring the fact that the product for LE(s)
doesn’t converge at s = 1, let’s substitute s = 1 into the product (we’ll ignore
the finitely many bad primes):

∏
p

(
1 − app

−1 + p−1
)−1

=
∏
p

(
p − ap + 1

p

)−1

=
∏
p

p

Np
.
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If E has a lot of points mod p for many p, then many factors in the product are
small, so we expect that LE(1) might be small. In fact, the data that Birch
and Swinnerton-Dyer obtained led them to make the following conjecture.

CONJECTURE 14.6 (Conjecture of Birch and Swinnerton-Dyer,
Weak Form)

LetE be an elliptic curve defined overQ. The order ofvanishing ofLE(s)
ats = 1 isthe rank r ofE(Q).In otherwords,ifE(Q) � torsion⊕Zr,then
LE(s) = (s − 1)rg(s),with g(1) �= 0,∞.

One consequence of the conjecture is that E(Q) is infinite if and only if
LE(1) = 0. This statement remains unproved, although there has been some
progress. In 1977, Coates and Wiles showed that if E has complex multipli-
cation and has a point of infinite order, then LE(1) = 0. The results of Gross
and Zagier on Heegner points (1983) imply that if E is an elliptic curve over
Q such that LE(s) vanishes to order exactly 1 at s = 1, then there is a point
of infinite order. However, if LE(s) vanishes to order higher than 1, nothing
has been proved, even though there is conjecturally an abundance of points
of infinite order. This is a common situation in mathematics. It seems that a
solution is often easier to find when it is essentially unique than when there
are many choices.

Soon, Conjecture 14.6 was refined to give not only the order of vanishing,
but also the leading coefficient of the expansion at s = 1. To state the
conjecture, we need to introduce some notation. If P1, . . . , Pr form a basis for
the free part of E(Q), then

E(Q) = E(Q)torsion ⊕ ZP1 ⊕ · · · ⊕ ZPr.

Recall the height pairing 〈P,Q〉 defined in Section 8.5. We can form the r× r
matrix 〈Pi, Pj〉 and compute its determinant to obtain what is known as the
elliptic regulator for E. If r = 0, define this determinant to equal 1. Let
ω1, ω2 be a basis of a lattice in C that corresponds to E by Theorem 9.21.
We may assume that ω2 ∈ R, by Exercise 9.5. If E[2] ⊂ E(R), let Ω = 2ω2.
Otherwise, let Ω = ω2. For each prime p, there are integers cp that we won’t
define, except to say that if p is a prime of good reduction then cp = 1.
A formula for computing them is given [117]. Finally, recall that is the
(conjecturally finite) Shafarevich-Tate group of E.

CONJECTURE 14.7 (Conjecture of Birch and Swinnerton-Dyer)

LetE be an elliptic curve defined overQ.Letr be the rank ofE(Q).Then

LE(s) = (s − 1)r
Ω
(∏

p cp

)
(# E) det〈Pi, Pj〉

#E(Q)2torsion
+ (s − 1)r+1(br+1 + · · · ).
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This important conjecture combines most of the important information
about E into one equation. When it was first made, there were no exam-
ples. As Tate pointed out in 1974 ([116, p. 198]),

This remarkable conjecture relates the behavior of a function L at
a point where it is not at present known to be defined to the order
of a group which is not known to be finite!

In 1986, Rubin gave the first examples of curves with finite , and was able to
compute the exact order of in several examples. Since they were complex
multiplication curves, LE(1) could be computed explicitly by known formulas
(these had been used by Birch and Swinnerton-Dyer in their calculations), and
this allowed the conjecture to be verified for these curves. Soon thereafter,
Kolyvagin obtained similar results for elliptic curves satisfying Theorem 14.4
(which was not yet proved) such that LE(s) vanishes to order at most 1 at
s = 1. Therefore, the conjecture is mostly proved (up to small rational factors)
when LE(s) vanishes to order at most one at s = 1. In general, nothing is
known when LE(s) vanishes to higher order. In fact, it is not ruled out (but
most people believe it’s very unlikely) that LE(s) could vanish at s = 1 to
very high order even though E(Q) has rank 0 or 1.

In 2000, the Clay Mathematics Institute listed the Conjecture of Birch and
Swinnerton-Dyer as one of its million dollar problems. There are surely easier
(but certainly less satisfying) ways to earn a million dollars.

For those who know some algebraic number theory, the conjecture is very
similar to the analytic class number formula. For an imaginary quadratic field
K, the zeta function of K satisfies

ζK(s) = (s − 1)−1 2πh

w
√|d| + · · · ,

where h is the class number of K, d is the discriminant of K, and w is the
number of roots of unity in K. Conjecture 14.7 for a curve of rank r = 0
predicts that

LE(s) =
Ω
(∏

p cp

)
# E

#E(Q)2torsion
+ · · · .

The group E can be regarded as the analogue of the ideal class group, the
number Ω

∏
p cp plays the role of 2π/

√|d|, and #E(Q)torsion is the analogue
of w. Except for the square on the order of the torsion group, the two formulas
for the leading coefficients have very similar forms.

Now let’s look at real quadratic fields K. The class number formula says
that

ζK(s) = (s − 1)−1 4h log(η)
2
√

d
+ · · · ,

where h is the class number of K, d is the discriminant, and η is the fun-
damental unit. The Conjecture of Birch and Swinnerton-Dyer for a curve of
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rank r = 1, with generator P , predicts that

LE(s) = (s − 1)
Ω
(∏

p cp

)
(# E) ĥ(P )

#E(Q)2torsion
+ · · · .

In this case, Ω is the analogue of 4/
√

d and #E(Q)torsion plays the role of 2,
which is the number of roots of unity in K. The height ĥ(P ) gives the size of
P . Similarly, log(η) gives the size of η.

In general, we can write down a dictionary between elliptic curves and
number fields:

elliptic curves ←→ number fields
points ←→ units

torsion points ←→ roots of unity
Shafarevich-Tate group ←→ ideal class group

This is not an exact dictionary, but it helps to interpret results in one area
in terms of the other. For example, the Dirichlet unit theorem in algebraic
number theory, which describes the group of units in a number field, is the
analogue of the Mordell-Weil theorem, which describes the group of rational
points on an elliptic curve. The finiteness of the ideal class group in algebraic
number theory is the analogue of the conjectured finiteness of the Shafarevich-
Tate group.

Exercises

14.1 Let P1 be one-dimensional projective space.

(a) Show that the number of points in P1(Fq) is q + 1.
(b) Let Nn = #P1(Fqn). Define the Z-function for P1 by

ZP1(T ) = exp

( ∞∑
n=1

Nn

n
Tn

)
.

Show that
ZP1(T ) =

1
(1 − T )(1 − qT )

.

14.2 Let M =
(

a b
c d

)
∈ GL2(R) with det(M) > 0. Define an action of M

on functions on H by

(f |M)(z) = det(M)(cz + d)−2f(Mz),

where Mz = az+b
cz+d .
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(a) Show that (f |M1)|M2 = f |(M1M2).

(b) Let W =
(

0 −1
N 0

)
. Show that W Γ0(N)W−1 = Γ0(N).

(c) Suppose that f is a function with f |M = f for all M ∈ Γ0(N). Let
g(z) = (f |W )(z). Show that g|M = g for all M ∈ Γ0(N). (Hint:
Combine parts (a) and (b).)

(d) Suppose that f is a function with f |M = f for all M ∈ Γ0(N). Let
f+ = 1

2 (f + f |W ) and f− = 1
2 (f − f |W ). Show that f+|W = f+

and f−|W = −f−. This gives a decomposition f = f+ + f− in
which f is written as a sum of two eigenfunctions for W .

14.3 It is well known that a product
∏

(1+ bn) converges if
∑ |bn| converges.

Use this fact, plus Hasse’s theorem, to show that the Euler product
defining LE(s) converges for �(s) > 3/2.
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Chapter 15
Fermat’s Last Theorem

15.1 Overview

Around 1637, Fermat wrote in the margin of his copy of Diophantus’s work
that, when n ≥ 3,

an + bn = cn, abc �= 0 (15.1)

has no solution in integers a, b, c. This has become known as Fermat’s Last
Theorem. Note that it suffices to consider only the cases where n = 4 and
where n = � is an odd prime (since any n ≥ 3 has either 4 or such an � as a
factor). The case n = 4 was proved by Fermat using his method of infinite
descent (see Section 8.6). At least one unsuccessful attempt to prove the case
n = 3 appears in Arab manuscripts in the 900s (see [34]). This case was
settled by Euler (and possibly by Fermat). The first general result was due to
Kummer in the 1840s: Define the Bernoulli numbers Bn by the power series

t

et − 1
=

∞∑
n=1

Bn
tn

n!
.

For example,

B2 =
1
6
, B4 = − 1

30
, . . . , B12 = − 691

2730
.

Let � be an odd prime. If � does not divide the numerator of any of the
Bernoulli numbers

B2, B4, . . . , B�−3

then (15.1) has no solutions for n = �. This criterion allowed Kummer to
prove Fermat’s Last Theorem for all prime exponents less than 100, except
for � = 37, 59, 67. For example, 37 divides the numerator of the 32nd Bernoulli
number, so this criterion does not apply. Using more refined criteria, based on
the knowledge of which Bernoulli numbers are divisible by these exceptional
�, Kummer was able to prove Fermat’s Last Theorem for the three remaining

445
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exponents. Refinements of Kummer’s ideas by Vandiver and others, plus the
advent of computers, yielded extensions of Kummer’s results to many more
exponents. For example, in 1992, Buhler, Crandall, Ernvall, and Metsänkylä
proved Fermat’s Last Theorem for all exponents less than 4×106. How could
one check so many cases without seeing a pattern that would lead to a full
proof? The reason is that these methods were a prime-by-prime check. For
each prime �, the Bernoulli numbers were computed mod �. For around 61%
of the primes, none of these Bernoulli numbers was divisible by �, so Kum-
mer’s initial criterion yielded the result. For the remaining 39% of the primes,
more refined criteria were used, based on the knowledge of which Bernoulli
numbers were divisible by �. For � up to 4×106, these criteria sufficed to prove
the theorem. But it was widely suspected that eventually there would be ex-
ceptions to these criteria, and hence more refinements would be needed. The
underlying problem with this approach was that it did not include any con-
ceptual reason for why Fermat’s Last Theorem should be true. In particular,
there was no reason why there couldn’t be a few random exceptions.

In 1986, the situation changed. Suppose that

a� + b� = c�, abc �= 0. (15.2)

By removing common factors, we may assume that a, b, c are integers with
gcd(a, b, c) = 1, and by rearranging a, b, c and changing signs if necessary, we
may assume that

b ≡ 0 (mod 2), a ≡ −1 (mod 4). (15.3)

Frey suggested that the elliptic curve

EFrey : y2 = x(x − a�)(x + b�)

(this curve had also been considered by Hellegouarch) has such restrictive
properties that it cannot exist, and therefore there cannot be any solutions to
(15.2). As we’ll outline below, subsequent work of Ribet and Wiles showed
that this is the case.

When � ≥ 5, the elliptic curve EFrey has good or multiplicative reduction
(see Exercise 2.24) at all primes (in other words, there is no additive reduc-
tion). Such an elliptic curve is called semistable. The discriminant of the
cubic is the square of the product of the differences of the roots, namely((

a�(−b�)(a� + b�)
))2

= (abc)2�

(we have used (15.2)). Because of technicalities involving the prime 2 (related
to the restrictions in (15.3)), the discriminant needs to be modified at 2 to
yield what is known as the minimal discriminant

Δ = 2−8(abc)2�
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of EFrey. A conjecture of Brumer and Kramer predicts that a semistable
elliptic curve over Q whose minimal discriminant is an �th power will have
a point of order �. Mazur’s Theorem (8.11) says that an elliptic curve over
Q cannot have a point of order � when � ≥ 11. Moreover, if the 2-torsion is
rational, as is the case with EFrey, then there are no points of order � when
� ≥ 5. Since Δ is almost an �th power, we expect EFrey to act similarly to
a curve that has a point of order �. Such curves cannot exist when � ≥ 5,
so EFrey should act like a curve that cannot exist. Therefore, we expect that
EFrey does not exist. The problem is to make these ideas precise.

Recall (see Chapter 14) that the L-series of an elliptic curve E over Q is
defined as follows. For each prime p of good reduction, let

ap = p + 1 − #E(Fp).

Then

LE(s) = (∗)
∏
p

(1 − app
−s + p1−2s)−1 =

∞∑
n=1

an

ns
,

where (*) represents the factors for the bad primes (see Section 14.2) and the
product is over the good primes. Suppose E(Q) contains a point of order �.
By Theorem 8.9, E(Fp) contains a point of order � for all primes p �= � such
that E has good reduction at p. Therefore, �|#E(Fp), so

ap ≡ p + 1 (mod �) (15.4)

for all such p. This is an example of how the arithmetic of E is related to
properties of the coefficients ap. We hope to obtain information by studying
these coefficients.

In particular, we expect a congruence similar to (15.4) to hold for EFrey.
In fact, a close analysis (requiring more detail than we give in Section 13.3) of
Ribet’s proof shows that EFrey is trying to satisfy this congruence. However,
the irreducibility of a certain Galois representation is preventing it, and this
leads to the contradiction that proves the theorem.

The problem with this approach is that the numbers ap at first seem to
be fairly independent of each other as p varies. However, the Conjecture of
Taniyama-Shimura-Weil (now Theorem 14.4) claims that, for an elliptic curve
E over Q,

fE(τ) =
∞∑

n=1

anqn

(where q = e2πiτ ) is a modular form for Γ0(N) for some N (see Section 14.2).
In this case, we say that E is modular. This is a fairly rigid condition and
can be interpreted as saying that the numbers ap have some coherence as p
varies. For example, it is likely that if we change one coefficient ap, then
the modularity will be lost. Therefore, modularity is a tool for keeping the
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numbers ap under control. Frey predicted the following, which Ribet proved
in 1986:

THEOREM 15.1
EFrey cannotbe m odular. Therefore,the conjecture ofTaniyam a-Shim ura-
W eilim pliesFerm at’sLastTheorem .

This result finally gave a theoretical reason for believing Fermat’s Last
Theorem. Then in 1994, Wiles proved

THEOREM 15.2
Allsem istable elliptic curvesoverQ are m odular.

This result was subsequently extended to include all elliptic curves over Q.
See Theorem 14.4. Since the Frey curve is semistable, the theorems of Wiles
and Ribet combine to show that EFrey cannot exist, hence

THEOREM 15.3
Ferm at’sLastTheorem istrue.

In the following three sections, we sketch some of the ideas that go into the
proofs of Ribet’s and Wiles’s theorems.

15.2 Galois Representations

Let E be an elliptic curve over Q and let m be an integer. From Theo-
rem 3.2, we know that

E[m] � Zm ⊕ Zm.

Let {β1, β2} be a basis of E[m] and let σ ∈ G, where

G = Gal(Q/Q).

Since σβi ∈ E[m], we can write

σβ1 = aβ1 + cβ2, σβ2 = bβ1 + dβ2

with a, b, c, d ∈ Zm. We thus obtain a homomorphism

ρm : G −→ GL2(Zm)

σ �−→
(

a b
c d

)
.
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If m = � is a prime, we call ρ� the mod � Galois representation attached to
E. We can also take m = �n for n = 1, 2, 3, . . . . By choosing an appropriate
sequence of bases, we obtain representations ρ�n such that

ρ�n ≡ ρ�n+1 (mod �n)

for all n. These may be combined to obtain

ρ�∞ : G −→ GL2(O�),

where O� denotes any ring containing the �-adic integers (see Appendix A).
This is called the �-adic Galois representation attached to E. An advantage of
working with ρ�∞ is that the �-adic integers have characteristic 0, so instead
of congruences mod powers of �, we can work with equalities.

Notation: Throughout this chapter, we will need rings that are finite ex-
tensions of the �-adic integers. We’ll denote such rings by O�. For many
purposes, we can take O� to equal the �-adic integers, but sometimes we need
slightly larger rings. Since we do not want to discuss the technical issues that
arise in this regard, we simply use O� to denote a varying ring that is large
enough for whatever is required. The reader will not lose much by pretending
that O� is always the ring of �-adic integers.

Suppose r is a prime of good reduction for E. There exists an element
Frobr ∈ G such that the action of Frobr on E(Q) yields the action of the
Frobenius φr on E(Fr) when E is reduced mod r (the element Frobr is not
unique, but this will not affect us). In particular, when � �= r, the matrices
describing the actions of Frobr and φr on the �-power torsion are the same
(use a basis and its reduction to compute the matrices). Let

ar = r + 1 − #E(Fr).

From Proposition 4.11, we obtain that

Trace(ρ�n(Frobr)) ≡ ar (mod �n), det(ρ�n(Frobr)) ≡ r (mod �n),

and therefore

Trace(ρ�∞(Frobr)) = ar, det(ρ�∞(Frobr)) = r.

Recall that the numbers ar are used to produce the modular form fE attached
to E (see Section 14.2).

Suppose now that
ρ : G −→ GL2(O�)

is a representation of G. Under certain technical conditions (namely, ρ is
unramified at all but finitely many primes; see the end of this section), we
may choose elements Frobr (for the unramified primes) and define

ar = Trace(ρ(Frobr)).
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This allows us to define a formal series

g =
∞∑

n=1

anqn.

We refer to g as the potential modular form attached to ρ. Of course,
some conditions must be imposed on the ar in order for this to represent a
complex function (for example, the numbers an ∈ O� must be identified with
complex numbers), but we will not discuss this general problem here.

Let N be a positive integer. Recall that a modular form f of weight 2 and
level N is a function analytic in the upper half plane satisfying

f

(
aτ + b

cτ + d

)
= (cτ + d)2f(τ) (15.5)

for all (
a b
c d

)
∈ Γ0(N)

(where Γ0(N) is the group of integral matrices of determinant 1 such that
c ≡ 0 (mod N)). There are also technical conditions that we won’t discuss
for the behavior of f at the cusps. The cusp forms of weight 2 and level N ,
which we’ll denote by S(N), are those modular forms that take the value 0 at
all the cusps. S(N) is a finite dimensional vector space over C. We represent
cusp forms by their Fourier expansions:

f(τ) =
∞∑

n=1

bnqn,

where q = e2πiτ .
If M |N , then Γ0(N) ⊆ Γ0(M), so a modular form of level M can be re-

garded as a modular form of level N . More generally, if d|(N/M) and f(τ)
is a cusp form of level M , then it can be shown that f(dτ) is a cusp form of
level N . The subspace of S(N) generated by such f , where M ranges through
proper divisors of N and d ranges through divisors of N/M , is called the
subspace of oldforms. There is a naturally defined inner product on S(N),
called the Petersson inner product. The space of newforms of level N is the
perpendicular complement of the space of oldforms. Intuitively, the newforms
are those that do not come from levels lower than N .

We now need to introduce the Hecke operators. Let r be a prime. Define

Tr

( ∞∑
n=1

bnqn

)
=

⎧⎨⎩
∑∞

n=1 brnqn +
∑∞

n=1 rbnqrn, if r � N∑∞
n=1 brnqn, if r | N.

(15.6)

It can be shown that Tr maps S(N) into S(N) and that the Tr’s commute
with each other. Define the Hecke algebra

T = TN ⊆ End(S(N))

© 2008 by Taylor & Francis Group, LLC



SECTION 15.2 GALOIS REPRESENTATIONS 451

to be the image of Z[T2, T3, T5, . . . ] in the endomorphism ring of S(N) (the
endomorphism ring of S(N) is the ring of linear transformations from the
vector space S(N) to itself).

A normalized eigenform of level N is a newform

f =
∞∑

n=1

bnqn ∈ S(N)

of level N with b1 = 1 and such that

Tr(f) = brf for all r.

It can be shown that the space of newforms in S(N) has a basis of normalized
eigenforms. Henceforth, essentially all of the modular forms that we encounter
will be normalized eigenforms of level N . Often, we shall refer to them simply
as modular forms.

Let f be a normalized eigenform and suppose the coefficients bn of f are
rational integers. In this case, Eichler and Shimura showed that f determines
an elliptic curve Ef over Q, and Ef has the property that

br = ar

for all r (where ar = r + 1 − #Ef (Fr) for the primes of good reduction).
In particular, the potential modular form fEf

for E is the modular form f .
Moreover, Ef has good reduction at the primes not dividing N . This result
is, in a sense, a converse of the conjecture of Taniyama-Shimura-Weil. The
conjecture can be restated as claiming that every elliptic curve E over Q
arises from this construction. Actually, we have to modify this statement a
little. Two elliptic curves E1 and E2 are called isogenous over Q if there is
a nonconstant homomorphism E1(Q) → E2(Q) that is described by rational
functions over Q (see Chapter 12). It can be shown that, in this case, fE1 =
fE2 . Conversely, Faltings showed that if fE1 = fE2 then E1 and E2 are
isogenous. Since only one of E1, E2 can be the curve Ef , we must ask whether
an elliptic curve E over Q is isogenous to one produced by the result of Eichler
and Shimura. Theorem 14.4 says that the answer is yes.

If we have an elliptic curve E, how can we predict what N should be? The
smallest possible N is called the conductor of E. For E = Ef , the primes
dividing the conductor N are exactly the primes of bad reduction of Ef (these
are also the primes of bad reduction of any curve isogenous to Ef over Q).
Moreover, p|N and p2 � N if and only if Ef has multiplicative reduction at p.
Therefore, if Ef is semistable, then

N =
∏
p|Δ

p, (15.7)

namely, the product of the primes dividing the minimal discriminant Δ. We
see that N is squarefree if and only if Ef is semistable. Therefore, if E is an
arbitrary modular semistable elliptic curve over Q, then N is given by (15.7).
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Combining the result of Eichler and Shimura with the Galois representations
discussed above, we obtain the following. If f =

∑
bnqn is a normalized

newform with rational integer coefficients, then there is a Galois representation

ρf : G −→ GL2(O�)

such that

Trace(ρf (Frobr)) = br, det(ρf (Frobr)) = r (15.8)

for all r � �N .
More generally, Eichler and Shimura showed that if f =

∑
bnqn is any

normalized newform (with no assumptions on its coefficients), then there is a
Galois representation

ρf : G → GL2(O�)

satisfying (15.8).
Returning to the situation where the coefficients bn are in Z, we let M be

the kernel of the ring homomorphism

T −→ F�

Tr �−→ br (mod �).

Since the homomorphism is surjective (because 1 maps to 1) and F� is a field,
M is a maximal ideal of T. Also, T/M = F�. Since Tr − br ∈ M, the mod �
version of (15.8) says that

Trace(ρf (Frobr)) ≡ Tr mod M, det(ρf (Frobr)) ≡ r mod M
for all r � �N . This has been greatly generalized by Deligne and Serre:

THEOREM 15.4
LetM bea m axim alidealofT and let� bethecharacteristicofT/M.There
existsa sem isim ple representation

ρM : G −→ GL2(T/M)

such that

Trace(ρM(Frobr)) ≡ Tr mod M, det(ρM(Frobr)) ≡ r mod M
forallprim es r � �N.

The semisimplicity of ρM means that either ρM is irreducible or it is the
sum of two one-dimensional representations.

In general, let A be either O� or a finite field. If

ρ : G −→ GL2(A)
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is a semisimple representation, then we say that ρ is modular of level N if
there exists a homomorphism

π : T −→ A

such that

Trace(ρ(Frobr)) = π(Tr), det(ρ(Frobr)) = π(r)

for all r � �N . This says that ρ is equivalent to a representation coming from
one of the above constructions.

When A = T/M, the homomorphism π is the map T → T/M.
When f =

∑
bnqn is a normalized eigenform and A = O�, recall that

Tr(f) = brf for all r. This gives a homomorphism π : T → O� (it is possible
to regard the coefficients br as elements of a sufficiently large O�).

The way to obtain maximal ideals M of T is to use a normalized eigenform
to get a map T → O�, then map O� to a finite field. The kernel of the map
from T to the finite field is a maximal ideal M.

When A is a finite field, the level N of the representation ρ is not unique.
In fact, a key result of Ribet (see Section 15.3) analyzes how the level can be
changed. Also, in the definition of modularity in this case, we should allow
modular forms of weight k ≥ 2 (this means that the factor (cz + d)2 in (15.5)
is replaced by (cz +d)k). However, this more general situation can be ignored
for the present purposes.

If ρ is a modular representation of some level, and c ∈ G is complex conju-
gation (regard Q as a subfield of C) then it can be shown that det(ρ(c)) = −1.
This says that ρ is an odd representation. A conjecture of Serre [105], which
was a motivating force for much of the work described in this chapter, pre-
dicts that (under certain mild hypotheses) odd representations in the finite
field case are modular (where we need to allow modular forms of weight k ≥ 2
in the definition of modularity). Serre also predicts the level and the weight
of a modular form that yields the representation.

Finally, there is a type of representation, called finite, that plays an impor-
tant role in Ribet’s proof. Let p be a prime. We can regard the Galois group
for the p-adics as a subgroup of the Galois group for Q:

Gp = Gal(Qp/Qp) ⊂ G = Gal(Q/Q).

There is a natural map from Gp to Gal(Fp/Fp). The kernel is denoted Ip and
is called the inertia subgroup of Gp:

Gp/Ip � Gal(Fp/Fp). (15.9)

A representation
ρ : G → GL2(F�)

is said to be unramified at p if ρ(Ip) = 1, namely, Ip is contained in the
kernel of ρ. If p �= � and ρ is unramified at p, then ρ is said to be finite at p.

© 2008 by Taylor & Francis Group, LLC



454 CHAPTER 15 FERMAT’S LAST THEOREM

If p = �, the definition of finite is much more technical (it involves finite flat
group schemes) and we omit it. However, for the representation ρ� coming
from an elliptic curve, there is the following:

PROPOSITION 15.5

LetE be an elliptic curve defined overQ and letΔ be the m inim aldiscrim i-
nantofE.Let� and p be prim es(the case p = � isallowed)and letρ� be the
representation ofG on E[�]. Then ρ� is finite atp ifand only ifvp(Δ) ≡ 0
(mod �),where vp denotesthe p-adic valuation (see Appendix A).

For a proof, see [105].
Consider the Frey curve. The minimal discriminant is

Δ = 2−8(abc)2�.

Therefore, vp(Δ) ≡ 0 (mod �) for all p �= 2, so ρ� is finite at all odd primes.
Moreover, ρ� is not finite at 2.

15.3 Sketch of Ribet’s Proof

The key theorem that Ribet proved is the following.

THEOREM 15.6

Let� ≥ 3 and let

ρ : G → GL2(F�)

be an irreducible representation.Assum e thatρ ism odularofsquarefree level
N and thatthere existsa prim e q|N,q �= �,atwhich ρ isnotfinite.Suppose
p|N isa prim e atwhich ρ isfinite.Then ρ ism odularoflevelN/p.

In other words, if ρ comes from a modular form of level N , then, under
suitable hypotheses, it also comes from a modular form of level N/p.

COROLLARY 15.7

EFrey cannotbe m odular.

PROOF Since there are no solutions to the Fermat equation, and hence
no Frey curves, when � = 3, we may assume � ≥ 5. If EFrey is modular, then
the associated representation ρ� is modular of some level N . Since EFrey is
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semistable, (15.7) says that

N =
∏

p|abc

p.

It can be shown that ρ� is irreducible when � ≥ 5 (see [105], where it is
obtained as a corollary of Mazur’s theorem (Theorem 8.11)). Let q = 2 in
Ribet’s theorem. As we showed at the end of Section 13.2, ρ� is not finite at
2 and is finite at all other primes. Therefore, Ribet’s theorem allows us to
remove the odd primes from N one at a time. We eventually find that ρ� is
modular of level 2. This means that there is a normalized cusp form of weight
2 for Γ0(2) such that ρ� is the associated mod � representation. But there
are no nonzero cusp forms of weight 2 for Γ0(2), so we have a contradiction.
Therefore, EFrey cannot be modular.

COROLLARY 15.8

The Taniyam a-Shim ura-W eilconjecture (for sem istable elliptic curves) im -
pliesFerm at’sLastTheorem .

PROOF We may restrict to prime exponents � ≥ 5. If there is a nontrivial
solution to the Fermat equation for �, then the Frey curve exists. However,
Corollary 15.7 and the Taniyama-Shimura-Weil conjecture imply that the Frey
curve cannot exist. Therefore, there are no nontrivial solutions to the Fermat
equation.

We now give a brief sketch of the proof of Ribet’s theorem. The proof uses
the full power of Grothendieck’s algebraic geometry and is not elementary.
Therefore, we give only a sampling of some of the ideas that go into the proof.
For more details, see [90], [89], [85], [29].

We assume that ρ is as in Theorem 15.6 and that N is chosen so that

1. ρ is modular of squarefree level N ,

2. both p and q divide N ,

3. ρ is finite at p but is not finite at q.

The goal is to show that p can be removed from N . The main ingredient
of the proof is a relation between Jacobians of modular curves and Shimura
curves. In the following, we describe modular curves and Shimura curves and
give a brief indication of how they occur in Ribet’s proof.
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Modular curves

Recall that SL2(Z) acts on the upper half plane H by linear fractional
transformations: (

a b
c d

)
τ =

aτ + b

cτ + d
.

The fundamental domain F for this action is described in Section 9.3. The
subgroup Γ0(N) (defined by the condition that c ≡ 0 (mod N)) also acts
on H. The modular curve X0(N) is defined over C by taking the upper
half plane modulo the action of Γ0(N), and then adding finitely many points,
called cusps, to make X0(N) compact. We obtain a fundamental domain D
for Γ0(N) by writing

SL2(Z) = ∪iγiΓ0(N)

for some coset representatives γi and letting D = ∪iγ
−1
i F . Certain edges of

this fundamental domain are equivalent under the action of Γ0(N). When
equivalent edges are identified, the fundamental domain gets bent around to
form a surface. There is a hole in the surface corresponding to i∞, and there
are also finitely many holes corresponding to points where the fundamental
domain touches the real axis. These holes are filled in by points, called cusps,
to obtain X0(N). It can be shown that X0(N) can be represented as an
algebraic curve defined over Q.

Figure 15.1 gives a fundamental domain for Γ0(2). The three pieces are
obtained as γ−1

i F , where

γ1 =
(

1 0
0 1

)
, γ2 =

(
0 −1
1 0

)
, γ3 =

(
1 1
−1 0

)
.

The modular curve X0(N) has another useful description, which works over
arbitrary fields K with the characteristic of K not dividing N . Consider pairs
(E,C), where E is an elliptic curve (defined over the algebraic closure K) and
C is a cyclic subgroup of E(K) of order N . The set of such pairs is in one-
to-one correspondence with the noncuspidal points of X0(N)(K). Of course,
it is not obvious that this collection of pairs can be given the structure of an
algebraic curve in a natural way. This takes some work.

Example 15.1
When K = C, we can see this one-to-one correspondence as follows. An
elliptic curve can be represented as

Eτ = C/(Zτ + Z),

with τ ∈ H, the upper half plane. The set

Cτ =
{

0,
1
N

, . . . ,
N − 1

N

}
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Figure 15.1

A Fundamental Domain for Γ0(2)

is a cyclic subgroup of Eτ of order N . Let

γ =
(

a b
c d

)
∈ Γ0(N)

and let
γτ =

aτ + b

cτ + d
.

Since
Zτ + Z = Z(aτ + b) + Z(cτ + d) = (cτ + d)(Zγτ + Z),

there is an isomorphism

fγ : C/(Zτ + Z) −→ C/(Zγτ + Z)

given by
fγ(z) = z/(cτ + d).

This isomorphism between Eτ and Eγτ maps the point k/N to

k

N(cτ + d)
=

ka

N
− k

c

N

aτ + b

cτ + d

≡ ka

N
mod Zγτ + Z

(we have used the fact that c ≡ 0 (mod N)). Therefore, the subgroup Cτ

of Eτ is mapped to the corresponding subgroup Cγτ of Eγτ , so fγ maps the
pair (Eτ , Cτ ) to the pair (Eγτ , Cγτ ). We conclude that if τ1, τ2 ∈ H are
equivalent under the action of Γ0(N), then the corresponding pairs (Eτj

, Cτj
)

are isomorphic. It is not hard to show that, conversely, if the pairs are iso-
morphic then the corresponding τj ’s are equivalent under Γ0(N). Moreover,
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every pair (E,C) of an elliptic curve over C and a cyclic subgroup C of order
N is isomorphic to a pair (Eτ , Cτ ) for some τ ∈ H. Therefore, the set of
isomorphism classes of these pairs is in one-to-one correspondence with the
points of H mod the action of Γ0(N). These are the noncuspidal points of
X0(N).

Of course, over arbitrary fields, we cannot work with the upper half plane
H, and it is much more difficult to show that the pairs (E,C) can be collected
together as the points on a curve X0(N). However, when this is done, it yields
a convenient way to work with the modular curve X0(N) and its reductions
mod primes.

For a nonsingular algebraic curve C over a field K, let J(C) be the divisors
(over K) of degree 0 modulo divisors of functions. It is possible to represent
J(C) as an algebraic variety, called the Jacobian of C. When C is an elliptic
curve E, we showed (Corollary 11.4; see also the sequence (9.3)) that J(E)
is a group isomorphic to E(K). When K = C, we thus obtained a torus. In
general, if K = C and C is a curve of genus g, then J(C) is isomorphic to a
higher dimensional torus, namely, Cg mod a lattice of rank 2g. The Jacobian
of X0(N) is denoted J0(N).

The Jacobian J0(N) satisfies various functorial properties. In particular, a
nonconstant map φ : X0(N) → E induces a map φ∗ : E → J0(N) obtained
by mapping a point P of E to the divisor on X0(N) formed by the sum of
the inverse images of P minus the inverse images of ∞ ∈ E:

φ∗ : P �−→
∑

φ(Q)=P

[Q] −
∑

φ(R)=∞
[R].

Therefore, we can map E to a subgroup of J0(N) (this map might have a
nontrivial, but finite, kernel).

An equivalent formulation of the modularity of E is to say that there is a
nonconstant map from X0(N) to E and therefore that E is isogenous to an
elliptic curve contained in some J0(N).

If p is a prime dividing N , there are two natural maps X0(N) → X0(N/p).
If (E,C) is a pair corresponding to a point in X0(N), then there is a unique
subgroup C ′ ⊂ C of order N/p. So we have a map

α : (E,C) �−→ (E,C ′). (15.10)

However, there is also a unique subgroup P ⊂ C of order p. It can be shown
that E/P is an elliptic curve and therefore (E/P,C/P ) is a pair corresponding
to a point on X0(N/p). This gives a map

β : (E,C) �−→ (E/P,C/P ). (15.11)

These two maps can be interpreted in terms of the complex model of X0(N).
Since Γ0(N) ⊂ Γ0(N/p), we can map H mod Γ0(N) to H mod Γ0(N/p) by
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mapping the equivalence class of τ mod Γ0(N) to the equivalence class of τ
mod Γ0(N/p). This corresponds to the map α. The map β can be shown to
correspond to the map τ �→ pτ . Note that these two maps represent the two
methods of using modular forms for Γ0(N/p) to produce oldforms for Γ0(N).

The Hecke algebra T acts on J0(N). Let P be a point on X0(N). Recall
that P corresponds to a pair (E,C), where E is an elliptic curve and C is
a cyclic subgroup of order N . Let p be a prime. For each subgroup D of E
of order p with D �⊆ C, we can form the pair (E/D, (C + D)/D). It can be
shown that E/D is an elliptic curve and (C + D)/D is a cyclic subgroup of
order N . Therefore, this pair represents a point on X0(N). Define

Tp([(E,C)]) =
∑
D

[(E/D, (C + D)/D)] ∈ Div(X0(N)),

where the sum is over those D of order p with D �⊆ C and where Div(X0(N))
denotes the divisors of X0(N) (see Chapter 11). It is not hard to show that
this corresponds to the formulas for Tp given in (15.6). Clearly Tp maps
divisors of degree 0 to divisors of degree 0, and it can be shown that it maps
principal divisors to principal divisors. Therefore, Tp gives a map from J0(N)
to itself. This yields an action of T on J0(N), and these endomorphisms are
defined over Q.

Let α ∈ T and let J0(N)[α] denote the kernel of α on J0(N). More generally,
let I be an ideal of T. Define

J0(N)[I] =
⋂
α∈I

J0(N)[α].

For example, when I = nT for an integer n, then J0(N)[I] is just J0(N)[n],
the n-torsion on J0(N).

Now let’s consider the representation ρ of Theorem 15.6. Since ρ is assumed
to be modular, it corresponds to a maximal ideal M of T. Let F = T/M,
which is a finite field. Then W = J0(N)[M] has an action of F, which means
that it is a vector space over F. Let � be the characteristic of F. Since � = 0
in F, it follows that

W ⊆ J0(N)[�],

the �-torsion of J0(N). Since G acts on W , we see that W yields a represen-
tation ρ′ of G over F. It can be shown that ρ′ is equivalent to ρ, so we can
regard the representation space for ρ as living inside the �-torsion of J0(N).
This has great advantages. For example, if M |N then there are natural maps
X0(N) → X0(M). These yield (just as for the map X0(N) → E above) maps
J0(M) → J0(N). Showing that the level can be reduced from N to M is
equivalent to showing that this representation space lives in these images of
J0(M). Also, we are now working with a representation that lives inside a
fairly concrete object, namely the �-torsion of an abelian variety, rather than
a more abstract situation, so we have more control over ρ.
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Shimura curves

We now need to introduce what are known as Shimura curves. Recall that
in Section 10.2 we defined quaternion algebras as (noncommutative) rings of
the form

Q = Q + Qα + Qβ + Qαβ,

where
α2, β2 ∈ Q, βα = −αβ.

We omit the requirement from Section 10.2 that α2 < 0 and β2 < 0 since
we want to consider indefinite quaternion algebras as well. Let r be a prime
(possibly ∞) and let Qr be the ring obtained by allowing r-adic coefficients
in the definition of Q. As we mentioned in Section 10.2, there is a finite set
of primes r, called the ramified primes, for which Qr has no zero divisors. On
the other hand, when r is unramified, Qr is isomorphic to M2(Qr), the ring
of 2 × 2 matrices with r-adic entries.

Given two distinct primes p and q, there is a quaternion algebra B that is
ramified exactly at p and q. In particular, B is unramified at ∞, so

B∞ = M2(R).

Corresponding to the integer M = N/pq, there is an order O ⊂ B, called
an Eichler order of level M (an order in B is a subring of B that has rank 4
as an additive abelian group; see Section 10.2). Regarding O as a subset of
B∞ = M2(R), define

Γ∞ = O ∩ SL2(R).

Then Γ∞ acts on H by linear fractional transformations. The Shimura curve
C is defined to be H modulo Γ∞.

There is another description of C, analogous to the one given above for
X0(N). Let Omax be a maximal order in B. Consider pairs (A,B), where A
is a two-dimensional abelian variety (these are algebraic varieties that, over
C, can be described as C2 mod a rank 4 lattice) and B is a subgroup of
A isomorphic to ZM ⊕ ZM . We restrict our attention to those pairs such
that Omax is contained in the endomorphism ring of A and such that Omax

maps B to B. When we are working over C, such pairs are in one-to-one
correspondence with the points on C. In general, over arbitrary fields, such
pairs correspond in a natural way to points on an algebraic curve, which we
again denote C.

Let J be the Jacobian of C. The description of C in terms of pairs (A,B)
means that we can define an action of the Hecke operators on J , similarly to
what we did for the modular curves.

Let J [�] be the �-torsion of the Jacobian J of C. It can be shown that
the representation ρ occurs in J [M], so there is a space V isomorphic to the
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representation space W of ρ with

V ⊆ J [M] ⊆ J [�].

We now have the representation ρ living in J0(N)[�] and in J [�]. The rep-
resentation ρ can be detected using the reduction of J0(N) mod q and also
using the reduction of J mod p, and Ribet uses a calculation with quater-
nion algebras to establish a relationship between these two reductions. This
relationship allows him to show that p can be removed from the level N .

REMARK 15.9 A correspondence between modular forms for GL2 and
modular forms for the multiplicative group of a quaternion algebra plays a
major role in work of Jacquet-Langlands. This indicates a relation between
J0(N) and J . In fact, there is a surjection from J0(N) to J . However, this
map is not being used in the present case since such a map would relate the
reduction of J0(N) mod q to the reduction of J mod q. Instead, Ribet works
with the reduction of J0(N) mod q and the reduction of J mod p. This switch
between p and q is a major step in the proof of Ribet’s theorem.

15.4 Sketch of Wiles’s Proof

In this section, we outline the proof that all semistable elliptic curves over
Q are modular. For more details, see [29], [32], [118], [133]. Let E be a
semistable elliptic curve and let

fE =
∑
n≥1

anqn

be the associated potential modular form. We want to prove that fE is a
modular form (for some Γ0(N)).

Suppose we have two potential modular forms

f =
∑
n≥1

cnqn, g =
∑
n≥1

c′nqn

arising from Galois representations G → GL2(Op) (where Op is some ring
containing the p-adic integers. We assume that all of the coefficients cn, c′n
are embedded in Op). Let p̃ be the prime above p in Op. (If Op is the ring of
p-adic integers, then p̃ = p.) If c� ≡ c′� (mod p̃) for almost all primes � (that
is, we allow finitely many exceptions), then we write

f ≡ g (mod p̃).
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This means that the Galois representations mod p̃ associated to f and g are
equivalent.

The following result of Langlands and Tunnell gives us a place to start.

THEOREM 15.10
LetE be an elliptic curve defined over Q and let fE =

∑
n≥1 anqn be the

associated potentialm odularform .There existsa m odular form

g0 =
∑
n≥1

bnqn

such that
a� ≡ b� (mod 3̃)

for alm ostallprim es � (thatis,with possibly finitely m any exceptions),and
where 3̃ denotesa prim e ofO3.

Recall that O3 denotes an unspecified ring containing the 3-adic integers.
If O3 is sufficiently large, the coefficients b�, which are algebraic integers, can
be regarded as lying in O3.

The reason that 3 is used is that the group GL2(F3) has order 48, hence
is solvable. The representation ρ3 of G on E[3] therefore has its image in
a solvable group. The techniques of base change developed in the Langlands
program apply to cyclic groups, hence to solvable groups, and these techniques
are the key to proving the result. The groups GL2(Fp) for p ≥ 5 are not
solvable, so the base change techniques do not apply. On the other hand, the
representation ρ2 for the Galois action on E[2] is trivial for the Frey curves
since the 2-torsion is rational for these curves. Therefore, it is not expected
that ρ2 should yield any information.

Note that the modular form g0 does not necessarily have rational coeffi-
cients. Therefore, g0 is not necessarily the modular form associated to an
elliptic curve. Throughout Wiles’s proof, Galois representations associated to
arbitrary modular forms are used.

The result of Langlands and Tunnell leads us to consider the following.

GENERAL PROBLEM
Fix a prim e p. Letg =

∑
n≥1 anqn be a potentialm odular form (associated

to a 2-dim ensionalGalois representation). Suppose there is a m odular form

g0 =
∑

bnqn such that g ≡ g0 (mod )̃p. Can we prove that g is a m odular
form ?

The work of Wiles shows that the answer to the general problem is often
yes. Let A be the set of all potential modular forms g with g ≡ g0 (mod )̃p
(subject to certain restrictions). Let M ⊆ A be the set of modular g’s in A.
We are assuming that g0 ∈ M . The basic idea is the following. Let TA be the
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tangent space to A at g0 and let TM be the tangent space to M at g0. The
goal is to show that TA = TM . Wiles shows that the spaces A and M are nice
enough that the equality of tangent spaces suffices to imply that A = M .

g0

TA TM

M

A

Figure 15.2

Tangent Spaces

Example 15.2
Let E be given by

y2 + xy + y = x3 − x2 − 171x + 1904.

This curve has multiplicative reduction at 17 and 37 and good reduction at
all other primes. Therefore, E is semistable. The minimal discriminant of E
is Δ = −17 · 375. Since E is semistable, the conductor of E is N = 17 · 37.
Therefore, we expect that gE is a modular form for Γ0(17 · 37). Counting
points on E mod � for various � yields the following values for a� (we ignore
the bad prime 17):

� 2 3 5 7 11 13 17 19 23
a� −1 0 3 −1 −5 −2 − 1 −6

Therefore,
gE = q − q2 + 0 · q3 − q4 + 3q5 + · · · .

There is a modular form

g0 =
∑

bnqn = q − q2 + 0 · q3 − q4 − 2q5 + · · ·
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for Γ0(17). The first few values of b� are as follows:

� 2 3 5 7 11 13 17 19 23
b� −1 0 −2 4 0 −2 − −4 4

It can be shown that a� ≡ b� (mod 5) for all � �= 17, 37 (we ignore these
bad primes), so

gE ≡ g0 (mod 5).

Can we prove that gE is a modular form?
Let A be the set of all potential modular forms g with g ≡ g0 (mod 5) and

where the level N for g is allowed to contain only the primes 5, 17, 37 in its
factorization. There is also a technical condition, which we omit, on the ring
generated by the coefficients of g. The subspace M of true modular forms
contains g0. Here are pictures of A and M :

A : • •
g0 gE

M : • or • •
g0 g0 gE

Therefore, our intuitive picture given in Figure 15.2 is not quite accurate.
In particular, the sets A and M are finite. However, by reinterpreting the
geometric picture algebraically, we can still discuss tangent spaces.

Since the sets A and M are finite, why not count the elements in both sets
and compare? First of all, this seems to be hard to do. Secondly, the tangent
spaces yield enough information. Consider the following situation. Suppose
you arrive at a train station in a small town. There are no signs telling you
which town it is, but you know it must be either I or II. You have the maps
given in Figure 15.3, where the large dot in the center indicates the station.

I II

Figure 15.3

Two Small Towns
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By counting the streets emanating from the station, you can immediately
determine which town you are in. The reason is that you have a base point. If
you didn’t, then you might be on any of the vertices of I or II. You would not
be able to count streets and identify the town. The configuration of streets at
the station is the analogue of the tangent space at the base point. Of course,
it is possible that two towns could have the same tangent spaces, but Wiles
shows that this does not happen in his situation.

Tangent spaces

We now want to translate the notion of a tangent space into a useful alge-
braic formulation. Let R[x, y] be the ring of polynomials in two variables and
let f(x, y) ∈ R[x, y]. We can regard f as a function from the xy-plane to R.
Restricting f to the parabola y = x2 − 6x, we obtain a function

f : parabola −→ R.

If g(x, y) ∈ R[x, y], then f and g give the same function on the parabola if
and only if f − g is a multiple of y +6x−x2. For example, let f = x3 − y and
g = 6x + xy + 5x2. Then

f − g = −(x + 1)(y + 6x − x2).

If we choose a point (a, b) on the parabola, then b + 6a − a2 = 0, so

f(a, b) = g(a, b) − (a + 1)(b + 6a − a2) = g(a, b).

Therefore, there is a one-to-one correspondence

polynomial functions on the parabola ←→ R[x, y]/(y + 6x − x2).

The ring on the right consists of congruence classes of polynomials, where
we say that two polynomials are congruent if their difference is a multiple of
y+6x−x2. In this way, we have represented a geometric object, the parabola,
by an algebraic object, the ring R[x, y]/(y + 6x − x2).

Now let’s consider the tangent line y + 6x = 0 at (0, 0). It is obtained by
taking the degree 1 terms in y + 6x − x2. We can represent it by the set

{ax + by | a, b ∈ R} mod (y + 6x),

where we are taking all linear functions and regarding two of them as congru-
ent if they differ by a multiple of y+6x. Of course, we could have represented
the tangent line by the ring R[x, y]/(y +6x), but, since we already know that
the tangent line is defined by a linear equation, we do not lose any information
by replacing R[x, y] by the linear polynomials ax + by.
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Now consider the surface

y − x2 + xz + 6x + z = 0.

This surface contains the parabola y = x2 − 6x, z = 0. The inclusion of the
parabola in the surface corresponds to a surjective ring homomorphism

R[x, y, z]/(y − x2 + xz + 6x + z) −→ R[x, y]/(y + 6x − x2)
f(x, y, z) �−→ f(x, y, 0).

We also have a surjective map on the algebraic objects representing the tan-
gent spaces

{ax + by + cz} mod (y + 6x + z) −→ {ax + by} mod (y + 6x)

corresponding to the inclusion of the tangent line to the parabola in the tan-
gent plane for the surface at (0, 0, 0). In this way, we can study relations
between geometric objects by looking at the corresponding algebraic objects.

Wiles works with rings such as Op[[x]]/(x2 − px), where for simplicity we
henceforth assume that Op is the p-adic integers and where Op[[x]] denotes
power series with p-adic coefficients. The zeros of x2 − px are 0 and p, so this
ring corresponds to the geometric object

S1 : • •
0 p

The tangent space is represented by the set obtained by looking only at the
linear terms, namely {ax | a ∈ Op} mod (px). Since

a1x ≡ a2x mod px ⇐⇒ a1 ≡ a2 (mod p),

the tangent space can be identified with Zp.
As another example, consider the ring Op[[x]]/(x(x − p)(x − p3)), which

corresponds to the geometric object

S2 : • • •
0 p p3

The tangent space is Zp4 .
There is an inclusion S1 ⊂ S2, which corresponds to the natural ring ho-

momorphism

Op[[x]]/(x(x − p)(x − p3)) −→ Op[[x]]/(x2 − px).

The map on tangent spaces is the map from Zp4 to Zp that takes a number
mod p4 and reduces it mod p.

Now consider the ring Op[[x, y]]/(x2−px, y2−py). In this case, we are look-
ing at power series in two variables, and two power series are congruent if their
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difference is a linear combination of the form A(x, y)(x2−px)+B(x, y)(y2−py)
with A,B ∈ Op[[x, y]]. The corresponding geometric object is

• •
(0, p) (p, p)

S3 :
• •

(0, 0) (p, 0)

It can be shown that two power series give the same function on this set of
four points if they differ by a linear combination of x2 − px and y2 − py. The
tangent space is represented by

{ax + by | a, b ∈ Op} mod (px, py),

which means we are considering two linear polynomials to be congruent if
their difference is a linear combination of px and py. It is easy to see that

a1x + b1y ≡ a2x + b2y mod (px, py) ⇐⇒ a1 ≡ a2, b1 ≡ b2 (mod p).

Therefore, the tangent space is isomorphic to Zp ⊕ Zp.
The inclusion S1 ⊂ S3 corresponds to the ring homomorphism

Op[[x, y]]/(x2 − px, y2 − py) −→ Op[[x]]/(x2 − px).

The map on tangent spaces is the map Zp ⊕ Zp → Zp given by projection
onto the first factor.

In all three examples above, the rings are given by power series over Op.
The number of variables equals the number of relations and the resulting
ring is a finitely generated Op-module (this is easily verified in the three
examples). Such rings are called local complete intersections. For such
rings, it is possible to recognize when a map is an isomorphism by looking at
the tangent spaces.

Before proceeding, let’s look at an example that is not a local complete
intersection. Consider the ring

Op[[x, y]]/(x2 − px, y2 − py, xy).

The corresponding geometric object is

•
(0, p)

S4 :
• •

(0, 0) (p, 0)
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There are two variables and three relations, so we do not have a complete
intersection. The tangent space is Zp⊕Zp. The inclusion S4 ⊂ S3 corresponds
to the ring homomorphism

Op[[x, y]]/(x2 − px, y2 − py) −→ Op[[x, y]]/(x2 − px, y2 − py, xy)

and the map on tangent spaces is an isomorphism. However, S3 �= S4. The
problem is that the tangent space calculation does not notice the relation xy,
which removed the point (p, p) from S3 to get S4. Therefore, the tangent
space thinks this point is still there and incorrectly predicts an isomorphism
between the three point space and the four point space.

The general fact we need is that if we have a surjective homomorphism of
rings that are local complete intersections, and if the induced map on tangent
spaces is an isomorphism, then the ring homomorphism is an isomorphism.

Deformations of Galois representations

Now let’s return to our sets A and M . Corresponding to these two sets are
rings RA and RM . We have g0 ∈ M ⊆ A. Let TA and TM be the tangent
spaces at g0. In the examples above, the base point g0 would correspond to
x = 0 or to (x, y) = (0, 0). Corresponding to the inclusion M ⊆ A, there are
surjective maps

RA −→ RM , TA −→ TM .

Therefore,
#TM ≤ #TA.

The ring RM can be constructed using the Hecke algebra and the ring RA

is constructed using results about representability of functors. In fact, it was
shown that there is a representation

ρuniversal : G −→ GL2(RA)

with the following property. Let

ρ : G −→ GL2(Op)

be a representation and let g be the potential modular form attached to ρ.
Assume that ρ is unramified outside a fixed finite set of primes. If g ≡ g0

(mod p̃), then there exists a unique ring homomorphism

φ : RA −→ Op

such that the diagram

G
ρuniversal ��

ρ
���������������� GL2(RA)

φ

��
GL2(Op)
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commutes.
The representations ρ such that g ≡ g0 (mod p̃) are examples of what are

known as deformations of the Galois representation for g0. The representa-
tion ρuniversal is called a universal deformation.

Example 15.3
We continue with Example 13.2. Let p = 5 and take the fixed set of primes
to be {5, 17, 37}. Then it can be shown that

RA � O5[[x]]/(x2 − bx),

where b/5 is a 5-adic unit and O5 is the ring of 5-adic integers. This implies
that TA = Z5. The set A has two points, g0 and g, corresponding to x = 0
and x = b.

There exists an integer n, defined below, such that

n ≤ #TM ≤ #TA.

Moreover, a result of Flach shows that n · TA = 0. If it can be shown that
n = #TA, then TA = TM .

In our example, n = 5. Since we know that TA = Z5, we have n = #TA.
Therefore, TA = TM . It can be shown that RA and RM are local complete
intersections. This yields RA = RM and A = M . This implies that g is a
modular form.

In general, recall that we started with a semistable elliptic curve E. Associ-
ated to E is the 3-adic Galois representation ρ3∞ . The theorem of Langlands-
Tunnell yields a modular form g0, and therefore a Galois representation

ρ0 : G −→ GL2(O3).

We have
ρ3∞ ≡ ρ0 (mod 3̃),

so the base point ρ0 is modular and semistable mod 3̃ (the notion of semistabil-
ity can be defined for general Galois representations). Under the additional
assumption that ρ3 restricted to Gal(Q/Q(

√−3)) is absolutely irreducible,
Wiles showed that if RM is a local complete intersection then n = #TA and
the map RA → RM is an isomorphism of local complete intersections. Finally,
in 1994, Wiles and Taylor used an ingenious argument to show that RM is a
local complete intersection, and therefore A = M .

What happens if ρ3 does not satisfy the irreducibility assumption? Wiles
showed that there is a semistable elliptic curve E′ with the same mod 5
representation as E but whose mod 3 representation is irreducible. Therefore,
E′ is modular, so the mod 5 representation of E′ is modular. This means
that the mod 5 representation of E is modular. If the mod 5 representation,
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restricted to Gal(Q/Q(
√

5)), is absolutely irreducible, then the above result
of Wiles, with 5 in place of 3, shows that E is modular.

There are only finitely many elliptic curves over Q for which both the mod 3
representation (restricted to Gal(Q/Q(

√−3))) and the mod 5 representation
(restricted to Gal(Q/Q(

√
5))) are not absolutely irreducible. These finitely

many exceptions can be proved to be modular individually.
Therefore, semistable elliptic curves over Q are modular. Eventually, the

argument was extended by Breuil, Conrad, Diamond, and Taylor to include
all elliptic curves over Q (Theorem 14.4).

The integer n is defined as follows. Let g0 =
∑

bmqm and let

L(g0, s) =
∞∑

m=1

bmm−s =
∏

primes � �∈S

(
1 − b��

−s + �1−2s
)−1

,

where S is a finite set of bad primes (in our example, S = {5, 17, 37}). Write

1 − b�X + �X2 = (1 − α�X)(1 − β�X).

The symmetric square L-function is defined to be

L(Sym2g0, s) =
∏
� �∈S

(
(1 − α2

��
−s)(1 − β2

� �−s)(1 − α�β��
−s)

)−1
.

There exists a naturally defined transcendental number Ω (similar to the pe-
riods considered in Section 9.4), defined by a double integral, such that

L(Sym2g0, 2)
Ω

= r = a rational number.

The number n is defined to be the p-part of r (that is, n is a power of p such
that r equals n times a rational number with numerator and denominator
prime to p).

The formula that Wiles proved is therefore that L(Sym2g0, 2)/Ω equals #TA

times a rational number prime to p. This means that the order of an algebraic
object, namely TA, is expressed in terms of the value of an analytic function,
in this case the symmetric square L-function. This formula is therefore of
a nature similar to the analytic class number of algebraic number theory,
which expresses the class number in terms of an L-series, and the conjecture
of Birch and Swinnerton-Dyer (see Section 14.2), which expresses the order
of the Shafarevich-Tate group of an elliptic curve in terms of the value of its
L-series.
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Number Theory

Basic results

Let n be a positive integer and let Zn be the set of integers mod n. It is a
group with respect to addition. We can represent the elements of Zn by the
numbers 0, 1, 2, . . . , n − 1. Let

Z×
n = {a | 1 ≤ a ≤ n, gcd(a, n) = 1}.

Then Z×
n is a group with respect to multiplication mod n.

Let a ∈ Z×
n . The order of a mod n is the smallest integer k > 0 such that

ak ≡ 1 (mod n). The order of a mod n divides φ(n), where φ is the Euler
φ-function.

Let p be a prime and let a ∈ Z×
p . The order of a mod p divides p − 1. A

primitive root mod p is an integer g such that the order of g mod p equals
p − 1. If g is a primitive root mod p, then every integer is congruent mod p
to 0 or to a power of g. For example, 3 is a primitive root mod 7 and

{1, 3, 9, 27, 81, 243} ≡ {1, 3, 2, 6, 4, 5} (mod 7).

There are φ(p− 1) primitive roots mod p. In particular, a primitive root mod
p always exists, so Z×

p is a cyclic group.
There is an easy criterion for deciding whether g is a primitive root mod

p, assuming we know the factorization of p − 1: If g(p−1)/q �≡ 1 (mod p) for
all primes q|p − 1, then g is a primitive root mod p. This can be proved by
noting that if g is not a primitive root, then its order is a proper divisor of
p − 1, hence divides (p − 1)/q for some prime q.

One way to find a primitive root for p, assuming the factorization of p − 1
is known, is simply to test the numbers 2, 3, 5, 6, . . . successively until a
primitive root is found. Since there are many primitive roots, one should be
found fairly quickly in most cases.

A very useful result in number theory is the following.

471
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THEOREM A.1 (Chinese Remainder Theorem)
Let n1, n2, . . . , nr be positive integers such that gcd(ni, nj) = 1 when i �= j.

Let a1, a2, . . . , ar be integers. Then there exists an x such that

x ≡ ai (mod ni) for all i.

The integer x is uniquely determined mod n1n2 · · ·nr.

For example, let n1 = 4, n2 = 3, n3 = 5 and let a1 = 1, a2 = 2, a3 = 3.
Then x = 53 is a solution to the simultaneous congruences

x ≡ 1 (mod 4), x ≡ 2 (mod 3), x ≡ 3 (mod 5),

and any solution x satisfies x ≡ 53 (mod 60).
Another way to state the Chinese Remainder Theorem is to say that if

gcd(ni, nj) = 1 for i �= j, then

Zn1n2···nr
� Zn1 ⊕ · · · ⊕ Znr

(see Appendix B for the definition of ⊕). This is an isomorphism of additive
groups. It is also an isomorphism of rings.

p-adic numbers

Let p be a prime number and let x be a nonzero rational number. Write

x = pr a

b
,

where a, b are integers such that p � ab. Then r is called the p-adic valuation
of x and is denoted by

r = vp(x).

Define vp(0) = ∞. (The p-adic valuation is discussed in more detail in Sections
5.4 and 8.1.) The p-adic absolute value of x is defined to be

|x|p = p−r.

Define |0|p = 0.
For example, ∣∣∣∣12

35

∣∣∣∣
2

=
1
4
,

∣∣∣∣ 11
250

∣∣∣∣
5

= 125,
∣∣∣∣12 − 41

∣∣∣∣
3

=
1
81

.

The last example says that 1/2 and 41 are close 3-adically. Note that two
integers are close p-adically if and only if they are congruent mod a large
power of p.

© 2008 by Taylor & Francis Group, LLC



p-ADIC NUMBERS 473

The p-adic integers are most easily regarded as sums of the form
∞∑

n=0

anpn, an ∈ {0, 1, 2, . . . , p − 1}.

Such infinite sums do not converge in the real numbers, but they do make
sense with the p-adic absolute value since |anpn|p → 0 as n → ∞.

Arithmetic operations are carried out just as with finite sums. For example,
in the 3-adic integers,

(1 + 2 · 3 + 0 · 32 + · · · ) + (1 + 2 · 3 + 1 · 32 + · · · ) = 2 + 4 · 3 + 1 · 32 + · · ·
= 2 + 1 · 3 + 2 · 32 + · · ·

(where we wrote 4 = 1 + 3 and regrouped, or “carried,” to obtain the last
expression). If

x = akpk + ak+1p
k+1 + · · ·

with ak �= 0, then

−x = (p − ak)pk + (p − 1 − ak+1)pk+1 + (p − 1 − ak+2)pk+2 + · · · (A.1)

(use the fact that pk+1 + (p− 1)pk+1 + (p− 1)pk+2 + · · · = 0 because the sum
telescopes, so all the terms cancel). Therefore, p-adic integers have additive
inverses. It is not hard to show that the p-adic integers form a ring.

Any rational number with denominator not divisible by p is a p-adic integer.
For example, in the 3-adics,

1
2

=
−1

1 − 3
= −(1 + 3 + 32 + · · · ) = 2 + 3 + 32 + · · · ,

where we used (A.1) for the last equality. In fact, it can be shown that if
x =

∑∞
n=0 anpn is a p-adic integer with a0 �= 0, then 1/x is a p-adic integer.

The p-adic rationals, which we denote by Qp, are sums of the form

y =
∞∑

n=m

anpn, (A.2)

with m positive or negative or zero and with an ∈ {0, 1, . . . , p−1}. If y ∈ Qp,
then pky is a p-adic integer for some integer k. The p-adic rationals form a
field, and every rational number lies in Qp. If am �= 0 in (A.2), then we define

vp(y) = m, |y|p = p−m.

This agrees with the definitions of the p-adic valuation and absolute value
defined above when y is a rational number.

Another way to look at p-adic integers is the following. Consider sequences
of integers x1, x2, . . . such that

xm ≡ xm+1 (mod pm) (A.3)
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for all m ≥ 1. Since xm ≡ xk (mod pm) for all k ≥ m, the base p expansions
for all xk with k ≥ m must agree through the pm−1 term. Therefore, the
sequence of integers xm determines an expression of the form

∞∑
n=0

anpn,

where

xm ≡
m−1∑
n=0

anpn (mod pm)

for all m. In other words, the sequence of integers determines a p-adic inte-
ger. Conversely, the partial sums of a p-adic integer determine a sequence of
integers satisfying (A.3).

Let’s use these ideas to show that −1 is a square in the 5-adic integers. Let
x1 = 2, so

x2
1 ≡ −1 (mod 5).

Suppose we have defined xm such that

x2
m ≡ −1 (mod 5m).

Let xm+1 = xm + b5m, where

b ≡ −1 − x2
m

2 · 5mxm
(mod 5).

Note that x2
m ≡ −1 (mod 5m) implies that the right side of this last congru-

ence is defined mod 5. A quick calculation shows that

x2
m+1 ≡ −1 (mod 5m+1).

Since (A.3) is satisfied, there is a 5-adic integer x with x ≡ xm (mod 5m) for
all m. Moreover,

x2 ≡ −1 (mod 5m)

for all m. This implies that x2 = −1.
In general, this procedure leads to the following very useful result.

THEOREM A.2 (Hensel’s Lemma)
Let f(X) be a polynomial with coefficients that are p-adic integers and suppose
x1 is an integer such that

f(x1) ≡ 0 (mod p).

If
f ′(x1) �≡ 0 (mod p),
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then there exists a p-adic integer x with x ≡ x1 (mod p) and

f(x) = 0.

COROLLARY A.3
Let p be an odd prime and suppose b is a p-adic integer that is a nonzero
square mod p. Then b is the square of a p-adic integer.

The corollary can be proved by exactly the same method that was used to
prove that −1 is a square in the 5-adic integers. The corollary can also be
deduced from the theorem as follows. Define f(X) = X2 − b and let x2

1 ≡ b
(mod p). Then f(x1) ≡ 0 (mod p) and

f ′(x1) = 2x1 �≡ 0 (mod p)

since p is odd and x1 �≡ 0 by assumption. Hensel’s Lemma shows that there
is a p-adic integer x with f(x) = 0. This means that x2 = b, as desired.

When p = 2, the corollary is not true. For example, 5 is a square mod 2 but
is not a square mod 8, hence is not a 2-adic square. However, the inductive
procedure used above yields the following:

PROPOSITION A.4
If b is a 2-adic integer such that b ≡ 1 (mod 8) then b is the square of a 2-adic
integer.
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Appendix B
Groups

Basic definitions

Since most of the groups in this book are additive abelian groups, we’ll
use additive notation for the group operations in this appendix. Therefore, a
group G has a binary operation + that is associative. There is an additive
identity that we’ll call 0 satisfying

0 + g = g + 0 = g

for all g ∈ G. Each g ∈ G is assumed to have an additive inverse −g satisfying

(−g) + g = g + (−g) = 0.

If n is a positive integer, we let

ng = g + g + · · · + g (n summands).

If n < 0, we let ng = −(|n|g) = −(g + · · · + g).
Almost all of the groups in this book are abelian, which means that g+h =

h + g for all g, h ∈ G.
If G is a finite group, the order of G is the number of elements in G. The

order of an element g ∈ G is the smallest integer k > 0 such that kg = 0.
If k is the order of g, then

ig = jg ⇐⇒ i ≡ j (mod k).

The basic result about orders is the following.

THEOREM B.1 (Lagrange’s Theorem)
Let G be a finite group.

1. Let H be a subgroup of G. Then the order of H divides the order of G.

2. Let g ∈ G. Then the order of g divides the order of G.
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The ratio #G/#H is called the index of H in G. More generally, the index
of a (possibly infinite) subgroup H in a group G is the smallest number n of
elements such that we can write G as a union of translates of G by elements
gi ∈ G:

G = ∪n
i=1 (gi + H) .

For example, Z = (0 + 3Z)∪ (1 + 3Z)∪ (2 + 3Z), so the index of 3Z in Z is 3.
A cyclic group is a group isomorphic to either Z or Zn for some n. These

groups have the property that they can be generated by one element. For
example, Z4 is generated by 1, and it is also generated by 3 since {0, 3, 3 +
3, 3 + 3 + 3} is all of Z4. The following result says that the converse of
Lagrange’s theorem holds for finite cyclic groups.

THEOREM B.2
Let G be a finite cyclic group of order n. Let d > 0 divide n.

1. G has a unique subgroup of order d.

2. G has d elements of order dividing d, and G has φ(d) elements of order
exactly d (where φ(d) is Euler’s φ-function).

For example, Z6 contains the subgroup {0, 2, 4} of order 3. The elements
2, 4 ∈ Z6 have order 3.

The direct sum of two groups G1 and G2 is defined to be the set of ordered
pairs formed from elements of G1 and G2:

G1 ⊕ G2 = {(g1, g2) | g1 ∈ G1, g2 ∈ G2}.

Ordered pairs can be added componentwise:

(g1, g2) + (h1, h2) = (g1 + h1, g2 + h2).

This makes G1⊕G2 into a group with (0, 0) as the identity element. A similar
definition holds for the direct sum of more than two groups. We write Gr for
the direct sum of r copies of G. In particular, Zr denotes the set of r-tuples
of integers, which is a group under addition.

Structure theorems

Two groups, G1 and G2, are said to be isomorphic if there exists a bijection
ψ : G1 → G2 such that ψ(gh) = ψ(g)ψ(h) for all g, h ∈ G1 (note that the
multiplication gh is in G1 while the multiplication ψ(g)ψ(h) takes place in
G2).
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THEOREM B.3

A finite abelian group is isomorphic to a group of the form

Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zns

with ni|ni+1 for i = 1, 2, . . . , s − 1. The integers ni are uniquely determined
by G.

An abelian group G is called finitely generated if there is a finite set
{g1, g2, . . . , gk} contained in G such that every element of G can be written
(not necessarily uniquely) in the form

m1g1 + · · · + mkgk

with mi ∈ Z.

THEOREM B.4

A finitely generated abelian group is isomorphic to a group of the form

Zr ⊕ Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zns

with r ≥ 0 and with ni|ni+1 for i = 1, 2, . . . , s − 1. The integers r and ni are
uniquely determined by G.

The subgroup of G isomorphic to

Zn1 ⊕ Zn2 ⊕ · · · ⊕ Zns

is called the torsion subgroup of G. The integer r is called the rank of G.
This theorem can be used to prove the following.

THEOREM B.5

Let G1 ⊆ G2 ⊆ G3 be groups and assume that, for some integer r, both G1

and G2 are isomorphic to Zr. Then G2 is isomorphic to Zr.

For example, G1 = 12Z, G2 = 6Z, and G3 = Z, each of which is isomorphic
as a group to Z, satisfy the theorem. This theorem is used in the text when
G1 and G3 are lattices in C. Then G1 and G3 are isomorphic to Z2. If
G1 ⊆ G2 ⊆ G3, then G2 � Z2, so there exist ω1, ω2 such that G2 = Zω1+Zω2.
Since G1 is a lattice, it contains two vectors that are linearly independent over
R. Since G1 ⊆ G2, this implies that ω1 and ω2 are linearly independent over
R. Therefore, G2 is a lattice.
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Homomorphisms

Let G1, G2 be groups. A homomorphism from G1 to G2 is a map ψ :
G1 → G2 such that ψ(g + h) = ψ(g) + ψ(h) for all g, h ∈ G1. In other words,
the map takes sums in G1 to the corresponding sums in G2. The kernel of
ψ is

Ker ψ = {g ∈ G1 | ψ(g) = 0}.
The image of ψ is denoted ψ(G1), which is a subgroup of G2. The main result
we need is the following.

THEOREM B.6
Assume G1 is a finite group and ψ : G1 → G2 is a homomorphism. Then

#G1 = (#Ker ψ) (#ψ(G1)) .

In fact, in terms of quotient groups, G1/Ker ψ � ψ(G1).
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Let K be a field. There is a ring homomorphism ψ : Z → K that sends
1 ∈ Z to 1 ∈ K. If ψ is injective, then we say that K has characteristic 0.
Otherwise, there is a smallest positive integer p such that ψ(p) = 0. In this
case, we say that K has characteristic p. If p factors as ab with 1 < a ≤
b < p, then ψ(a)ψ(b) = ψ(p) = 0, so ψ(a) = 0 or ψ(b) = 0, contradicting the
minimality of p. Therefore, p is prime.

When K has characteristic 0, the field Q of rational numbers is contained
in K. When K has characteristic p, the field Fp of integers mod p is contained
in K.

Let K and L be fields with K ⊆ L. If α ∈ L, we say that α is algebraic
over K if there exists a nonconstant polynomial

f(X) = Xn + an−1X
n−1 + · · · + a0

with a0, . . . , an−1 ∈ K such that f(α) = 0. We say that L is an algebraic
over K, or that L is an algebraic extension of K, if every element of L is
algebraic over K. An algebraic closure of a field K is a field K containing
K such that

1. K is algebraic over K.

2. Every nonconstant polynomial g(X) with coefficients in K has a root in
K (this means that K is algebraically closed).

If g(X) has degree n and has a root α ∈ K, then we can write g(X) =
(X − α)g1(X) with g1(X) of degree n − 1. By induction, we see that g(X)
has exactly n roots (counting multiplicity) in K.

It can be shown that every field K has an algebraic closure, and that any two
algebraic closures of K are isomorphic. Throughout the book, we implicitly
assume that a particular algebraic closure of a field K has been chosen, and
we refer to it as the algebraic closure of K.

When K = Q, the algebraic closure Q is the set of complex numbers that
are algebraic over Q. When K = C, the algebraic closure is C itself, since
the fundamental theorem of algebra states that C is algebraically closed.
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Finite fields

Let p be a prime. The integers mod p form a field Fp with p elements. It can
be shown that the number of elements in a finite field is a power of a prime,
and for each power pn of a prime p, there is a unique (up to isomorphism) field
with pn elements. (Note: The ring Zpn is not a field when n ≥ 2 since p does
not have a multiplicative inverse; in fact, p is a zero divisor since p · pn−1 ≡ 0
(mod pn).) In this book, the field with pn elements is denoted Fpn . Another
notation that appears often in the literature is GF (pn). It can be shown that

Fpm ⊆ Fpn ⇐⇒ m|n.

The algebraic closure of Fp can be shown to be

Fp =
⋃
n≥1

Fpn .

THEOREM C.1
Let Fp be the algebraic closure of Fp and let q = pn. Then

Fq = {α ∈ Fp |αq = α}.

PROOF The group F×
q of nonzero elements of Fq forms a group of order

q − 1, so αq−1 = 1 when 0 �= α ∈ Fq. Therefore, αq = α for all α ∈ Fq.
Recall that a polynomial g(X) has multiple roots if and only if g(X) and

g′(X) have a common root. Since

d

dX
(Xq − X) = qXq−1 − 1 = −1

(since q = pn = 0 in Fp), the polynomial Xq − X has no multiple roots.
Therefore, there are q distinct α ∈ Fp such that αq = α.

Since both sets in the statement of the theorem have q elements and one is
contained in the other, they are equal.

Define the q-th power Frobenius automorphism φq of Fq by the formula

φq(x) = xq for all x ∈ Fq.

PROPOSITION C.2
Let q be a power of the prime p.

1. Fq = Fp.
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2. φq is an automorphism of Fq. In particular,

φq(x + y) = φq(x) + φq(y), φq(xy) = φq(x)φq(y)

for all x, y ∈ Fq.

3. Let α ∈ Fq. Then

α ∈ Fqn ⇐⇒ φn
q (α) = α.

PROOF Part (1) is a special case of a more general fact: If K ⊆ L and
every element of L is algebraic over K, then L = K. This can be proved
as follows. If α is algebraic over L and L is algebraic over K, then a basic
property of algebraicity is that α is then algebraic over K. Therefore, L is
algebraic over K and is algebraically closed. Therefore, it is an algebraic
closure of K.

Part (3) is just a restatement of Theorem C.1, with qn in place of q.
We now prove part (2). If 1 ≤ j ≤ p − 1, the binomial coefficient

(
p
j

)
has a

factor of p in its numerator that is not canceled by the denominator, so(
p

j

)
≡ 0 (mod p).

Therefore,

(x + y)p = xp +
(

p

1

)
xp−1y +

(
p

2

)
xp−2y2 + · · · + yp

= xp + yp

since we are working in characteristic p. An easy induction yields that

(x + y)pn

= xpn

+ ypn

for all x, y ∈ Fp. This implies that φq(x + y) = φq(x) + φq(y). The fact
that φq(xy) = φq(x)φq(y) is clear. This proves that φq is a homomorphism
of fields. Since a homomorphism of fields is automatically injective (see the
discussion preceding Proposition C.5), it remains to prove that φq is surjective.
If α ∈ Fp, then α ∈ Fqn for some n, so φn

q (α) = α. Therefore, α is in the
image of φq, so φq is surjective. Therefore, φq is an automorphism.

In Appendix A, it was pointed out that F×
p = Z×

p is a cyclic group, gener-
ated by a primitive root. More generally, it can be shown that F×

q is a cyclic
group. A useful consequence is the following.

PROPOSITION C.3
Let m be a positive integer with p � m and let μm be the group of mth roots of
unity. Then

μm ⊆ F×
q ⇐⇒ m|q − 1.
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PROOF By Lagrange’s theorem (see Appendix B), if μm ⊆ F×
q , then

m|q − 1. Conversely, suppose m|q − 1. Since F×
q is cyclic of order q − 1, it

has a subgroup of order m (see Appendix B). By Lagrange’s theorem, the
elements of this subgroup must satisfy xm = 1, hence they must be the m
elements of μm.

Let Fq ⊆ Fqn be finite fields. We can regard Fqn as a vector space of
dimension n over Fq. This means that there is a basis {β1, . . . , βn} of elements
of Fqn such that every element of Fqn has a unique expression of the form

a1β1 + · · · + anβn

with a1, . . . , an ∈ Fq. The next result says that it is possible to choose a basis
of a particularly nice form, sometimes called a normal basis.

PROPOSITION C.4
There exists β ∈ Fqn such that

{β, φq(β), . . . , φn−1
q (β)}

is a basis of Fqn as a vector space over Fq.

An advantage of a normal basis is that the qth power map becomes a shift
operator on the coordinates: Let

x = a1β + a2φq(β) + · · · + anφn−1
q (β),

with ai ∈ Fq. Then aq
i = ai and φn

q (β) = β, so

xq = a1β
q + a2φq(βq) + · · · + anφn−1

q (βq)

= anφn
q (β) + a1φq(β) + · · · + an−1φ

n−1
q (β)

= anβ + a1φq(β) + · · · + an−1φ
n−1
q (β).

Therefore, if x has coordinates (a1, . . . , an) with respect to the normal basis,
then xq has coordinates (an, a1, . . . , an−1). Therefore, the computation of
qth powers is very fast and requires no calculation in Fqn . This has great
computational advantages.

Embeddings and automorphisms

Let K be a field of characteristic 0, so Q ⊆ K. An element α ∈ K is
called transcendental if it is not the root of any nonzero polynomial with
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rational coefficients, that is, if it is not algebraic over Q. A set of elements S =
{αi} ⊆ K (with i running through some (possibly infinite) index set I) is called
algebraically dependent if there are n distinct elements α1, . . . , αn of S, for
some n ≥ 1, and a nonzero polynomial f(X1, . . . , Xn) with rational coefficients
such that f(α1, . . . , αn) = 0. The set S is called algebraically independent
if it is not algebraically dependent. This means that there is no polynomial
relation among the elements of S. A maximal algebraically independent subset
of K is called a transcendence basis of K. The transcendence degree
of K over Q is the cardinality of a transcendence basis (the cardinality is
independent of the choice of transcendence basis). If every element of K
is algebraic over Q, then the transcendence degree is 0. The transcendence
degree of C over Q is infinite, in fact, uncountably infinite.

Let K be a field of characteristic 0, and choose a transcendence basis S. Let
F be the field generated by Q and the elements of S. The maximality of S
implies that every element of K is algebraic over F . Therefore, K can be ob-
tained by starting with Q, adjoining algebraically independent transcendental
elements, then making an algebraic extension.

Let K and L be fields and let f : K → L be a homomorphism of fields. We
always assume f maps 1 ∈ K to 1 ∈ L. Then f is injective. One way to see
this is to note that if 0 �= x ∈ K, then 1 = f(x)f(x−1) = f(x)f(x)−1; since
f(x) has a multiplicative inverse, it cannot be 0.

The following result is very useful. It is proved using Zorn’s Lemma (see
[71]).

PROPOSITION C.5
Let K and L be fields. Assume that L is algebraically closed and that there

is a field homomorphism
f : K −→ L.

Then there is a homomorphism f̃ : K → L such that f̃ restricted to K is f .

Proposition C.5 has the following nice consequence.

COROLLARY C.6
Let K be a field of characteristic 0. Assume that K has finite transcendence
degree over Q. Then there is a homomorphism K → C. Therefore, K can be
regarded as a subfield of C.

PROOF Choose a transcendence basis S = {α1, . . . , αn} of K and let F be
the field generated by Q and S. Since C has uncountable transcendence degree
over Q, we can choose n algebraically independent elements τ1, . . . , τn ∈ C.
Define f : F → C by making f the identity map on Q and setting f(αj) = τj

for all j. The proposition says that f can be extended to f̃ : F → C. Since
K is an algebraic extension of F , we have K ⊆ F . Restricting f̃ to K yields
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the desired homomorphism from K → C. Since a homomorphism of fields is
injective, K is isomorphic to its image under this homomorphism. Therefore,
K is isomorphic to a subfield of C.

The proposition also holds, with a similar proof, if the transcendence degree
of K is at most the cardinality of the real numbers, which is the cardinality
of a transcendence basis of C.

If α ∈ C is algebraic over Q, then f(α) = 0 for some nonzero polynomial
with rational coefficients. Let Aut(C) be the set of field automorphisms of
C and let σ ∈ Aut(C). Then σ(1) = 1, from which it follows that σ is the
identity on Q. Therefore,

0 = σ(f(α)) = f(σ(α)),

so σ(α) is one of the finitely many roots of f(X). The next result gives a
converse to this fact.

PROPOSITION C.7
Let α ∈ C. If the set

{σ(α) |σ ∈ Aut(C)},
where σ runs through all automorphisms of C, is finite, then α is algebraic
over Q.

PROOF Suppose α is transcendental. There is a transcendence basis S of
C with α ∈ S. Then C is algebraic over the field F generated by Q and S.

The map

σ : F −→ F

α �−→ α + 1
β �−→ β when β ∈ S, β �= α

defines an automorphism of F . By Proposition C.5, σ can be extended to
a map σ̃ : C → C. We want to show that σ̃ is an automorphism, which
means that we must show that σ̃ is surjective. Let y ∈ C. Since y is algebraic
over F , there is a nonzero polynomial g(X) with coefficients in F such that
g(y) = 0. Let gσ−1

denote the result of applying σ−1 to all of the coefficients
of g (note that we know σ−1 exists on F because we already know that σ is
an automorphism of F ). For any root r of gσ−1

, we have

0 = σ̃
(
gσ−1

(r)
)

= g(σ̃(r)).

Therefore, σ̃ maps the roots of gσ−1
to roots of g. Since the two polynomials

have the same number of roots, σ̃ gives a bijection between the two sets of
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roots. In particular, σ̃(r) = y for some r. Therefore, y is in the image of σ̃.
This proves that σ̃ is surjective, so σ̃ is an automorphism of C.

Since
σ̃j(α) = α + j,

the set of images of α under automorphisms of C is infinite, in contradiction
to our assumption. Therefore, α cannot be transcendental, hence must be
algebraic.

REMARK C.8 In Proposition C.7, the assumption that the set is finite
can be changed to assuming that the set is countable, with essentially the
same proof. Namely, if α is transcendental, then, for any γ ∈ S, there is an
automorphism σ satisfying σ(α) = α + γ. The fact that S is uncountable
yields the result.
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Appendix D
Computer Packages

There are several computer algebra packages available that do calculations
on elliptic curves. In this appendix, we give a brief introduction to three of
the major packages. Rather than give explanations of the structure of these
packages, we simply include some examples of some computations that can
be performed with them. The reader should consult the documentation that
is available online or with the packages to see numerous other possibilities.

D.1 Pari

Pari/GP is a free computer algebra system for number theory calculations.
It can be downloaded from http://pari.math.u-bordeaux.fr/.

Here is a transcript of a session, with commentary.

GP/PARI CALCULATOR Version 2.3.0 (released)
i686 running linux (ix86 kernel) 32-bit version

compiled: Aug 16 2007, gcc-3.4.4 20050721 (Red Hat 3.4.4-2)
(readline v4.3 enabled [was v5.0 in Configure], extended help

available)
Copyright (C) 2000-2006 The PARI Group

PARI/GP is free software, covered by the GNU General Public
License, and comes WITHOUT ANY WARRANTY WHATSOEVER.
Type ? for help, \q to quit. Type ?12 for how to get moral
(and possibly technical) support.
parisize = 4000000, primelimit = 500000

First, we need to enter and initialize an elliptic curve. Let [a1, a2, a3, a4, a6]
be the coefficients for the curve in generalized Weierstrass form. Start with
the curve of Example 9.3: E1 : y2 = x3 − 58347x + 3954150.
? e1=ellinit([0,0,0,-58347,3954150])
%1 = [0, 0, 0, -58347, 3954150, 0, -116694, 15816600,

489
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-3404372409, 2800656, -3416385600, 5958184124547072,
10091699281/2737152, [195.1547871847901607239497645,
75.00000000000000000000000000, -270.1547871847901607239497645],
0.1986024692687475355260042188, 0.1567132675477145982613047883*I,
-6.855899811988574944063544705, -21.22835194662770142565252843*I,
0.03112364190214999895971387115]

The output contains several parameters for the curve (type ?ellinit to
see an explanation). For example, the periods ω1 = i0.156713 . . . and ω2 =
0.198602 . . . are entries. The j-invariant is the 13th entry:

? e1[13]
%2 = 10091699281/2737152

Here is the curve E2 : y2 = x3 + 73:

? e2=ellinit([0,0,0,0,73])
%3 = [0, 0, 0, 0, 73, 0, 0, 292, 0, 0, -63072, -2302128, 0,
[-4.179339196381231892056376349, 2.089669598190615946028188174
+ 3.619413915098187674530455654*I, 2.089669598190615946028188174
-3.619413915098187674530455654*I], 2.057651708004923756251055780,
-1.028825854002461878125527890+0.5939928837575679811100134634*I,
-2.644469941892436553395125300, 1.322234970946218276697562650
-2.290178149223208371431388983*I, 1.222230471806529890431614914]

We can add the points (2, 9) and (3, 10), which lie on the curve:

? elladd(e2,[2,9],[3,10])
%4 = [-4, -3]

We can compute the 3rd multiple of (2, 9):

? ellpow(e2,[2,9],3)
%5 = [5111/625, -389016/15625]

The torsion subgroup of the Mordell-Weil group can be computed:

? elltors(e1)
%6 = [10, [10], [[3, 1944]]]
? elltors(e2)
%7 = [1, [], []]

The first output says that the torsion subgroup of E1(Q) has order 10, it
is cyclic of order 10, and it is generated by the point (3, 1944). The second
output says that the torsion subgroup of E2(Q) is trivial.

The number of points on an elliptic curve mod a prime p has the form
p + 1 − ap. The value of a13 for E1 is computed as follows:

? ellap(e1,13)
%8 = 4

Therefore, there are 13 + 1 − 4 = 10 points on E1 mod 13.
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We can also compute with curves mod p. Let’s consider E3 : y2 = x3 +
10x + 5 (mod 13) (this is the reduction of E1 mod 13):
? e3=ellinit([0,0,0,Mod(10,13),Mod(5,13)])
%9 = [0, 0, 0, Mod(10, 13), Mod(5, 13), 0, Mod(7, 13),
Mod(7, 13), Mod(4, 13), Mod(1, 13), Mod(9, 13), Mod(2, 13),
Mod(7, 13), 0, 0, 0, 0, 0, 0]

Multiples of points can be computed as before:
? ellpow(e3,[Mod(3,13),Mod(7,13)],10)
%10 = [0]
? ellpow(e3,[Mod(3,13),Mod(7,13)],5)
%11 = [Mod(10, 13), Mod(0, 13)]

The first output means that the 10th multiple of the point is ∞.
The height pairing can be computed. For example, on E2 the pairing

〈(2, 9), (3, 10)〉 from Example 8.11 is computed as follows:
? ellbil(e2,[2,9],[3,10])
%12 = -0.9770434128038324411625933747

Pari works with the complex functions associated to an elliptic curve. For
example, the value of j((1 +

√−171)/2) (see the beginning of Section 10.4) is
computed as follows:
? ellj((1+sqrt(-171))/2)
%13 = -694282057876536664.0122886865 + 0.0000000003565219231*I

We know the value should be real. To increase the precision to 60 digits,
type:
? \p 60
realprecision = 67 significant digits (60 digits displayed)

Now, retype the previous command:
? ellj((1+sqrt(-171))/2)
%14 = -694282057876536664.0122886867083074260443674536412446626
29851 - 7.05609883 E-49*I

The imaginary part of the answer is less than 10−48.
To find other functions that are available, type ?. To find the functions

that relate to elliptic curves, type ?5. To find how to use a command, for
example elladd, type
?elladd
elladd(e,z1,z2): sum of the points z1 and z2 on elliptic
curve e.

To quit, type
? \q
Goodbye!
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D.2 Magma

Magma is a large computer algebra package. It requires a license to use.
It is available on some institutional computers. For general information, see
http://magma.maths.usyd.edu.au/magma/.

The following is the transcript of a session, with commentary.
The session starts:

Magma V2.11-14 Thu Nov 1 2007 15:48:04 [Seed = 3635786414]
Type ? for help. Type <Ctrl>-D to quit.

Let’s enter the elliptic curve E1 : y2 = x3 − 58447x + 3954150 of Example
9.3. The vector represents the coefficients [a1, a2, a3, a4, a6] in generalized
Weierstrass form. Unless otherwise specified, the curve is over the rational
numbers.
> E1:= EllipticCurve( [ 0, 0, 0, -58347, 3954150 ]);

Note that the line needs to end with a semicolon. To find out what E1 is:
> E1;
Elliptic Curve defined by yˆ2 = xˆ3 - 58347*x + 3954150 over
Rational Field

Let’s also define E2 : y2 = x3 + 73. Here we use the shortened form of the
coefficient vector [a4, a6] corresponding to (nongeneralized) Weierstrass form.
> E2:= EllipticCurve( [ 0, 73 ]);

Let’s add the points (2, 9) and (3, 10) on E2. The notation E2![2,9] spec-
ifies that [2, 9] lives on E2, rather than in some other set.
> E2![2,9] + E2![3, 10];
(-4 : -3 : 1)

Note that the answer is in projective coordinates. We could have done the
computation with one or both points in projective coordinates. For example:
> E2![2,9] + E2![3, 10, 1];
(-4 : -3 : 1)

The identity element of E2 is
> E2!0;
(0 : 1 : 0)

We can also define a point using :=

> S:= E2![2,9] + E2![3, 10];

To find out what S is:
> S;
(-4 : -3 : 1)

The computer remembers that S lies on E2, so we can add it to another
point on E2:

© 2008 by Taylor & Francis Group, LLC



SECTION D.2 MAGMA 493

> S + E2![2, 9];
(6 : -17 : 1)

To find the 3rd multiple of the point (2, 9) on E2:

> 3*E2![2,9];
(5111/625 : -389016/15625 : 1)

To find the torsion subgroup of E1(Q):

> TorsionSubgroup(E1);
Abelian Group isomorphic to Z/10
Defined on 1 generator
Relations:
10*$.1 = 0

Note that we obtained only an abstract group, not the points. To get the
points, we define a group G and an isomorphism f from G to the set of points:

> G, f:= TorsionSubgroup(E1);

To obtain the first element of G, type:

> f(G.1);
(3 : 1944 : 1)

This is a torsion point in E1(Q).
Let’s reduce E1 mod 13. Define F to be the field with 13 elements and E3

to be E1 mod 13:

> F:= GF(13);
> E3:= ChangeRing( E1, F );
> E3; Elliptic Curve defined by yˆ2 = xˆ3 +10*x + 5 over GF(13)

The last command was not needed. It simply identified the nature of E3.
We also could have defined a curve over F13. The command F!10 puts 10
into F13, which forces everything else, for example 5, to be in F13:

> E4:= EllipticCurve( [F!10, 5]);
> E4;
Elliptic Curve defined by yˆ2 = xˆ3 +10*x + 5 over GF(13)
> E3 eq E4;
true

The last command asked whether E3 is the same as E4. The answer was
yes.

We can find out how many points there are in E3(F13), or we can list all
the points:

> #E3;
10
> Points(E3);
{@ (0 : 1 : 0), (1 : 4 : 1), (1 : 9 : 1), (3 : 6 : 1),
(3 : 7 : 1), (8 : 5 : 1), (8 : 8 : 1), (10 : 0 : 1),
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(11 : 4 : 1), (11 : 9 : 1) @}
The @’s in the last output specifies that the entries are a set indexed by

positive integers.
Let’s compute the Weil pairing e3((0, 3), (5, 1)) on the curve E5 : y2 = x2+2

over F7, as in Example 11.5.
> E5:= EllipticCurve([0, GF(7)!2]);

> WeilPairing( E5![0,3], E5![5,1], 3);
4

The answer is 4, which is a cube root of unity in F7. Note that this is the
inverse of the Weil pairing used elsewhere in this book (cf. Remark 11.11).

We can compute the Mordell-Weil group E2(Q):
> MordellWeilGroup(E2);
Abelian Group isomorphic to Z + Z
Defined on 2 generators (free)
> Generators(E2);
[ (2 : 9 : 1), (-4 : 3 : 1) ]

To find a command that computes, for example, Mordell-Weil groups, type
?MordellWeil or ?Mordell to get an example or a list of examples.

To quit Magma, type
<Ctrl>D

For much more on Magma, go to
http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm
For elliptic curves, click on the Arithmetic Geometry link.

D.3 SAGE

Sage is an open source computer algebra package that can be downloaded
for free from www.sagemath.org/. For general information, see the web site,
which also contains a tutorial and documentation.

The following is the transcript of a session, with commentary.
The session starts:

Linux sage 2.6.17-12-386 #2 Sun Sep 23 22:54:19 UTC 2007 i686
The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in
the individual files in /usr/share/doc/*/copyright.
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

| SAGE Version 2.8.8.1, Release Date: 2007-10-21 |
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| Type notebook() for the GUI, and license() for information. |

Let’s enter the elliptic curve E1 : y2 = x3 − 58447x + 3954150 of Example
9.3. The vector represents the coefficients [a1, a2, a3, a4, a6] in generalized
Weierstrass form. Unless otherwise specified, the curve is over the rational
numbers.
sage: E1 = EllipticCurve([ 0, 0, 0, -58347, 3954150 ])

To find out what E1 is:
sage: E1
Elliptic Curve defined by yˆ2 = xˆ3 - 58347*x + 3954150 over
Rational Field

Let’s also define E2 : y2 = x3 + 73. Here we use the shortened form of the
coefficient vector [a4, a6] corresponding to (nongeneralized) Weierstrass form.
sage: E2 = EllipticCurve([ 0, 73 ]);

Let’s add the points (2, 9) and (3, 10) on E2:
sage: E2([2,9]) + E2([3, 10])
(-4 : -3 : 1)

Note that the answer is in projective coordinates. We could have done the
computation with one or both points in projective coordinates. For example:
sage: E2([2,9]) + E2([3, 10, 1])
(-4 : -3 : 1)

The identity element of E2 is
sage: E2(0)
(0 : 1 : 0)

We can also define a point:
sage: S = E2([2,9]) + E2([3, 10])

To find out what S is:
sage: S
(-4 : -3 : 1)

The computer remembers that S lies on E2, so we can add it to another
point on E2:
sage: S + E2([2, 9])
(6 : -17 : 1)

To find the 3rd multiple of the point (2, 9) on E2:
sage: 3*E2([2,9])
(5111/625 : -389016/15625 : 1)

To find the torsion subgroup of E1(Q):
sage: E1.torsion subgroup()
Torsion Subgroup isomorphic to Multiplicative Abelian Group

© 2008 by Taylor & Francis Group, LLC



496 APPENDIX D COMPUTER PACKAGES

isomorphic to C10 associated to the Elliptic Curve defined by
y2= x3- 58347*x + 3954150 over Rational Field

C10 denotes the cyclic group of order 10. To get a generator:
sage: E1.torsion subgroup().gen()
(3 : 1944 : 1)

The number of points on an elliptic curve mod a prime p has the form
p + 1 − ap. The value of a13 for E1 is computed as follows:
sage: E1.ap(13)
4

Therefore, there are 13 + 1 − 4 = 10 points on E1 mod 13.
Let’s reduce E1 mod 13:

sage: E3 = E2.change ring(GF(13))
sage: E3
Elliptic Curve defined by yˆ2 = xˆ3 +10*x + 5
over Finite Field of size 13

The last command was not needed. It simply identified the nature of E3.
We also could have defined a curve over F13.

sage: E4 = EllipticCurve(GF(13), [10, 5])
sage: E4
Elliptic Curve defined by yˆ2 = xˆ3 +10*x + 5
over Finite Field of size 13
sage: E3 is E4
True

The last command asked whether E3 is the same as E4. The answer was
yes.

We can find out how many points there are in E3(F13), or we can list all
the points:

sage: E3.cardinality()
10
sage: E3.points()
[(0 : 1 : 0),
(11 : 4 : 1),
(8 : 5 : 1),
(1 : 4 : 1),
(10 : 0 : 1),
(1 : 9 : 1),
(3 : 6 : 1),
(8 : 8 : 1),
(11 : 9 : 1),
(3 : 7 : 1)]

Consider the curve E5 : y2 = x3 − 1 over F229, as in Example 4.10. We can
compute its group structure:
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sage: EllipticCurve(GF(229),[0,-1]).abelian group()
(Multiplicative Abelian Group isomorphic to C42 x C6,
((62 : 25 : 1), (113 : 14 : 1)))

Therefore, E5(F229) � Z42 ⊕ Z6, and it has the listed generators.
Let’s compute the rank and generators of the Mordell-Weil group E2(Q):

sage: E2.rank()
2
sage: E2.gens()
[(-4 : 3 : 1),(2: 9 : 1)]

The generators are the generators of the nontorsion part. The command
does not yield generators of the torsion subgroup. For these, use the command
E.torsion subgroup().gen() used previously.

To find the periods ω1 and ω2 of E1:
sage: E1.period lattice.0
0.1986024692687475355260042188...
sage: E1.period lattice.1
0.1567132675477145982613047883...*I

The j-invariant of E1 is
sage: E1.j invariant()
10091699281/2737152

To find a list of commands that start with a given string of letters, type
those letters and then press the “Tab” key:
sage: Ell (‘Tab’)
Ellipsis EllipticCurve from c4c6
EllipticCurve EllipticCurve from cubic

To find out about the command EllipticCurve, type
sage: EllipticCurve?

The output is a description with some examples.
For more on SAGE, go to http://www.sagemath.org.
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original, Kanô Memorial Lectures, 1.

[109] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1986.

[110] J. H. Silverman. The difference between the Weil height and the canon-
ical height on elliptic curves. Math. Comp., 55(192):723–743, 1990.

© 2008 by Taylor & Francis Group, LLC



REFERENCES 507

[111] J. H. Silverman. Advanced topics in the arithmetic of elliptic curves,
volume 151 of Graduate Texts in Mathematics. Springer-Verlag, New
York, 1994.

[112] J. H. Silverman. The xedni calculus and the elliptic curve discrete
logarithm problem. Des. Codes Cryptogr., 20(1):5–40, 2000.

[113] J. H. Silverman and J. Suzuki. Elliptic curve discrete logarithms and the
index calculus. In Advances in cryptology—ASIACRYPT ’98 (Beijing,
China), volume 1514 of Lecture Notes in Comput. Sci., pages 110–125.
Springer-Verlag, Berlin, 1998.

[114] J. H. Silverman and J. Tate. Rational points on elliptic curves. Under-
graduate Texts in Mathematics. Springer-Verlag, New York, 1992.

[115] N. P. Smart. The discrete logarithm problem on elliptic curves of trace
one. J. Cryptology, 12(3):193–196, 1999.

[116] J. Tate. The arithmetic of elliptic curves. Invent. Math., 23:179–206,
1974.

[117] J. Tate. Algorithm for determining the type of a singular fiber in an
elliptic pencil. In Modular functions of one variable, IV (Proc. Internat.
Summer School, Univ. Antwerp, Antwerp, 1972), pages 33–52. Lecture
Notes in Math., Vol. 476. Springer-Verlag, Berlin, 1975.

[118] R. Taylor and A. Wiles. Ring-theoretic properties of certain Hecke
algebras. Ann. of Math. (2), 141(3):553–572, 1995.

[119] E. Teske. Speeding up Pollard’s rho method for computing discrete log-
arithms. In Algorithmic number theory (Portland, OR, 1998), volume
1423 of Lecture Notes in Comput. Sci., pages 541–554. Springer-Verlag,
Berlin, 1998.

[120] N. Thériault. Index calculus attack for hyperelliptic curves of small
genus. Advances in cryptology —ASIACRYPT 2003, volume 2894 of
Lecture Notes in Comput. Sci., pages 75–92. Springer-Verlag, Berlin,
2003.

[121] W. Trappe and L. Washington. Introduction to cryptography with coding
theory, (2nd ed.). Prentice Hall, Upper Saddle River, NJ, 2006.

[122] J. B. Tunnell. A classical Diophantine problem and modular forms of
weight 3/2. Invent. Math., 72(2):323–334, 1983.
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