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Preface to the Second Edition

In the preface to the first edition of this book I remarked on the paucity of intro-
ductory texts devoted to the arithmetic of elliptic curves. That unfortunate state of
affairs has long since been remedied with the publication of many volumes, among
which may be mentioned books by Cassels [43], Cremona [54], Husemdller [118],
Knapp [127], McKean et. al [167], Milne [178], and Schmitt et. al [222] that high-
light the arithmetic and modular theory, and books by Blake et. al [22], Cohen et.
al [51], Hankerson et. al [107], and Washington [304] that concentrate on the use of
elliptic curves in cryptography. However, even among this cornucopia of literature, I
hope that this updated version of the original text will continue to be useful.

The past two decades have witnessed tremendous progress in the study of elliptic
curves. Among the many highlights are the proof by Merel [170] of uniform bound-
edness for torsion points on elliptic curves over number fields, results of Rubin [215]
and Kolyvagin [130] on the finiteness of Shafarevich-Tate groups and on the con-
jecture of Birch and Swinnerton-Dyer, the work of Wiles [311] on the modularity of
elliptic curves, and the proof by Elkies [77] that there exist infinitely many supersin-
gular primes. Although this introductory volume is unable to include proofs of these
deep results, it will guide the reader along the beginning of the trail that ultimately
leads to these summits.

My primary goals in preparing this second edition, over and above the pedagog-
ical aims of the first edition, are the following:

e Update and expand results and references, especially in Appendix C, which
includes a new section on the variation of the trace of Frobenius.

e Add a chapter devoted to algorithmic aspects of elliptic curves, with an em-
phasis on those features that are used in cryptography.

e Add a section on Szpiro’s conjecture and the ABC conjecture.
e Correct, clarify, and simplify the proofs of some results.

e Correct numerous typographical and minor mathematical errors. However,
since this volume has been entirely retypeset, I beg the reader’s indulgence
for any new typos that have been introduced.

e Significantly expand the selection of exercises.

It has been gratifying to see the first edition of this book become a standard
text and reference in the subject. In order to maintain backward compatibility of
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cross-references, I have taken some care to leave the numbering system unchanged.
Thus Proposition II1.8.1 in the first edition remains Proposition II1.8.1 in the second
edition, and similarly for Exercise 3.5. New material has been assigned new numbers,
and although there are many new exercises, they have been appended to the exercises
from the first edition.

Electronic Resources: There are many computer packages that perform computa-
tions on elliptic curves. Of particular note are two free packages, Sage [275] and
Pari [202], each of which implements an extensive collection of elliptic curve algo-
rithms. For additional links to online elliptic curve resources, and for other material,
the reader is invited to visit the Arithmetic of Elliptic Curves home page at

www.math.brown.edu/” jhs/AECHome .html

No book is ever free from error or incapable of being improved. I would be
delighted to receive comments, positive or negative, and corrections from you, the
reader. You can send mail to me at

jhs@math.brown.edu

Acknowledgments for the Second Edition

Many people have sent me extensive comments and corrections since the appear-
ance of the first edition in 1986. To all of them, including in particular the following,
my deepest thanks: Jeffrey Achter, Andrew Bremner, Frank Calegari, Jesse Elliott,
Kirsten Eisentrdger, Xander Faber, Joe Fendel, W. Fensch, Alexandru Ghitza, Grigor
Grigorov, Robert Gross, Harald Helfgott, Franz Lemmermeyer, Dino Lorenzini,
Ronald van Luijk, David Masser, Martin Olsson, Chol Park, Bjorn Poonen, Michael
Reid, Michael Rosen, Jordan Risov, Robert Sarvis, Ed Schaefer, René Schoof, Nigel
Smart, Jeroen Spandaw, Douglas Squirrel, Katherine Stange, Sinan Unver, John
Voight, Jiangiang Zhao, Michael Zieve.

Providence, Rhode Island JOSEPH H. SILVERMAN
November, 2008



Preface to the First Edition

The preface to a textbook frequently contains the author’s justification for offering
the public “another book™ on a given subject. For our chosen topic, the arithmetic of
elliptic curves, there is little need for such an apologia. Considering the vast amount
of research currently being done in this area, the paucity of introductory texts is
somewhat surprising. Parts of the theory are contained in various books of Lang,
especially [135] and [140], and there are books of Koblitz [129] and Robert [210]
(the latter now out of print) that concentrate on the analytic and modular theory.
In addition, there are survey articles by Cassels [41], which is really a short book,
and Tate [289], which is beautifully written, but includes no proofs. Thus the author
hopes that this volume fills a real need, both for the serious student who wishes to
learn basic facts about the arithmetic of elliptic curves and for the research mathe-
matician who needs a reference source for those same basic facts.

Our approach is more algebraic than that taken in, say, [135] or [140], where
many of the basic theorems are derived using complex analytic methods and the Lef-
schetz principle. For this reason, we have had to rely somewhat more on techniques
from algebraic geometry. However, the geometry of (smooth) curves, which is es-
sentially all that we use, does not require a great deal of machinery. And the small
price paid in learning a little bit of algebraic geometry is amply repaid in a unity of
exposition that, to the author, seems to be lacking when one makes extensive use of
either the Lefschetz principle or lengthy, albeit elementary, calculations with explicit
polynomial equations.

This last point is worth amplifying. It has been the author’s experience that “ele-
mentary” proofs requiring page after page of algebra tend to be quite uninstructive.
A student may be able to verify such a proof, line by line, and at the end will agree
that the proof is complete. But little true understanding results from such a proce-
dure. In this book, our policy is always to state when a result can be proven by such
an elementary calculation, indicate briefly how that calculation might be done, and
then to give a more enlightening proof that is based on general principles.

The basic (global) theorems in the arithmetic of elliptic curves are the Mordell—
Weil theorem, which is proven in Chapter VIII and analyzed more closely in Chap-
ter X, and Siegel’s theorem, which is proven in Chapter IX. The reader desiring to
reach these results fairly rapidly might take the following path:

T and II (briefly review), IIT (§§1-8), IV (§§1-6), V (§1)
VII (§§1-5), VIII (§§1-6), IX (§§1-7), X (§§1-6).

vii
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This material also makes a good one-semester course, possibly with some time left
at the end for special topics. The present volume is built around the notes for such
a course, taught by the author at M.I.T. during the spring term of 1983. Of course,
there are many other ways to structure a course. For example, one might include all
of chapters V and VI, skipping IX and, if pressed for time, X. Other important topics
in the arithmetic of elliptic curves, which do not appear in this volume due to time
and space limitations, are briefly discussed in Appendix C.

It is certainly true that some of the deepest results in the subject, such as Mazur’s
theorem bounding torsion over Q and Faltings’ proof of the isogeny conjecture, re-
quire many of the resources of modern “SGA-style” algebraic geometry. On the other
hand, one needs no machinery at all to write down the equation of an elliptic curve
and to do explicit computations with it; so there are many important theorems whose
proof requires nothing more than cleverness and hard work. Whether your inclination
leans toward heavy machinery or imaginative calculations, you will find much that
remains to be discovered in the arithmetic theory of elliptic curves. Happy Hunting!

Acknowledgements

In writing this book, I have consulted a great many sources. Citations have been
included for major theorems, but many results that are now considered “standard”
have been presented as such. In any case, I can claim no originality for any of the
unlabeled theorems in this book, and I apologize in advance to anyone who may
feel slighted. The excellent survey articles of Cassels [41] and Tate [289] served as
guidelines for organizing the material. (The reader is especially urged to peruse the
latter.) In addition to [41] and [289], other sources that were extensively consulted
include [135], [139], [186], [210], and [236].

It would not be possible to catalogue all of the mathematicians from whom I
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cially like to thank John Tate, Barry Mazur, Serge Lang, and the “Elliptic Curves
Seminar” group at Harvard (1977-1982), whose help and inspiration set me on the
road that led to this book. I would also like to thank David Rohrlich and Bill McCal-
lum for their careful reading of the original draft, Gary Cornell and the editorial staff
at Springer-Verlag for encouraging me to undertake this project in the first place,
and Ann Clee for her meticulous preparation of the manuscript. Finally, I would like
to thank my wife, Susan, for her patience and understanding through the turbulent
times during which this book was written, and also Deborah and Daniel, for provid-
ing much of the turbulence.
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September, 1985
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finiteness of the Shafarevich-Tate group (X.4.13), Ribet’s proof that the conjec-
ture of Shimuara—Taniyama—Weil (C.16.4) implies Fermat’s Last Theorem, and re-
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Introduction

The study of Diophantine equations, that is, the solution of polynomial equations
in integers or rational numbers, has a history stretching back to ancient Greece and
beyond. The term Diophantine geometry is of more recent origin and refers to the
study of Diophantine equations through a combination of techniques from algebraic
number theory and algebraic geometry. On the one hand, the problem of finding
integer and rational solutions to polynomial equations calls into play the tools of
algebraic number theory that describe the rings and fields wherein those solutions
lie. On the other hand, such a system of polynomial equations describes an algebraic
variety, which is a geometric object. It is the interplay between these two points of
view that is the subject of Diophantine geometry.
The simplest sort of equation is linear:

aX +bY =c, a,b,c €, aorb#0.

Such an equation always has rational solutions. It has integer solutions if and only if
the greatest common divisor of a and b divides ¢, and if this occurs, then we can find
all solutions using the Euclidean algorithm.

Next in order of difficulty come quadratic equations:

aX?+bXY +cY? +dX +eY + f =0, a,...,f€Z, a,borc#0.

They describe conic sections, and by a suitable change of coordinates with rational
coefficients, we can transform a given equation into one of the following forms:

AX? 4+ BY? =C ellipse,
AX? - BY?=C hyperbola,
AX +BY?=0 parabola.

For quadratic equations we have the following powerful theorem that aids in their
solution.

Hasse-Minkowski Theorem 0.1. ([232, IV Theorem 8]) Let f(X,Y) € Q[X,Y]
be a quadratic polynomial. The equation f(X,Y) = 0 has a solution (x,y) € Q?
if and only if it has a solution (x,y) € R? and a solution (x,y) € Qf] for every
prime p. (Here Q,, is the field of p-adic numbers.)

xvii



xviii Introduction

In other words, a quadratic polynomial has a solution in Q if and only if it has a
solution in every completion of Q. Hensel’s lemma says that checking for solutions
in Q, is more or less the same as checking for solutions in the finite field Z/pZ,
and this is turn is easily accomplished using quadratic reciprocity. We summarize
the steps that go into the Diophantine analysis of quadratic equations.

(1) Analyze the equations over finite fields [quadratic reciprocity].

(2) Use this information to study the equations over complete local fields Q,
[Hensel’s lemma]. (We must also analyze them over R.)

(3) Piece together the local information to obtain results for the global field Q
[Hasse principle].

Where does the geometry appear? Linear and quadratic equations in two vari-
ables define curves of genus zero. The above discussion says that we have a fairly
good understanding of the arithmetic of such curves. The next simplest case, namely
the arithmetic properties of curves of genus one (which are given by cubic equations
in two variables), is our object of study in this book. The arithmetic of these so-called
elliptic curves already presents complexities on which much current research is cen-
tered. Further, they provide a standard testing ground for conjectures and techniques
that can then be fruitfully applied to the study of curves of higher genus and (abelian)
varieties of higher dimension.

Briefly, the organization of this book is as follows. After two introductory chap-
ters giving basic material on algebraic geometry, we start by studying the geometry
of elliptic curves over algebraically closed fields (Chapter III). We then follow the
program outlined above and investigate the properties of elliptic curves over finite
fields (Chapter V), local fields (Chapters VI, VII), and global (number) fields (Chap-
ters VIII, IX, X). Our understanding of elliptic curves over finite and local fields
will be fairly satisfactory. However, it turns out that the analogue of the Hasse—
Minkowski theorem is false for polynomials of degree greater than 2. This means
that the transition from local to global is far more tenuous than in the degree 2 case.
We study this problem in some detail in Chapter X. Finally, in Chapter XI we in-
vestigate computational aspects of the theory of elliptic curves, especially those that
have become important in the field of cryptography.

The theory of elliptic curves is rich, varied, and amazingly vast. The original aim
of this book was to provide an essentially self-contained introduction to the basic
arithmetic properties of elliptic curves. Even such a limited goal proved to be too
ambitious. The material described above is approximately half of what the author
had hoped to include. The reader will find a brief discussion and list of references for
the omitted topics in Appendix C, about half of which are covered in the companion
volume [266] to this book.

Our other goal, that of being self-contained, has been more successful. We have,
of course, felt free to state results that every reader should know, even when the
proofs are far beyond the scope of this book. However, we have endeavored not to use
such results for making further deductions. There are three major exceptions to this
general policy. First, we do not prove that every elliptic curve over C is uniformized
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by elliptic functions (VI.5.1). This result fits most naturally into a discussion of mod-
ular functions, which is one of the omitted topics; it is covered [266, I §4] in the
companion volume. Second, we do not prove that over a complete local field, the
“nonsingular” points sit with finite index inside the set of all points (VIL.6.1). This
can be proven by quite explicit polynomial computations (cf. [283]), but they are
rather lengthy and have not been included for lack of space. (This result is proven in
the companion volume [266, IV §§8, 9].) Finally, in the study of integral points on
elliptic curves, we make use of Roth’s theorem (IX.1.4) without giving a proof. We
include a brief discussion of the proof in (IX §8), and the reader who wishes to see
the myriad details can proceed to one of the references listed there.

The prerequisites for reading this book are fairly modest. We assume that the
reader has had a first course in algebraic number theory, and thus is acquainted with
number fields, rings of integers, prime ideals, ramification, absolute values, comple-
tions, etc. The contents of any basic text on algebraic number theory, such as [142,
Part I] or [25], should more than suffice. Chapter VI, which deals with elliptic curves
over C, assumes a familiarity with the basic principles of complex analysis. In Chap-
ter X, we use a little bit of group cohomology, but just H° and H'. The reader will
find in Appendix B the cohomological facts needed to read Chapter X. Finally, since
our approach is mainly algebraic, there is the question of background material in al-
gebraic geometry. On the one hand, since much of the theory of elliptic curves can
be obtained through the use of explicit equations and calculations, we do not want to
require that the reader already know a great deal of algebraic geometry. On the other
hand, this being a book on number theory and not algebraic geometry, it would not
be reasonable to spend half the book developing from first principles the algebro-
geometric facts that we will use. As a compromise, the first two chapters give an
introduction to the algebraic geometry of varieties and curves, stating all of the facts
that we need, giving complete references, and providing enough proofs so that the
reader can gain a flavor for some of the basic techniques used in algebraic geometry.

Numerous exercises have been included at the end of each chapter. The reader
desiring to gain a real understanding of the subject is urged to attempt as many as
possible. Some of these exercises are (special cases of) results that have appeared
in the literature. A list of comments and citations for the exercises may be found on
page 461. Exercises with a single asterisk are somewhat more difficult, while two
asterisks signal an unsolved problem.

References

Bibliographical references are enclosed in square brackets, e.g., [289, Theorem 6].
Cross-references to theorems, propositions, lemmas, etc., are given in full with the
chapter roman numeral or appendix letter, e.g., (IV.3.1) and (B.2.1). Reference to
an exercise is given by the chapter number followed by the exercise number, e.g.,
Exercise 3.6.



XX Introduction

Standard Notation

Throughout this book, we use the symbols
Z, Q, R, C, Fy, and Z,

to denote the integers, rational numbers, real numbers, complex numbers, a field
with ¢ elements, and the /-adic integers, respectively. Further, if R is any ring,
then R* denotes the group of invertible elements of R, and if A is an abelian group,
then A[m] denotes the subgroup of A consisting of elements of order dividing m.
For a more complete list of notation, see page 467.



Chapter I

Algebraic Varieties

In this chapter we describe the basic objects that arise in the study of algebraic ge-
ometry. We set the following notation, which will be used throughout this book.

K aperfect field, i.e., every algebraic extension of K is separable.
K afixed algebraic closure of K.
Gg/x  the Galois group of K /K.

For this chapter, we also let m and n denote positive integers.

The assumption that K is a perfect field is made solely to simplify our exposition.
However, since our eventual goal is to do arithmetic, the field K will eventually be
taken to be an algebraic extension of Q, Q,, or IF,,. Thus this restriction on K need
not concern us unduly.

For a more extensive exposition of the basic concepts that appear in this chap-
ter, we refer the reader to any introductory book on algebraic geometry, such
as [95], [109], [111], or [243].

I.1 Affine Varieties

We begin our study of algebraic geometry with Cartesian (or affine) n-space and its
subsets defined by zeros of polynomials.

Definition. Affine n-space (over K) is the set of n-tuples
A" =A"K)={P=(21,...,2,) 1 7, € K}.
Similarly, the set of K -rational points of A™ is the set

AMK) = {P:(xl,...,xn) c A" x; EK}.

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 1
in Mathematics 106, DOI 10.1007/978-0-387-09494-6_1,
© Springer Science+Business Media, LLC 2009



2 I. Algebraic Varieties

Notice that the Galois group G /¢ acts on A"; foro € G/ and P € A",

P = (x9,...,279).

7 n

Then A™(K') may be characterized by

A"(K)={PeA": P? = Pforallo € Gk}

Let K[X] = K[Xi,...,X,] be a polynomial ring in n variables, and let
I C K[X] be an ideal. To each such I we associate a subset of A,

Vi={PeA": f(P)=0forall f €I}.

Definition. An (affine) algebraic set is any set of the form V7. If V' is an algebraic
set, the ideal of V' is given by

I(V)={feK[X]: f(P)=0forall PV}

An algebraic set is defined over K if its ideal I(V') can be generated by polynomials
in K[X]. We denote this by V/K. If V is defined over K, then the set of K -rational
points of V' is the set

V(K) =V nA"K).

Relpark 1.1. Note that by the Hilbert basis theorem [8, 7.6], [73, §1.4], all ideals
in K[X] and K[X] are finitely generated.

Remark 1.2. Let V be an algebraic set, and consider the ideal I(V/K) defined by
I(V/K)={f€eK[X]: f(P)=0forall P €V} =I(V)NK[X].
Then we see that V' is defined over K if and only if
I(V)=I(V/K)K[X].

Now suppose that V' is defined over K and let f1,..., f,, € K[X] be gener-
ators for I(V/K). Then V(K) is precisely the set of solutions (z1,...,z,) to the
simultaneous polynomial equations

f]_(X)::fm(X):O with z4,...,2, € K.

Thus one of the fundamental problems in the subject of Diophantine geometry,
namely the solution of polynomial equations in rational numbers, may be said to
be the problem of describing sets of the form V' (K) when K is a number field.

Notice that if f(X) € K[X]and P € A", then forany 0 € Gz,
f(P?) = f(P)°.

Hence if V' is defined over K, then the action of G'g /i on A" induces an action
on V, and clearly

V(K)={PeV:P°=Pforallo € Gg/}.
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Example 1.3.1. Let V be the algebraic set in A? given by the single equation
X?-Y?=1

Clearly V is defined over K for any field K. Let us assume that char(K) # 2. Then
the set V/(K) is in one-to-one correspondence with A*(K) \. {0}, one possible map
being

ANE) N A0} — V(K),

?+1 2 -1
t— , .
2t 2t

V:X"4+Y"=1

Example 1.3.2. The algebraic set

is defined over Q. Fermat’s last theorem, proven by Andrew Wiles in 1995 [291,
311], states that for all n > 3,

~J{@1,0),(0,1)} if n is odd,
r@= {{(117 0),(0,£1)} if niseven.

Example 1.3.3. The algebraic set
ViyYi=X?4+17

has many QQ-rational points, for example

137 2651
(=2,3)  (5234,378661) (64512>
In fact, the set V(Q) is infinite. See (1.2.8) and (II1.2.4) for further discussion of this
example.

Definition. An affine algebraic set V' is called an (affine) variety if I(V) is a
prime ideal in K[X]. Note that if V is defined over K, it is not enough to check
that I(V/K) is prime in K[X]. For example, consider the ideal (X7 —2X23) in
Q[X1, X1

Let V/K be a variety, i.e., V is a variety defined over K. Then the affine coordi-
nate ring of V/ K is defined by

K[X]

V1= 1w7xy

The ring K'[V] is an integral domain. Its quotient field (field of fractions) is denoted
by K(V') and is called the function field of V/K. Similarly K[V] and K (V) are
defined by replacing K with K.
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Note that since an element f € K[V] is well-defined up to adding a polynomial
vanishing on V, it induces a well-defined function f : V' — K. If f(X) € K[X] is
any polynomial, then Gz acts on f by acting on its coefficients. Hence if V' is
defined over K, so G'g /i takes I(V') into itself, then we obtain an action of G
on K[V] and K (V). One can check (Exercise 1.12) that K[V] and K (V') are, re-
spectively, the subsets of K[V] and K (V) fixed by G /K- We denote the action
of o € Gk on fby f— f7. Then forall points P € V,

(f(P))” = f7(P7).

Definition. Let V' be a variety. The dimension of V', denoted by dim(V), is the
transcendence degree of K (V') over K.

Example 1.4. The dimension of A" is n, since K(A") = K(X1,...,X,). Simi-
larly, if V' C A™ is given by a single nonconstant polynomial equation

f(Xy,...,X,) =0,

then dim(V') = n — 1. (The converse is also true; see [111, [.1.2].) In particular, the
examples described in (I.1.3.1), (I.1.3.2), and (I.1.3.3) all have dimension one.

In studying a geometric object, we are naturally interested in whether it looks
reasonably “smooth.” The next definition formalizes this notion in terms of the usual
Jacobian criterion for the existence of a tangent plane.

Definition. Let V be a variety, P € V, and f1,..., f,, € K[X] a set of generators
for I(V'). Then V' is nonsingular (or smooth) at P if the m x n matrix

Ofi
(an (P)>1<i<m

1<5<n

has rank n — dim(V'). If V' is nonsingular at every point, then we say that V' is
nonsingular (or smooth).

Example 1.5. Let V' be given by a single nonconstant polynomial equation
f(X1,...,X,) =0.
Then (I.1.4) tells us that dim(V) = n —1, so P € V is a singular point if and only if

Of o _0f
o, P == o,

(P) = 0.

Since P also satisfies f(P) = 0, this gives n + 1 equations for the n coordinates of
any singular point. Thus for a “randomly chosen” polynomial f, one would expect V'
to be nonsingular. We will not pursue this idea further, but see Exercise 1.1.
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2 =2%+a Y2 = 2° + 22

Figure 1.1: A smooth curve and a singular curve.

Example 1.6. Consider the two varieties
Vi:Y?2=X+X and Vo:Y?=X?4X2
Using (I.1.5), we see that any singular points on V; and V5 satisfy, respectively,
Vi .3X241=2Y =0 and  Vy":3X%42X =2Y =0.

Thus V] is nonsingular, while V5 has one singular point, namely (0, 0). The graphs
of V1(R) and V5 (R) illustrate the difference; see Figure 1.1.

There is another characterization of smoothness, in terms of the functions on the
variety V/, that is often quite useful. For each point P € V, we define an ideal Mp
of K[V] by

Mp ={f € K[V]: f(P)=0}.

Notice that M p is a maximal ideal, since there is an isomorphism
K|V]/Mp — K givenby f+— f(P).
The quotient M, /M?3 is a finite-dimensional K -vector space.
Proposition 1.7. Let V' be a variety. A point P € V is nonsingular if and only if
dimg Mp/M3 = dim V.
PROOF. [111,1.5.1]. (See Exercise 1.3 for a special case.) ]

Example 1.8. Consider the point P = (0, 0) on the varieties V; and V5 of (1.1.6).
In both cases, Mp is the ideal of K[V'] generated by X and Y, and MI% is the ideal
generated by X2, XY, and Y. For V; we have

X=Y*-X*=0 (mod M3),

so M /M?3 is generated by Y alone. On the other hand, for V5 there is no nontrivial
relationship between X and Y modulo M3, so M p/M#% requires both X and Y as
generators. Since each V; has dimension one, (I.1.7) implies that V; is smooth at P
and V5 is not.
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Definition. The local ring of V at P, denoted by K [V]p, is the localization of K[V]
at Mp. In other words,

K|V]p={F e K(V): F= f/gforsome f,g € K[V] with g(P) # 0}.

Notice that if F = f/g € K[V]p, then F(P) = f(P)/g(P) is well-defined. The
functions in K [V]p are said to be regular (or defined) at P.

I.2 Projective Varieties

Historically, projective space arose through the process of adding “points at infinity”
to affine space. We define projective space to be the collection of lines through the
origin in affine space of one dimension higher.

Definition. Projective n-space (over K), denoted by P™ or P (K), is the set of all
(n + 1)-tuples
(zg,...,2,) € A"T!

such that at least one x; is nonzero, modulo the equivalence relation

(x()a-“axn) ~ (yOy-”ayn)
if there exists a A € K* such that z; = Ay; for all 2. An equivalence class
{(Azo,..., Azy) : A € K*}

is denoted by [z, ..., x,], and the individual zy, ..., z, are called homogeneous
coordinates for the corresponding point in P”. The set of K-rational points in P™ is
the set

P*"(K) = {[xo, coxp] EPMrallx; € K}.

Remark 2.1. Note that if P = [zq,...,2z,] € P"(K), it does not follow that
each z; € K. However, choosing some ¢ with ; # 0, it does follow that x; /z; € K
for every j.

Definition. Let P = [zg,...,z,] € P"(K). The minimal field of definition for P
(over K) is the field

K(P)=K(xo/x4,...,xn/2;) foranyiwithx; # 0.

The Galois group G /¢ acts on P™ by acting on homogeneous coordinates,

[0y ... 0] = [2],..., 2]
This action is well-defined, independent of choice of homogeneous coordinates,
since

Azo,..., Ax,]|7 = [A92F,..., %20 = [z],...,x0].

It is not difficult to check that
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P"(K)={PeP"': P’ =Pforallo € GR/K}»
and that

K(P) = fixed field of {0 € G : P7 = P};
see Exercise 1.12.

Definition. A polynomial f € K[X] = K|[Xy, ..., X,] is homogeneous of degree d
if
f(AXo,...,AX,,) = M f(Xo,...,X,) forall\c K.

Anideal I C K[X]is homogeneous if it is generated by homogeneous polynomials.

Let f be a homogeneous polynomial and let P € P". It makes sense to ask
whether f(P) = 0, since the answer is independent of the choice of homogeneous
coordinates for P. To each homogeneous ideal I we associate a subset of P" by the
rule

Vi ={P € P": f(P) = 0 for all homogeneous f € I}.

Definition. A (projective) algebraic set is any set of the form V7 for a homogeneous
ideal I. If V' is a projective algebraic set, the (homogeneous) ideal of V, denoted
by I(V), is the ideal of K[X] generated by

{f € K[X]: f is homogeneous and f(P) =0 forall P € V'}.

Such a V' is defined over K, denoted by V/K, if its ideal I(V') can be generated
by homogeneous polynomials in K[X]. If V' is defined over K, then the ser of K-
rational points of V' is the set

V(K)=VnP"K).
As usual, V/(K') may also be described as
V(K)={PeV:P°=Pforallo € Gg/k}.
Example 2.2. A line in P? is an algebraic set given by a linear equation
aX +bY +cZ=0

with a, b, c € K not all zero. If, say, ¢ # 0, then such a line is defined over any field
containing a/c and b/c. More generally, a hyperplane in P™ is given by an equation

apXo+ a1 X1+ +a, X, =0

with a; € K not all zero.

Example 2.3. Let V be the algebraic set in P? given by the single equation
X +Y?=22

Then for any field K with char(K) # 2, the set V (K) is isomorphic to P*(K), for
example by the map

PYK) — V(K), [s,t] — [s* — 12, 2st, 8% + t7].

(For the precise definition of “isomorphic,” see (1.3.5).)
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Remark 2.4. A point of P*(Q) has the form [z, ..., x,] with z; € Q. Multiply-
ing by an appropriate A € @QQ, we can clear denominators and common factors from
the x;’s. In other words, every P € P"(Q) may be written with homogeneous coor-
dinates [z, . . ., z,] satisfying

Zoy...,Tn €Z and ged(xg,...,2,) = 1.

Note that the z;’s are determined by P up to multiplication by —1.

Thus if an ideal of an algebraic set V/Q is generated by homogeneous polynomi-
als f1,..., fm € Q[X], then describing V' (Q) is equivalent to finding the solutions
to the homogeneous equations

HXoy.. o, Xn) == fim(Xo,...,X,) =0

in relatively prime integers zg, . . . , Ty,

Example 2.5. The algebraic set
V:iX?4+Y?=32?

is defined over Q. However, V(Q) = (). To see this, suppose that [z,y, z] € V(Q)
with z,y, 2 € Z and ged(x, y, z) = 1. Then

22 +y*=0 (mod 3),
so the fact that —1 is not a square modulo 3 implies that
x=y=0 (mod 3).

Hence 22 and 2 are divisible by 32. It follows from the equation for V' that 3 also
divides z, which contradicts the assumption that ged(z, y, 2) = 1.

This example illustrates a fundamental tool used in the study of Diophantine
equations.

In order to show that an algebraic set V//Q has no Q-rational points, it
suffices to show that the corresponding homogeneous polynomial equa-
tions have no nonzero solutions modulo p for any one prime p (or even
for one prime power p").

A more succinct way to phrase this is to say that if V' (Q) is nonempty, then V' (Q,) is
nonempty for every p-adic field Q,. Similarly, V' (R) would also be nonempty. One of
the reasons that the study of Diophantine equations is so difficult is that the converse
to this statement, which is called the Hasse principle, does not hold in general. An
example, due to Selmer [225, 227], is the equation

V:3X34+4Y%2 4523 =0.

One can check that V(Q,,) is nonempty for every prime p, yet V(Q) is empty. See,
e.g., [41, §4] for a proof. Other examples are given in (X.6.5).
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Definition. A projective algebraic set is called a (projective) variety if its homoge-
neous ideal (V') is a prime ideal in K [X].

It is clear that P™ contains many copies of A™. For example, for each 0 < i < n,
there is an inclusion

¢i A" — P",
W15 Un) = Y1, Y205 i1, L Wiy Ynl
We let H; denote the hyperplane in P™ given by X; = 0,
H; = {P: [0y ... xn] € P ay :O},
and we let U; be the complement of H;,
U; = {P: [0y ... xn] € P 1wy 750} =P" \ H;.

There is a natural bijection

¢;1 Ui —>An7
Ty T1 Ti—1 Tit1 Ln
[Zoy ..y xp]F— | —, —, o, ——, —— ., —, ]

(Note that for any point of P™ with ; # 0, the quantities x;/x; are well-defined.)
For a fixed 4, we will normally identify A™ with the set U; in P" via the map ¢;.

Now let V' be a projective algebraic set with homogeneous ideal (V) C K[X].
Then V NA™, by which we mean ¢, (V' NU;) for some fixed i, is an affine algebraic
set with ideal I(V N A™) C K[Y] given by

IVOAY) = {f(Vi, .., Yi1, 1, Yie1, ., V) f(Xo, .o, X)) € I(V)).

Notice that the sets Uy, . .., U, cover all of P", so any projective variety V' is cov-
ered by subsets V' N Uy, ...,V N U,, each of which is an affine variety via an ap-
propriate ¢, !, The process of replacing the polynomial f(Xo,...,X,) with the
polynomial f(Y7,...,Y;-1,1,Yiq1,...,Y,) is called dehomogenization with re-
spect to X;.

This process can be reversed. For any f(Y) € K[Y], we define

Xo X1 Xio1 Xia X5
Xi,Xiv"'v X7, ) Xz ,”"Xi )

f*(XO,...,Xn)—Xff(

where d = deg(f) is the smallest integer for which f* is a polynomial. We say
that f* is the homogenization of f with respect to X;.

Definition. Let V' C A”™ be an affine algebraic set with ideal I(V'), and consider V'

as a subset of P” via
VcAr %, pn

The projective closure of V, denoted by V, is the projective algebraic set whose

homogeneous ideal (V) is generated by

{F(X): fe1(v)}.
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Proposition 2.6. (a) Let V be an affine variety. Then V is a projective variety, and
V =VnNnA"
(b) Let V be a projective variety. Then V N A™ is an affine variety, and either
VNA" =0 or V=VnNnAn

(c) If an affine (respectively projective) variety V' is defined over K, then V (re-
spectively V-0 A™) is also defined over K.

PROOF. See [111, 1.2.3] for (a) and (b). Part (c) is clear from the definitions. ]

Remark 2.7. In view of (1.2.6), each affine variety may be identified with a unique
projective variety. Notationally, since it is easier to deal with affine coordinates, we
will often say “let V' be a projective variety” and write down some inhomogeneous
equations, with the understanding that V' is the projective closure of the indicated
affine variety W. The points of V' ~. W are called the points at infinity on V.

Example 2.8. Let V' be the projective variety given by the equation
ViY?=X%417.
This really means that V' is the variety in P? given by the homogeneous equation
V27 = X5 41728,
the identification being
X=X/Z, Y=Y/Z

This variety has one point at infinity, namely [0, 1, 0], obtained by setting Z = 0.
Thus, for example,

V(Q) = {(z,y) € AX(Q) : y* =2 + 17} U {[0,1,0]}.

In (I.1.3.3) we listed several points in V(Q). The reader may verify (Exercise 1.5)
that the line connecting any two points of V' (Q) intersects V in a third point of V(Q)
(provided that the line is not tangent to V). Using this secant line procedure repeat-
edly leads to infinitely many points in V' (Q), although this is by no means obvious.
The variety V' is an elliptic curve, and as such, it provides the first example of the va-
rieties that will be our principal object of study in this book. See (II1.2.4) for further
discussion of this example.

Many important properties of a projective variety V' may now be defined in terms
of the affine subvariety VN A™.

Definition. Let V/K be a projective variety and choose A" C P" such that
V' N A"™ =£ (). The dimension of V is the dimension of V' N A™.

The function field of V, denoted by K (V'), is the function field of V N A", and
similarly for & (V). We note that for different choices of A", the different K (V) are
canonically isomorphic, so we may identify them. (See (1.2.9) for another description
of K(V).)
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Definition. Let V' be a projective variety, let P € V, and choose A" C P"
with P € A". Then V is nonsingular (or smooth) at P if V N A" is nonsingular
at P. The local ring of V at P, denoted by K [V]p, is the local ring of V' N A™ at P.
A function F € K(V) is regular (or defined) at P if it is in K[V]p, in which case it
makes sense to evaluate F at P.

Remark 2.9. The function field of P® may also be described as the subfield
of K(Xo,...,X,) consisting of rational functions F(X) = f(X)/g(X) for
which f and g are homogeneous polynomials of the same degree. Such an ex-
pression gives a well-defined function on P™ at all point P where g(P) # 0.
Similarly, the function field of a projective variety V' is the field of rational func-
tions F'(X) = f(X)/g(X) such that:

(1) f and g are homogeneous of the same degree;
(i) g ¢ I(V):
(iii) two functions f1/g1 and fa/go are identified if f1g2 — fog1 € I(V).

I.3 Maps Between Varieties

In this section we look at algebraic maps between projective varieties. These are
maps that are defined by rational functions.

Definition. Let V; and Vo C P™ be projective varieties. A rational map from Vi
to V5 is a map of the form

f:vl—}‘/% ¢:[f07"'afn]a

where the functions fy,..., f, € K(V;) have the property that for every point
P € Vj at which fy, ..., f, are all defined,

If Vi and V5 are defined over K, then Gz /i acts on ¢ in the obvious way,
¢7(P) = [fg(P),.... f7(P)].
Notice that we have the formula
d(P)7 = ¢°(P?) forallo € G i and P € Vi.

If, in addition, there is some A\ € K* such that Afo,...,\f, € K(V;), then ¢ is
said to be defined over K. Note that [fo, ..., f,] and [Afo, ..., Afn] give the same
map on points. As usual, it is true that ¢ is defined over K if and only if ¢ = ¢ for
allo € GR/K; see Exercise 1.12c.
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Remark 3.1. A rational map ¢ : V7 — V5 is not necessarily a well-defined func-
tion at every point of V;. However, it may be possible to evaluate ¢(P) at points P
of V7 where some f; is not regular by replacing each f; by ¢f; for an appropri-
ate g € K(V1).

Definition. A rational map

(b: [an"'7fn]:Vi —>‘/2
is regular (or defined) at P € V/ if there is a function g € K (V) such that

(i) each gf; is regular at P;
(ii) there is some ¢ for which (gf;)(P) # 0.

If such a g exists, then we set

¢(P) = [(9fo)(P); .-, (gfa)(P)].

N.B. It may be necessary to take different g’s for different points. A rational map that
is regular at every point is called a morphism.

Remark 3.2. Let V4 C P™ and Vo, C P™ be projective varieties. Recall (1.2.9)
that the functions in K (V7) may be described as quotients of homogeneous poly-
nomials in K[X, ..., X,,] having the same degree. Thus by multiplying a rational
map ¢ = [fo, ..., fn] by a homogeneous polynomial that “clears the denominators”
of the f;’s, we obtain the following alternative definition:

A rational map ¢ : Vi — V5 is a map of the form

¢ = [(ZSO(X)? s 'a¢71,(X)}a

where

(i) the ¢;(X) € K[X] = K[Xy, ..., X,] are homogeneous polynomials, not all
in I(V1), having the same degree;

(ii) forvery f € I(Va),
F(d0(X), .. dn(X)) € I(V1).

Clearly, ¢(P) is well-defined provided that some ¢;(P) # 0. However, even if
all ¢;(P) = 0, it may be possible to alter ¢ so as to make sense of ¢(P). We make
this precise as follows:

A rational map ¢ = [dg,...,d,] : Vi — Vi as above is regular (or defined)
at P € Vj if there exist homogeneous polynomials ), . . ., 1, € K[X] such that

@) vo,--.,%, have the same degree;
(i) ¢;0j = ¢4 (mod I(V7)) forall 0 <i,j < n;
(iii) ¥ (P) # 0 for some s.
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If this occurs, then we set

As above, a rational map that is everywhere regular is called a morphism.

Remark 3.3. Let ¢ = [¢y, - .., ¢n] : P™ — P" be arational map as in (1.3.2), where
the ¢; € K[X] are homogeneous polynomials of the same degree. Since K|[X] is a
unique factorization domain (UFD), we may assume that the ¢;’s have no common
factor. Then ¢ is regular at a point P € P™ if and only if some ¢;(P) # 0. (Note
that I(P™) = (0), so there is no way to alter the ¢,;’s.) Hence ¢ is a morphism if and
only if the ¢;’s have no common zero in P"™.

Definition. Let V; and V5 be varieties. We say that V; and V5 are isomorphic, and
write V3 = V5, if there are morphisms ¢ : Vi — Vo and ¥ @ Vo — Vi such
that tpo¢ and ¢o) are the identity maps on V4 and V5, respectively. We say that V; / K
and V5 / K are isomorphic over K if ¢ and 1 can be defined over K. Note that both ¢
and ¢ must be morphisms, not merely rational maps.

Remark 34. If ¢ : V; — V5 is an isomorphism defined over K, then ¢ identi-
fies V4 (K') with V5(K). Hence for Diophantine problems, it suffices to study any
one variety in a given K-isomorphism class of varieties.

Example 3.5. Assume that char(K) # 2 and let V be the variety from (1.2.3),
ViXP4Y? =22
Consider the rational map
¢:V — P, ¢p=[X+2ZY].

Clearly ¢ is regular at every point of V' except possibly at [1,0, —1], i.e., at the point
where X + Z =Y = 0. However, using

(X +2) (X - Z)=-Y? (mod I(V)),
we have
p=[X+2Y]=[X*-Z22 Y X-2)]=[-Y2Y(X-2)=[-Y,X - Z].

Thus
(b([lv())_l]) = [052] = [07 1]a

so ¢ is regular at every point of V, i.e., ¢ is a morphism. One easily checks that the
map
v Pt —V, Y =[S? —T?,28T,S* + T?],

is a morphism and provides an inverse for ¢, so V' and P! are isomorphic.
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Example 3.6. Using (1.3.3), we see that the rational map
¢:P2—>P2a ¢:[X27XY722]7

is regular everywhere except at the point [0, 1, 0].

Example 3.7. Let V be the variety
ViY?Z=X+X%Z
and consider the rational maps

v:Pl SV, ¢ =[(8* =TT, (S* - T%)5,T°],
¢:V —P, ¢ =[Y, X].

Here 1) is a morphism, while ¢ is not regular at [0, 0, 1]. Not coincidentally, the
point [0, 0, 1] is a singular point of V; see (I.2.1). We emphasize that although the
compositions ¢ o v and 1 o ¢ are the identity map wherever they are defined, the
maps ¢ and ) are not isomorphisms, because ¢ is not a morphism.

Example 3.8. Consider the varieties
Vi: X24+Y?=27% and Vo:X?+Y?=37%

They are not isomorphic over Q, since V5(Q) = ( from (1.2.5), while V; (Q) con-
tains lots of points. (More precisely, V1(Q) = P!(Q) from (1.3.5).) However, the
varieties V; and V; are isomorphic over Q(+/3 ), an isomorphism being given by

¢: Vo — V1, o =[X,Y,V37].

Exercises

1.1. Let A, B € K. Characterize the values of A and B for which each of the following
varieties is singular. In particular, as (A, B) ranges over A%, show that the “singular values” lie
on a one-dimensional subset of A2, so “most” values of (A, B) give a nonsingular variety.

@@ V:Y?’Z+AXYZ+BYZ? = X°

(b) V:Y?*Z=X?*4+ AXZ? + BZ®. (You may assume that char(K) # 2.)

1.2. Find the singular point(s) on each of the following varieties. Sketch V'(R).
(@ V:Y2=X3%inA%
(b) V:4X2Y? = (X2 4+Y?)3in A%
© V:Y?=X"+Y"in A%
(d) V:X2+Y?2=(Z-1)%inA%
1.3. Let V' C A™ be a variety given by a single equation as in (I.1.4). Prove that a point P € V'

is nonsingular if and only if
dimgz Mp/M} = dim V.

(Hint. Let f = 0 be the equation of V' and define the tangent plane of V at P by
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T= {(yl,...,yn)GA":Z(aa)fi(P))yi—O}.

Show that the map

_ —~ /9
i=1 ¢

is a well-defined perfect pairing of K -vector spaces. Now use (I.1.5).)
1.4. Let V/Q be the variety
Vi5X24+6XY +2Y? =2YZ+ 27
Prove that V(Q) = 0.
1.5. Let V/Q be the projective variety
Vivy?=Xx%+171,

and let Py = (z1,y1) and P> = (x2, y2) be distinct points of V. Let L be the line through Py
and Ps.
(a) Show that V N L = {Py, P2, P3} and express Ps = (x3,ys3) in terms of P; and Ps.
(If L is tangent to V', then P3 may equal P; or P».)
(b) Calculate Ps for Py = (—1,4) and P> = (2,5).
(c) Show thatif Py, P> € V(Q), then Ps € V(Q).

1.6. Let V be the variety
VY?Z =X+ 2%
Show that the map
¢:V—P,  ¢=I[X° XY, 77,

is a morphism. (Notice that ¢ does not give a morphism P? — P?2))

1.7. Let V be the variety )
V:Yiz = X5,
and let ¢ be the map
6:P'—V,  $=[ST S*T.

(a) Show that ¢ is a morphism.

(b) Find a rational map 1) : V' — P! such that ¢ o t) and 1) o ¢ are the identity map wherever
they are defined.

(¢) Is ¢ an isomorphism?

1.8. Let I, be a finite field with ¢ elements and let V' C P" be a variety defined over F,.
(a) Prove that the ¢"-power map
o =[X¢g,..., X}
is a morphism ¢ : V' — V. It s called the Frobenius morphism.
(b) Prove that ¢ is one-to-one and onto.
(c) Prove that ¢ is not an isomorphism.
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(d) Prove that V(F,) = {P eV o(P)= P}-

1.9. If m > n, prove that there are no nonconstant morphisms P"* — P™. (Hint. Use the
dimension theorem [111, 1.7.2].)

1.10. For each prime p > 3, let V,, C IP? be the variety given by the equation
V,: X2 +Y? =pZ°

(a) Prove that V,, is isomorphic to P* over Q if and only if p = 1 (mod 4).
(b) Prove that for p = 3 (mod 4), no two of the V,’s are isomorphic over Q.

1.11. (a) Let f € K[Xo,...,X»] be a homogeneous polynomial, and let
V={PeP": f(P)=0}

be the hypersurface defined by f. Prove that if a point P € V is singular, then

of of

ox, D) == 5x, PV =0
Thus for hypersurfaces in projective space, we can check for smoothness using homoge-
neous coordinates.

(b) Let n > 1, and let W C P™ be a smooth algebraic set, each of whose component
varieties has dimension n — 1. Prove that W is a variety. (Hint. First use Krull’s Haupt-
idealsatz [8, page 122], [73, Theorem 10.1], to show that W is the zero of a single
homogeneous polynomial.)

1.12. (a) Let V/K be an affine variety. Prove that
K[V] = {f € K[V]: f° = fforallo € G;-(/K}.

(Hint. One inclusion is clear. For the other, choose some polynomial ' € K[X] with
F = f (mod I(V)). Show that the map Gz ,;c — I(V') defined by o — F7 — Fis a
1-cocycle; see (B §2). Now use (B.2.5a) to conclude that there exists a G € I(V') such
that F + G € K[X].)

(b) Prove that

P"(K)={PeP"(K): P’ = Pforallo € Gg/x}.

(Hint. Write P = [zo,...,2zy]. If P = P, then there is a A\, € K* such that
] = Aow; for all 0 < ¢ < n. Show that the map o — X, gives a 1-cocycle
from G, to K*. Now use Hilbert’s Theorem 90 (B.2.5b) to find an v € K™ such
that [axo, . .., axy] € P*(K).)

(c) Let¢ : Vi — V5 be arational map of projective varieties. Prove that ¢ is defined over K
if and only if 7 = ¢ for every 0 € Gz . (Hint. Use (a) and (b).)



Chapter II

Algebraic Curves

In this chapter we present basic facts about algebraic curves, i.e., projective varieties
of dimension one, that will be needed for our study of elliptic curves. Actually, since
elliptic curves are curves of genus one, one of our tasks will be to define the genus
of a curve. As in Chapter I, we give references for those proofs that are not included.
There are many books in which the reader will find more material on the subject of
algebraic curves, for example [111, Chapter IV], [133], [180], [243], [99, Chapter 2],
and [302].

We recall the following notation from Chapter I that will be used in this chapter.
Here C' denotes a curve and P € C'is a point of C.

C/K  Cisdefined over K.
K(C)  the function field of C over K.
K(C)  the function field of C over K.
K[C]p  thelocal ring of C at P.
Mp  the maximal ideal of K[C]p.

II.1 Curves

By a curve we will always mean a projective variety of dimension one. We generally
deal with curves that are smooth. Examples of smooth curves include P!, (1.2.3),
and (1.2.8). We start by describing the local rings at points on a smooth curve.

Proposition 1.1. Let C be a curve and P € C a smooth point. Then K[Clp is a
discrete valuation ring.

PROOF. From (1.1.7), the vector space Mp /M? is a one-dimensional vector space
over the field K = K[C]p/Mp. Now use [8, Proposition 9.2] or Exercise 2.1. [

Definition. Let C' be a curve and P € C' a smooth point. The (normalized) valuation
on K[C]p is given by
J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 17

in Mathematics 106, DOI 10.1007/978-0-387-09494-6_11,
© Springer Science+Business Media, LLC 2009
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ordp : K[C]p — {0,1,2,...} U {oc},
ordp(f) =sup{d € Z: f € ME}.

Using ordp(f/g) = ordp(f) — ordp(g), we extend ordp to K(C),

ordp : K(C) — Z U 0.

A uniformizer for C at P is any function t € K(C) with ordp(t) = 1, ie., a
generator for the ideal Mp.

Remark 1.1.1. If P € C(K), then it is not hard to show that K (C') contains uni-
formizers for P; see Exercise 2.16.

Definition. Let C and P be as above, and let f € K(C). The order of f at P is
ordp(f). If ordp(f) > 0, then f has a zero at P, and if ordp(f) < 0, then f
has a pole at P. If ordp(f) > 0, then f is regular (or defined) at P and we can
evaluate f(P). Otherwise f has a pole at P and we write f(P) = co.

Proposition 1.2. Let C be a smooth curve and f € K (C) with f # 0. Then there
are only finitely many points of C' at which f has a pole or zero. Further, if f has no
poles, then f € K.

PROOF. See[111,1.6.5],[111,11.6.1], or [243, III §1] for the finiteness of the number
of poles. To deal with the zeros, look instead at 1/f. The last statement is [111,
1.3.4a] or [243, 1 §5, Corollary 1]. ]

Example 1.3. Consider the two curves
Cr:Y?=X*4+X and Cp:Y?=X*+4+X2

(Remember our convention (I.2.7) concerning affine equations for projective vari-
eties. Each of C and C5 has a single point at infinity.) Let P = (0,0). Then C;
is smooth at P and Cy is not (I.1.6). The maximal ideal Mp of K[C;]p has the
property that Mp /M3 is generated by Y (1.1.8), so for example,

ordp(Y)=1, ordp(X)=2,  ordp(2Y? - X)=2.
(For the last, note that 2Y2 — X = 2X3 + X.) On the other hand, K|[Cs]p is not a
discrete valuation ring.
The next proposition is useful in dealing with curves over fields of characteristic

p > 0. (See also Exercise 2.15.)

Proposition 1.4. Let C'/K be a curve, and let t € K (C') be a uniformizer at some
nonsingular point P € C(K). Then K (C) is a finite separable extension of K (t).

PROOF. The field K(C) is clearly a finite (algebraic) extension of K (¢), since it is
finitely generated over K, has transcendence degree one over K (since C'is a curve),
andt ¢ K. Letz € K(C). We claim that z is separable over K (t).
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In any case, x is algebraic over K (), so it satisfies some polynomial relation
Zaijtixj =0, where ®(T,X) = ZaijTin e K[X,T).

We may further assume that ® is chosen so as to have minimal degree in X,
ie., ®(t,X) is a minimal polynomial for x over K (¢). Let p = char(K). If ®
contains a nonzero term a;;7° X7 with j # 0 (mod p), then 9@ (¢, X)/0X is not
identically 0, so « is separable over K ().

Suppose instead that ®(7', X) = (T, XP). We proceed to derive a contra-
diction. The main point to note is that if F(7,X) € K[T,X] is any polynomial,
then F(TP, XP) is a p power. This is true because we have assumed that K is
perfect, which implies that every element of K is a p'" power. Thus if F/(T, X) =
>~ ;T X7, then writing ov;; = B gives F(TP, XP) = (3 8,177 X7)".

We regroup the terms in ®(7', X)) = U(T, X?) according to powers of 7" mod-
ulo p. Thus

p—1 p—1
O(1,X) = U(T,XP) =) | D bipTPXP | TF =3 (T, X)PT".
k=0 \ 4,j k=0

By assumption we have ®(¢, z) = 0. On the other hand, since ¢ is a uniformizer
at P, we have

ordp (qﬁk(t,x)ptk) =pordp(¢x(t,x)) + kordp(t) =k (mod p).

Hence each of the terms in the sum _ ¢y (¢, 7)Pt* has a distinct order at P, so every
term must vanish,

Po(t,x) = p1(t,x) =+ = ¢p_1(t,z) = 0.

But at least one of the ¢ (7, X)’s must involve X, and for that k, the rela-
tion ¢ (¢, 2) = 0 contradicts our choice of ®(¢, X) as a minimal polynomial for x
over K (t). (Note that deg v ¢ (T, X) < 1% degy ®(T, X).) This contradiction com-
pletes the proof that « is separable over K (t). O

I1.2 Maps Between Curves

We start with the fundamental result that for smooth curves, a rational map is defined
at every point.

Proposition 2.1. Let C be a curve, let V. C PV be a variety, let P € C be a smooth
point, and let ¢ : C — V be a rational map. Then ¢ is regular at P. In particular,
if C is smooth, then ¢ is a morphism.

PROOF. Write ¢ = [fo,..., fy] with functions f; € K(C), and choose a uni-
formizer t € K(C') for C at P. Let
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n= OglgnNordp(fi).
Then
ordp(t™"f;) >0 foralli and ordp(t™" f;) =0 for some j.

Hence every ¢t " f; is regular at P, and (¢~ f;)(P) # 0. Therefore ¢ is regular
at P. O]

See (1.3.6) and (1.3.7) for examples where (I1.2.1) is false if P is not smooth or
if C' has dimension greater than 1.

Example 2.2. Let C'/ K be a smooth curve and let f € K(C) be a function. Then f
defines a rational map, which we also denote by f,

f:C—P, P+ [f(P)1].

From (I1.2.1), this map is actually a morphism. It is given explicitly by

F(P) = {[f(P), 1] ?ff is regular at P,
[1,0] if f has a pole at P.

Conversely, let
¢:04’P17 ¢:[f7g}7

be a rational map defined over K. Then either g = 0, in which case ¢ is the constant
map ¢ = [1,0], or else ¢ is the map corresponding to the function f/g € K(C).
Denoting the former map by oo, we thus have a one-to-one correspondence

K(C)U {oo} «+— {maps C — P* defined over K}.
We will often implicitly identify these two sets.

Theorem 2.3. Let ¢ : Cy — C5 be a morphism of curves. Then ¢ is either constant
or surjective.

PROOF. See [111, I1.6.8] or [243, 1 §5, Theorem 4]. O

Let C1/K and C3/K be curves and let ¢ : C; — C be a nonconstant rational
map defined over K. Then composition with ¢ induces an injection of function fields
fixing K,

9" K(Cy) — K(C1),  ¢"f=foo.

Theorem 2.4. Let Cy /K and Cy/ K be curves.
(a) Let ¢ : C1 — Co be a nonconstant map defined over K. Then K (C1) is a finite
extension of ¢* (K (Cs)).
(b) Let v : K(Cy) — K(Cy) be an injection of function fields fixing K. Then
there exists a unique nonconstant map ¢ : Cy — Cs (defined over K) such

that ¢* = 1.
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(c) Let K C K(C4) be a subfield of finite index containing K. Then there ex-
ist a smooth curve C' /K, unique up to K-isomorphism, and a nonconstant
map ¢ : C1 — C’' defined over K such that * K(C") = K.

PROOF. (a)[111, I1.6.8].

(b) Let Oy C PV, and for each 4, let g; € K(C3) be the function on Cs correspond-
ing to X;/Xy. (Relabeling if necessary, we may assume that Cs is not contained in
the hyperplane Xy = 0.) Then

¢ = [la L(gl)v RS L(gN)}

gives amap ¢ : C; — C5 with ¢* = . (Note that ¢ is not constant, since the g;’s
cannot all be constant and ¢ is injective.) Finally, if 1) = [fo, ..., fn] is another map
with ¢* = ¢, then for each 4,

fi/fo=1"gi = &"gi = 1(94),

which shows that ¢ = ¢.

(c) See [111, 1.6.12] for the case that K is algebraically closed. The general case
can be proven similarly, or it may be deduced from the algebraically closed case by
examining G jc-invariants. O

Definition. Let ¢ : C; — C5 be a map of curves defined over K. If ¢ is constant,
we define the degree of ¢ to be 0. Otherwise we say that ¢ is a finite map and we
define its degree to be

We say that ¢ is separable, inseparable, or purely inseparable if the field exten-
sion K(C7)/¢* K(C>) has the corresponding property, and we denote the separable
and inseparable degrees of the extension by deg, ¢ and deg; ¢, respectively.

Definition. Let ¢ : C; — (3 be a nonconstant map of curves defined over K.
From (I1.2.4a) we know that K (C}) is a finite extension of ¢*K (C). We use the
norm map relative to ¢* to define a map in the other direction,

¢u s K(C1) — K(C2), 6. = (¢")"" o Nk(cy) oK (Ca) -

Corollary 2.4.1. Let Cy and C5 be smooth curves, and let ¢ : Cy — C5 be a map
of degree one. Then ¢ is an isomorphism.

PROOF. By definition, deg = 1 means that ¢*K(Cy) = K(C}), so ¢* is an
isomorphism of function fields. Hence from (II.2.5b), corresponding to the inverse
map (¢*)7! : K(Cy) = K(Cy), there is a rational map ¢ : Co — C; such
that ¢»* = (¢*)~L. Further, since Cy is smooth, (I1.2.1) tells us that ) is actually a
morphism. Finally, since (¢ o ¢)* = 1)* o ¢* is the identity map on K (Cs), and
similarly (10 ¢)* = ¢* 01)* is the identity map on K (C), the uniqueness assertion
of (I1.2.4b) implies that ¢ o ¥ and v o ¢ are, respectively, the identity maps on C'
and C1. Hence ¢ and 1) are isomorphisms. O
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Remark 2.5. The above result (I1.2.4) shows the close connection between (smooth)
curves and their function fields. This can be made precise by stating that the follow-
ing map is an equivalence of categories. (See [111, I §6] for details.)

Objects: smooth curves

defined over K extensions K/K of

Maps: nonconstant rational .

. s, | transcendence degree one with
maps (equivalently KNK = K
surjective morphisms)
defined over K

Objects: finitely generated

aps: field injections fixing K

C/K oo K(C)
}:CyL— Cy TV o 1 K(Cy) — K(C)

Example 2.5.1. Hyperelliptic Curves. We assume that char(K) # 2. We choose a
polynomial f(z) € K|z] of degree d and consider the affine curve Cy/ K given by
the equation

Co:y* = f(zx) = apz® + a1z + -+ + ay.

Suppose that the point P = (zq,yo) € Cy is singular. Then

2y0 = f/(z()) = 07

which means that yo = 0 and x¢ is a double root of f(x). Hence, if we assume that
disc(f) # 0, then the affine curve y? = f(z) will be nonsingular.

If we treat Cy as a curve in P? by homogenizing its affine equation, then one
easily checks that the point(s) at infinity are singular whenever d > 4. On the other
hand, (I1.2.4c) assures us that there exists some smooth projective curve C'/ K whose
function field equals K (Cy) = K (x,y). The problem is that this smooth curve is not
a subset of P2,

For example, consider the case d = 4. (See also Exercise 2.14.) Then Cj has an
affine equation

2 4 3 2
Co:y° = apx™ + a1x° + asx” + azx + ay4.

We define a map
1, 2,y,2% : Cg — P,
Letting [Xo, X1, X2, X3] = [1,,y, 2?], the ideal of the image clearly contains the
two homogeneous polynomials
F = X3Xo— X2,
G=X3X3—apX{ — a1 XX — asXPXE — a3 X1 X — as X,
However, the zero set of these two polynomials cannot be the desired curve C, since

it includes the line Xy = X; = 0. So we substitute X7 = Xy X3 into GG and cancel
an X2 to obtain the quadratic polynomial
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H = X22 — ang — a1X1X3 — a2XOX3 — agX(]Xl — a4Xg.

We claim that the ideal generated by F' and H gives a smooth curve C'.
To see this, note first that if Xy # 0, then dehomogenization with respect to X
gives the affine curve (setting z = X; /X, y = X2/ Xy, and z = X3/ Xo)

2 =22 and y2 = a022 +a1xz + a2z + azx + aq.
Substituting the first equation into the second gives us back the original curve Cj.
Thus Cy = C N {X, # 0}.

Next, if Xy = 0, then necessarily X; = 0, and then X, = +,/ag X3. Thus C
has two points [0,0, +,/ag, 1] on the hyperplane Xy = 0. (Note that ag # 0, since
we have assumed that f(z) has degree exactly four.) To check that C' is nonsingular
at these two points, we dehomogenize with respect to X3, setting u = Xo/X3,
v = X1 /X3, and w = X5/ X3. This gives the equations

U=7 and w? =a0+a1v+a2u+a3uv+a4u2,

from which we obtain the single affine equation

w? = ag + ai1v + a2v2 + (L31)3 + a4v4.
Again using the assumption that the polynomial f(x) has no double roots, we see
that the points (v, w) = (0, £4/ao) are nonsingular.
We summarize the preceding discussion in the following proposition, which will
be used in Chapter X.

Proposition 2.5.2. Ler f(X) € K|[x] be a polynomial of degree 4 with disc(f) # 0.
There exists a smooth projective curve C C P with the following properties:
(i) The intersection of C with A3 = {Xo # 0} is isomorphic to the affine
curve y? = f(x).
(i) Let f(z) = apx* + - + a4. Then the intersection of C with the hyper-
plane Xy = 0 consists of the two points [O, 0, ++/ao, 1].

We next look at the behavior of a map in the neighborhood of a point.

Definition. Let ¢ : C; — C5 be a nonconstant map of smooth curves, and let
P € C,. The ramification index of ¢ at P, denoted by e, (P), is the quantity

eg(P) = ordp (¢*ty(p)) »

where t,py € K(Cy) is a uniformizer at ¢(P). Note that e4(P) > 1. We say that ¢
is unramified at P if e;(P) = 1, and that ¢ is unramified if it is unramified at every
point of Cf.

Proposition 2.6. Let ¢ : C1 — Cy be a nonconstant map of smooth curves.
(a) Forevery @ € Cy,

> ey(P) = deg(9).

Pep~1(Q)
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(b) For all but finitely many @ € Cs,
#6~H(Q) = deg,(¢).

(¢) Let oy : Co — Cj3 be another nonconstant map of smooth curves. Then for all
P e 01,
epop(P) = ey(P)ey(4P).
PROOF. (a) Use [111,11.6.9] withY = Pl and D = (0), or see [142, Proposition 2],
[233, I Proposition 10], or [243, 111 §2, Theorem 1].
(b) See[111,11.6.8].
(c) Let typ and ty,4p be uniformizers at the indicated points. By definition, the

functions p
t;u];(qﬁ ) and ’(/)*tw¢p

have the same order at ¢(P). Applying ¢* and taking orders at P yields

ordp (W@’ﬁnwp)) = ordp (V) tyer),
which is the desired result. ]

Corollary 2.7. Amap a ¢ : C1 — Cs is unramified if and only if

#071(Q) = deg(¢)  forall Q € Cs.
PROOF. From (II.2.6a), we see that #¢~1(Q) = deg(¢) if and only if
Y. eolP)=#671(Q).
Pep=1(Q)
Since ey (P) > 1, this occurs if and only if each ey (P) = 1. O
Remark 2.8. The content of (I1.2.6) is exactly analogous to the theorems describ-
ing the ramification of primes in number fields. Thus let L/K be number fields.
Then (I1.2.6a) is the analogue of the > e;f; = [K : Q] theorem ([142, I, Proposi-
tion 21], [233, I, Proposition 10]), while (IL.2.6b) is analogous to the fact that only
finitely many primes of K ramify in L, and (I1.2.6¢) gives the multiplicativity of ram-
ification degrees in towers of fields. Of course, (I[.2.6) and the analogous results for

number fields are both merely special cases of the basic theorems describing finite
extensions of Dedekind domains.

Example 2.9. Consider the map
o:P'—P,  ¢(X,Y])=[X(X-Y)* Y.
Then ¢ is ramified at the points [0, 1] and [1, 1]. Further,
es([0,1]) =3 and  ey([1,1]) =2,

SO

ST es(P) =es([0.1]) + e ([1,1]) = 5 = deg ¢,

Pep=1([0,1])

which is in accordance with (I1.2.6a).
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The Frobenius Map

Assume that char(K) = p > 0 and let ¢ = p”. For any polynomial f € K[X],
let f(9) be the polynomial obtained from f by raising each coefficient of f to the ¢
power. Then for any curve C//K, we can define a new curve C?) /K as the curve
whose homogeneous ideal is given by

I(CD) = ideal generated by {9 : f € I(C)}.

Further, there is a natural map from C' to C' (@) called the qth-power Frobenius mor-
phism, given by

¢:C — O, o([xo, ..., zn]) = [2f,...,27].
To see that ¢ maps C' to C(9), it suffices to show that for every point
P =[xg,...,x,] € C,
the image ¢(P) is a zero of each generator £(4) of I(C'(9)). We compute
FO(e(P)) = fD(af, ..., x8)

= (f(xo,...,xn))q since char(K) = p,
=0 since f(P) = 0.

Example 2.10. Let C be the curve in P2 given by the single equation
C:Y?*Z=X*+aXZ*+bZ"
Then C(9) is the curve given by the equation
CD: Y%7 = X? +a1X 2%+ 11275,
The next proposition describes the basic properties of the Frobenius map.

Proposition 2.11. Let K be a field of characteristic p > 0, let ¢ = p", let C/ K be
a curve, and let ¢ : C — C9) be the q™-power Frobenius morphism.

@) ¢"K(CW) = K(C)={f": feK(C)}.

(b) ¢ is purely inseparable.

(c) degp =gq.

(N.B. We are assuming that K is perfect. If K is not perfect, then (b) and (c) remain
true, but (a) must be modified.)

PROOF. (a) Using the description (1.2.9) of K (C) as consisting of quotients f/g of
homogeneous polynomials of the same degree, we see that ¢* K (C'(9)) is the subfield
of K(C) given by quotients

o (f> fXE, ... XE)

Cog(Xd, X

9
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Similarly, K(C)? is the subfield of K (C') given by quotients

f(X()v cee aXn)q
g()(()7 e ,Xn)q

However, since K is perfect, we know that every element of K is a ¢ power, so
(K[Xo,...,Xn))" = K[X{,..., X4

Thus the set of quotients f(X[)/g(X) and the set of quotients f(X;)?/g(X;)? give
the exact same subfield of K (C').

(b) Immediate from (a).

(c) Taking a finite extension of K if necessary, we may assume that there is
a smooth point P € K(C). Let t € K(C) be a uniformizer at P (IL.1.1.1).
Then (II.1.4) says that K (C') is separable over K (t). Consider the tower of fields

K(C)
separable ‘ Purely bl
/K(C)q( )\msepara e
K(t) K(C)1

It follows that K (C) = K(C)4(t), so from (a),
deg ¢ = [K(C)I(t) : K(C)1].

Now t?7 € K(C)4, so in order to prove that deg ¢ = ¢, we need merely show that
ta/P ¢ K(C)9. Butif t9/? = f for some f € K(C), then

% = ordp(t¥/?) = gordp(f),

which is impossible, since ord p(f) must be an integer. O

Corollary 2.12. Every map ) : C1 — C5 of (smooth) curves over a field of charac-
teristic p > 0 factors as

o —2— ol Cs,

where q = deg; (1)), the map ¢ is the q™-power Frobenius map, and the map X is
separable.

PROOF. Let K be the separable closure of ¢)* K (C5) in K(C4). Then K(C4)/K is
purely inseparable of degree ¢, so K (C4)? C K. From (II.2.11a,c) we have,

K(C)!=¢"(K(C")) and  [K(C1): ¢"(K(C"))] = 4.
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Comparing degrees, we conclude that K = ¢* (C{q)). We now have a tower of func-
tion fields

K(C)) | ¢*K(C) [ $*K(Cy),

and from (I1.2.4b), this corresponds to maps

2ol 2y
\_/
v O

II.3 Divisors

The divisor group of a curve C, denoted by Div((), is the free abelian group gener-
ated by the points of C'. Thus a divisor D € Div(C) is a formal sum

D= np(P),

PeC

where np € Z and np = 0 for all but finitely many P € C. The degree of D is
defined by

deg D = Z np.
PeC

The divisors of degree 0 form a subgroup of Div(C'), which we denote by
Div’(C) = {D € Div(C) : deg D = 0}.

If C is defined over K, we let G /i act on Div(C) and Div"(C) in the obvious

way,
D7 = Z np(P%).
peC

Then D is defined over K if D7 = D for all 0 € G x. We note that if D =
n1(Py) + -+ + n.(Py) with ny,...,n, # 0, then to say that D is defined over K
does not mean that Py, ..., P. € C(K). It suffices for the group G'g /i to permute
the P;’s in an appropriate fashion. We denote the group of divisors defined over K
by Div g (C), and similarly for Div% (C).

Assume now that the curve C' is smooth, and let f € K (C)*. Then we can
associate to f the divisor div(f) given by

div(f) = Y ordp(f)(P).

pPeC

This is a divisor by (IL1.2). If o € G i, then it is easy to see that

div(f7) = (div(f))a.
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In particular, if f € K(C), then div(f) € Divg(C).
Since each ordp is a valuation, the map

div : K(C)* — Div(C)

is a homomorphism of abelian groups. It is analogous to the map that sends an ele-
ment of a number field to the corresponding fractional ideal. This prompts the fol-
lowing definitions.

Definition. A divisor D € Div(C) is principal if it has the form D = div(f)
for some f € K(C)*. Two divisors are linearly equivalent, written Dy ~ Ds,
if D1 — D5 is principal. The divisor class group (or Picard group) of C, denoted
by Pic(C), is the quotient of Div(C') by its subgroup of principal divisors. We let
Pick (C') be the subgroup of Pic(C) fixed by G g N.B. In general, Picg (C)
is not the quotient of Divy (C) by its subgroup of principal divisors. But see ex-
ericse 2.13 for a case in which this is true.

Proposition 3.1. Let C be a smooth curve and let f € K(C)*.
(a) div(f) =0ifand only if f € K*.
(b) deg(div(f)) = 0.

PROOF. (a) If div(f) = 0, then f has no poles, so the associated map f : C' — P!
as defined in (I1.2.2) is not surjective. Then (I1.2.3) tells us that the map is constant,
so f € K*. The converse is clear.

(b) See[111, I1.6.10], [243, 111 2, corollary to Theorem 1], or (I1.3.7). O

Example 3.2. On P!, every divisor of degree 0 is principal To see this, suppose
that D = " np(P) has degree 0. Writing P = [ap, Bp] € P!, we see that D is the
divisor of the function

H (ﬂpX — O[pY)nP.

PePpt?
Note that > np = 0 ensures that this function is in K (P!). It follows that the degree
map deg : Pic(P') — Z is an isomorphism. The converse is also true, i.., if C'is a
smooth curve and Pic(C') 2 Z, then C is isomorphic to P!,
Example 3.3. Assume that char(K) # 2. Let e1, e2,e3 € K be distinct, and con-
sider the curve

C:y?=(x—e)(x—e)(x —e3).

One can check that C' is smooth and that it has a single point at infinity, which we
denote by P.,. Fori =1,2,3,let P, = (e;,0) € C. Then

le(.’IJ — ei) = 2(P7,) - 2(Poo)7
div(y) = (P1) + (P2) + (P3) — 3(Peo)-
Definition. It follows from (II.3.1b) that the principal divisors form a subgroup
of Div’(C). We define the degree-0 part of the divisor class group of C' to be
the quotient of DivO(C) by the subgroup of principal divisors. We denote this
group by Pic”(C). Similarly, we write Pic% (C) for the subgroup of Pic’(C) fixed
by G /K-
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Remark 3.4. The above definitions and (II.3.1) may be summarized by saying that
there is an exact sequence
1— K* — K(C)* —dv Div’(C) — Pic’(C) — 0.

This sequence is the function field analogue of the fundamental exact sequence in
algebraic number theory, which for a number field K reads

1 units K fractional . ideal class 1
of K ideals of K group of K '
Let ¢ : C7 — Cs be a nonconstant map of smooth curves. As we have seen, ¢
induces maps on the function fields of C; and Cs,
¢* K(CQ) —>K(Cl) and (b* K(Cl) —>K(CQ)

We similarly define maps of divisor groups as follows:

¢* : Div(Cs) — Div(CY), ¢« : Div(C1) — Div(Cy),
@) — > es(P)P), (P) — (¢P),
Peo~1(Q)

and extend Z-linearly to arbitrary divisors.

Example 3.5. Let C be a smooth curve, let f € K(C) be a nonconstant function,
and let f : C — P! be the corresponding map (I1.2.2). Then directly from the
definitions,
div(f) = f*((0) = (c0)).
Proposition 3.6. Let ¢ : C; — Cy be a nonconstant map of smooth curves.
(a) deg(¢p*D) = (deg ¢)(deg D) forall D € Div(Cs).

(b) ¢*(div f) = div(¢* f) forall f € K(Co)*.
(c) deg(¢.D) = degD forall D € Div(Ch).
@ ¢u(div f) = div(¢.f) forall f € K(Cy)*.

(e) ¢« 0 ¢ acts as multiplication by deg ¢ on Div(Cs).
) Ifv: Cy — Csis another such map, then
(hog)"=¢ o™ and (o). =1ho s
PROOF. (a) Follows directly from (II.2.6a).
(b) Follows from the definitions and the easy fact (Exercise 2.2) that forall P € C},

ordp (" f) = eg(P) ordyp(f).

(¢c) Clear from the definitions.

(d) See [142, Chapter 1, Proposition 22] or [233, I, Proposition 14].

(e) Follows directly from (I1.2.6a).

(f) The first equality follows from (I1.2.6¢). The second is obvious. O
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Remark 3.7. From (I1.3.6) we see that ¢* and ¢, take divisors of degree 0 to divisors
of degree 0, and principal divisors to principal divisors. They thus induce maps

¢* : Pic’(Cy) — Pic®(Cy)  and ¢, : Pic’(Cy) — Pic®(Cy).
In particular, if f € K(C') gives the map f : C — P!, then

degdiv(f) = deg f*((0) — (00)) = deg f — deg f = 0.
This provides a proof of (I.3.1b)

II.4 Differentials

In this section we discuss the vector space of differential forms on a curve. This vec-
tor space serves two distinct purposes. First, it performs the traditional calculus role
of linearization. (See (III §5), especially (II1.5.2).) Second, it gives a useful criterion
for determining when an algebraic map is separable. (See (I1.4.2) and its utilization
in the proof of (II1.5.5).) Of course, the latter is also a familiar use of calculus, since
a field extension is separable if and only if the minimal polynomial of each element
has a nonzero derivative

Definition. Let C' be a curve. The space of (meromorphic) differential forms
on C, denoted by ¢, is the K-vector space generated by symbols of the form dz
for z € K(C), subject to the usual relations:
() d(z+vy) =dzr+dy forallz,ye€ K(O).
(i) d(zy) = xdy +ydx forallz,y € K(C).
>iii) da =0 foralla € K.

Remark 4.1. There is, of course, a functorial definition of Q2. See, for example,
[164, Chapter 10], [111, I1.8], or [210, II §3].

Let ¢ :7C’1 — Cy l:)e a nonconstant map of curves. The associated function field
map ¢* : K(C2) — K(C1) induces a map on differentials,

0 00— Qo 0" (D fidai) = Y (67 f)d(6 ).
This map provides a useful criterion for determining when ¢ is separable.

Proposition 4.2. Let C' be a curve.
(a) Q¢ is a 1-dimensional K (C)-vector space.
(b) Let z € K(C). Then dx is a K(C)-basis for Q¢ if and only if K(C)/K (z) is
a finite separable extension.
(c) Let ¢ : C1y — Cs be a nonconstant map of curves. Then ¢ is separable if and
only if the map
(b* : QCQ - ch

is injective (equivalently, nonzero).
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PROOF. (a) See [164,27.A,B], [210, I1.3.4], or [243, III §4, Theorem 3].

(b) See [164,27A,B] or [243, III §4, Theorem 4].

(c) Using (a) and (b), choose y € K (Cs) such that Q¢, = K(Cs)dy and such
that K (C3)/K (y) is a separable extension. Note that ¢* K (Cs) is then separable
over ¢* K (y) = K(¢*y). Now

¢* is injective <= d(¢*
= d(¢

K(
K(C

y) #

y) is a basis for ¢, (from (a)),

C1)/ K (¢*y) is separable (from (b)),
)

1)/#* K (Cy) is separable,

where the last equivalence follows because we already know that ¢* K (Ca) /K (¢*y)
is separable. O

Proposition 4.3. Let C be a curve, let P € C, and let t € K(C) be a unformizer
at P.

(a) For every w € Q¢ there exists a unique function g € K(C), depending on w
and t, satisfying
w = gdt.

We denote g by w/dt.
(b) Let f € K(C) be regular at P. Then df /dt is also regular at P.
(¢) Let w € Q¢ with w # 0. The quantity

ordp(w/dt)

depends only on w and P, independent of the choice of uniformizer t. We call
this value the order of w at P and denote it by ord p(w).

(d) Letz, f € K(C) with x(P) = 0, and let p = char K. Then

ordp(f dz) =ordp(f) +ordp(z) — 1, ifp=0orpf{ordp(x),
ordp(f dx) > ordp(f) + ordp(z), ifp>0andp | ordp(x).

(e) Letw € Q¢ withw # 0. Then
ordp(w) =0 for all but finitely many P € C.

PROOF. (a) This follows from (II.1.4) and (4.2ab).

(b) See[111, comment following IV.2.1] or [210, 11.3.10].

(¢) Lett’ be another uniformizer at P. Then from (b) we see that dt/dt’ and dt' /dt
are both regular at P, so ordp(dt’/dt) = 0. The desired result then follows from

w=gdt = g(dt'/dt)dt.
(d) Write x = ut™ with n = ordp(z) > 1, so ordp(u) = 0. Then

dz = [nut" " + (du/dt)t"] dt.
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From (b) we know that du/dt is regular at P. Hence if n # 0, then the first term
dominates, which gives the desired equality

ordp(f dr) = ordp(fnut" *dt) = ordp(f) +n — 1.
On the other hand, if p > 0 and p | n, then the first term vanishes and we find that
ordp(f dx) = ordp(f(du/dt)t"™ dt) > ordp(f) + n.

(e) Choose some z € K(C) such that K(C)/K(x) is separable and write w =
f dx. From [111,1V.2.2a], the map = : C' — P! ramifies at only finitely many points
of C'. Hence discarding finitely many points, we may restrict attention to points P €
C such that

f(P)#0, [(P)# 00, z(P)# oo,

and the map # : C — P! is unramified at P. The two conditions on x imply
that x — x(P) is a uniformizer at P, so

ordp(w) = ordp(f d(z — z(P))) = 0.
Hence ordp(w) = 0 for all but finitely many P. O

Definition. Let w € Q¢. The divisor associated to w is

div(w) = Z ordp(w)(P) € Div(C).
pPeC

The differential w € Q¢ is regular (or holomorphic) if
ordp(w) >0 forall P € C.

It is nonvanishing if
ordp(w) <0 forall P € C.

Remark 4.4. If wy,ws € Q¢ are nonzero differentials, then (IL.4.2a) implies that
there is a function f € K(C)* such that w; = fws. Thus

div(wy) = div(f) + div(wa),
which shows that the following definition makes sense.

Definition. The canonical divisor class on C' is the image in Pic(C) of div(w)
for any nonzero differential w € ¢. Any divisor in this divisor class is called a
canonical divisor.

Example 4.5. We are going to show that there are no holomorphic differentials
on IPL. First, if ¢ is a coordinate function on P!, then

div(dt) = —2(c0).
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To see this, note that for all « € K, the function ¢t — « is a uniformizer at «, so
ord,(dt) = ord, (d(t — a)) = 0.

However, at co € P! we need to use a function such as 1 /t as our uniformizer, so

ordag (dt) = ordeg <t2 d (1)) =2

Thus dt is not holomorphic. But now for any nonzero w € {2p1, we can use (I1.4.3a)
to compute
deg div(w) = deg div(dt) = -2,

so w cannot be holomorphic either.
Example 4.6. Let C be the curve
C:y? = (z—e1)(z —e2)(w — ea),
where we continue with the notation from (I1.3.3). Then
div(dz) = (Pr) + (P2) + (Ps) — 3(Pc).
(Note that dr = d(z — e;) = —2% d(1/x).) We thus see that
div(dz/y) = 0.

Hence the differential dz:/y is both holomorphic and nonvanishing.

II.5 The Riemann-Roch Theorem

Let C be a curve. We put a partial order on Div(C) in the following way.
Definition. A divisor D = Y np(P) is positive (or effective), denoted by
D >0,

if np > 0 for every P € C. Similarly, for any two divisors D1, D2 € Div(C), we
write
Dy > Do

to indicate that Dy — D5 is positive.

Example 5.1. Let f € K(C)* be a function that is regular everywhere except at
one point P € (), and suppose that it has a pole of order at most n at P. These
requirements on f may be succinctly summarized by the inequality

div(f) > —n(P).
Similarly,
e div(f) = (Q) —n(P)

says that in addition, f has a zero at (). Thus divisorial inequalities are a useful tool
for describing poles and/or zeros of functions.
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Definition. Let D € Div(C'). We associate to D the set of functions
L(D)={feK(C)*:div(f) > —D} u{0}.

The set £(D) is a finite-dimensional K -vector space (see (I1.5.2b) below), and we
denote its dimension by
(D) =dimg L(D).

Proposition 5.2. Ler D € Div(C).
(a) Ifdeg D < 0, then

L£(D)={0} and (D) =0.

(b) L(D) is a finite-dimensional K -vector space.
(¢c) If D' € Div(C) is linearly equivalent to D, then

L(D) = L(D"), andso  ((D)={(D’).

PROOF. (a)Let f € £(D) with f # 0. Then (II.3.1b) tells us that
0 = degdiv(f) > deg(—D) = —deg D,
sodeg D > 0.
(b) See[111,11.5.19] or Exercise 2.4.
(¢) If D = D' + div(g), then the map
L(D) — L(D"), fr—fg
is an isomorphism. O
Example 5.3. Let K¢ € Div(C') be a canonical divisor on C, say
Ko = div(w).

Then each function f € £(K¢) has the property that

div(f) > —div(w), so div(fw) > 0.

In other words, fw is holomorphic. Conversely, if the differential fw is holomorphic,
then f € L(Kc). Since every differential on C' has the form fw for some f, we have
established an isomorphism of K -vector spaces,

L(K¢) 2 {w € Q¢ : w is holomorphic}.

The dimension ¢(K ) of these spaces is an important invariant of the curve C.

We are now ready to state a fundamental result in the algebraic geometry of
curves. Its importance, as we will see amply demonstrated in (III §3), lies in its
ability to tell us that there are functions on C' having prescribed zeros and poles.
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Theorem 5.4. (Riemann—-Roch) Let C be a smooth curve and let K & be a canonical
divisor on C'. There is an integer g > 0, called the genus of C, such that for every
divisor D € Div(C),

D) —¥(Kc—D)=degD — g+ 1.

PROOF. For a fancy proof using Serre duality, see [111, IV §1]. A more elementary
proof, due to Weil, is given in [136, Chapter 1]. O

Corollary 5.5. (a) {(K¢) =g.
(b) deg Ko =2g — 2.
(c) Ifdeg D > 2g — 2, then

{(D)=degD —g+1.

PROOF. (a) Use (I1.5.4) with D = 0. Note that £(0) = K from (I.1.2), so £(0) = 1.
(b) Use (a) and (I1.5.4) with D = K¢.
(¢) From (b) we have deg(K ¢ — D) < 0. Now use (IL.5.4) and (I1.5.2a). O

Example 5.6. Let C = P'. Then (I1.4.5) says that there are no holomorphic dif-
ferentials on C, so using the identification from (I1.5.3), we see that £(K¢) = 0.
Then (I1.5.5a) says that P! has genus 0, and the Riemann—Roch theorem reads

(D) —£(—2(c0) — D) =deg D + 1.
In particular, if deg D > —1, then
(D) =degD +1.
(See Exercise 2.3b.)
Example 5.7. Let C be the curve
C:y? = (x—er)(z — e2)(x — e3),

where we continue with the notation of (I1.3.3) and (I1.4.6). We have seen in (11.4.6)
that

div(dz/y) =0,

so the canonical class on C'is trivial, i.e., we may take K = 0. Hence using (I1.5.5a)
we find that

g=U(Kc) = 0(0) =1,

so C' has genus one. The Riemann—Roch theorem (I1.5.5¢) then tells us that
(D) =deg D provided deg D > 1.

We consider several special cases.
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(i) Let P € C. Then ¢((P)) = 1. But £((P)) certainly contains the constant
functions, which have no poles, so this shows that there are no functions on C'
having a single simple pole.

(ii) Recall that Py, is the point at infinity on C. Then ¢(2(Px)) = 2, and {1, z}
provides a basis for £(2(Px)).

(iii) Similarly, the set {1, z,y} is a basis for £(3(Px)), and {1, z, y, 2} is a basis
for £(4(Px)).

(iv) Now we observe that the seven functions 1,z,y,z2, 2y, 23, 3> are all in
L(6(Px)), but £(6(Px)) = 6, so these seven functions must be K -linearly

dependent. Of course, the equation y? = (z — e1)(z — e2)(x — e3) used to
define C' gives an equation of linear dependence among them.

The next result says that if C' and D are defined over K, then so is £(D).

Proposition 5.8. Let C/K be a smooth curve and let D € Divg (C). Then L(D)
has a basis consisting of functions in K(C).

PROOF. Since D is defined over K, we have
17 e L(D?) = L(D) forall f € L(D)andall 0 € Gg k-

Thus Gk acts on L(D), and the desired conclusion follows from the following
general lemma. O

Lemma 5.8.1. Let V be a K-vector space, and assume that G g /K acts continuously
on V in a manner compatible with its action on K. Let

Vg =VOr/x ={veV:vi =vforalo ¢ Gr/k}-

Then -
V=K®g Vg,

i.e., the vector space V has a basis of G ; i -invariant vectors.

PROOF. It is clear that Vk is a K-vector space, so it suffices to show that ev-
ery v € V is a K-linear combination of vectors in V. Let v € V and let L/ K be
a finite Galois extension such that v is fixed by Gz /.. (The assumption that Gg
acts continuously on V means precisely that the subgroup {o € G Jr V= v}
has finite index in K, so we can take L to be the Galois closure of its fixed field.)
Let {,...,a,} be a basis for L/K, and let {o1,...,0,} = G k. For each
1 <4 < n, consider the vector
n
w; = Z(aiv)"j = Tracer k(i V).
j=1

It is clear that w; is G ;¢ /K invariant, so w; € V. A basic result from field the-
ory [142, III, Proposition 9] says that the matrix (a;”), < j<n is nonsingular, so
each v7i, and in particular v, is an L-linear combination of the w;’s. (For a fancier
proof, see Exercise 2.12.) O
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We conclude this section with a classic relationship connecting the genera of
curves linked by a nonconstant map.

Theorem 5.9. (Hurwitz) Let ¢ : C; — C5 be a nonconstant separable map of
smooth curves of genera g1 and g, respectively. Then

291 — 2> (deg§) (292 — 2) + D (es(P) —1).
PeCy

Further, equality holds if and only if one of the following two conditions is true:

(i) char(K) =0.

(ii) char(K) = p > 0 and p does not divide e (P) for all P € Ch.
PROOF. Let w € ¢ be a nonzero differential, let P € C4, and let @ = ¢(P).
Since ¢ is separable, (I1.4.2¢c) tells us that ¢*w # 0. We need to relate the val-
ues of ordp(¢*w) and ordg(w). Write w = fdt with t € K(C2) a uniformizer

at Q. Letting e = e¢(P), we have ¢*t = us®, where s is a uniformizer at P and
u(P) # 0, 00. Hence

¢'w = (6" f)d(¢"t) = (¢" f)d(us®) = (¢" f) [eus*™" + (du/ds)s°] ds.
Now ordp(du/ds) > 0 from (I1.4.3b), so we see that
ordp(¢*w) > ordp(¢* f) +e— 1,

with equality if and only if e # 0 in K. Further,

ordp (¢ f) = ey (P)ordg(f) = ep(P) ordg(w).

Hence adding over all P € C yields

degdiv(¢*w) > Z les(P) ordg(py(w) + eg(P) — 1]
PeCy

_ Z Z es(P)ordg(w) + Z (e(P) —1)

QECs Ped—1(Q) PeCy

= (deg ¢)(deg div(w)) + Z (6¢(P) — 1)7

pPeC,

where the last equality follows from (I.2.6a). Now Hurwitz’s formula is a conse-
quence of (II.5.5b), which says that on a curve of genus g, the divisor of any nonzero
differential has degree 2g — 2. O

Exercises

2.1. Let R be a Noetherian local domain that is not a field, let 91 be its maximal ideal, and
let k = R/9M be its residue field. Prove that the following are equivalent:
(1) R is adiscrete valuation ring.
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(i1) 2 is principal.

(iii) dimy, /9% = 1.

(Note that this lemma was used in (I.1.1) to show that on a smooth curve, the local
rings K [C]p are discrete valuation rings.)

2.2. Let ¢ : C1 — C5 be a nonconstant map of smooth curves, let f € R’(Cz)*, and
let P € C. Prove that

ordp(¢” f) = es(P) 0Td¢(P)(f)~

2.3. Verify directly that each of the following results from the text is true for the particular
case of the curve C' = P!,
(a) Prove the two parts of (I1.2.6):

@) Z es(P)=deg¢  forallQ € P'.
Pep1(Q)
(ii) #¢71(Q) = deg,(¢) for all but finitely many Q € P'.

(b) Prove the Riemann—Roch theorem (I1.5.4) for P!
(c) Prove Hurwitz’s theorem (I1.5.9) for a nonconstant separable map ¢ : P — P!,

2.4. Let C be a smooth curve and let D € Div(C'). Without using the Riemann—Roch theo-
rem, prove the following statements.
(a) L£(D) isa K-vector space.
(b) If deg D > 0, then
(D) < degD +1.

2.5. Let C be a smooth curve. Prove that the following are equivalent (over K):
(i) C is isomorphic to P*.

(i) C has genus 0.

(iii) There exist distinct points P, Q € C satisfying (P) ~ (Q).

2.6. Let C' be a smooth curve of genus one, and fix a base point Py € C.
(a) Prove that for all P, Q € C' there exists a unique R € C such that

(P) +(Q) ~ (R) + (Po).

Denote this point R by o (P, Q).

(b) Prove thatthe map o : C'x C' — C from (a) makes C' into an abelian group with identity
element Py.

(c) Define a map

k: C — Pic’(C), P — divisor class of (P) — (Fo).

Prove that & is a bijection of sets, and hence that s can be used to make C' into a group
via the rule

P+Q=r" (H(P) + n(Q))

(d) Prove that the group operations on C defined in (b) and (c) are the same.
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27. Let F(X,Y,Z) € K[X,Y,Z] be a homogeneous polynomial of degree d > 1, and
assume that the curve C' in P? given by the equation F' = 0 is nonsingular. Prove that

(d—1)(d—2)

genus(C) = 5

(Hint. Define a map C' — P' and use (11.5.9).)

2.8. Let ¢ : C1 — C4 be a nonconstant separable map of smooth curves.
(a) Prove that genus(C1) > genus(Cs).
(b) Prove that if C; and C'> have the same genus g, then one of the following is true:
®» g=0.
(i) g =1and ¢ is unramified.
(iii) g > 2 and ¢ is an isomorphism.

2.9. Let a,b, ¢, d be squarefree integers with @ > b > ¢ > 0, and let C be the curve in P?
given by the equation
C:aX’+bY° +cZ° +dXYZ =0.
Let P = [z,y, 2] € C and let L be the tangent line to C' at P.
(a) Show that C N L = {P, P'} and calculate P’ = [z, 3, 2’] in terms of a, b, ¢, d, , y, 2.
(b) Show thatif P € C(Q), then P’ € C(Q).

(c) Let P € C(Q). Choose homogeneous coordinates for P and P’ that are integers satis-
fying ged(z,y, 2z) = 1 and ged(z', 3, 2") = 1. Prove that

lz'y 2| > |wyz].

(Note the strict inequality.)
(d) Conclude that either C'(Q) = 0 or else C(Q) is an infinite set.
(e) ** Characterize, in terms of a, b, ¢, d, whether C'(Q) contains any points.

2.10. Let O be a smooth curve. The support of a divisor D = ) “np(P) € Div(C) is the set
of points P € C for which np # 0. Let f € K(C)" be a function such that div(f) and D
have disjoint supports. Then it makes sense to define

f) =] fp)r.

pPeC

Let ¢ : Ci — C2 be a nonconstant map of smooth curves. Prove that the following two
equalities are valid in the sense that if both sides are well-defined, then they are equal.

(@) f(¢*D) = (¢f)(D) forall f € K(C1)* and all D € Div(Cs).

(b) f(¢«D) = (¢* f)(D) forall f € K(C2)* and all D € Div(Ch).

2.11. Let C be a smooth curve and let f, g € K (C)* be functions such that div( f) and div(g)
have disjoint support. (See Exercise 2.10.) Prove Weil’s reciprocity law

f(div(g)) = g(div(f))

using the following two steps:
(a) Verify Weil’s reciprocity law directly for C' = P*.
(b) Now prove it for arbitrary C' by using the map g : C' — P! to reduce to (a).
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2.12. Use the extension of Hilbert’s Theorem 90 (B.3.2), which says that
H'(Gg)x, GLa(K)) =0,
to give another proof of (I11.5.8.1).

2.13. Let C/K be a curve.
(a) Prove that the following sequence is exact:

1— K* — K(C)* — Div%(C) — Pick (C).
(b) Suppose that C has genus one and that C'(K) # (. Prove that the map
Div% (C) — Pic% (C)
is surjective.
2.14. For this exercise we assume that char K # 2. Let f(x) € K[z] be a polynomial of

degree d > 1 with nonzero discriminant, let Cp/ K be the affine curve given by the equation

d—1

Cozy2:f(x):aoxd+a1m + -+ ago1x + aq,

and let g be the unique integer satisfyingd — 3 < 29 < d — 1.
(a) Let C be the closure of the image of C via the map

[l,m,mQ, .. .,ngl,y} 1 Cop —> PIT2,

Prove that C' is smooth and that C' N {Xo # 0} is isomorphic to Co. The curve C is
called a hyperelliptic curve.
(b) Let

ao+ a1v+ - + ag_1v?t + aqv? if d is even,

agv + a1v? + - + ag_1v® + agv®'  if d is odd.

) =v*"2f(1/0) = {

Show that C' consists of two affine pieces
Co:y’ = f(x) and Ch i w® = fF(v),
“glued together” via the maps

Co — Ch, C; — Co,
(x,y) — (1/z,y/xTh), (v,w) — (1/v,w/vITh).

(c) Calculate the divisor of the differential dz:/y on C and use the result to show that C
has genus g. Check your answer by applying Hurwitz’s formula (I1.5.9) to the map
[1,2] : C — P*. (Note that Exercise 2.7 does not apply, since C' ¢ P2.)

(d) Find a basis for the holomorphic differentials on C'. (Hint. Consider the set of differential
forms {z’ dx/y : i =0,1,2,...}. How many elements in this set are holomorphic?)

2.15. Let C'/K be a smooth curve defined over a field of characteristic p > 0, and
lett € K(C). Prove that the following are equivalent:

(i) K(C) is a finite separable extension of K (¢).

(ii) For all but finitely many points P € C, the function ¢ — ¢(P) is a uniformizer at P.
(iii) t ¢ K(C)*.
2.16. Let C'/K be a curve that is defined over K and let P € C'(K). Prove that K (C') con-
tains uniformizers for C' at P, i.e., prove that there are uniformizers that are defined over K.



Chapter 111

The Geometry of Elliptic
Curves

Elliptic curves, our principal object of study in this book, are curves of genus one
having a specified base point. Our ultimate goal, as the title of the book indicates,
is to study the arithmetic properties of these curves. In other words, we will be in-
terested in analyzing their points defined over arithmetically interesting fields, such
as finite fields, local (p-adic) fields, and global (number) fields. However, before do-
ing so we are well advised to study the properties of these curves in the simpler
situation of an algebraically closed field, i.e., to study their geometry. This reflects
the general principle in Diophantine geometry that in attempting to study any sig-
nificant problem, it is essential to have a thorough understanding of the geometry
before one can hope to make progress on the number theory. It is the purpose of this
chapter to make an intensive study of the geometry of elliptic curves over arbitrary
algebraically closed fields. (The particular case of elliptic curves over the complex
numbers is studied in more detail in Chapter VI.)

We start in the first two sections by looking at elliptic curves given by explicit
polynomial equations called Weierstrass equations. Using these explicit equations,
we show, among other things, that the set of points of an elliptic curve forms an
abelian group, and that the group law is given by rational functions. Then, in Sec-
tion 3, we use the Riemann—Roch theorem to study arbitrary elliptic curves and to
show that every elliptic curve has a Weierstrass equation, so the results from the first
two sections in fact apply generally. The remainder of the chapter studies, in various
guises, the algebraic maps between elliptic curves. In particular, since the points of
an elliptic curve form a group, for each integer m there is a multiplication-by-m map
from the curve to itself. It would be difficult to overestimate the importance of these
multiplication maps in any attempt to study the arithmetic of elliptic curves, which
will explain why we devote so much space to them in this chapter.

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 41
in Mathematics 106, DOI 10.1007/978-0-387-09494-6_111,
(© Springer Science+Business Media, LLC 2009
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III.1 Weierstrass Equations

Our primary objects of study are elliptic curves, which are curves of genus one hav-
ing a specified base point. As we will see in (III §3), every such curve can be written
as the locus in P2 of a cubic equation with only one point, the base point, on the line
at co. Then, after X and Y are scaled appropriately, an elliptic curve has an equation
of the form

Y2Z 4+ a XY Z 4+ a3YZ? = X3+ as X% Z + au X 7% + as 2>,

Here O = [0, 1,0] is the base point and ay, .. .,as € K. (It will become clear later
why the coefficients are labeled in this way.) In this section and the next, we study
the curves given by such Weierstrass equations, using explicit formulas as much as
possible to replace the need for general theory.

To ease notation, we generally write the Weierstrass equation for our elliptic
curve using non-homogeneous coordinates x = X/Z and y = Y/Z,

E:y® + a1zy + azy = 2° + a22® + a4 + ag,

always remembering that there is an extra point O = [0, 1, 0] out at infinity. As usual,
ifay,...,a6 € K, then E is said to be defined over K.

If char(K) # 2, then we can simplify the equation by completing the square.
Thus the substitution ]
yr i(y_all' —as)

gives an equation of the form
E 1 y? = 423 + byx® + 2byx + b,
where
bo :a%+4a4, by = 2a4 + ayas, be =a§+4a6.

We also define quantities

bg = a%af; + dasag — arasay + a2a§ — ai,

cy = b2 — 24by,

cg = —bi + 36byby — 216bg,

A = —b3bg — 8b — 27b3 + Ybabsb,

J=ci/A,

Y dx _ dy .
2y + a1z +az  3x2 + 2a37 + ag — ary

One easily verifies that they satisfy the relations
4bg = bobg — b3 and  1728A = ¢ — 2.

If further char(K) # 2, 3, then the substitution
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y?=a3 -3z +3 y=x+z ==z
A = 2160 —64 A =64

>
I

— T

./
N\

Figure 3.1: Three elliptic curves

v = b y?2 = 23 + 22
A=0 A=0

Cusp: one tangent Node: two distinct

direction tangent directions

Figure 3.2: Two singular cubic curves.

(2,y) — <x—3b2 Y >

36’108
eliminates the 22 term, yielding the simpler equation

E: y2 =23 — 2Tcqw — H54cg.

Definition. The quantity A is the discriminant of the Weierstrass equation, the quan-
tity j is the j-invariant of the elliptic curve, and w is the invariant differential asso-

ciated to the Weierstrass equation.

Example 1.1. Itis easy to graph the real locus of a Weierstrass equation. Some repre-
sentative examples are shown in Figure 3.1. If A = 0, then we will see later (III.1.4)
that the curve is singular. Two sorts of behavior can occur, as illustrated in Figure 3.2.

With these singular examples in mind, we consider the general situation. Let P =

(20, yo) be a point satisfying a Weierstrass equation

2

f(m,y):y2+a1xy+a3y—:c3—a2x —aqr —ag = 0,
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and assume that P is a singular point on the curve f(z,y) = 0.Then from (I.1.5) we

have of af

It follows that there are o, 3 € K such that the Taylor series expansion of f(z,)
at P has the form

f(x,y) - f(anyO)
= ((y — o) — a(r — Io)) ((y — o) — Bz — xo)) — (- 560)3-

Definition. With notation as above, the singular point P is a node if o # (3. In this
case, the lines

(P)

Y —yo = a(z — x0) and Yy —yo = Blx — x0)

are the tangent lines at P. Conversely, if « = (3, then we say that P is a cusp, in
which case the fangent line at P is given by

Y —yo = a(z — x0).

To what extent is the Weierstrass equation for an elliptic curve unique? Assuming
that the line at infinity, i.e., the line Z = 0 in P2, is required to intersect E only
at the one point [0,1, 0], we will see (II1.3.1b) that the only change of variables
fixing [0, 1, 0] and preserving the Weierstrass form of the equation is

z=u’z' +r and y=udy +usx’ +t,

where u, 7, s,t € K and u # 0. It is now a simple (but tedious) matter to make this
substitution and compute the a coefficients and associated quantities for the new
equation. The results are compiled in Table 3.1.

It is now clear why the j-invariant has been so named; it is an invariant of the
isomorphism class of the curve, and does not depend on the particular equation cho-
sen. For algebraically closed fields, the converse is true, a fact that we establish later
in this section (I11.1.4b).

Remark 1.3. As we have seen, if the characteristic of K is different from 2 and 3,
then any elliptic curve over K has a Weierstrass equation of a particularly simple
kind. Thus any proof that involves extensive algebraic manipulation with Weierstrass
equation, for example that of (III.1.4) later in this section, tends to be much shorter
if K is so restricted. On the other hand, even if one is primarily interested in charac-
teristic 0, e.g., K = Q, an important tool is the process of reducing the coefficients
of an equation modulo p for various primes p, including p = 2 and p = 3. So even
for K = Q, it is important to understand elliptic curves in all characteristics. Con-
sequently, we adopt the following policy. All theorems will be stated for a general
Weierstrass equation, but if it makes the proof substantially shorter, we will make the
assumption that the characteristic of K is not 2 or 3 and give the proof in that case.
Then, in the interest of completeness, we return to these theorems in Appendix A
and give the proofs for general Weierstrass equations and arbitrary characteristic.
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ual = aj +2s
u?aly = as — say +3r — s
uday = a3 +ray + 2t
utal = a4 — saz + 2rag — (t +rs)a; + 3r? — 2st
ubay = ag + ras + rlaz + 13 —taz — t* — rtay
u?bly = by + 121
utbly = by + rby + 612
uSbly = bg + 2rby + r2by + 4r3
uBbl = bg + 3rbg + 3r2by + r3by + 314

47

2

utcy =cq
ubcl = cq
ul?A" = A
i=J
ulw =w

Table 3.1: Change-of-variable formulas for Weierstrass equations.
Assuming now that the characteristic of K is not 2 or 3, our elliptic curve(s) have
Weierstrass equation(s) of the form
E:y* =24+ Az + B.
Associated to this equation are the quantities

(44)°
A

A= —16(4A%+27B?) and j=—1728

The only change of variables preserving this form of the equation is

z = vz’ and  y=u’y for some u € K*;

and then
utA = A, u$B' = B, u?A = A.

Proposition 1.4. (a) The curve given by a Weierstrass equation satisfies:
(i) It is nonsingular if and only if A = 0.
(i1) It has a node if and only if A = 0 and ¢4 # 0.
(iii) It has a cusp if and only if A = ¢4 = 0.
In cases (ii) and (iii), there is only the one singular point.
(b) Two elliptic curves are isomorphic over K if and only if they both have the
same j-invariant.

(c) Let jo € K. There exists an elliptic curve defined over K (jo) whose j-invariant
is equal to j.

PROOF. Let E be given by the Weierstrass equation
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E: f(z,y) = v* + arzy + azy — 2° — apx? — ayr — ag = 0.

We start by showing that the point at infinity is never singular. Thus we look at the
curve in P? with homogeneous equation

FX,Y,2)=Y?*Z+ a1 XYZ +a3YZ? - X? — s X*7 — ay X 7% — ag Z*
=0
and at the point O = [0, 1, 0]. Since

OF

we see that O is a nonsingular point of F.
Next suppose that F is singular, say at Py = (z0, yo). The substitution

r=2"4z0  y=y +w

leaves A and ¢y invariant (II1.1.2), so without loss of generality we may assume
that E is singular at (0, 0). Then

_ _ =% 0.0) = 900 =
a%=f0,0)=0, a=75.0,00=0, a5=75(0,0)=0,

so the equation for E takes the form
E: f(z,y) = y* + a1zy — aga® — 23 = 0.
This equation has associated quantities
cy = (a? + day)? and A=0.

By definition, E has a node (respectively cusp) at (0, 0) if the quadratic form y? +
a2y — azx? has distinct (respectively equal) factors, which occurs if and only if the
discriminant of this quadratic form satisfies

a% +4as # 0 (respectively a% +4ap = 0).

This proves the “only if” part of (ii) and (iii).

To complete the proof of (i)—(iii), it remains to show that if £ is nonsingular,
then A # 0. To simplify the computation, we assume that char(K’) # 2 and consider
a Weierstrass equation of the form

E: y2 = 4.’173 + b2$2 + 2bsx + bg.

(See (III.1.3) and (A.1.2a).) The curve E is singular if and only if there is a point
(z0,y0) € E satisfying

2u0 = 1223 + 2baao + 2by = 0.
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In other words, the singular points are exactly the points of the form (z¢,0) such
that 2 is a double root of the cubic polynomial 423 + byx? + 2bsx + bg. This poly-
nomial has a double root if and only if its discriminant, which equals 16 A, vanishes.
This completes the proof of (i)—(iii). Further, since a cubic polynomial cannot have
two double roots, E has at most one singular point.

(b) If two elliptic curves are isomorphic, then the transformation formulas (III.1.2)
show that they have the same j-invariant. For the converse, we will assume that
char(K) > 5 (see (II1.1.3) and (A.1.2b)). Let E and E’ be elliptic curves with the
same j-invariant, say with Weierstrass equations

E:y? =2+ Az + B,
E =2+ A2 +B.
Then the assumption that j(F) = j(E’) means that
44 @Ay
4A3 +2TB% 447 +27B"*

which yields
APB* = A” B2,

2

We look for an isomorphism of the form (z,y) = (u?az’,u3y’) and consider three

cases:
Case 1. A =0 (j = 0). Then B # 0, since A # 0, so A’ = 0, and we obtain an
isomorphism using u = (B/B’)'/6.
Case?2. B=0(j = 1728). Then A # 0, so B’ = 0, and we take u = (A/A’)'/2.
Case 3. AB # 0 (j # 0,1728). Then A’B’ # 0, since if one of them were 0,
then both of them would be 0, contradicting A’ # 0. Taking u = (A/A)Y/* =
(B/B')'/6 gives the desired isomorphism.
(¢) Assume that jo # 0, 1728 and consider the curve

36 . 1
Jo— 17287 7 jo —1728°

E:y?+ay=2a°—
A simple calculations yields
-3
Jo .
A= ——" and = Jo.
(o — 1728)3 Joe
This gives the desired elliptic curve (in any characteristic) provided that j, # 0, 1728.
To complete the list, we use the two curves
E:y?+y=2a° A = -27, j=0,
E:y? =23+, A = —64, j = 1728.
(Notice that in characteristic 2 or 3 we have 1728 = 0, so even in these cases one of
the two curves will be nonsingular and fill in the missing value of j.) O



48 I11. The Geometry of Elliptic Curves

Proposition 1.5. Let E be an elliptic curve. Then the invariant differential w as-
sociated to a Weierstrass equation for E is holomorphic and nonvanishing, i.e.,
div(w) = 0.

PROOF. Let P = (x0,40) € E and
E:F(z,y) = 9>+ ajzy + asy — 2> — asx® — agx — ag = 0,

" d(x — o) d(y — yo)

w = = —

Fy(z,y) Folz,y)
Thus P cannot be a pole of w, since otherwise Fy(P) = F,(P) = 0, which would
say that P is a singular point of . The map

E —>P1a [x7y’ 1} — [l‘, 1]7

is of degree 2, so ordp(z — x9) < 2, and we have equality ordp(z — xg) = 2
if and only if the quadratic polynomial F'(xg,y) has a double root. In other words,
either ordp(z — x¢) = 1, or else ordp(x — o) = 2 and Fy(xo,y0) = 0. Thus in
both cases, we can use (I1.4.3) to compute

ordp(w) = ordp(x — z9) — ordp(F,) —1 = 0.

This shows that w has no poles or zeros of the form (z, yo), S0 it remains to check
what happens at O.

Let ¢ be a uniformizer at O. Since ordp(z) = —2 and ordp(y) = —3, we
see that z = t~2f and y = ¢3¢ for functions f and g satisfying f(O) # 0,00
and ¢g(O) # 0, co. Now

e o =2f 4 tf it
Fy(x,y) 2t 3g+ait2f+as  29+aitf+azt3

w =

Here we are writing f’ = df /dt; cf. (IL4.3). In particular, (IL.4.3b) tells us that f’ is
regular at O. Hence assuming that char(K) # 2, the function

—2f +tf
29 + artf + ast?

is regular and nonvanishing at O, and thus
ordp(w) = 0.

Finally, if char(K) = 2, then the same result follows from a similar calculation using
w = dy/Fy(x,y). We leave the details to the reader. O

Next we look at what happens when a Weierstrass equation is singular.

Proposition 1.6. Ifa curve E given by a Weierstrass equation is singular, then there
exists a rational map ¢ : E — P! of degree one, i.e., the curve E is birational to P*.
(Note that since E is singular, we cannot use (11.2.4.1) to conclude that E = P!.)
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PROOF. Making a linear change of variables, we may assume that the singular point
is (z,y) = (0,0). Checking partial derivatives, we see that the Weierstrass equation
has the form

E: y2 +ajxy = x4 ang.

Then the rational map
E — P, (z,y) — [z,v],
has degree one, since it has an inverse given by
P! — E, [1,t] — (t* 4+ a1t — ag, t> + a1t® — ast).

(To derive this formula, let ¢ = y/x and note that dividing the Weierstrass equation
of E by x* yields t* + ait = x 4 ay. This shows that both  and y = xt are
in K(t).) O

Legendre Form

There is another form of Weierstrass equation that is sometimes convenient.

Definition. A Weierstrass equation is in Legendre form if it can be written as
v =x(z —1)(z — ).

Proposition 1.7. Assume that char(K) # 2.
(a) Every elliptic curve is isomorphic (over K) to an elliptic curve in Legendre form

Ey:y? =z(z—1)(z—N\)
for some \ € K with \ # 0, 1.
(b) The j-invariant of Ey is

(A2 =X+1)3

J(EN) = 28W

(c) The association
K\{Ovl}‘)f{a /\'—’](E)\)a

is surjective and exactly six-to-one except above j = 0 and 7 = 1728, where
it is two-to-one and three-to-one, respectively (unless char(K) = 3, in which
case it is one-to-one above j = 0 = 1728).

PROOF. (a) Since char(K) # 2, we know that E has a Weierstrass equation of the
form
2 _ 4.3 2
y° = 4x° + box” + 2bsx + bg.
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Replacing (z,y) by (z, 2y) and factoring the cubic yields an equation of the form
Y’ = (z —er)(z —e2)(w — e3)
for some e1, ez, e3 € K. Further, since
A =16(e; — e3)?(e1 — e3)*(eq — e3)* # 0,
we see that the ¢;’s are distinct. Now the substitution

z = (e2 —e1)x’ +ey, y = (e2 —e1)¥ %y

gives an equation in Legendre form with

€3 — €1

A= €K, A#0,1.

€2 — €1

(b) Calculation.

(¢) One can work directly from the formula for j(F)) in (b), an approach that we
leave to the reader. Instead, we use the fact that the j-invariant classifies an ellip-
tic curve up to isomorphism (III.1.4b). Thus suppose that j(Ey) = j(E,). Then
I\ = E,, so their Weierstrass equations (in Legendre form) are related by a change
of variables

r =u’z’ + T, Yy = ugy’.

Equating

2= 1) —p) = (v+ ) <x+rugl) <x+T1ﬂA),

there are six ways of assigning the linear terms to one another, and one easily checks
that these lead to six possible values for x4 in terms of A,

1 1 |
A=, 1 =) .
LLG{’A? 71—A’A—1’ A }

Hence A — j(E)) is exactly six-to-one unless two or more of these values for
coincide. Equating them by pairs shows that this occurs if and only if

1 T
A e {—1, 2, 2} = association is three-to-one
or

A2 — A+ 1 = 0 = association is two-to-one.

These A values correspond, respectively, to j = 1728 and 7 = 0. Finally, if K has
characteristic 3, then these A values coincide and the equation j(A) = 0 = 1728 has
the unique solution A = —1. O
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P+Q3

P3Q®R=0

Addition of distinct points Adding a point to itself

Figure 3.3: The composition law.

III.2 The Group Law

Let E be an elliptic curve given by a Weierstrass equation. Thus £ C P? con-
sists of the points P = (z,y) satisfying the Weierstrass equation, together with the
point O = [0,1,0] at infinity. Let L C P? be a line. Then, since the equation has
degree three, the line L intersects E at exactly three points, say P, @, R. Of course,
if L is tangent to FE, then P, @, R need not be distinct. The fact that L N F, taken
with multiplicities, consists of exactly three points is a special case of Bézout’s theo-
rem [111, 1.7.8]. However, since we give explicit formulas later in this section, there
is no need to use a general theorem.
We define a composition law @ on E by the following rule:

Composition Law 2.1. Let P,Q € E, let L be the line through P and Q (if P = Q,
let L be the tangent line to E at P), and let R be the third point of intersection of L
with E. Let L' be the line through R and O. Then L' intersects E at R, O, and a
third point. We denote that third point by P @ Q.

Various instances of the composition law (II.2.1) are illustrated in Figure 3.3.
We now justify the use of the symbol .

Proposition 2.2. The composition law (I111.2.1) has the following properties:
(a) If aline L intersects E at the (not necessarily distinct) points P, Q), R, then

(PeQ)eR=0.

(b) P®O =P forall P € E.
) PeQ=Q®Pforall PQ € E.
(d) Let P € E. There is a point of E, denoted by &P, satisfying

P& (eP)=0.
(e) Let P,Q,R € E. Then

(PoQ)®R=Pa®(Q®R).
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In other words, the composition law (I11.2.1) makes E into an abelian group with
identity element O. Further:
(f) Suppose that E is defined over K. Then

E(K) ={(z,y) € K2 y? +arzy + asy = 2 + aga? + agx + as} U{O}
is a subgroup of E.

PROOF. All of this is easy except for the associativity (e).
(a) This is obvious from (II1.2.1), or look at Figure 3.3 and note that the tangent
line to E at O intersects E' with multiplicity 3 at O.
(b) Taking @ = O in (IIL.2.1), we see that the lines L and L’ coincide. The former
intersects /' at P, O, R and the latter at R, O, P ® O,s0 P ® O = P.
(c) This is also clear, since the construction of P & @ in (II1.2.1) is symmetric in P
and Q.
(d) Let the line through P and @ also intersect E at R. Then using (a) and (b), we
find that
O=(Pa®0)®R=P3R.

(e) Using the explicit formulas given later in this section (III.2.3), one can labo-
riously verify the associative law case by case. We leave this task to the reader. A
more enlightening proof using the Riemann—Roch theorem is given in the next sec-
tion (II1.3.4e). For a geometric proof, see [95].

(f) If P and @ have coordinates in K, then the equation of the line connecting
them has coefficients in K. If, further, ' is defined over K, then the third point of
intersection has coordinates given by a rational combination of the coordinates of
coefficients of the line and of F, so will be in K. (If this is not clear, see (II1.2.3) in
this section for explicit formulas.) [

Notation. From here on, we drop the special symbols ¢ and & and simply write +
and — for the group operation on an elliptic curve E. Form € Z and P € E, we let

m terms if m > 0 |m| terms if m < 0
—_—— ——
mP=P++P, [mP="P—..—P,  [0]P=0.

As promised, we now derive explicit formulas for the group operations on E.
Let E be an elliptic curve given by a Weierstrass equation

F(z,y) = v* + a1zy + asy — 2° — asa® — agx — ag = 0,

and let Py = (wo,y0) € E. Following the proof of (III.2.2d), in order to calcu-
late — P, we take the line L through Py and O and find its third point of intersection
with E. The line L is given by

L:xz—x9=0.

Substituting this into the equation for E, we see that the quadratic polynomial
F(z0,y) has roots yo and y,, where —P = (o, y(,). Writing out
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F(xo,y) = c(y — o) (¥ — %o)

and equating the coefficients of 42 gives ¢ = 1, and similarly equating the coeffi-
cients of y gives y, = —yo — a1 — as. This yields

—Py = —(z0,0) = (2o, —yo — a170 — az).
Next we derive a formula for the addition law. Let
Py = (z1,y1) and P = (22,%2)

be points of E. If 1 = 22 and y; + y2 + a122 4+ a3 = 0, then we have already
shown that P, + P, = O. Otherwise the line L through P; and P, (or the tangent
line to E if P, = P-,) has an equation of the form

L:y=X\x+v;

formulas for A and v are given below. Substituting the equation of L into the equation
of E, we see that F'(z, \x + v) has roots x1, x2, x3, where P3 = (x3,ys) is the third
point of L N E. From (II1.2.2a) we have

P+ P,+P;=0.

We write out
F(z, e +v) =a(z —x1)(xz — 22)(x — x3)

and equate coefficients. The coefficient of 23 gives ¢ = —1, and then the coefficient
of 22 yields
T, + X0 + 23 = A2+ a )\ — as.

This gives a formula for x3, and substituting into the equation of L gives the value
of y3 = A\z3 + v. Finally, to find P, + P, = — P3, we apply the negation formula
to Ps. All of this is summarized in the following algorithm.

Group Law Algorithm 2.3. Let E be an elliptic curve given by a Weierstrass equa-
tion
E:y® 4+ a1zy + asy = 2° + asx® + sz + ag.

(a) Let Py = (x0,Y0)- Then

—Py = (x0, —yo — a120 — as).

Next let
P+ P,=P; with P, = (xi,yi) e FE fori=1,2,3.
®) If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P +P=0.
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Otherwise, define \ and v by the following formulas:

| H A v
Y2 — Y1 Y12 — Y221
T # o —_— —_—
To — T T2 — T1
v — 32} 4 2a0w1 4 ay — aryy | — 4 sy + 206 — agy,
! ? 2y1 +a171 +as 2y1 +a171 + a3

Then y = Ax + v is the line through Py and Ps, or tangent to E if Py = P.
(c) With notation as in (b), Ps = Py + P5 has coordinates

T3 =N 4+ g \—as— 1 — X9,
ys = —(A+a1)rs — v — as.
(d) As special cases of (c), we have for Py # +Ps,
z(PL+ P) = (922:511{"11)2—’—@1 <i§:zll) —ay — ¥ — T2,
and the duplication formula for P = (z,y) € E,

- 1’4 — b412 - 2b61’ — bg
T 4a3 + box? + 2byx + bG’

z([2P)

where bs, by, bg, bg are the polynomials in the a;’s given in (IIl §1). (See also
Exercise 3.25.)

Corollary 2.3.1. With notation as in (111.2.3), a function f € K(E) = K(z,y) is
said to be even if f(P) = f(—P) forall P € E. Then

fis even if and only if f € K(z).

PROOF. From (I1.2.3), if P = (z¢,%0), then —P = (2o, —yo — a1xo — a3). It fol-
lows immediately that every element of K () is even. Suppose now that f € K (x,y)
is even. Using the Weierstrass equation for £, we can write f in the form

flx,y) =g(x) + h(z)y for some g, h € K ().
Then the assumed evenness of f implies that

f(xvy) = f(xa —Yy—ar — (13),
g(z) + h(z)y = f(z) + h(z)(—y — a1z — a3),
(2y + a1z + az)h(z) = 0.
This holds for all (z,y) € E, so either h is identically 0, or else 2 = a; = a3 = 0.

The latter implies that the discriminant satisfies A = 0, contradicting our assump-
tion that the Weierstrass equation is nonsingular (IIl.1.4a). Hence h = 0, and

so f(z,y) = g(x) € K(x). O
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Example 2.4. Let E/Q be the elliptic curve
E:y? =23 4+17.
A brief inspection reveals some points with integer coordinates,
Pi=(-2,3), Po=(-14), Py=(25), Pi=(49), P;5=(823),
and a short computer search gives some others,
Ps = (43,282), P;=(52,375), Ps=(5234,378661).
Using the addition formula, one easily verifies relations such as
Ps =[-2]Py, Py=P — Ps, [3|P, — P; = P.

Of course, there also are lots of points with nonintegral rational coordinates, for

example
127 2651 8 109
[2]P2<64’512)’ P2+P3<9’27)~

Now it is true, but not so easy to prove, that every rational point P € E(Q) can
be written in the form

P =[m]P; + [n|Ps for some m,n € Z,

and with this identification, the group E(Q) is isomorphic to Z x Z. Further, there
are only 16 integral points P = (z,y) € E, i.e., points with z,y € Z, namely
{xPy,...,£Ps}. (See [190].) These facts illustrate two fundamental theorems in
the arithmetic of elliptic curves, namely that the group of rational points on an elliptic
curve is finitely generated (the Mordell-Weil theorem, proven in Chapter VIII) and
that the set of integral points on an elliptic curve is finite (Siegel’s theorem, proven
in Chapter IX).

Singular Weierstrass Equations

Suppose that a given Weierstrass equation has discriminant A = 0, so (III.1.4a) tells
us that it has a singular point. To what extent does our analysis of the composition
law fail in this case? As we will see, everything is fine provided that we discard the
singular point; and in fact, the resulting group has a particularly simple structure.

The reason that we will be interested in this situation is best illustrated by an
example. Consider again the elliptic curve from (I11.2.4),

E:y?=a2%417.

This is an elliptic curve defined over Q with discriminant A = 243317. It is often
useful to reduce the coefficients of £ modulo p for various primes p and to con-
sider I/ as a curve defined over the finite field IF,,. For almost all primes, namely
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those for which A # 0 (mod p), the “reduced” curve is nonsingular, and hence is an
elliptic curve defined over IF,,. However, for primes p that divide A, so in this exam-
ple for p € {2, 3,17}, the “reduced” curve has a singular point, so it is no longer an
elliptic curve. Thus even when dealing with nonsingular elliptic curves, say defined
over Q, we find singular curves naturally appearing. We will return to this reduction
process in more detail in Chapter VII.

Definition. Let E be a (possibly singular) curve given by a Weierstrass equation. The
nonsingular part of E, denoted by Fiy, is the set of nonsingular points of F. Simi-
larly, if E is defined over K, then E,(K) is the set of nonsingular points of E(K).

We recall from (III.1.4a) that if E is singular, then there are two possibilities for
the singularity, namely a node or a cusp, determined by whether ¢4 = 0 or ¢4 # 0,
respectively.

Proposition 2.5. Let E be a curve given by a Weierstrass equation with A = 0, so E
has a singular point S. Then the composition law (I11.2.1) makes E. into an abelian

group.
(a) Suppose that E has a node, so c4 # 0, and let
y=oaz+ 1 and y=ox+ [

be the distinct tangent lines to E at S. Then the map

B — K*,  (myy) — Y2201
Yy — agr — o
is an isomorphism of abelian groups.
(b) Suppose that E has a cusp, so ¢4 = 0, and let
y=azr+pf
be the tangent line to E at S. Then the map
_ —x(S
E, — K+, (2,y) — xix()
y—ax—f3

is an isomorphism of abelian groups.

Remark 2.6. For a group-theoretic description of E.s(K) when K is not alge-
braically closed, see Exercise 3.5.

PROOF. We first observe that E, is closed under the composition law (II1.2.1), since
if aline L intersects E; at two (not necessarily distinct) points, then L cannot contain
the point S. This is true because S is a singular point of F, so S has multiplicity at
least two in the intersection £ N L; see Exercise 3.28. Thus if L also contains S,
then £ N L would consist of four points (counted with multiplicity), contradicting
Bézout’s theorem [111, 1.7.8].
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We will verify that the maps in (a) and (b) are set bijections with the property that
if aline L not hitting .S intersects F, in three not necessarily distinct points, then the
images of these three points in K * (respectively K +) multiply to 1 (respectively sum
to 0). Using this property, we will prove that the composition law (II1.2.1) makes E\g
into an abelian group and that the maps in (a) and (b) are group isomorphisms.

Since the composition law (III.2.1) and the maps (a) and (b) are defined in terms
of lines in P2, it suffices to prove the theorem after making a linear change of vari-
ables. We start by moving the singular point to (0, 0), yielding the Weierstrass equa-
tion

y2 + a1y = 2+ a2:c2.
Let s € K be aroot of s> + a;s — az = 0. Replacing y by y + sz eliminates
the 22 term, giving the following equation for E, which we now write using homo-
geneous coordinates:
E:Y?Z+AXYZ - X*=0.

Note that F has a node if A # 0 and a cusp if A = 0.
(a) The tangent lines to E' at S = [0,0,1]areY = 0and Y + AX = 0, so we are
looking at the map

_ AX
En5—>K*, [XaKZ]’—)1+7

It is convenient to make one more variable change, so we let
X = A?X' — A?%Y/, Y = A%y, zZ=27.
Dropping the primes, this gives the equation
E:XYZ—-(X-Y)*=0.

We now dehomogenize by setting Y = 1, so x = X/Y and 2z = Z/Y, which yields
the equation
E:xz—(x—1)3=0
and the map -
E, — K7, (x,2) — x.

(Notice that in this new coordinate system, the singular point is now a point at infin-
ity.) The inverse map is

_ t—1)3
K*—>En57 t— <t7(t)>7

so we have a bijection of sets K* <~ E,. It remains to show that if a line, not
going through [0, 0, 1], intersects E at the three points (21, 21), (22, 22), and (23, 23),
then xyxox3 = 1. (See Figure 3.4.) Any such line has the form z = azx + b, so the
three z-coordinates x1, x2, and 3 are the roots of the cubic polynomial

z(ax +b) — (x — 1) = -2+ (a+3)2® + (b—3)x + 1.
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Figure 3.4: The curve 7z — (v — 1)3 = 0.

Looking at the constant term, we see that x93 = 1, as desired.
(b) In this case A = 0 and the tangent line to F at S = [0,0,1] is Y = 0, so we are
looking at the map

Eps — KT, (X,Y,Z] — X/Y.
Again dehomogenizing by setting Y = 1, we obtain

E:z—x3:0,

E,— KT, (z,2) — .

The inverse map is t — (t,t3). Finally, if the line 2 = ax + b intersects E at the
three points (71, 21), (72, 22), and (3, 23), then the absence of an z2-term in

(ax +b) — 2®

implies that x1 4+ 22 + x3 = 0. ]

II1.3 Elliptic Curves

Let E be a smooth curve of genus one. For example, the nonsingular Weierstrass
equations studied in (IIT §1) and (III §2) define curves of this sort. As we have seen,
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such Weierstrass curves can be given the structure of an abelian group. In order to
make a set into a group, clearly an initial requirement is to choose a distinguished
(identity) element. This leads to the following definition.

Definition. An elliptic curve is a pair (E,O), where E is a nonsingular curve of
genus one and O € E. (We generally denote the elliptic curve by E, the point O
being understood.) The elliptic curve E is defined over K, written E/K, if E is
defined over K as a curve and O € E(K).

In order to connect this definition with the material in (IIT §1) and (III §2), we
begin by using the Riemann—Roch theorem to show that every elliptic curve can be
written as a plane cubic, and conversely, every smooth Weierstrass plane cubic curve
is an elliptic curve.

Proposition 3.1. Let E be an elliptic curve defined over K.
(a) There exist functions x,y € K (FE) such that the map

¢:E_>IP27 ¢:[x7y31]7
gives an isomorphism of E /K onto a curve given by a Weierstrass equation
C:Y 4+ a1 XY +a3Y = X34+ aoX? 4 as X + ag

with coefficients ay,...,as € K and satisfying $(O) =[0,1,0]. The func-
tions x and y are called Weierstrass coordinates for the elliptic curve E.

(b) Any two Weierstrass equations for E as in (a) are related by a linear change of
variables of the form

X =u’X"+r, Y =u3Y + sulX' +t,

withu € K* andr,s,t € K.
(c) Conversely, every smooth cubic curve C' given by a Weierstrass equation as
in (a) is an elliptic curve defined over K with base point O = [0, 1, 0].

PROOF. (a) We look at the vector spaces £(n(0O)) for n = 1,2,.... By the
Riemann—Roch theorem, more specifically from (I.5.5¢) with g = 1, we have

{(n(0)) =dimL(n(0)) =n  foralln > 1.

Thus we can choose functions z,y € K(FE) as in (IL5.8) so that {1, 2} is a basis
for £(2(0)) and so that {1,z,y} is a basis for £(3(0)). Note that = must have a
pole of exact order 2 at O, and similarly y must have a pole of exact order 3 at O.
Now we observe that 1.1(6(0)) has dimension 6, but it contains the seven func-
tions
13 x,y,x2,my,y2,z3.

It follows that there is a linear relation

Ay + Agx + Agy + Ayx® 4+ Aszy + Agy® + Aza® =0,
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where by (I1.5.8) we may take A;,..., A7 € K. Note that AgA; # 0, since other-
wise every term would have a pole at O of a different order, and so all of the A;’s
would vanish. Replacing x and y by —Ag A7x and Ag A2y, respectively, and dividing
by Ag A%, we get a cubic equation in Weierstrass form. This gives a map

¢:E—P 4=yl

whose image C' lies in the locus described by a Weierstrass equation. Note that
¢ : E — C'is amorphism from (II.2.1), and that it is surjective from (I1.2.3). Further,
we have ¢(O) = [0, 1, 0], since y has a higher-order pole than x at the point O.

The next step is to show that the map ¢ : E — C C P? has degree-one,
or equivalently, to show that K(FE) = K(x,y). Consider the map [z,1] : E — P!
Since x has a double pole at O and no other poles, (I1.2.6a) says that this map has de-
gree 2. Thus [K(E) : K(z)] = 2. Similarly, the map [y, 1] : E — P! has degree 3,
so [K(E) : K(y)] = 3. Therefore [K(E) : K (x,y)| divides both 2 and 3, so it must
equal 1.

Next we show that C' is smooth. Suppose that C'is singular. Then from (II1.1.6),

there is a rational map v : C' — P! of degree one. It follows that the composition
Yvop: B — Plisa map of degree one between smooth curves, so from (I1.2.4.1), it
is an isomorphism. This contradicts the fact that I/ has genus one and P! has genus
zero (I1.5.6). Therefore C' is smooth, and now another application of (I1.2.4.1) shows
that the degree one map ¢ : £ — C'is an isomorphism.
(b) Let {x,y} and {a’,y’} be two sets of Weierstrass coordinate functions on F.
Then z and 2’ have poles of order 2 at O, and y and 3’ have poles of order 3
at O. Hence {1, 2} and {1, 2’} are both bases for £(2(0)), and similarly {1, z,y}
and {1,2’,y'} are both bases for £(3(0)). Thus there are constants

u,up € K* and r,so0,t € K
such that

r=wx’ +r and y = usy + sox’ +t.

Since both (x,y) and (z',’) satisfy Weierstrass equations in which the Y'? and X3
terms have coefficient 1, we have u3 = u32. Letting u = us/u; and s = s5/u? puts
the change of variables formula into the desired form.

(¢) Let E be given by a nonsingular Weierstrass equation. We have seen (IIL.1.5)

that the differential
dxr

Ww=-——-——€N
2y 4+ a1x + a3 E

has neither zeros nor poles, so div(w) = 0. The Riemann—-Roch theorem (IL.5.5b)
then tells us that
2genus(F) — 2 = degdiv(w) =0,

so E has genus one, and taking [0, 1,0] as the base point makes F into an ellip-
tic curve. (For an alternative proof of (c) using the Hurwitz genus formula, see
Exercise 2.7.) O
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Corollary 3.1.1. Let E/K be an elliptic curve with Weierstrass coordinate func-
tions x and y. Then

K(F)=K(z,y) and [K(E): K(z)] =2.
PROOF. These two facts were proven during the course of proving (IIL.3.1a). O

Remark 3.2. Note that (I1I.3.1b) does not imply that if two Weierstrass equations
have coefficients in a given field K, then every change of variables mapping one to
the other has coefficients in K. A simple example is the equation

y: =2 — .

It has coefficients in Q, yet it is mapped to itself by the substitution
r=—1, y=+v-1y.

We next use the Riemann—Roch theorem to describe a group law on the points
of an elliptic curve E. Of course, this will turn out to be the group law described
by (II1.2.1) when E is given by a Weierstrass equation. We start with a simple lemma
that serves to distinguish P! from curves of genus one; see Exercise 2.5 for a gener-
alization.

Lemma 3.3. Let C be a curve of genus one and let P,Q) € C. Then
(P)~(Q)  ifandonlyif P =0Q.
PROOF. Suppose that (P) ~ (Q) and choose f € K (C) such that
div(f) = (P) - ().
Then f € £((Q)). The Riemann-Roch theorem (IL.5.5¢) tells us that
dim£((Q)) = 1.
But [,((Q)) certainly contains the constant functions; hence f € K and P = Q. [

Proposition 3.4. Let (E, O) be an elliptic curve.
(a) For every degree-0 divisor D € DiVO(E) there exists a unique point P € E

satisfying
D~ (P)—(0).
Define
o:DivY(E) — E

to be the map that sends D to its associated P.
(b) The map o is surjective.
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(¢) Let D1, Dy € Div’(E). Then
o(Dy) = o(D2) ifand only if ~ Dy ~ Ds.
Thus o induces a bijection of sets (which we also denote by o),
o:Pic®(E) —— E.
(d) The inverse to o is the map
k: E ——— Pic’(E), P+ (divisor class of (P) — (O)).

(e) If E is given by a Weierstrass equation, then the “geometric group law” on E
described by (I11.2.1) and the “algebraic group law” induced from Pic’(E)
using o are the same.

PROOF. (a) Since E has genus one, the Riemann—Roch theorem (I1.5.5¢) says that
dim £(D + (0)) = 1.

Let f € K(E) be a nonzero element of £(D + (0O)), so f is a basis for this one-
dimensional vector space. Since

div(f) > -D —(0) and  deg(div(f)) =0,
it follows that
div(f) = =D = (0) + (P)
for some P € E. Hence
D~ (P)—-(0),

which gives the existence of a point with the desired property.
Next suppose that P’ € FE has the same property. Then

(P) ~ D+ (0) ~ (P),

so (IT1.3.3) tells us that P = P’. Hence P is unique.
(b) Forany P € E, we have

o((P)—(0)) =P.

(c) Let Dy, Dy € Div’(E), and set P; = o(D;) for i = 1,2. Then from the
definition of ¢ we have
(P1) — (P2) ~ Dy — Ds.

Thus if P, = Py, then D1 ~ Da; and conversely, if Dy ~ Da, then (Py) ~ (P),
so P, = P, from (I11.3.3).

(d) Clear.

(e) Let E be given by a Weierstrass equation and let P, @), € E. It suffices to show
that
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k(P + Q) = k(P) + x(Q).
(N.B. The first + is addition on E using (II1.2.1), while the second + is addition of
divisor classes in Pic(E).)
Let
XY, Z)=aX +08Y +~4Z2=0

give the line L in P? going through P and Q, let R be the third point of intersection
of L with E, and let

(XY, Z2)=d'X+38Y +97Z=0
be the line L’ through R and O. Then from the definition of addition on E (II1.2.1)
and the fact that the line Z = 0 intersects F at O with multiplicity 3, we have
div(f/2) = (P)+(Q) + (R) = 3(0),
div(f'/2) = (R) + (P + Q) — 2(0).

Hence
(P+Q) = (P) = (Q) + (0) = div(f'/f) ~ 0,
SO
k(P + Q) —k(P) — k(Q) =0.
This proves that « is a group homomorphism. O

Corollary 3.5. Let E be an elliptic curve and let D = Y np(P) € Div(E). Then D
is a principal divisor if and only if

anzo and Z[np]PzO.
PCE PEE
(Note that the first sum is of integers, while the second is addition on E.)

PROOF. From (I1.3.1b), every principal divisor has degree 0. Next let D € Div’ (E).
We use (I11.3.4a,e) to deduce that

D~0 < oD)=0 <<= > [nplo((P)-(0))=0.
PcE

This is the desired result, since o ((P) — (0)) = P. O

Remark 3.5.1. If we combine (III.3.4) and (II.3.4), we see that every elliptic
curve E/K fits into an exact sequence

1— K* — K(B) 25 DivY(E) —2— E — 0,
where o is the operation “sum the points in the divisor using the group law on E.”
Further, Exercise 2.13b implies that the sequence remains exact if we take Gz /-
invariants,
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1— K* — K(B)" %, Div) (E) —%— E(K) — 0.

(See also (X.3.8).)

We now prove the fundamental fact that the addition law on an elliptic curve is a
morphism. Addition is a map E X ' — FE and the variety F/ X E has dimension 2, so
we cannot use (I1.2.1) directly; but (I.2.1) will play a crucial role in the proof. One
can also give a proof using explicit equations, but the algebra is somewhat lengthy;
see (I11.3.6.1).

Theorem 3.6. Let E/K be an elliptic curve. Then the equations (111.2.3) giving the
group law on E define morphisms

+:ExFE— FE, and —:FE— FE,
(P1, Py) — P + Py, P+— —P

PROOF. First, the negation map
('Ivy) [ (I'7 —Y—a1r — a3)

is clearly a rational map E — FE. Since E is smooth, it follows from (I.2.1) that
negation is a morphism.
Next we fix a point Q # O on E and consider the translation-by-Q) map

T7:E— E, T7(P)=P+Q.

From the addition formula given in (II1.2.3c), this is clearly a rational map; and
thus, again using (I1.2.1), it is a morphism. In fact, since 7 has an inverse, namely
P +— P — @, itis an isomorphism.

Finally, consider the general addition map + : ¥ x ¥ — E. From (II1.2.3c) we
see that it is a morphism except possibly at pairs of points having one of the following
forms,

(PvP)v (P7_P>7 (on)’ (O,P)’

since for pairs of points not of this form, the rational functions

Y2 — Y1 Y12 — Y21
>\ = — and V=—
To — X1 T2 — T1

on E x E are well-defined.

To deal with the four exceptional cases, we could work directly with the defini-
tion of morphism; see (II1.3.6.1). However, we prefer to let the group law assist us.
Thus let 71 and 75 be translation maps as above for points (01 and @2, respectively.
Consider the composition of maps

E.

¢ ExFE-2  Exp—*t . F

Since the group law on F is associative and commutative (II1.2.2), the net effect of
the above maps is as follows:
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(P, Py) 2 (Py + Q1, P+ Qo)
hs P+ Q1+ P+ Qo

-1

——— Pi+ P+ Q2
-1

2—>p1+p2.

Thus the rational map ¢ agrees with the addition map wherever they are both defined.
Further, since the 7;’s are isomorphisms, it follows from the above discussion
that ¢ is a morphism except possibly at pairs of points of the form

(P-Q1,P-Q2), (P-Qi,—P—-Q2), (P—Q1,—-Q2), (—Q1,P—0Q2).

But Q1 and ()2 are arbitrary points. Hence by varying )7 and ()2, we can find a
finite set of rational maps

1, P2, 0 EXE — FE
with the following properties:
(i) ¢1 is the addition map given in (II1.2.3c¢).
(ii) Foreach (P, P;) € E X E, some ¢; is defined at (P, Py).
(iii) If ¢; and ¢; are both defined at (Py, P»), then ¢;(P1, P2) = ¢;(P1, P).
It follows that addition is defined on all of £ x E, so it is a morphism. O

Remark 3.6.1. During the course of proving (II[.3.6), we noted that the formulas
in (II.2.3¢c) make it clear that the addition map + : £ x E — FE is a morphism ex-
cept possibly at pairs of points of the form (P, =P), (P, O), or (O, P). Rather than
using translation maps to circumvent this difficulty, one can work directly with the
definition of morphism using explicit equations. It turns out that this involves con-
sideration of quite a few cases; we do one to illustrate the method.

Thus let (1, y1; T2, y2) be Weierstrass coordinates on E x E. We will show
explicitly that addition is a morphism at points of the form (P, P) with P # O and
[2]P # O. Note that addition is defined in general by the formulas given in (II1.2.3c):

Y2 — Y1 Y122 — Y221
A= v="——— =y — A1,
To — 1 T2 —T1
23 =\ + a1\ — as — 1 — Ta, ys =—(A+a1)xs — v —as.

Here we view \, v, z3, ys as functions on EF X E, and addition is given by the map
[€3,93,1] : E X E — E. Thus to show that addition is a morphism at (P, P), it suf-
fices to show that A is a morphism at (P, P). By assumption, both pairs of func-
tions (z1,y1) and (x9,ys2) satisfy the same Weierstrass equation. Subtracting one
equation from the other and factoring yields



66 III. The Geometry of Elliptic Curves

(y1 — y2)(y1 + y2 + a1x1 + as)

= (21 — 22) (23 + 120 + T3 + ao1 + G222 + a4 — a1Y2).
Thus A, considered as a function on £ x E, may also be written as

x% + 120 + x% + a1 + A2T2 + a4 — a1y2
Y1+ Yo + a171 + as '

AP, Pr) =

Therefore, letting P = (z,y), we have

322 + 2a0x + a4 — ary

MNP, P) =
(P, P) 2y + a1 + as

Hence A is a morphism at (P, P) provided that 2y(P) + a1z(P) + a3 # 0, and we
have excluded this case by our assumption that [2] P # O. We leave it as an exercise
for the reader to deal similarly with the other cases.

II1.4 Isogenies

Having examined in some detail the geometry of individual elliptic curves, we turn
now to the study of the maps between curves. Since an elliptic curve has a distin-
guished zero point, it is natural to single out the maps that respect this property.

Definition. Let 1 and F5 be elliptic curves. An isogeny from F; to E5 is a mor-
phism
¢: By — Ey satisfying ¢(O) = O.

Two elliptic curves E; and E5 are isogenous if there is an isogeny from E; to Fs
with ¢(E1) # {O}. We will see later (IIL.6.1) that this is an equivalence relation.

It follows from (I1.2.3) that an isogeny satisfies either

o(E1) ={0}  or  ¢(Ey) = Ea.

Thus except for the zero isogeny defined by [0](P) = O for all P € E}, every other
isogeny is a finite map of curves. Hence we obtain the usual injection of function
fields (II §2),

The degree of ¢, which is denoted by deg ¢, is the degree of the finite extension
K(E,)/¢* K(FE5), and similarly for the separable and inseparable degrees, denoted
respectively by deg, ¢ and deg; ¢. We also refer to the map ¢ as being separable,
inseparable, or purely inseparable according to the corresponding property of the
field extension. Further, by convention we set

deg0] = 0.

This convention ensures that we have
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deg(y o @) = deg(v)) deg(¢) for all chains of isogenies F; 2, B Y Es.

Elliptic curves are abelian groups, so the maps between them form groups. We
denote the set of isogenies from F; to Fs by

Hom(E1, Ey) = {isogenies E; — Fs}.
The sum of two isogenies is defined by

(@ +¥)(P) = o(P) +(P),

and (II1.3.6) implies that ¢+ is a morphism, so it is an isogeny. Hence Hom(E1, E5)
is a group.
If E; = Es, then we can also compose isogenies. Thus if E is an elliptic curve,
we let
End(F) = Hom(FE, E)

be the ring whose addition law is as given above and whose multiplication is com-
position,
(¢0)(P) = ¢(w(P)).

(It is not obvious that the distributive law holds, but we will prove it later in this
section; see (II1.4.8).) The ring End(FE) is called the endomorphism ring of E. The
invertible elements of End(E) form the automorphism group of E, which is denoted
by Aut(FE). The endomorphism ring of an elliptic curve E is an important invariant
of F that we will study in some detail throughout the rest of this chapter.

Of course, if Ey, E5, and E are defined over a field K, then we can restrict
attention to those isogenies that are defined over K. The corresponding groups of
isogenies are denoted with the usual subscripts; thus

HOIIlK(El,EQ), EndK(E), AutK(E).
We have already seen an example (II1.3.2) showing that Aut(E) may be strictly

larger than Autg (E).
Example 4.1. For each m € Z we define the multiplication-by-m isogeny

[m]: E— E
in the natural way. Thus if m > 0, then

m(P)=P+P+---+P.

m terms

For m < 0, we set [m](P) = [—m](—P), and we have already defined [0](P) = O.
Using (1I1.3.6), an easy induction shows that [m] is a morphism, hence an isogeny,
since it clearly sends O to O.

Notice that if E is defined over K, then [m] is defined over K. We start our
analysis of the group of isogenies by showing that if m # 0, then the multiplication-
by-m map is nonconstant.
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Proposition 4.2. (a) Let E/K be an elliptic curve and let m € Z withm # 0. Then
the multiplication-by-m map

[m]: E— FE

is nonconstant.
(b) Let Ey and E5 be elliptic curves. Then the group of isogenies

Hom(El, EQ)

is a torsion-free Z-module.
(¢c) Let E be an elliptic curve. Then the endomorphism ring End(E) is a (not nec-
essarily commutative) ring of characteristic 0 with no zero divisors.

PROOF. (a) We start by showing that [2] # [0]. The duplication formula (II1.2.3d)
says that if a point P = (z,y) € F has order 2, then it must satisfy

423 + b21)2 + 2bgx + bg = 0.

If char(K) # 2, this shows immediately that there are only finitely many such
points. Further, even for char(K) = 2, the only way to have [2] = [0] is for the
cubic polynomial to be identically 0, which means that by = bg = 0, which in
turn implies that A = 0. Hence in all cases we have [2] # [0]. Now, using the fact
that [mn] = [m] o [n], we are reduced to considering the case that m is odd.

Assume now that char(K) # 2. Then, using long division, it is easy to verify
that the polynomial

423 + b2.172 + 2bs + bg

does not divide the polynomial
l‘4 - b4$2 - 2()633 - bg.

More precisely, if the first polynomial divides the second, then A = 0; see
Exercise 3.1. Hence we can find an 2y € K such that the first polynomial
vanishes to higher order at z, than does the second. Choosing yo € K so
that Py = (z0,y0) € E, the doubling formula implies that [2]Py = O. In other
words, we have shown that E has a nontrivial point Py of order 2. Then for odd
integers m we have

[m|Py = P # O,

so clearly [m] # [0].

Finally, if char(K) = 2, then one can proceed as above using the “triplication
formula” (Exercise 3.2) to produce a point of order 3. We leave this approach to the
reader, since later in this chapter we prove a result (III.5.4) that includes the case
of char(K') = 2 and m odd.

(b) This follows immediately from (a). Suppose that ¢ € Hom(FE1, E2) and m € Z
satisfy

[m] o ¢ = [0].
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Taking degrees gives

(deg[m]) (deg ¢) =0,
so either m = 0, or else (a) implies that deg[m] > 1, in which case we must have
¢ = [0].
(¢) From (b), the endomorphism ring End(F) has characteristic 0. Suppose that
o, € End(FE) satisfy ¢ o ¢p = [0]. Then

(deg ¢)(degy)) = deg(¢p o ¢)) = 0.

It follows that either ¢ = [0] or ¢ = [0]. Therefore End(E) is an integral domain.
0

Definition. Let E be an elliptic curve and let m € Z with m > 1. The m-torsion
subgroup of E, denoted by E[m)], is the set of points of F of order m,

Em]={P e E:[m]P=0}.

The torsion subgroup of E, denoted by Eis, is the set of points of finite order,
B = | J Elm).
m=1

If E is defined over K, then Eis(K) denotes the points of finite order in E(K).

The most important fact about the multiplication-by-m map is that it has de-
gree m?, from which one can deduce the structure of the finite group E[m]. We do
not prove this result here, because it is an immediate corollary of the material on
dual isogenies covered in (III §6). However, the reader should be aware that there
are completely elementary, but rather messy, proofs that deg[m] = m? using explicit
formulas and induction. (See exercises 3.7, 3.8, and 3.9 for various approaches.)

Remark 4.3. Suppose that char(K) = 0. Then the map
[ ]:Z — End(F)

is usually the whole story, i.e., End(E) 2 Z. If E is strictly larger than Z, then we
say that E has complex multiplication, or CM for short. Elliptic curves with complex
multiplication have many special properties; see (C §11) for a brief dicussion. On the
other hand, if K is a finite field, then End(FE) is always larger than Z; see (V §3).

Example 4.4. Assume that char(K) # 2 and let i € K be a primitive fourth root of
unity, i.e., i> = —1. Then, as noted in (II.3.2), the elliptic curve E /K given by the
equation

E:y?=2*—x

has endomorphism ring End(E) strictly larger than Z, since it contains a map, which
we denote by [¢], given by

[i] : (2, y) — (==, 1y).
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Thus E has complex multiplication. Clearly [¢] is defined over K if and only if ¢ € K.
Hence even if E is defined over K, it may happen that End x (F) is strictly smaller
than End(F).

Continuing with this example, we observe that

[i] o [i)(2, y) = [i](==,iy) = (x,—y) = —(2,y),
s0 [¢] o [i] = [—1]. There is thus a ring homomorphism
Zli] — End(E), m + ni — [m] + [n] o [i].

If char(K) = 0, this map is an isomorphism, Z[;] = End(E), in which case

Aw(E) 2 Z[i]* = {+1, +i}
is a cyclic group of order 4.
Example 4.5. Again assume that char(K) # 2 and let a,b € K satisfy b # 0 and
r = a? — 4b # 0. Consider the two elliptic curves

Fy :y2 :x3+ax2+bx,

Ey:Y? =X —2aX*+rX.

There are isogenies of degree 2 connecting these curves,

¢1E1—>E272 , ¢1E2—>E172 )
y* y(b—x?) Y2 Y(r—X?)
(3579)'—’(#7302)’ (X’Y)'—><4X2’8X2 .

A direct computation shows that ¢ o ¢ = [2] on E; and ¢ o ¢ = [2] on Es. The
maps ¢ and ¢ are examples of dual isogenies, which we discuss further in (I §6).

Example 4.6. Let K be a field of characteristic p > 0, let ¢ = p", and let E/K
be an elliptic curve given by a Weierstrass equation. We recall from (II §2) that
the curve E(@ /K is defined by raising the coefficients of the equation for E to
the g™ power, and the Frobenius morphism ¢, is defined by

¢g: E— ED (2,y) — (29,y7).

Since E@) is the zero locus of a Weierstrass equation, it will be an elliptic curve pro-
vided that its equation is nonsingular. Writing everything out in terms of Weierstrass
coefficients and using the fact that the ¢"-power map K — K is a homomorphism,
it is clear that

A(BW)=A(B)  and  (E@) = j(E)".

In particular, the equation for £(%) is nonsingular.

Now suppose that K = F, is a finite field with ¢ elements. Then the ¢"-power
map on K is the identity, so E(9 = F and ¢4 is an endomorphism of F, called
the Frobenius endomorphism. The set of points fixed by ¢, is exactly the finite
group E(F,). This fact lies at the heart of Hasse’s proof of an estimate for #E(F,);
see (V §1).
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Example 4.7. Let E/K be an elliptic curve and let ) € E. Then we can define a
translation-by-Q map

79: F — E, P— P+ Q.

The map 7 is clearly an isomorphism, since 7_¢ provides an inverse. Of course, it
is not an isogeny unless @) = O.
Now consider an arbitrary morphism

F: E1 i E2
of elliptic curves. The composition

¢=1_ro)oF

is an isogeny, since $(O) = O. This proves that any morphism F' between elliptic
curves can be written as

F=1pyoo,
the composition of an isogeny and a translation.

An isogeny is a map between elliptic curves that sends O to O. Since an elliptic
curve is a group, it might seem more natural to focus on those isogenies that are
group homomorphisms. However, as we now show, it turns out that every isogeny is
automatically a homomorphism.

Theorem 4.8. Let
¢: By — Ey

be an isogeny. Then
PP +Q)=9(P)+¢(Q)  forall P,Q € Ey.

PROOF. If ¢(P) = O for all P € E, there is nothing to prove. Otherwise, ¢ is a
finite map, so by (II.3.7), it induces a homomorphism

b : Pic’(E;) — Pic’(Ey)
defined by
¢+ (class of Z n;(P;)) = class of Z n;(oP;).
On the other hand, from (II1.3.4) we have group isomorphisms
K+ By — Pic®(Ey), P+ class of (P) — (O).

Then, since ¢(O) = O, we obtain the following commutative diagram:

B, % Pic’(Ey)

‘| Je.

E, % Pic(Es).

Since k1, ko, and ¢, are all group homomorphisms and - is injective, it follows
that ¢ is also a homomorphism. O
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Corollary 4.9. Let ¢ : E1 — FEs be a nonzero isogeny. Then

ker¢ = ¢~1(0)
is a finite group.

PROOF. It is a subgroup of E from (II1.4.8), and it is finite (of order at most deg ¢)
from (I1.2.6a). ]

The next three results, (I11.4.10), (IIL.4.11), and (I11.4.12), encompass the basic
Galois theory of elliptic function fields.

Theorem 4.10. Let ¢ : F'y — FEs be a nonzero isogeny.
(a) Forevery @ € E,
#¢1(Q) = deg, ¢.
Further, for every P € Fj,
eg(P) = deg; ¢.
(b) The map
ker ¢ — Aut(K(Ey)/¢* K (E>)), Tv— 771,

is an isomorphism. (Here T is the Eranslation—by—T map (IIL4.7) and 77. is the
automorphism that Tr induces on K(Eq).)
(¢) Suppose that ¢ is separable. Then ¢ is unramified,

# ker ¢ = deg ¢,
and K (E) is a Galois extension of ¢* K (Es).
PROOF. (a) From (I.2.6b) we know that
#¢71(Q) = deg, ¢  for all but finitely many Q € E.

But for any @, Q' € E», if we choose some R € F; with ¢(R) = Q' — @, then the
fact that ¢ is a homomorphism implies that there is a one-to-one correspondence

o Q) — ¢ (Q), Pr—P+R
Hence

#¢~1(Q) =deg,¢  forallQ € By,

which proves the first assertion.

Now let P, P’ € E; with ¢(P) = ¢(P’) = @, and let R = P’ — P. Then
?(R) = O, so ¢ o Tg = ¢. Therefore, using (I1.2.6¢) and the fact that 7 is an iso-
morphism,

€4(P) = €gory (P) = €4 (TR(P))er, (P) = €4(P').
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Hence every point in ¢~ 1(Q) has the same ramification index. We compute

(deg, ¢)(deg; ¢) =degp= > e4(P) from (I1.2.6a),
Peo—1(Q)
= (#071(Q))es(P)  forany P € ¢7(Q),
= (deg, ¢)eq(P) from above.

Canceling deg; ¢ gives the second assertion.
(b) First,if T € ker ¢ and f € K(F5), then

(07 f) = (o) f =¢"f,

since ¢ o 77 = ¢. Hence as an automorphism of K (F ), the map 75 fixes ¢* K (E»),
so the map in (b) is well-defined. Next, since

TS OTr = TS+T = TT O TS,
the map in (b) is a homomorphism. Finally, from (a) we have
#ker ¢ = deg, ¢,
while a basic result from Galois theory says that
# Aut(K(E1)/¢" K () < deg, ¢.

Hence to prove that the map 7' — 77 is an isomorphism, it suffices to show that
it is injective. But if 77 fixes K(E,), then in particular every function on E; takes
the same value at 7" and O. This clearly implies that 7" = O, since for example, the
coordinate function x has a pole at O and no other poles.

(c) If ¢ is separable, then from (a) we see that

#67HQ) = deg ¢ forall Q € Es.
Hence ¢ is unramified (I1.2.7), and putting () = O gives
# ker ¢ = deg ¢.
Then from (b) we find that
# Aut(K(E1)/¢" K (E2)) = [K(E1) : ¢"K(E)],
so K(E1)/¢* K (Ey) is a Galois extension. O
Corollary 4.11. Let
¢ By — Fy and P By — FE3

be nonconstant isogenies, and assume that ¢ is separable. If
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ker ¢ C ker ),
then there is a unique isogeny
A E2 — E3

satisfying 1 = X\ o ¢.

PROOF. Since ¢ is separable, (II1.4.10c) says that K(FE;) is a Galois extension
of ¢* K (E5). Then the inclusion ker ¢ C ker ¢ and the identification (I11.4.10b) im-
ply that every element of Gal(K (E1)/¢* K (E2)) fixes 1* K (E3). Hence by Galois
theory, there are field inclusions

V*K(F3) C ¢*K(Ey) C K(F).

Now (I1.2.4b) gives a map
A E2 — E3

satisfying
oy ()\*K(Eg,)) ="K (E3),
and this in turn implies that

Noo =1,

Finally, A is an isogeny, since

Proposition 4.12. Let E be an elliptic curve and let ® be a finite subgroup of E.
There are a unique elliptic curve E' and a separable isogeny

¢:E— F satisfying ker ¢ = ®.

Remark 4.13.1. The elliptic curve whose existence is asserted in this corollary is
often denoted by the quotient £/®. This notation clearly indicates the group struc-
ture, but there is no a priori reason why this quotient group should correspond to
the points of an elliptic curve, nor why the natural group homomorphism £ — FE/®
should be a morphism. In general, it turns out that the quotient of any variety by a
finite group of automorphisms is again a variety (see [186, §7]). The case of curves
is done in Exercise 3.13.

Remark 4.13.2. Suppose that £ is defined over K and that ¢ is G/ -invariant.
In other words, if 7" € @, then 77 € ® forall 0 € G /K- Then the curve £’ and
isogeny ¢ described in (II1.4.12) can be defined over K; see Exercise 3.13e.

Remark 4.13.3. For a given curve F and subgroup ®, Velu [297] describes how to
explicitly write down equations for the curve E/ = E/® and isogeny ¢ : E — E'.
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PROOF OF (II1.4.12). As in (II.4.10b), each point T' € ® gives rise to an automor-
phism 75 of K(E). Let K(E)® be the subfield of K(F) fixed by every element
of ®. Then Galois theory tells us that K (E) is a Galois extension of K (E)® with
Galois group isomorphic to .

The field K (E)® has transcendence degree one over K, so from (I.2.4c) there
are a unique smooth curve C'/K and a finite morphism

¢:E— C  satisfying ¢*K(C)=K(E)®.

We next show that ¢ is unramified. Let P € E and T' € ®. Then for every
function f € K(C),

F(o(P+T)) = ((1700") [(P) = (6" [)(P) = [(&(P)),

where the middle equality uses the fact that 7} fixes every element of ¢* K (C).
It follows that ¢(P + T') = ¢(P). Now let ) € C and choose any point P € E
with ¢(P) = Q. Then

dHQ)D{P+T:T € d}.
However, we also know from (I1.2.7) that

#¢071Q) < deg ¢ = #0,

with equality if and only if ¢ is unramified. Since the points P + T are distinct as T’
ranges over the elements of ®, we conclude that ¢ is unramified at J; and since )
was arbitrary, the map ¢ is unramified.

Finally, we apply the Hurwitz genus formula (I1.2.7) to ¢. Since ¢ is unramified,
the formula reads

2genus(E) — 2 = (deg ¢)(genus(C) — 2).

From this we conclude that C' also has genus one, and hence C' becomes an elliptic
curve and ¢ becomes an isogeny if we take ¢(O) to be the “zero point” on C. O

III.5 The Invariant Differential

Let £/ K be an elliptic curve given by the usual Weierstrass equation
E: y2 + a2y + a3y = 2+ agxz + asx + ag.
We have seen (III.1.5) that the differential

dxr

w=—————¢€0N
2y + a1x + as E

has neither zeros nor poles. We now justify its name of invariant differential by
proving that it is invariant under translation.
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Proposition 5.1. Let E and w be as above, let () € E, and let 7 : E — E be the
translation-by-Q map (111.4.7). Then

Téw = w.

PROOF. One can prove this proposition by a straightforward, but messy and un-
enlightening, calculation as follows. Write (P + @) and y(P + Q) in terms
of z(P), z(Q), y(P), and y(Q) using the addition formula (II.2.3c). Then use stan-
dard differentiation rules to calculate dx (P + Q) as a rational function times dz(P),
treating () and y(Q) as constants. In this way one can directly verify that for a
fixed value of @,

dz(P + Q) 7 dx(P)
2y(P+ Q) +arx(P+ Q) +as  2y(P)) +arx(P)+ag’

We leave the details of this calculation to the reader and instead give a more illumi-
nating proof.

Since 2 is a one-dimensional K (E)-vector space (I1.4.2), there is function
ag € K(E)*, depending a priori on @, such that

TOW = aQw.
(Note that ag # 0, because 7¢ is an isomorphism.) We compute

div(aq) = div(rHw) — div(w)
= 75 div(w) — div(w)
=0 since div(w) = 0 from (III.1.5).

Hence a( is a function on F having neither zeros nor poles, so (II.1.2) tells us that
it is constant, i.e., ag € K*.
Next consider the map

f:E—P,  Qr lag,1].

From the calculation sketched earlier, even without doing it explicitly, it is clear
that a¢ can be expressed as a rational function of z(Q) and y(Q). Hence f is a ra-
tional map from E to P!, and it is not surjective, since it misses both [0, 1] and [1, 0].
We conclude from (I1.2.1) and (IL.2.3) that f is constant. Thus ag does not depend
on (, and we find its value by noting that

ag =aop =1 forall @ € E.
This completes the proof that 7w = w. O

Differential calculus is, in essence, a linearization tool. It will thus come as no
surprise to learn that the enormous utility of the invariant differential on an elliptic
curve lies in its ability to linearize the otherwise quite complicated addition law on
the curve.
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Theorem 5.2. Let E and E’ be elliptic curves, let w be an invariant differential
on E, and let
6,0 B — E
be isogenies. Then
(¢ +9)'w=9¢"w+ ¢ w.

N.B. The two plus signs in this equation represent completely different operations.
The first is addition in Hom(E', E), which is essentially addition using the group
law on E. The second is the usual addition in the vector space of differentials Q.

PROOF. If ¢ = [0] or ¢y = [0], the result is clear. Next, if ¢ + 1) = [0], then using
the fact that

it suffices to check that

The negation formula

allows us to calculate

1] ( dx ) _ dx
2y + a1x + a3 2(—y — a1z — a3) + a1z + as
B dx
2+ air +as’

which is the desired result. We now assume that ¢, 1), and ¢ + 1) are all nonzero.

Let (x1,y1) and (22, y2) be “independent” Weierstrass coordinates on E. By this
we mean that they satisfy the given Weierstrass equation for F, but satisfy no other
algebraic relations. More formally,

([xhyl’ 1]7 ['TQ, Y2, 1])

give coordinates for E x E sitting inside P? x P2, (Alternatively, (21, y1) and (2, y2)
are “independent generic points of £ in the sense of Weil; see [41].)
Let
(z3,y3) = (z1,91) + (z2,92),

so x3 and ys are rational combinations of 1, x2, Y1, Y2 given by the addition for-
mula (II1.2.3¢) on E. Further, for any (z,y), let w(x,y) denote the corresponding
invariant differential,

B dx

2y +air+as’

Then, using the addition formula (II.2.3c) and standard rules for differentiation, we
can express w(xs, y3) in terms of w(z1, y2) and w(xa, y2). This yields

w(z,y)

w(zs,y3) = f(@1, 91, 22, Y2 )w(z1,y1) + g(z1, y1, T2, Y2 )w(Z2, Y2),
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where f and ¢ are rational functions of the indicated variables. In doing this cal-
culation, remember that since x; and y; satisfy the given Weierstrass equation, the
differentials dx; and dy; are related by

(2y; + ar12; + as) dy; = (33:12 + 2a0x; + ag — aqy;) dzx;.

In this way, w(x3,y3) can be expressed as a K (21,1, T2, %2)-linear combination
of dxq and dxs.

We claim that both f and g are identically 1. Clearly this can be proven by an ex-
plicit calculation, a painful task that we leave for the reader. Instead, we use (II1.5.1)
to obtain the desired result. Suppose that we assign fixed values to x5 and y-, say by
choosing some () € F and setting

z2 = x(Q) and y2 = y(Q).

Then
dry = dx(Q) =0, so w(wa,y) =0,

while (II1.5.1) tells us that
w(zs,y3) = Tow(z1,91) = w(@1,91)-

Substituting these into the expression for w(zs, y3), we find that

F(z1,91.2(Q),9(Q) =1

as a rational function in K (21,y1). Thus f does not depend on z; and y;, so
f € K(z2,y2). But we also know that f(z2,y2) satisfies f(z(Q),y(Q)) = 1 for
every point ) € F, so f must be identically 1. The same argument using zo and yo
in place of 21 and y; shows that g is also identically 1.

To recapitulate, we have shown that if

(x3,93) = (x1,91) + (22, 92) (+ is addition on F),
then
w(zs,ys) = w(z1,y1) +w(ze, y2) (+ is addition in Qp).

Now let (2/,y’) be Weierstrass coordinates on £’ and set
(rr,y1) =o' y),  (w2,02) =9 y),  (23,43) = (6 +¥)(,y).
Substituting this into w(xs, y3) = w(w1,y1) + w(xe, y2) yields
(wo(p+9))@"y) = (wod)(a,y) + (woih)(a',y),

which says exactly that

(p+V)'w=0¢d"w+ P w. O



II1.5. The Invariant Differential 79

Corollary 5.3. Let w be an invariant differential on an elliptic curve E. Let m € Z.
Then
[m]*w = mw.

PROOF. The assertion is true for m = 0, since [0] is the constant map, and it is true
for m = 1, since [1] is the identity map. We use (IIL.5.2) with ¢ = [m] and ¢ = [1]
to obtain

[m+ 1]*w = [m]*w + w.

The desired result now follows by ascending and descending induction. O

As a first indication of the utility of the invariant differential, we give a new, less
computational, proof of part of (II.4.2a).

Corollary 5.4. Let E/K be an elliptic curve and let m € 7. Assume that m # 0
in K. Then the multiplication-by-m map on E is a finite separable endomorphism.

PROOF. Let w be an invariant differential on £. Then (II1.5.3) and our assumption
on m implies that
[m]*w =mw # 0,

so certainly [m] # [0]. Hence [m)] is finite, and (IL.4.2c¢) tells us that [m] is separable.
O

As a second application of (I1.5.2) and (II1.5.3), we examine when a linear com-
bination involving the Frobenius morphism is separable.

Corollary 5.5. Let ¥ be an elliptic curve defined over a finite field F, of char-
acteristic p, let ¢ : E — E be the ¢"-power Frobenius morphism (I114.6), and
let m,n € Z. Then the map

m+ng: F— FE
is separable if and only if p  m. In particular, the map 1 — ¢ is separable.

PROOF. Let w be an invariant differential on E. From (I.4.2c) we know that a
map ¢ : E — E is inseparable if and only if ¢*w = 0. We apply this criterion to
the map ¥y = m + n¢. Using (II1.5.2) and (II1.5.3), we compute

(m 4+ ng)*w = mw + np*w.
Note that ¢*w = 0, since ¢ is inseparable, or, by direct calculation,

o < dx ) B d(z9) B grildz

20+ a1x + a3 o 291 4+ a1x7 + as - 291 4+ a1x7 + as

Hence
(m+ng)*w = [m]*w + [n]* 0 p*w = mw.

Since mw = 0 if and only if p | m, this gives the desired result. O
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Corollary 5.6. Let E/K be an elliptic curve and let w be a nonzero invariant dif-
ferential on E. We define a map from End(F) to K in the following way:

End(E) — K, ¢ +— ay suchthat 9w = agw.

(a) The map ¢ — ay is a ring homomorphism.
(b) The kernel of ¢ — agy is the set of inseparable endomorphisms of E.
(¢) Ifchar(K) = 0, then End(FE) is a commutative ring.

PROOF. As in the proof of (IIL5.1), the fact that Qf is a one-dimensional K (F)-
vector space (I1.4.2) implies that ¢*w = agw for some function a, € K(E). We
claim that a, € K. This is clear if ag = 0, while if ay, # 0, we use the fact
that div(w) = 0 to compute

div(ag) = div(¢*w) — div(w) = ¢* div(w) — div(w) = 0.

Hence a4 has no zeros or poles, so (IL.1.2) says that ag € K.
(a) We use (I1.5.2) to compute

Aprpw = (0 + V) 'w = ¢*'w + Y 'w = apw + ayw = (ap + ay)w.
This gives ag .y = ag + ay. Similarly,
agopw = (P o P)'w = ¢*(¢"w) = ¥ (agw) = agy™(w) = agayw,

which proves that agoy = agay.
(b) We have

ag =0 <= ¢"'w=0 <= ¢isinseparable (I1.4.2¢c).

(c) If char(K) = 0, then every endomorphism is separable, so (b) says
that End(F) injects into K*. Hence End(E) is commutative. O

II1.6 The Dual Isogeny

Let ¢ : E; — FEs5 be a nonconstant isogeny. We have seen (I1.3.7) that ¢ induces a
map
¢* : Pic’(Ey) — Pic®(Ey).

On the other hand, for ¢ = 1 and 2 we have group isomorphisms (I11.3.4)
ki - B — Pic®(E;), P — class of (P) — (O).

This gives a homomorphism going in the opposite direction to ¢, namely the com-
position

—1

By —"2 1 Pic%(By) —2 - Pic’(B) — 2 E.
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Later in this section we will verify that this map may be computed as follows.
Let € E», and choose any P € Fj satisfying ¢(P) = Q. Then

K1 09" 0 ky(Q) = [deg ] (P).

It is by no means clear that the homomorphism ml_l o ¢* o K4 IS an isogeny,
i.e., that it is given by a rational map. The process of finding a point P satisfy-
ing ¢(P) = @ involves taking roots of various polynomial equations. If ¢ is sep-
arable, one needs to check that applying [deg ¢] to P causes the conjugate roots to
appear symmetrically. (It is actually reasonably clear that this is true if one explicitly
writes out mfl 0 ¢* o ky.) If ¢ is inseparable, this approach is more complicated. We
now show that in all cases there is an actual isogeny that may be computed in the
manner described above.

Theorem 6.1. Let £y — Fs be a nonconstant isogeny of degree m.
(a) There exists a unique isogeny

b:Ey — Fy satisfying bod= [m].

(b) As a group homomorphism, QAS equals the composition

By — DiVO(By) —2— Di(By) -2 By,
Q — (Q)—(0) 2np(P) — Ylnp]P.

PROOF. (a) First we show uniqueness. Suppose that q@ and é’ are two such isogenies.
Then

(¢ —¢') o ¢ = [m] — [m] = [0].
Since ¢ is nonconstant, it follows from (IL2.3) that ngS - q%’ must be constant,
S0 =¢.
Next suppose that ¢ : E5 — Ej is another nonconstant isogeny, say of degree n,
and suppose that we know that ¢ and 1) exist. Then

(potp)o(pod)=golnogp=[n]odogp=[nm].

Thus qAS o z/} has the requisite property to be ’(/J/O\qb Hence using (I1.2.12) to write an
arbitrary isogeny ¢ as a composition, it suffices to prove the existence of ¢ when ¢
is either separable or equal to the Frobenius morphism.

’ Case 1. ¢ is separable ‘ Since ¢ has degree m, we have (I11.4.10c)

#ker ¢ = m,

so every element of ker ¢ has order dividing m, i.e.,

ker ¢ C ker[m)].

It follows immediately from (II[.4.11) that there is an isogeny
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¢:Ey — By satisfying bod=[m].

’Case 2. ¢ is a Frobenius morphism‘ If ¢ is the ¢M-power Frobenius morphism

with ¢ = p®, then ¢ is clearly the composition of the p-power Frobenius morphism
with itself e times. Hence it suffices to prove that qg exists if ¢ is the pM-power
Frobenius morphism, so in particular, deg ¢ = p from (IL.2.11).

We look at the multiplication-by-p map on E. Let w be an invariant differential.
Then from (II1.5.3) and the fact that char(K) = p, we see that

[p]*w = pw = 0.

We conclude from (II1.4.2¢) that [p] is not separable, and thus when we decom-
pose [p] as a Frobenius morphism followed by a separable map (I1.2.12), the Frobe-
nius morphism does appear. In other words,

[p] = o ¢*
for some integer e > 1 and some separable isogeny 7). Then we can take
b=1o¢.
(b) Let Q € E5. Then the image of @) under the indicated composition is
sum(¢"((Q) - (0)))
= > les(P)P— > [es(T)T by definition of ¢*,

Pep~1(Q) Te¢p=1(0)

=[deg;¢]| Y. P- > T from (I11.4.10a),
PE)=1(Q)  Te41(0)

= [deg; @] o [#¢~1(Q)]P forany P € ¢~ 1(Q),
= [deg ¢] P from (I11.4.10a).

But by construction, . .
¢(Q) = ¢ o ¢(P) = [deg o] P,

so the two maps are the same. [

Definition. Let ¢ : £; — E5 be an isogeny. The dual isogeny to ¢ is the isogeny
¢: By — By

given by (IIL.6.1a). (This assumes that ¢ # [0]. If ¢ = [0], then we set ¢ = [0].)

The next theorem gives the basic properties of the dual isogeny. From these basic
facts we will be able to deduce a number of very important corollaries, including a
good description of the kernel of the multiplication-by-m map.
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Theorem 6.2. Let
¢:E1 — E

be an isogeny.
(a) Let m = deg ¢. Then

$po¢=[m] onkE and  $pop=[m] onEs.
(b) Let \ : 5 — Ej3 be another isogeny. Then
Xod=go

(¢) Let v : By — FEs be another isogeny. Then

o+ =d+1.
(d) Forallm € 7,
[;7-1\] = [m)] and deg[m] = m?.

(©) deg = deg ¢.
) ¢ =¢.

PROOF. If ¢ is constant, then the entire theorem is trivial, and similarly (b) and (c)
are trivial if A or ¢ is constant. We may thus assume that all isogenies are noncon-
stant.

(a) The first statement is the defining property of (/3 For the second, consider

(po0d)od=go[m]=[m]og.

Hence ¢ o ¢ = [m)], since ¢ is not constant.
(b) Letting n = deg A, we have

($oX)o(Aog)=domlod=[n]odos=ml.
The uniqueness statement in (II1.6.1a) implies that
bod=Nod.
(c) We give a proof in characteristic 0. See Exercise 3.31 for a proof in arbitrary
characteristic.
Let z1,y; € K(E1) and 29,y2 € K(F2) be Weierstrass coordinates. We start
by looking at F5 considered as an elliptic curve defined over the field K(F;) =

K(z1,1).! Then another way of saying that ¢ : E; — FE» is an isogeny is to note

that ¢(z1,y1) € Eo (K(:cl,yl)), and similarly for ¥ (z1,y1) and (¢ + ¥)(z1,y1).
Now consider the divisor

IThis is where we use the characteristic 0 assumption, since all of our results on elliptic curves have
assumed that the base field is perfect.
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D =div((¢+ ¢)(z1,11)) — div(e(z1,51)) + div(¢(z1, 1)) + (O)
€ DiVK(wl,yl)(E2)-

The definition of ¢ + 1 implies that D sums to O, so (II.3.5) tells us that D is
linearly equivalent to 0. Thus there is a function

€ K(z1,y1)(E2) = K(v1,y1, 72, 92)

that, when considered as a function of xo and ys, has divisor D.

We now switch perspective and look at f as a function of z; and y;. In other
words, we treat f as a function on E; considered as an elliptic curve defined
over K (z2,y2). Suppose that P € E; (K (z2,y2)) is a point satisfying ¢(Py) =
(z2,y2). Then examining D, specifically the term — div(¢(z1,y1)), we see that f
has a pole at P, i.e., the function f(z1,y1;x2,y2) has a pole if x1, y1, z2, yo sat-
isfy (x2,y2) = ¢(x1,y1). Further,

ordp, (f) = es(P1).

Similarly, f has a pole at Py if (x2,y2) = ¥(P1), and it has a zero at P;
if (z2,y2) = (¢ + ¢¥)(P1). It follows that as a function of x; and y;, the divisor
of f has the form

(o4 1) ((w2,y2)) — ¢ ((z2, y2)) =™ ((w2,92)) +Z ni(P;) € DiVm(El),
where the P;’s are in Fy(K), i.e., >, n;(P;) € Divg(FE;). Since this is the divisor
of a function, it sums to O, so using (II.6.1b), we conclude that the point

(m)(fﬂm Y2) — é(xmyﬁ - 121(552392)

does not depend on (22, y2), i.e., it is in F1 (K). Putting (x2, y2) = O shows that it
is equal to O, which completes the proof that

b+ =0+

(d) This is true for m = 0 by definition, and it is clearly true for m = 1. Using (c)
with ¢ = [m] and ¢ = [1] yields

—~

and ascending and descending induction shows that [m] = [m] holds for all m.
Now let d = deg[m] and consider the multiplication-by-d map. Thus

[d] = [/n;] o [m] definition of dual isogeny,

= [m?] since [m] = [m)].

Using the fact (II1.4.2b) that the endomorphism ring of an elliptic curve is a torsion-

free Z-module, it follows that d = m2.
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(e) Let m = deg ¢. Then using (d) and (a), we find that

m? = deg[m] = deg(¢ 0 ¢) = (deg ¢)(deg ¢) = m(deg §).
Hence m = deg quS

(f) Again let m = deg ¢. Then using (a), (b), and (d) yields

bod=lml=[ml=dod=dos
Therefore

6=0.

Definition. Let A be an abelian group. A function

d:A—R
is a quadratic form if it satisfies the following conditions:
(i) d(o) = d(—a) forall a € A.
(i1) The pairing
AxA—R,  (@f)— da+p) - da) - d(a),
is bilinear.

A quadratic form d is positive definite if it further satisfies:
(iii) d(a) >0 forall a € A.

(iv) d(o) =0 ifandonlyif «o=0.
Corollary 6.3. Let £y and Es be elliptic curves. The degree map

deg : Hom(Eq, Ey) — Z
is a positive definite quadratic form.

PROOF. Everything is clear except for the fact that the pairing

(¢,9) = deg(¢ + ) — deg(¢) — deg(v))

is bilinear. To verify this, we use the injection

[ ]:Z— End(E,)
and compute

[(¢, )] = [deg(¢ + )] — [deg(¢)] — [deg(v)]
— 6+ D) o(dp+¥) —dod—tod

=dotp+ipog¢  from (IIL6.2¢).

Using (II1.6.2c) a second time, we see that this last expression is linear in both ¢
and .

O
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Corollary 6.4. Let E be an elliptic curve and let m € Z with m # 0.

(a) deg[m] = m?2.

(b) If m #0in K, i.e., if either char(K) = 0 or p = char(K) > 0 and p 1 m, then

Z V4
Em|=— x —.
[m] m * mi
(c) Ifchar(K) = p > 0, then one of the following is true:
(i) E[p°]={0} forale=1,23,....

Z
() Ep°)=—5 foralle=1,2,3,....
peL

(Recall that E[m)] is another notation for ker[m], the set of points of order m on E.)

PROOF. (a) This was proven in (II1.6.2d). We record it again here in order to point
out that there are other ways of proving that [m] has degree m?; see for example
exercises 3.7, 3.8, and 3.11. Then the fundamental description of E[m] in (b) follows
formally from (a).

(b) The assumption on m and the fact that deg[m] = m? tells us that [mn] is a finite
separable map. Hence from (I11.4.10c),

#FE[m] = deg[m] = m?.
Further, for every integer d dividing m, we similarly have
#E[d] = d*.
Writing the finite group F[m] as a product of cyclic groups, it is easy to see that the

only possibility is

7 7
Blml =27 % oz

(See Exercise 3.30.)
(c) Let ¢ be the p™-power Frobenius morphism. Then

#E[p] = deg,[p°] from (IIL.4.10a),
= (deg, (¢ 0 ¢))" from (IIL.6.2a),
= (deg, §)° from (I1.2.11b).

From (I11.6.2¢) and (I1.2.11c) we have
deg ¢ = deg ¢ = p,
so there are two cases. If ngS is inseparable, then deg, qAS =1,s0

#E)p =1 for all e.
Otherwise (ﬁ is separable, so deg, ¢A> = pand
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#E[p°] = p° for all e.

Again writing F[p°] as a product of cyclic groups, it is easy to see that this implies
that

Z
Ep°l = .
Pl=27
(For a more detailed analysis of E[p®] in characteristic p and its relationship to the
endomorphism ring End(E), see (V §3).) ]

III.7 The Tate Module

Let £/K be an elliptic curve and let mm > 2 be an integer, prime to char(K)
if char(K') > 0. As we have seen,

Z Z

Elm]~ — x —
[m] mZ "~ mZ’
the isomorphism being one between abstract groups. However, the group E[m]
comes equipped with considerably more structure than an abstract group. For ex-
ample, each element o of the Galois group G g ¢ acts on E[m], since if [m]P = O,
then
[m](P?) = ([m]P)” = 07 = 0.

We thus obtain a representation
Gr/x — Aut(E[m]) = GLy(Z/mZ),

where the latter isomorphism involves choosing a basis for E[m]. Individually, for
each m, these representations are not completely satisfactory, since it is generally
easiesr to deal with representations whose matrices have coefficients in a ring of
characteristic 0. We are going to fit together these mod m representations for vary-
ing m in order to create a characteristic 0 representation. To do this, we mimic the
inverse limit construction of the ¢-adic integers Z, from the finite groups Z /("™ Z.

Definition. Let £ be an elliptic curve and let ¢ € Z be a prime. The (¢-adic) Tate
module of E is the group
Ty(E) = lim E[¢"),

n

the inverse limit being taken with respect to the natural maps

[€] E wn] )

E[ Kn—&-l]

Since each E[¢"] is a Z/¢"7Z-module, we see that the Tate module has a natural

structure as a Zy-module. Further, since the multiplication-by-¢ maps are surjective,

the inverse limit topology on T;(E) is equivalent to the ¢-adic topology that it gains
by being a Z,-module.
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Proposition 7.1. As a Z,-module, the Tate module has the following structure:
(@) Ty(E)XZiXxZy if ¢ # char(K).
(b) T,(E)={0}orZ, if p = char(K) > 0.
PROOF. This follows immediately from (II1.6.4b,c). ]

The action of Gz i on each E[¢"] commutes with the multiplication-by-¢ map
used to form the inverse limit, so G /¢ also acts on T (E). Further, since the profi-
nite group Gz i acts continuously on each finite (discrete) group E[¢"], the result-
ing action on Ty (F) is also continuous.

Definition. The {-adic representation (of G /i associated to E) is the homomor-
phism
pe - GR/K — Aut(Tg(E))

induced by the action of G/ on the £"-torsion points of E.

Convention. From here on, the number ¢ always refers to a prime number that is
different from the characteristic of K.

Remark 7.2. If we choose a Z-basis for Ty(E), we obtain a representation
Gix — GLa(Ze),

and then the natural inclusion Z, C Q, gives a representation
Gr/x — GL2(Qy).

In this way we obtain a two-dimensional representation of G ¢/ - over a field of char-
acteristic 0. More intrinsically, we can avoid choosing a basis by using the natural
map

pe - GK/K — Aut(Tg(E)) — Aut(Tg(E)) Rz, Qq.

Remark 7.3. The above construction is analogous to the following, which may be
more familiar to the reader. Let -
P C K7

be the group of (£")™ roots of unity. Raising to the /" power gives maps

ot
Beprntr —— Hyn,

and then taking the inverse limit yields the Tate module of K,

To(p) = lim pagn.

n

(More formally, T, () is the Tate module of the multiplicative group K*.) As ab-
stract groups, we have

P Z LT and Ty(p) = Zy.
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Further, the natural action of G'g /i on each g1, induces an action on Ty(p), so we
obtain a 1-dimensional representation

Gr/xk — Aut(Ty(p)) = Z;.

For K = Q, this cyclotomic representation is surjective, because the /-power cyclo-
tomic polynomials are irreducible over Q.

Remark 7.3.1. In Chapter VI, when we study elliptic curves over the complex
numbers, we will see (VI.5.6) that there is a natural way in which the m-torsion
subgroup E[m] may be identified with the homology group H; (E,Z/mZ), and sim-
ilarly Ty (E) with Hy (E, Z,). The utility of this identification is that while homology
groups do not generally admit a Galois action, the torsion subgroup F[m] and Tate
module Ty (E) do admit such an action. This idea has been vastly generalized by
Grothendieck and others in the theory of étale cohomology.

The Tate module is a useful tool for studying isogenies. Let
¢: By — Ey
be an isogeny of elliptic curves. Then ¢ induces maps
¢ : Er["] — B[],
and hence it induces a Z,-linear map
¢o: Ty(Er) — Ty(Es).
We thus obtain a natural homomorphism
Hom(E4, Ey) — Hom(Tg(El)7 T[(EQ)).
Further, if £y = F5 = F, then the map
End(E) — El’ld(Tg(E))

is even a homomorphism of rings. It is not hard to show that these maps are injective
(see Exercise 3.14), but the following result gives much stronger information about
the structure of Hom(FE7, Es).

Theorem 7.4. Let Ey and E5 be elliptic curves and let { # char(K) be a prime.
Then the natural map

Hom(E1, Ey) ® Zy — HOIH(TE(El),T[(EQ)), O — Py,
is injective
PROOF. We start by proving the following statement:

Let M C Hom(E}, F5) be a finitely generated subgroup, and let
M% = {¢ € Hom(E1, E) : [m] o ¢ € M for some integer m > 1}. (%)
Then M9 is finitely generated.
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To prove (x), we extend the degree mapping to the finite-dimensional real vector
space M ® R, which we equip with the natural topology inherited from R. Then the
degree mapping is clearly continuous, so the set

U={peM@R:degop < 1}

is an open neighborhood of 0. Further, since Hom(FE1, E2) is a torsion-free Z-
module (II1.4.2b), there is a natural inclusion

MY c M oR.

Further, it is clear that
MY NU = {0},

since every nonzero isogeny has degree at least one. Hence MY is a discrete sub-
group of the finite-dimensional vector space M ® R, so it is finitely generated. This
completes the proof of (x).
We now turn to the proof of (II.7.4). Let ¢ € Hom(E;, Es) ® Zj, and suppose
that ¢y = 0. Let
M C HOI’H(El, E2)

be some finitely generated subgroup with the property that ¢ € M ® Z,. Then,
with notation as above, the group MY is finitely generated, so it is also free,
since (II1.4.2b) tells us that it is torsion-free. Let

P1,..., 0 € Hom(E, Es)
be a basis for M9V, and write
¢d=a11 + - +appy with aq,...,0¢ € Zy.
Now fix some n > 1 and choose a1, ..., a; € Z with
a; = «; (mod (™).
Then the assumption that ¢, = 0 implies that the isogeny
Y =la1] oy + -+ + [a¢] o ¥y € Hom(Ey, Es)

annihilates E [¢"]. It follows from (IIL.4.11) that 1) factors through [¢"], so there is

an isogeny
A € Hom(E, Es) satisfying Y =1["0\.

Further, X is in MY, so there are integers b; € Z such that
A= [bi]othy 4 - 4 [bs] 0 ¥y

Then, since the 1;’s form a Z-basis for M divthe fact that 1 = ["] o X implies that
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a; = Enb“
and hence

a; =0 (mod £").

This holds for all n, so we cor_lclude that «; = 0, and hence that ¢ = 0. (N.B. The
reason that we need to use M, rather than working in M, is because it is essential

that ¢, ¥, and X\ be written in terms of a Z-basis that does not depend on the choice
of /™)) O

Corollary 7.5. Let Ey and F» be elliptic curves. Then
Hom(El, EQ)
is a free Z-module of rank at most 4.

PROOF. We know from (IIL.4.2b) that Hom(E}, E5) is torsion-free. This implies
that
rankz Hom(E, Es) = ranky, Hom(E, Eq) ® Zy,

in the sense that if one is finite, then the other is finite and they are equal. Next,
from (II1.7.4) we have the estimate

ranky, Hom(E1, Es) ® Zy < rankg, Hom(Tg(El), TZ(EQ)).
Finally, choosing a Z,-basis for Ty(E;) and Ty(F>), we see from (II1.7.1a) that
HOHl(T[(El),Tg(EQ)) = Mg(Z@)

is the additive group of 2 x 2 matrices with Z,-coefficients. The Z-rank of Ms(Zy)
is 4, which proves that rankz Hom(E, F») is at most 4. O

Remark 7.6. By definition, an isogeny is defined over K if it commutes with the
action of G /i Similarly, we can define

Hom g (Té(El)a TZ(E2))

to be the group of Z-linear maps from 7y (E;) to T;(E) that commute with the ac-
tion of Gz /i as given by the {-adic representation. Then we have a homomorphism

HOInK(El, EQ) ® Zy — Hompg (Tg(El),Tg(Eg)),

and (II1.7.4) tells us that this homomorphism is injective. It turns out that in many
cases, it is an isomorphism.

Isogeny Theorem 7.7. Let ¢ # char(K) be a prime. The natural map
HomK(El, Eg) ® Zg — HOIHK (Tg(El), Tg(EQ))

is an isomorphism in the following two situations:
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(a) K is a finite field. (Tate [282])
(b) K is a number field. (Faltings [82, 84])

The original proofs of both parts of (III.7.7) make heavy use of abelian varieties
(higher-dimensional analogues of elliptic curves) and are thus unfortunately beyond
the scope of this book. Indeed, the methods used to prove (II1.7.7b) include virtually
all of the tools needed for Faltings’ proof of the Mordell conjecture. See also [237]
for a proof of (III.7.7b) in the case that j(E) is nonintegral, and [45, 160, 163] for
alternative proofs of (II1.7.7b).

One way to interpret (I11.7.7) is to view the Tate modules as homology groups,
specifically as the first homology with Z,-coefficients (II1.7.3.1). Then (II1.7.7) char-
acterizes when a map between homology groups comes from an actual geometric
map between the curves.

Remark 7.8. It is also natural to ask about the size of the image of py(G / ))

in Aut(7;(E)). The following theorem of Serre provides an answer for number
fields. We do not include the proof. (But see (IX.6.3) and Exercise 9.7.)

Theorem 7.9. (Serre) Let K be a number field and let E /K be an elliptic curve
without complex multiplication.

(@) pe(Gg k) is of finite index in Aut (Ty(E)) for all primes € # char(K).
) pe(Gr ) = Aut (Tv(E)) for all but finitely many primes (.

PROOF. See [237] and [231]. ]

Remark 7.10. Let £/ K be an elliptic curve. Then the elements of End i (E) com-
mute with the elements of Gz  in their action on Ty (E). If

EndK(E) = Z,

this gives no additional information. However, if E/ has complex multiplication, then
one can show (Exercise 3.24) that this forces the action of Galg /i on T,(E) to
be abelian, i.e., the image py(Galg ) is an abelian subgroup of Aut(Ty(E)) =
GL2(Zy). In particular, adjoining the coordinates of ¢"-torsion points to K leads to
explicitly constructed abelian extensions of K, in much the same way that abelian
extensions of Q are obtained by adjoining roots of unity. See (C §11) for a brief dis-
cussion, and [140, Part IT], [249, Chapter 5], or [266, Chapter II] for further details.

III.8 The Weil Pairing

Let E/K be an elliptic curve. For this section we fix an integer m > 2, which we
assume to be prime to p = char(K) if p > 0.
As an abstract group, the group of m-torsion points E[m] has the form (I11.6.4b)

Elm] =2 Z/mZ x Z/mZ.
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Thus E[m)] is a free Z/mZ-module of rank two. Every free module comes equipped
with a natural nondegenerate alternating multilinear map, the determinant. Choosing
a basis {T1, Tz} for E[m], the determinant pairing on E[m] is given by

det : E[m] — Z/mZ, det(aTy + V1o, Ty + dTs) = ad — be,

where the value is, of course, independent of the choice of basis. However, a draw-
back of the determinant pairing on E[m] is that it is not Galois invariant, i.e.,
if P,Q € E[m]and 0 € G/, then the values of det(P?,Q7) and det(P, Q)"
need not be the same.

We can achieve Galois invariance by using instead a modified pairing of the form
¢4et(PQ) where ¢ is a primitive m™ root of unity. In order to define this pairing in-
trinsically, we will make frequent use of (I11.3.5), which says that a divisor >, n;(F;)
is the divisor of a function if and only if both >~ n; = 0 and >_[n;|P; = O.

Let T' € E[m]. Then there is a function f € K (E) satisfying

div(f) = m(T) — m(O).

Next take 7" € E to be a point with [m|T” = T. Then there is similarly a func-
tion g € K (F) satisfying

div(g) = [m]"(T) —[m]"(0) = Y (I"+R)—(R).

ReE[m)]

(To see that this divisor sums to O, we observe that #F[m]| = m? from (I11.6.4b)
and that [m?|T" = O.) It is easy to verify that the functions f o [m] and g™ have the
same divisor, so multiplying f by an appropriate constant from K*, we may assume
that

folm]=g".

Now let S € E[m] be another m-torsion point, where we allow .S = T'. Then for
any point X € I, we have

g(X +8)™ = f([mlX + [m]S) = f([m]X) = g(X)™.

Thus considered as a function of X, the function g(X + S)/g(X) takes on only
finitely many values, i.e., for every X, it is an m™™ root of unity. In particular, the
morphism

E—P, S+ g(X+5)/g(X)

is not surjective, so (II.2.3) says that it is constant. This allows us to define a pairing

em : E[m] x Elm| — pu,,
by setting ( 5
g(X +

em (S, T) = 0%
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where X € E is any point such that g(X + S) and g(X) are both defined and
nonzero. (As usual, 1, denotes the group of m™ roots of unity.) Note that although
the function ¢ is well-defined only up to multiplication by an element of K*, the
value of e, (S, T') does not depend on this choice. The pairing that we have just de-
fined is called the Weil e,,-pairing. We begin by proving some of its basic properties.

Proposition 8.1. The Weil e,,,-pairing has the following properties:
(a) It is bilinear:

em(81 + SQ,T) = em(Sl,T)em(Sg,T),
6m(S, T1 =+ TQ) = em(S, Tl)em(S, TQ)

(b) It is alternating:
em(T,T) =1.

So in particular, €,,(S,T) = e, (T, S)" 1.
(c) It is nondegenerate:

Ifen,(S,T)=1forall S € E[m), then T = O.
(d) It is Galois invariant:
em (S, T)” = en(S°,17)  forallo € Gg k.
(e) It is compatible:
emm (9, T) = e ([M']S,T)  forall S € E[mm'| and T € E[m).
PROOF. (a) Linearity in the first factor is easy:

em(S1 + S5, T) = g(X + 8514+ 52) g(X+81+452)g9(X+51)

9(X) o g(X+S) 9(X)
= e, (92, T)em(51,T).

Note how useful it is that in computing e,,(S2,T) = g(Y + S3)/g(Y), we may
choose any value for Y, for example we may take Y = X + 5.

In order to prove linearity in the second factor, let f1, f2, f3, 91, g2, g3 be the
appropriate functions for the points 77, 75, and T3 =T} + T5. Choose a func-
tion h € K(E) with divisor

div(h) = (Ty + T2) — (Ty) — (T2) + (O).
Then

(L) e
div (f1f2> = mdiv(h),

f3s=cfifoh™ for some ¢ € K*.

SO
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We compose with the multiplication-by-m map, use the fact that f; o [m] = ¢/, and
take m™ roots to obtain

g3=c"g1-g2- (ho[m]) for some ¢’ € K*.
This allows us to compute

g3(X +5) _ g1(X + S)ga(X + S)h([m]X + [m]S)
g3(X) 91(X)g2(X)h([m]X)
=en(S,T1)en (S, Ts), since [m]S = O.

em(Sa Tl + T2) =

(b) From (a) we have
em(S+T,S+T)=en(S,S)en(S, T)em(T,S)en(T,T),

so it suffices to show that e,,(T,T) = 1 for all T" € E[m]. For any P € E, recall
that 7p : E — E denotes the translation-by-P map (II1.4.7). We compute

It follows that

is constant, and if we choose some 7" € E satisfying [m|T” = T, then

m—1

H go T[i]T’

=0

is also constant, because its m™ power is the above product of f’s. Therefore the
product of the g’s takes on the same value at X and at X + 77,

m—1

ni_[gXJr[ ) = [ o(x + i + 1T").

1=0 1=0

Canceling like terms from each side gives
9(X) = g(X + [m]T") = g(X + T),
and hence
g(X+T)
9(X)

(c) Ifen(S,T) = 1forall S € E[m], then g(X + 5) = g(X) forall S € E[m],
so (II1.4.10b) tells us that g = h o [m] for some function h € K (F). But then

em(T,T) = = ]_
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(holm)™ =g™ = folm],
which implies that f = A"". Hence
mdiv(h) = div(f) = m(T) — m(0O),

SO

div(h) = (T) — (O).

It follows from (I11.3.3) that 7" = O.
(d) Let 0 € Gg k- If f and g are the functions for 7" as above, then clearly f”
and g7 are the corresponding functions for 7. Then

en(57,77) = & (X7+57) _ (g(X+5

A
7 (X°) ) oS

(e) Taking f and g as usual, we have

div(f™) = mm/(T) — mm/(O)

and

/

(go[m D)™ = (fo[mm)"
Then directly from the definition of e,,,,’ and e,,,, we compute

o[m/ S Y + [m/]S
emm (5,T) = 2 g[o [7]7%((;) ) _ 9l ;&) L s =

The basic properties of the Weil pairing imply its surjectivity, as in the next result.

Corollary 8.1.1. There exist points S, T € E[m] such that e,,(S,T) is a primi-
tive m™ root of unity. In particular, if Elm| C E(K), then u,, C K*.

PROOF. The image of e, (S,T) as S and T range over E[m] is a subgroup of p,,,
say equal to p. It follows that

1=e,(S,T)" = en([dS,T)  forall S,T € E[m].

The nondegeneracy of the e,,-pairing implies that [d]S = O, and since S is arbi-
trary, it follows from (II1.6.4) that d = m. Finally, if E[m] C E(K), then the Galois
invariance of the e,,-pairing implies that e,,(S,T) € K* for all S,T € E[m].
Hence p,, C K*. O

Recall from (IIT §6) that associated to any isogeny ¢ : E1 — FEj is a dual
isogeny ¢ : E — Ej going in the opposite direction. The next proposition says
that ¢ and ¢ are dual (or adjoint) with respect to the Weil pairing.
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Proposition 8.2. Let ¢ : E1 — FEs be an isogeny of elliptic curves. Then for all m-
torsion points S € E1[m] and T € FEx[m),

em (S, 0(T)) = em (4(S5),T).
PROOF. Let
div(f) = m(T) — m(O) and folm]=g"
be as usual. Then

9(X +¢5)

em(¢sv T) = g(X)

Choose a function h € K (FE;) satisfying
¢"((1) = ¢°((0)) = (T) — (0) + div(h).

Such an h exists because ((III.6.1ab) tells us that gZA)T is precisely the sum of the
points of the divisor on the left-hand side of this equality. Now we observe that

m@f)¢mm mdiv(h) = m(3T) - m(O)

go¢ \" _ folmlod _(fod)
() = ooy = () ol
Then directly from the definition of the e,,,-pairing we obtain
o (goe/hom)(X +5)
5O = g o R m) (%)
_ 99X +¢S)  h(lm]X)
9(¢X)  h([mX + [m]S)
=en (¢S, T). O

and

Let ¢ be a prime number different from char(K’). We are going to combine the
pairings
E["] x E[l"] — pyn

forn = 1,2,...in order to create an {-adic Weil pairing on the Tate module,
€ Tz(E) X Te(E) — Tg(u).
Recall that the inverse limits for 7;(FE) and Ty(p) are formed using the maps

ot
[4] E

B[ ("] and  pgnir ——— fyn.
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Thus in order to show that the e~ -pairings are compatible with taking the inverse
limits, we must show that

en+1(S,T) = e ([0S, [(T)  forall S,T € E[¢"].
We use linearity (II1.8.1a) to observe that
egnt1 (S, T)é = epm+1(S, [(]T),

and then the desired compatibility relation follows by applying (II1.8.1e) to the
points S and [¢(]T with m = ¢™ and m’ = (. This proves that the pairing
e:Ty(E) x Ty(E) — Ty(p) is well-defined. Further, it inherits all of the proper-
ties described in (II1.8.1) and (II1.8.2), which completes the proof of the following
result.

Proposition 8.3. There exists a bilinear, alternating, nondegenerate, Galois invari-
ant pairing
e Tg(E) X Tg(E) — Tg([,l,).

Further, if ¢ : Ey — Es is an isogeny, then ¢ and its dual g% are adjoints for the
pairing, i.e., e(9pS,T) = e(S, ¢T).

Remark 8.4. More generally, if ¢ : 'y — FE is any nonconstant isogeny, then there
is a Weil pairing R
eyt kero x ker¢p — p,,,.

See Exercise 3.15.

Remark 8.5. There is an alternative definition of the Weil pairing e, (.5, TZ that
works as follows. Choose arbitrary points X,Y € F and functions fs, fr € K(FE)
satisfying

div(fs) = m(X 4+ 5) — m(X) and div(fr) =mY +7) —m(Y).

Then
_fsY+T) [fr(X +9)

ST =55y ) T

We leave to the reader to prove that this quantity is well-defined and equal to the
Weil pairing; see Exercise 3.16.

Recall that we have a representation (III §7)
End(E) — End(Tg(E))7 ¢ — ¢p.

Choosing a Z,-basis for T;(E), we can write ¢ as a 2 X 2 matrix, and in particular
we can compute
det(¢p) € Zy and  tr(¢e) € Zy.

Of course, the value of the determinant and trace do not depend on the choice of
basis.
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The next result, whose proof uses the Weil pairing, shows how the determinant
and trace values may be employed to compute the degree of an isogeny. These for-
mulas are applied in Chapter V to count the number of points on an elliptic curve
defined over a finite field (V.2.3.1). If we view the Tate module as a homology
group (II1.7.3.1), then (II1.8.6) says that the degree of an isogeny can be computed
topologically via its action on Hy(E,Zy).

Proposition 8.6. Let ¢ € End(E), and let ¢ : Ty(E) — Ty(E) be the map that ¢
induces on the Tate module of E. Then

det(¢e) = deg(o) and tr(¢e) = 1+ deg(p) — deg(l — ¢).

In particular, det(¢y) and tr(¢py) are in Z and are independent of L.

PROOF. Let {v1, vy} be a Z,-basis for Ty(E) and write
Ge(v1) = avy + buz, be(v2) = cvr + dva,
so the matrix of ¢, relative to this basis is
ab
(W - (C d) .

Using properties of the Weil pairing (II1.8.3), we compute

e(v1,v2)%8 ¢ = e([deg plv1, v2) bilinearity of e,
= e(pedev1, v2) (IL.6.1a),
= e(pov1, Prv2) (I11.8.3) and (I11.6.2f),
= e(avy + cvg, buy + dvg)
= e(v1, vg)“d_bc since e is bilinear and alternating,
= e(v1, 112)(1Et e,

Since e is nondegenerate, we conclude that deg ¢ = det ¢,. Finally, for any 2 x 2
matrix A, a trivial calculation yields

tr(A) =1+ det(A) — det(1 — A). O

IIL.9 The Endomorphism Ring

Let E be an elliptic curve. In this section we characterize which rings may occur as
the endomorphism ring of E. So far we have accumulated the following information:

(i) End(F) has characteristic 0, no zero divisors, and rank at most four as a Z-
module (II1.4.2c¢), (IIL7.5).
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(ii) End(F) possesses an anti-involution ¢ — ¢3 (I11.6.2bcf).

(iii) For ¢ € End(F), the product qqu is a non-negative integer, and further, ¢<£ =0
if and only if ¢ = 0 (II1.6.2a), (I11.6.3).

It turns out that any ring satisfying (i)—(iii) is of a very special sort. After giving the
relevant definitions, we describe the general classification of rings satisfying (i)—(iii).
This may then be applied to the particular case of End(E).

Definition. Let /C be a (not necessarily commutative) (Q-algebra that is finitely gen-
erated over Q. An order R of K is a subring of /C that is finitely generated as a
Z-module and satisfies R ® Q = K.

Example 9.1. Let K be an imaginary quadratic field and let O be its ring of integers.
Then for each integer f > 1, the ring Z + fO is an order of IC. In fact, these are all
of the orders of KC; see Exercise 3.20.

Definition. A quaternion algebra is an algebra of the form
K=Q+Qa+Q8+Qap
whose multiplication satisfies
?,FeqQ, o’<0, B°<0, Pa=-ab

Remark 9.2. These quaternion algebras are more properly called definite quaternion
algebras over QQ, but since these are the only quaternion algebras that we use in this
book, we generally drop the “definite” appellation.

Theorem 9.3. Let R be a ring of characteristic O having no zero divisors, and as-
sume that R has the following properties:

(1) R has rank at most four as a Z-module.

(i1) ‘R has an anti-involution o — & satisfying

OZ/-F\ﬁZd+B7 aB = fa, &= a, a=a fora€Z CTR.

(iii) For a € R, the product av is a nonnegative integer, and acv = 0 if and only
ifa=0.
Then R is one of the following types of rings:
(a) R=7Z.
(b) R is an order in an imaginary quadratic extension of Q.
(¢) R is an order in a quaternion algebra over Q.

PROOF. Let £ = R ® Q. Since R is finitely generated as a Z-module, it suffices to
prove that /C is either Q, an imaginary quadratic field, or a quaternion algebra. We
extend the anti-involution to /C and define a (reduced) norm and trace from K to Q
by

Noa = ad and Ta = o+ a.
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We make several observations about the trace. First, since
Ta =1+ Na—N(a—1),

we see that Tae € Q. Second, the trace is Q-linear, since the involution fixes Q.
Third, if a € Q, then Ta = 2a. Finally, if a € K satisfies Tae = 0, then

0= (a—a)(a—a)=a?—(Ta)a+ Na = o’ + Na,
so a? = — Na. Thus
a#0 and Ta=0 = a’cQ and o?<0.

If £ = Q, there is nothing to prove. Otherwise we can find some o € K
with a ¢ Q. Replacing a by o — % Ta, we may assume that Tae = 0. Then o® € Q
and a? < 0, s0 Q(«) is a quadratic imaginary field. If £ = Q(«), we are again done.

Suppose now that K # Q(«) and choose some 3 € K with 8 ¢ Q(a). We may
replace 5 with

1, T(p)
B - 2 T6 - 202

We know that Tae = 0 and o € Q*, so an easy calculation shows that

Q.

T3 = T(af) = 0.
In particular, 5% € Q and 3% < 0. We next write

Ta=0, TB=0, T(aB)=0

as

Oé:—d, ﬁ:_ﬁa aﬂ:_ﬂd
and substitute the first two equalities into the third to obtain

af = —fPa.
Hence
Qo, 8] = Q4 Qa + QB + Qaf

is a quaternion algebra. It remains to prove that Q[a, 8] = K, and to do this, it
suffices to show that 1, o, 3, a3 are Q-linearly independent, since then Q|«, 5] and K
both have dimension 4 over Q.

Suppose that

w+za+yB+zaf=0 withw, z,y,z € Q.

Taking the trace yields
2w=0, so w=0.

Next we multiply by « on the left and by /3 on the right to obtain
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(xa®)B + (yB*)a + 20”5 = 0,

We know that 1, v, and 3 are Q-linearly independent, since « ¢ Q and 8 ¢ Q(«).
Hence this equation implies that

za? = yB% = za25% =0,

and so x = y = z = 0, which completes the proof that 1, «, 5, and a3 are Q-linearly
independent. (We have used several times the fact that o and 32 are in Q*) ]

Corollary 9.4. The endomorphism ring of an elliptic curve E/K is either Z,
an order in an imaginary quadratic field, or an order in a quaternion algebra.
If char(K) = O, then only the first two are possible.

PROOF. We have proven in (II1.4.2b), (I11.6.2), and (II1.6.3) all of the facts needed
to apply (IIL.9.3) to the ring End(FE). This proves the first part of the corollary.
If char(K) = 0, then (IIL.5.6¢c) says that End(E) is commutative, so in this
case End(F) cannot be an order in a quaternion algebra. (See also Exercise 3.33
for a proof of this corollary that does not require knowing a priori that End(E) has
rank at most four.) ]

Remark 9.4.1. If char(K) = 0, then (IIL.5.6¢) tells us that End(F) ® Q is commu-
tative, so it cannot be a quaternion algebra. (For alternative proofs of this important
fact, see (V1.6.1b) and Exercise 3.18b.) On the other hand, if K is a finite field I,
then we will later see that End(FE) is always larger than Z (V.3.1) and that there
are always elliptic curves defined over F,> with End(F) ® Q a quaternion alge-
bra (V.4.1c). The complete description of End(E) is given in Deuring’s comprehen-
sive article [60].

The next definition and theorem are used in the exercises.

Definition. Let p be a prime or oo, let @, be the p-adic rationals if p is finite, and
let Qo = R. A quaternion algebra K is said to split at p if

K ®Q Qp = MQ(Qp)a

where M5 (K) is the algebra of 2 x 2 matrices with coefficients in K. Otherwise
is said to be ramified at p. The invariant of IC at p is defined by

inv, K=4, . .
= if K ramifies at p.

{0 if IC splits at p,
2

Theorem 9.5. Let K be a quaternion algebra.
(a) We have inv,,(K) = 0 for all but finitely many p, and

Z inv, (K) € Z.

p

(Note that the sum includes p = 00.)
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(b) Two quaternion algebras K and K' are isomorphic as Q-algebras if and only
if inv, (K) = inv, (K') for all p.

PROOF. This is a very special case of the fact that the central simple algebras over

a field K are classified by the Brauer group Br(K) = HQ(GR/K7 K*) [233, X §5],

and the fundamental exact sequence from class field theory [288, §9.6]

0— Br(©) — @Br(e,) = 2 g,
p

where

~ Q/zZ  ifp # oo,
B -
HQ) {{O7 %} if p = oo.

invy,
Quaternion algebras (definite and indefinite) correspond to elements of order 2 in

Br(Q). O

III.10 The Automorphism Group

If an elliptic curve is given by a Weierstrass equation, it is generally a nontrivial
matter to determine the exact structure of its endomorphism ring. The situation is
much simpler for the automorphism group.

Theorem 10.1. Ler E/K be an elliptic curve. Then its automorphism group Aut(E)
is a finite group of order dividing 24. More precisely, the order of Aut(E) is given
by the following table:

| #Aut(E) | J(E) | char(K) ‘
2 J(E) £0,1728 -
4 J(E) = 1728 char(K) # 2,3
6 J(E)=0 char(K) # 2,3
12 F(E) =0 = 1728 | char(K) = 3
24 J(E) =0 = 1728 | char(K) = 2
PROOF. We restrict attention to char(K) # 2, 3; see (II1.1.3) and (A.1.2c). Then FE

is given by an equation
E:y* =2+ Az + B,
and every automorphism of £ has the form
T =u"x, y=udy,
for some u € K*. Such a substitution gives an automorphism of E if and only if
u A=A and uw B = B.

If AB # 0, ie., if j(E) # 0,1728, then the only possibilities are v = +1.
Similarly, if B = 0, then j(E) = 1728 and u* = 1, and if A =0, then j(E) =0
and u® = 1. Hence Aut(FE) is cyclic of order 2, 4, or 6, depending on whether
AB #0,B=0,0r A=0. ]
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It is worth remarking that the proof of (IIL.10.1) gives the structure of Aut(FE) as
a G'g /-module, at least for char(K) # 2, 3. We record this as a corollary.

Corollary 10.2. Let E/K be a curve over a field of characteristic not equal to 2
or 3, and let
2 ifj(E)#0,1728,
n=<4 ifj(E)=1728
6 ifj(E)=0.

Then there is a natural isomorphism of G i ; i -modules

Aut(E) 2 p

n-
PROOF. While proving (II.10.1), we showed that the map

[ Jip, — B, [(y) = (P2, Cy),

is an isomorphism of abstract groups. It is clear that this map commutes with the
action of Gz /i, and hence it is an isomorphism of G, --modules. 0

Exercises

3.1. Show that the polynomials
4 2 3 2
" — byx” — 2bgx — bg and 4x° + box” + 2bsx + bg

appearing in the duplication formula (II1.2.3d) are relatively prime if and only if the discrimi-
nant of the associated Weierstrass equation is nonzero.

3.2. (a) Derive a triplication formula, analogous to to the duplication formula (1I1.2.3), i.e.,
express m([S]P) as a rational function of z(P) and a4, ..., as.
(b) Use the result from (a) to show that if char(K) # 3, then E has a nontrivial point of
order 3. Conclude that if gcd(m, 3) = 1, then [m] # [0]. (Warning. You’ll probably
want to use a computer algebra package for this problem.)

3.3. Assume that char(K) # 3 and let A € K™. Then Exercise 2.7 tells us that the curve
E:X*+Y®=AZ7°

is a curve of genus one, so together with the point O = [1, —1, 0], it is an elliptic curve.
(a) Prove that three points on E add to O if and only if they are collinear.

(b) Let P = [X,Y, Z] € E. Prove the formulas
-P=1Y,X, 7],
2P = [-Y(X*+ AZ°), X(Y* + AZ°), X2 -Y°Z].

(c) Develop an analogous formula for the sum of two distinct points.
(d) Prove that F has j-invariant 0.
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3.4. Referring to (II1.2.4), express each of the points P», Py, Ps, Ps, P7, Ps in the form
[m] Py + [n]Ps withm,n € Z.

3.5. Let E/K be given by a singular Weierstrass equation.
(a) Suppose that E has a node, and let the tangent lines at the node be

y=o1x+ b1 and Yy = azx + (2.
(1) If a1 € K, prove that oo € K and
En(K) = K",

(ii) If oy ¢ K, prove that L = K (a1, a2) is a quadratic extension of K. Note that (i)
tells us that Eys(K) C En(L) = L. Prove that

(b) Suppose that £ has a cusp. Prove that
Ew(K) = K™,

3.6. Let C be a smooth curve of genus g, let Py € C, and let n > 2g + 1 be an integer.
Choose a basis { fo, . .., fm} for L(n(PO)) and define a map

& [foy s fm] : C — P™.

(a) Prove that the image C’' = ¢(C)) is a curve in P™.
(b) Prove that the map ¢ : C' — C" has degree one.
(c) * Prove that C’ is smooth and that ¢ : C — C" is an isomorphism.

3.7. This exercise gives an elementary, highly computational, proof that the multiplication-
by-m map has degree m?. Let E be given be the Weierstrass equation

E:y’ +aizy + asy = z° + a2z’ + a4 + as,

and let b2, by, bs, bs be the usual quantities. (If you’re content to work with char(K) # 2,3,
you may find it easier to use the short Weierstrass form E : y? = 2® + Az + B.)
We define division polynomials 1, € Z[a1,...,as,x,y] using initial values

=1,

P2 = 2y + a1z + as,

s = 3z + boa® + 3bsa® + 3bex + bs,

Ya =t (22° + bya® + 5baz” + 10b6z” + 10bsz® + (babs — babe)x + (babs — b3)),

and then inductively by the formulas

Vomt1 = V2V — Y191 form > 2,
Yotham = Vi 1 Vm Ptz — Ym_oUmbimy1  form > 3.

Verify that ¢2,,, is a polynomial for all m > 1, and then define further polynomials ¢,
and wy, by

¢m = ‘Tw?n - ¢m+1¢m717
4yw7n = wfnfl¢m+2 + wm72¢'r2n+1~
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1

(a) Prove that if m is odd, then Y., ¢m, and Yy~ wy, are polynomials in

Z[al,...,aﬁ,x, (2y + a1x+a3)2},

and similarly for (2y) "4, ¢m, and w, if m is even. So replacing (2y + a1z + a3)?
by 42> + bya® + 2bsx + bs, we may treat each of these quantities as a polynomial
inZla,...,as,x].

(b) As polynomials in x, show that

om(x) = 2™+ (lower order terms),

Pm(z)? = m2a™ 1 4 (lower order terms).

(c) If A # 0, prove that ¢, (x) and 1, (x)? are relatively prime polynomials in K[x].
(d) Continuing with the assumption that A # 0, so E is an elliptic curve, prove that for any
point P = (o, yo) € E we have

p (6n(P) wn(P)
(mlP = <wm<P)2’wm<P>3)'

(e) Prove that the map [m] : E — F has degree m>.
(f) Prove that the function ¢, € K (F) has divisor

div(gn) = Y (1) =n*(0).

TEE[n]

Thus v, vanishes at precisely the nontrivial n-torsion points and has a corresponding
pole at O.
(g) Prove that

wn+mwn7m’(/)$ = wn+rwn7rwr2n - 1/Jm+T1/Jm7Mb72L foralln > m > r.

3.8. (a) Let E/C be an elliptic curve. We will prove later (VI.5.1.1) that there are a lat-
tice L C C and a complex analytic isomorphism of groups C/L = E(C). (N.B. This
isomorphism is given by convergent power series, not by rational functions.) Assuming
this fact, prove that

deg[m] = m? z z

(b) Let K be a field with char(K) = 0 and let E/K be an elliptic curve. Use (a) to prove
that deg[m] = m?. (Hint. If K can be embedded into C, then the result follows imme-
diately from (a). Reduce to this case.)

3.9. Let E/K be an elliptic curve over a field K with char(K) # 2,3, and fix a a homoge-
neous Weierstrass equation for F,

F(Xo,X1,X2) = Xi X, — X§ — AXo X5 — BX3 =0,

ie,z = Xo/X2 and y = X1 /X, are affine Weierstrass coordinates. Let P € E.
(a) Prove that [3] P = O if and only if the tangent line to E at P intersects E only at P.
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(b)

©

Prove that [3] P = O if and only if the Hessian matrix

0*F
<P>>
(aXin 0<i,j<2

Prove that E[3] consists of nine points.

has determinant 0.

3.10. Let E/K be an elliptic curve with Weierstrass coordinate functions z and y.

(a)

(b)

(©)

(d)

(e)

®

(@

Show that the map
¢:E—>]P27 f:[17$,y,1'2],

maps E isomorphically onto the intersection of two quadric surfaces in P3. (A quadric
surface in P is the zero set of a homogeneous polynomial of degree two.) In particular,
if H C P? is a hyperplane, then H N ¢(E) consists of exactly four points, counted with
appropriate multiplicities.

Show that ¢(O) = [0, 0,0, 1], and that the hyperplane {7y = 0} intersects ¢(F) at the
single point ¢(O) with multiplicity 4.

Let P,Q,R,S € E. Prove that P + @ + R+ S = O if and only if the four
points ¢(P), ¢(Q), ¢(R), ¢(S) are coplanar, i.e., if and only if there is a plane H C P?
such that the intersection £ N H, counted with appropriate multiplicities, consists of the
points ¢(P), p(Q), ¢(R), ¢(5).

Let P € E. Prove that [4]P = O if and only if there exists a hyperplane H C P?
satisfying H N ¢(E) = {P}. If char(K) # 2, prove that there are exactly 16 such
hyperplanes, and hence that # E[4] = 16.

Continuing with the assumption that char (/) # 2, prove that there is a K -linear change
of coordinates such that ¢(E) is given by equations of the form

To+Ts =ToTs and T + Ty = TuTs.

For what value(s) of a do these equations define a nonsingular curve?

Using the model in (e) and the addition law described in (c), find formulas for —P,
for Py 4+ P,, and for [2] P, analogous to the formulas given in (II1.2.3).

What is the j-invariant of the elliptic curve described in (e)?

3.11. Generalize Exercise 3.10 as follows. Let E/K be an elliptic curve and choose a basis

fi,..

.y fm for L (m(O)) For m > 3, it follows from Exercise 3.6 that the map

¢:E—>IP7,L717 ¢:[f17"'7fm]7

is an isomorphism of E onto its image.

(a)

(b)

Show that ¢(FE) is a curve of degree m, i.e., prove that the intersection of ¢(E) and a
hyperplane consists of m points, counted with appropriate multiplicities. (Hint. Find a
hyperplane that intersects ¢(F) at the single point ¢(O) and show that it intersects with
multiplicity m.)

Let Pi,...,P, € E. Prove that P, + --- + P, = O if and only if the points
o(Pr), ¢(P2), ..., ¢(Pn) lie on a hyperplane. (Note that if some of the P;’s coincide,
then the hyperplane is required to intersect ¢( E') with correspondingly higher multiplic-
ities at such points.)
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(c) * Let P € E. Prove that [m]P = O if and only if there is a hyperplane I C P™*
satisfying H N ¢(E) = {P}. If char(K) = 0 or char(K) > m, prove that there are
exactly m? such points. Use this to deduce that deg[m] = m?.

3.12. Letm > 2 be an integer, prime to char(K) if char(K) > 0. Prove that the natural map
Aut(E) — Aut (E[m])

is injective except for m = 2, where the kernel is [£1]. (You should be able to prove this
directly, without using (I11.10.1).)

3.13. Generalize (I11.4.12) as follows. Let C'/ K be a smooth curve, and let ® be a finite
group of isomorphisms from C' to itself. (For example, if E is an elliptic curve, then ¢ might
contain some translations by torsion points and [£1].) We observe that an element o € ® acts
on K(C') via the map

o’ K(C) — K(C), a"(f)=foa.

(a) Prove that there exist a unique smooth curve C’/K and a finite separable morphism
¢:C — C' such that ¢"K(C') = K(C)*, where K(C)* denotes the subfield
of K (C) fixed by every element of ®.

(b) Let P € C. Prove that

ey(P) =#{a € ®:aP = P}.

(c) Prove that ¢ is unramified if and only if every nontrivial element of ® has no fixed points.
(d) Express the genus of C in terms of the genus of C, the number of elements in @, and
the number of fixed points of elements of .

(e) * Suppose that C'is defined over K and that ® is G g, k-invariant. The latter condition
means that forall @ € ® and all 0 € Gz, we have a” € . Prove that it is possible
to find C’ and ¢ as in (a) such that C’ and ¢ are defined over K. Prove further that C' is
unique up to isomorphism over K.

3.14. Prove directly that the natural map
Hom(E:, E>) — Hom (Ty(E:), Ty(E2))

is injective. (Hint. If ¢ : By — Fj satisfies ¢, = 0, then E1[{"] C ker ¢ forall n > 1.)
Note that this result is not as strong as (I11.7.4).

3.15. Let E1/K and E»/K be elliptic curves, and let ¢ : E1 — E5 be an isogeny of
degree m defined over K, where m is prime to char(K) if char(K) > 0.
(a) Mimic the construction in (III §8) to construct a pairing

e : ker ¢ X ker ¢ — U,,-

(b) Prove that ey is bilinear, nondegenerate, and Galois invariant.
(c) Prove that ey is compatible in the sense that if ) : ' — E3 is another isogeny, then

epos(P,Q) = ey(pP,Q)  forall P € ker(y) o ¢) and Q € ker(s)).
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3.16. Alternative Definition of the Weil Pairing. Let E be an elliptic curve. We define a pairing
ém : E[m] x Elm] — pu,,

as follows: Let P,Q € FE[m] and choose divisors Dp and Dg in Div®(E) that add to P
and @, respectively, i.e., such that c(Dp) = P and o(Dg) = Q, where o is as in (II1.3.4a).
Assume further that Dp and D¢ are chosen with disjoint supports. Since P and () have
order m, there are functions fp, fo € K(FE) satisfying

div(fp) = mDp and div(fo) = mDg.

We define
s _ fr(Da)
" fo(Dp)’
(See Exercise 2.10 for the definition of the value of a function at a divisor.)

(a) Prove that é,, (P, Q) is well-defined, i.e., its value depends only on P and @, inde-
pendent of the various choices of Dp, Dq, fp, and fg. (Hint. Use Weil reciprocity,
Exercise 2.11.)

(b) Prove that é,,, (P, Q) € w,,-

(c) * Prove that é,, = e, where e, is the Weil pairing defined in (III §8).

3.17. Let K be a definite quaternion algebra. Prove that /C is ramified at co. (Hint. The
ring M (R) contains zero divisors.)

3.18. Let E/K be an elliptic curve and suppose that K = End(F) ® Q is a quaternion
algebra.
(a) Prove that if p # oo and p # char(K), then K splits at p. (Hint. Use (I11.7.4).)
(b) Deduce that char(K) > 0. (This gives an alternative proof of (IIL.5.6c¢).)
(c) Prove that K is the unique quaternion algebra that is ramified at co and char(K) and
nowhere else.
(d) * Prove that End(F) is a maximal order in K. (Note that unlike number fields, a quater-
nion algebra may have more than one maximal order.)

3.19. Let K be a quaternion algebra.
(a) Prove that K ® Q = M2(Q).
(b) Prove that £ ® K =2 M4(Q). This shows that K corresponds to an element of order 2 in
the Brauer group Br(Q). (Hint. First show that K ® K is simple, i.e., has no two-sided
ideals. Then prove that the map

K ® K — End(K), a®b— (z — axd),
is an isomorphism.)

3.20. Let KC be an imaginary quadratic field with ring of integers O. Prove that the orders of IC
are precisely the rings Z + fO for integers f > 0. The integer f is called the conductor of
the order.

3.21. Let C/K be a curve of genus one. For any point O € C, we can associate to the
elliptic curve (C, O) its j-invariant j(C, O). This exercise asks you to prove that the value
of 7(C, O) is independent of the choice of the base point O. Thus we can assign a j-invariant
to any curve C' of genus one.
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(a) Let (C,0) and (C’,0") be curves of genus one with associated base points, and sup-
pose that there is an isomorphism of curves ¢ : C — C’ satisfying ¢#(O) = O’. Prove
that j(C,0) = j(C’,O"). (Hint. The j-invariant, which is defined in terms of the coef-
ficients of a Weierstrass equation, is independent of the choice of the equation.)

(b) Prove that given any two points O, O’ € C, there is an automorphism of C taking O
to O'.

(c) Use (a) and (b) to conclude that j(C,O) = j(C,O").

3.22. Let C be a curve of genus one defined over K.
(a) Prove that j(C) € K.
(b) Prove that C is an elliptic curve over K if and only if C'(K) # 0.
(c) Prove that C is always isomorphic, over K, to an elliptic curve defined over K.

3.23. Deuring Normal Form. The following normal form for a Weierstrass equation is some-
times useful when dealing with elliptic curves over (algebraically closed) fields of arbitrary
characteristic.
(a) Let E/K be an elliptic curve, and assume that either char(K) # 3 or j(E) # 0. Prove
that £ has a Weierstrass equation over K of the form

E:y2+a:vy+y::c3 with o € K.

(b) For the Weierstrass equation in (a), prove that (0,0) € F[3].
(c) For what value(s) of « is the Weierstrass equation in (a) singular?
(d) Verify that

() = a®(a® —24)?

ad — 27

3.24. Let E/K be an elliptic curve with complex multiplication over K, i.e., such that
Endk (E) is strictly larger than Z. Prove that for all primes £ # char(K), the action of G'g /
on the Tate module 7¢ () is abelian. (Hint. use the fact that the endomorphisms in End i (E)
commute with the action of Gz 5 on T¢(E).)

3.25. Let E be an elliptic curve and let P = (x,y) € E. As a supplement to the duplication
formula (I11.2.3d) for z, prove that the quantity Y ([2]P) = 2y([2]P) + a1z ([2]P) + as is
given by the formula

225 + boa® + 5baz® + 10bgz® + 10bsz” + (babs — babg)w + (babs — b7)
- (2y + a1z + a3)?

Y ([2]P) 4
3.26. Let E be the elliptic curve y> = z® + x having complex multiplication by Z[i],
let m > 2 be an integer, and let T € E[m] be a point of exact order m. In each of the
following situations, prove that {T, [Z]T} is a basis for E[m], and thus that e, (T, [’L]T) isa
primitive m™ root of unity.

() m =3 (mod4).

(b) m is prime, K is a field with ¢ ¢ K, and E(K)[m] is nonzero.
The map ¢ is an example of a distortion map.

3.27. Let E/K be an elliptic curve and let m # 0 be an integer.
(a) Prove that z o [m] € K(x). In other words, prove that there is a rational func-
tion Fy,(z) € K () satisfying z([m]P) = F, (x(P)) forall P € E.
(b) Prove that F,, (Fn(a:)) = Fpn(2).
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(c) Compute F>(z) and F3(x) in terms of a given Weierstrass equation for E.
(d) A more intrinsic description of F}, is that it is the unique rational map Fy, : P* — P!
fitting into the commutative diagram

E —— E/{#1} —=— P!

[m] J{ Fm l

E —— E/{£1} —=— P,

Where is F},, ramified and what are the ramification indices at the ramification points?
(e) Find the fixed points of F,(z), i.e., the points = € P! (K) satisfying Fy, () = .
(f) For each fixed point x € P'(K) of F,,(x), compute the value of the multiplier F}, ().
(Hint. The value should depend only on m, independent of the curve E.)
(g) Apointz € ]P’l(f() is called preperiodic for F,, if its forward orbit

{@, Fon(2), Fon(Fon (), Fon(Fp (Fin (), .- }

is finite. Prove that the preperiodic points for F},, are exactly the points in x (E (K )mrs).
The rational map F, : P — P! is an example of a Lattés map. Lattés maps are important
in the theory of dynamical systems. In particular, Lattes proved that over C, the map F}, is
everywhere chaotic on P'(C). For further information about elliptic curves and dynamical
systems, see for example [14, §4.3], [179], or [267, §§1.6.3, 6.4-6.7].

3.28. Let E C IP? be a possibly singular curve given by a Weierstrass equation, and let I C
PP be a line.

(a) Prove directly from the equations that, counted with appropriate multiplicities, the in-
tersection Y N L consists of exactly three points. (This is a special case of Bézout’s
theorem.)

(b) Let S be a singular point of £ and suppose that S € L. Prove that L intersects E at .S
with multiplicity at least two. Deduce that £ N L consists of .S and at most one other
point.

(c) More generally, let C' C P? be a curve, let S € C be a singular point of C, and let L be
a line containing S. Prove that L intersects C' at S with multiplicity at least two.

3.29. Let E be an elliptic curve.
(a) Fix a Weierstrass equation for F, fix a nonzero point ' € F, and write z(P + T) =
f(ac(P), y(P)) for some function f € K(E) = K(z,y). Prove that f is a linear frac-
tional transformation if and only if 7" € E[3], where a linear fractional transformation is

a function of the form
ar + By +v

o'z + By +9"
(b) More generally, let m > 3, use a basis for L(m(O)) to embed F — P™~! and

let T' € E. Prove that the translation-by-7" map 7r : £ — FE extends to an automor-
phism of P™ ™! if and only if T € E[m).

3.30. Let A be a finite abelian group of order N". Suppose that for every D | N we
have #A[D] = D", where A[D] denotes the subgroup consisting of all elements of order D.

Prove that Z N\
A= (37) -
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3.31. This exercise sketches an elementary proof of (II1.6.2¢) in arbitrary characteristic. We
start with the case char(K) # 2. Let E/K be an elliptic curve.

(@)
(b)
©

(d)
©)
)

(2)

(b

®

@

Use explicit formulas to prove that the doubling map [2] : E — E has degree 4.

Use (a) to prove that deg[2"] = 4™ for all n > 1.

Use (b) and (I11.4.10c) to deduce that #E[2"] = 4" for all n > 1. (This is where we
use the assumption that char(K) # 2.)

Use (c) and Exercise 3.30 to conclude that F[2"] & Z/2"7Z x Z/2"Z for all n > 1.

Verify that the proof of the existence of dual isogenies (II1.6.1) is valid in all character-
istics.

Suppose that m > 1 is an integer for which we know, a priori, that #E[m] = m?.
Show that this suffices to prove the existence and basic properties of the Weil pair-
ing ey, : E[m] X E[m] — w,, as described in (II1.8.1) and (I11.8.2).

Let¢p : E1 — Esand v : E1 — E5 be isogenies of elliptic curves. Let m = 2",
so (c) and (f) give the existence of the Weil pairing e,, on E1 and Es. Let T € E1[m]
and T» € E»[m] be m-torsion points. Use properties of the Weil pairing to prove that

em(T1, (6 +0)(T2)) = em (T1, $(T2) +D(T2)).

Since this holds for all m = 2", use the nondegeneracy of the Weil pairing to deduce
that ¢ + 1 = ¢ + 1.
Use (g) to deduce that

[m]=[m] and deg[m]= m> for all integers m.

(Cf. (IIL6.2d).)

Let m be any integer such that m # 0 in K. Use (h) to prove that #E[m] = m?, and
then observe that (f) gives the existence and standard properties of the Weil e, -pairing.
Finally, if char(K) = 2, replace (a) with a proof via explicit equations that deg[3] = 9.
Redo the rest of the exercise with 2™ replaced by 3".

3.32. Let ¢ € End(E) be an endomorphism, and let

(a)
(b)

©

(d)

d=deg¢ and a=1+deg¢p— deg(l — ¢).

Prove that ¢? — [a] 0 ¢ + [d] = [0] in End(E).
Let o, 8 € C be the complex roots of the polynomial t> — at + d. Prove that

jaf = |8] = Vd.
Prove that deg(1 — ¢") = 1+ d" — a™ — 8" forall n > 1, and deduce that
|deg(1 — ¢") — 1 —d"| < 2d4"/2.

Prove that

deg(1—¢™) on)  1—aX +dx?
eXP(ZnX>—<1)<><1cv<>’

n=1

where the power series converges for | X| < d ™.

(Hint. Use (II1.8.6). For (b), use the fact that deg([m] + [n] o ¢) > 0 for all m,n € Z.)



Exercises 113

3.33. Let K be a Q-division algebra, i.e., K is a (not necessarily commutative) (Q-algebra in
which every nonzero element has a multiplicative inverse. This exercise sketches a proof of
the following theorem, which can be used instead of (I11.9.3) to prove (I11.9.4). In particular,
it is not necessary to know, a priori, that End(E) has rank at most four (II1.7.4), (I11.7.5).

Theorem. Suppose that every element of K satisfies a quadratic equation with coefficients
in Q. Then either K = Q, K is a quadratic field, or K is a quaternion algebra.

(a) Leta, 8 € K. Prove thatif 8 ¢ Q(a), then Q(a) N Q(8) = Q.

(b) Leta, B € K. Prove thatif o ¢ Q and a8 = Ba, then 5 € Q(«).

(c) Leta, 8 € K. Prove thatif o?, 3% € Q, o« ¢ Q, and B ¢ Q(«v), then a3 + Ba € Q.

(d) Let o € K. Prove that there exists an o’ € K such that Q(ar) = Q(c/') and o> € Q.

(e) Let o, 3 € K* satisfy 2,32 € Q. Prove that there exists a 3/ € K such that
Q(a, 8) = Q(a, 8') and 5%, (af')? € Q.

() Leta, 8 € Ksatisfy a ¢ Q, 8 ¢ Q(«), and o?, 82, (o8)? € Q. Prove that o3 = —fBa.

(g) Prove the theorem.

(h) Use the theorem to prove (I11.9.4).

3.34. Let K be a field. An elliptic divisibility sequence (EDS) over K is a sequence (W, )n>1
defined by four initial conditions Wi, Wa, W3, W4 € K and satistying the recurrence

Wosa W nWE = Wy i Wy A W = Wy W, W, forallm >n > 0.

An EDS in nondegenerate if W1 WaWs # 0.
(a) Prove that a sequence (Wp,),>1 of elements of K with W, W>W5 # 0 is an EDS if and
only if it satisfies the two conditions

Waona Wi = W oW — W, Wi, forall n > 2,
Wan WaWE = W, (Wit Wiy — W, s Wiit) forall n > 3.
(b) Prove that an EDS satisfies the more general recurrence

W’m+nW'm7nW3 = Wm+7‘Wm7’r'W’s7W7L+7'W7L77'W3L for all m >n>r>0.

(c) Let (W5 ) be an EDS and let ¢ € K™. Prove that (0"2’1Wn) is also an EDS.
(d) Let (W) be a nondegenerate EDS. Prove that (W,,/W1) is an EDS. More generally,
if Wy, # 0, prove that (W /Wi )n>1 is an EDS.

3.35. This exercise gives some examples of elliptic divisibility sequences (EDS).
(a) Prove that the sequence 1,2, 3, ... is an EDS.
(b) Prove that the Fibonacci sequence is an EDS.
(c) More generally, let (L, ),>1 be defined by a linear recurrence of the form

L1 = ].7 Lg = A, Ln+2 = ALn+1 — Ln forn Z 1.

Prove that (L) is an EDS.
(d) The most interesting EDS are associated to points on elliptic curves. Let E/K be an
elliptic curve and let P € E(K) be a nonzero point. Define a sequence

W = ¢¥n(P) forn >1,

where 1), is the n™ division polynomial for E as defined in Exercise 3.7. Prove that (W)
is an EDS.
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(e) Let (W,) be an EDS associated to an elliptic curve £/ K and nonzero point P € E(K)
as in (d). Prove that P is a point of finite order at least 4 if and only if W,, = 0 for some
n > 4.

(f) * Let (W,) be an EDS associated to an elliptic curve E/K and a nonzero point
P € E(K) of finite order. Let r > 2 be the smallest index such that W,. = 0. (The
number 7 is called the rank of apparition of the sequence.) Assuming that > 4, prove
that there exist A, B € K™ such that

Wyis; = W,AYB”  foralli > Oandall j > 1.

(2) Suppose that K is a finite field and that the rank of apparition 7 of (W,,) is at least 4.
Prove that the sequence (W,,) is periodic with period that is a multiple of 7.

3.36. Let R be an integral domain, and let (W, ),>1 be a nondegenerate elliptic divisibility
sequence with W; € R such that W divides each of W>, W3, and Wy, and such that W5
divides Wy.

(a) Prove that (W) is a divisibility sequence, in the sense that

m|n = Wy | W

(b) Suppose further that R is a principal ideal domain and that gcd(Ws, Wy) = 1. Prove
that (W,,) satisfies the stronger divisibility relation

Wecd(m,n) = ged(Wim, W) forallm,n > 1.



Chapter IV

The Formal Group
of an Elliptic Curve

Let E be an elliptic curve. In this chapter we study an “infinitesimal” neighborhood
of E centered at the origin O. To do this, we start with the local ring K[E]o and
take the completion of this ring at its maximal ideal. This leads to a power series
ring in one variable, say K[z], for some uniformizer z at O. We then write the
Weierstrass coordinate functions = and y as formal Laurent power series in z, and
we construct a power series F'(z1, z2) € K[z1, 22] that formally gives the group law
on F. Such a power series, which might be described as a “group law without any
group elements,” is an example of a formal group. In the remainder of this chapter
we study in some detail the principal properties of arbitrary (one-parameter) formal
groups. The advantage of suppressing all mention of the elliptic curve that motivated
our study in the first place is that working with formal power series tends to be easier
than working with quotients of polynomial rings. Then, of course, having obtained
results for arbitrary formal groups, we can apply them in particular to the formal
group associated to our original elliptic curve.

IV.1 Expansion Around O

In this section we investigate the structure of an elliptic curve and its addition law
“close to the origin.” To do this, it is convenient to make a change of variables, so we

let ) )
x z
z=—— and w=——, o) r=— and y=——.
Y w w
The origin O on E is now the point (z,w) = (0,0), and z is a local uniformizer
at O, i.e., the function z has a zero of order one at O. The usual Weierstrass equation

for £/ becomes

w = 23 + a1 2w + ag2?w + azw? + agzw? + agw® = f(z,w).

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 115
in Mathematics 106, DOI 10.1007/978-0-387-09494-6_1V,
(© Springer Science+Business Media, LLC 2009
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The idea now is to substitute this equation into itself recursively so as to ex-

press w as a power series in z. Thus
w = 23 3

:Z3

+ (a12 + a22®)w + (a3 + ag2)w? + agw

+ (@12 + a9z?) [23 + (12 + agz®)w + (az + ag2)w? + a6w3]
2
+ (a3 + as2) [2® + (@12 + a22®)w + (a3 + as2)w® + agw’]
_|_

ag[2® + (a12 + a22”)w + (a3 + as2)w* + agw®]

=22t a2 + (af + a2)2® + (a3 + 2a1a5 + a3)2°
+ (af + 3atas + 3aaz + a3 + aqg)z” + -
223(1+A12+A222+”~),

where each A,, € Z[ay, ..., ag] is a polynomial in the coefficients of E. Of course,
we need to prove that this procedure converges to a power series

w(z) € Zlay, . .., a6][Z],

and we want the equality

w(z) = f(z,w(z))

to be true in the ring Z[aq, . . ., ag][#].
To describe more precisely the algorithm for producing w(z), we define a se-
quence of polynomials by

fi(z,w) = f(z,w) and fmt1(z,w) :fm(z7f(sz))

Then we set
w(z) = lim f,,(2,0),

provided that this limit makes sense in Z[ay, . . ., ag][2]-

Proposition 1.1. (a) The procedure described above gives a power series

w(z) =22 (1+ A1z + Ax2® + ) € Z[ay, . .., ag][2].

(b) The series w(z) is the unique power series in Zlay, . . ., ag|[z] satisfying
w(z) = f(z,w(2)).
(©) If Z]ay, ..., ag| is made into a graded ring by assigning weights wt(a;) = i,

then A,, is a homogeneous polynomial of weight n.

PROOF. Parts (a) and (b) are special cases of Hensel’s lemma, which we prove later
in this section (IV.1.2). To prove the present proposition, use (IV.1.2) with
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R =7Z[ay,...,a6][7], I=(2),
F(w) = f(z,w) — w, a =0, a=-—1.

Finally, to prove (c), we assign weights to z and w by setting
wt(z) = —1 and wt(w) = —3.

Then f(z,w) is homogeneous of weight —3 in the graded ring Zlay, . .., aq, z, w],
and an easy induction on m shows that f,,(z, w) is homogeneous of weight —3 for
every m > 1. In particular,

fm(2,0) = 23(1 + Byz+ B2+ + BNZN)

is homogeneous of weight —3, so each B,, € Zlay,...,as) is homogeneous of
weight n. Hence the A,,’s have the same property, since f,,(z,0) converges to w(z)
as m — oo. O

Lemma 1.2. (Hensel’s Lemma) Let R be a ring that is complete with respect to
some ideal I C R, and let F(w) € R[w] be a polynomial. Suppose that there are an
integer n > 1 and an element a € R satisfying

F(a)eI™ and  F'(a) € R*.
Then for any o € R satisfying « = F'(a) (mod I), the sequence

F(wm)

wy = a, W41 = Wiy —
converges to an element b € R satisfying

Fb)=0 and  b=a (modI™).
If R is an integral domain, then these conditions determine b uniquely.

PROOF. To ease notation, we replace F(w) by F(w + a)/«, so we are now dealing
with the recurrence

wo =0, F(0)eI™, F'(0) =1 (mod I), Wil = Wy, — F(wp,).
Since F'(0) € I™, itis clear that
wy €1I" = wy — F(wy) € 17,
from which it follows that
wy, € I™ forallm > 0.
We now show by induction that

Wy = Wpy1  (mod I™T™) for all m > 0.
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For m = 0, this just says that F'(0) = 0 (mod I™), which is one of our initial
assumptions. Assume now that the desired congruence is true for all integers strictly
smaller than m. Let X and Y be new variables and factor

F(X)-FY)=(X-Y)(F(0)+ XG(X,Y)+YH(X,Y)),
where G and H are polynomials in R[X,Y]. Then
Wm41 — Wy = (wm - F(wm)) - (wmfl - F(wmfl))
= (W — Wi—1) — (F(wm) — F(wp—1))
= (wm - wm—l)(l - F/(O) - me(wrm wm—l)

— wm_lH(wm,wm_l)) e Jmtn,

Here the last line follows from the induction hypothesis and the assumptions that
F’(0) = 1 (mod I) and wyy,, wy,—1 € I™. This proves that

Wy — Wypyr € I™T™ for all m > 0.

Since R is complete with respect to I, it follows that the sequence w,,, converges
to an element b € R; and since every w,, € I, we see that b € I™. Further, taking
the limit of the relation wy, 11 = wy, — F(wy,) as m — oo yields b = b — F(b), so
F(b) =0.

Finally, to show uniqueness (under the assumption that R is an integral domain),
suppose that ¢ € I™ satisfies F'(¢) = 0. Then

0=F(b)— F(c) = (b—c)(F'(0) + bG(b,c) + cH(b,c)).
If b # ¢, then F'(0) 4+ bG(b, ¢) + cH (b, ¢) = 0, which would imply that
F'(0) = —bG(b,c) — cH(b,c) € I.
This contradicts the assumption that F’(0) = 1 (mod I). Hence b = c. O

Using the power series w(z) from (IV.1.1), we derive Laurent series for x and y,

z 1 a 9
r\z)= = — — — — (A9 — a2z — |a ai1a A — e,
() w(z) 22 P 2 3 (4+ 13)
(2) ! LU Bt (a4 + aras)
Z = —_— = —_—— — — a a aa Zi"'-
4 w(z) 23 22 2z 8 4

Similarly, the invariant differential has an expansion
dz(2)
2y(2) + a1z(z) + a3
(14 a1z + (af + a2)2® + (a} + 2a1az + 2a3)2°
+ (a} + 3aias + 6aras + a3 + 2a4)2* + -+ ) dz.

w(z) =
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We note that the series for x(z), y(z), and w(z) have coefficients in Z[ay, . . . , ag].
This is clear for x(z) and y(z), while for w(z) it follows from the two expressions
de(2)/d e 1
wlz) = 2(2)/dz = Z_ €Z|=,a1,...,a6|[z]:
dz 2y +air+az —2z73+--- 2
dy(z)/d 3t 1
w(z) = y(2)/d> _ o & €Z|=,a1,...,a6|[7],
dz 312 4+ 2a0x +ay — a1y —3z74+ .- 3

which show that any denominator is simultaneously a power of 2 and a power of 3.
The pair (x(z),y(z)) provides a formal solution to the Weierstrass equation

E: y2 +a1xy+a3y:x3 +a2x2+a4x+a6,

i.e., a solution in the quotient field of the ring of formal power series. If F is de-
fined over a field K, we might try to create points on E by evaluating these power
series at z € K. In general, there is no obvious way to assign a value to an in-
finite series such as x(z) evaluated at some z € K. However, suppose that K is
a complete local field with ring of integers R and maximal ideal M, and further
suppose that aq,...,as € R. Then the power series z(z) and y(z) will converge
for any z € M and the result will be a point (z(z),y(z)) € E(K). This gives an
Injective map
M — E(K), z— (2(2),y(2)).

(The map is injective, since it has an inverse (z,y) — —x/y.) It is easy to character-
ize the image as consisting of those points (%) with =1 € M. This map will be a
key tool when we study elliptic curves over local fields in Chapter VII.

Returning now to formal power series, we look for the power series formally
giving the addition law on E. Let z; and zo be independent indeterminates, and
let w; = w(z1) and we = w(z2). In the (z, w)-plane, the line connecting (z7, wy)
to (22, w2) has slope

Wy — Wy = zhy — 27
A=A(z1,22) = PO :ZAn—BZ B € Zlax, . . ., agl[21, 22].
2 =2 2 —

Note that A(z1, z2) has no constant or linear terms, and that the A4,, values come
from (IV.1.1a). Letting

V= V(Zl,Zg) = Wy — /\2’1 € Z[al,...,ag][[zl,z'g]],

the connecting line has equation w = Az — v. Substituting this into the Weierstrass
equation gives a cubic in z, two of whose roots are z; and z5. Looking at the quadratic
term, we see that the third root (say z3) can be expressed as a power series in z;
and zo,

z3 = 2’3(2’1,22)

ar A + as\? — asy — 204\ — 3agA\v
1+ asA + agA? + agA?

€ Zlay, ..., ag)[z1, 22].

=—21— 22+
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Letting
ws = \(21, 22)23(21, 22) + v(21, 22),

the three points (z1,w1), (22, w2), and (z3,ws) are collinear on FE, so they add
to O using the group law. Further, the fact that (z5,ws) is on E means that wg =
f(z3,ws), while (IV.1.1b) says that the power series w(z) described in (IV.1.1a) is
the unique power series satisfying w(z) = f(z,w(z)). Hence ws = w(z3), i.e.,
we can compute the w-coordinate of —(x1,y1) — (x2,y2) using the power series
from (IV.1.1a).

In order to compute the sum of the first two points, we need the formula for the
inverse. In the (z, y)-plane, the inverse of (x,y) is (z, —y — a1 —a3). Remembering
that z = —z/y, we find that the inverse of (z, w) has z-coordinate

. ZL'(Z) Zfz—alzfl_...
= = 6 Z ceey Py
) y(2) + az(z) + a3 —2 3 +2a27 2 - - lar, . aslz]

and an argument similar to that given above shows that the w-coordinate of the in-
verse (z, —y — ajx — as) is equal to w(i(z)). This gives the formal addition law

F(z1,29) = i(z'g(zl, zg))
=204+ 2+2—a12120 — ax(2320 + 2123)
+ (2a323 20 + (a1a2 — 3az)2723 + 2a32125) + -
€ Zlay, ..., a¢)[z1, 22].

From properties of the addition law on E, we deduce that F'(z1, 22) has the corre-
sponding properties:

F(z1,29) = F(22,21) (commutativity),
F(zl, F(zo, z)) = F(F(Zl7 29), z) (associativity),
F(z,i(z)) =0 (inverse).

The power series F'(z1, z2) might be described as “a group law without any group
elements.” Such objects are called formal groups. We could now continue with the
study of the particular formal group coming from our elliptic curve, but it is little
more difficult to analyze arbitrary (one-parameter) formal groups, and in fact the
abstraction tends to clarify the underlying structure, so we take the latter approach.
The reader should, however, keep in mind the example of an elliptic curve while
reading the remainder of this chapter.

IV.2 Formal Groups

In this section we define and prove some basic properties of formal groups.

Definition. Let R be aring. A (one-parameter commutative) formal group F over R
is a power series F'(X,Y) € R[X, Y] with the following properties:
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(a) F(X,Y)=X+Y + (terms of degree > 2).
(b) F(X,F(Y,Z)) = F(F(X,Y),Z) (associativity).
(¢ F(X,Y)=F(,X) (commutativity).
(d) There is a unique power series ¢(T) € R[T] such that F(T,i(T)) =0 (in-
verse).
(€) F(X,0)=Xand F(0,Y) =Y.
We call F'(X,Y) the formal group law of F.

Remark 2.1. Itis easy to prove that (a) and (b) imply (d) and (e); see Exercise 4.1. It
is also true that (a) and (b) imply (c), provided that the ring R has no torsion nilpotent
elements; see Exercise 4.2b. In this section we prove this last assertion when R has
no torsion elements.

Definition. Let (F, F') and (G, G) be formal groups defined over R. A homomor-
phism from F to G defined over R is a power series f € R[T] (with no constant
term) that satisfies

FP(X.Y)) = G(f(X), f(Y)).
The formal groups F and G are isomorphic over R if there are homomorphisms
f:F—Gandg:G — F defined over R such that

flg(1)) =g(f(T) =T.
Example 2.2.1. The formal additive group, denoted by G, is defined by
FX,)Y)=X+Y.
Example 2.2.2. The formal multiplicative group, denoted by Gon, is defined by
FX,Y)=X4Y+XY=(1+X)1+Y)-1.

Example 2.2.3. Let £ be an elliptic curve given by a Weierstrass equation with
coefficients in R. The formal group associated to E is denoted by FE. It is defined by
the power series F'(z1, z2) described in (IV §1).

Example 2.2.4. Let (F, F') be a formal group. We define homomorphisms
) F— F
inductively for m € Z by
0)(T) =0, [m+1|(T)=F(m|(T),T), [m—1|T)=F(m|(T),i(T)).

One may easily check by induction that [m] is a homomorphism. We call [m] the
multiplication-by-m map. The following elementary proposition, which explains
when [m] is an isomorphism, will be of great importance. More precisely, the chain
of implications

(Iv.2.3) = (IV.3.2b) = (VIL.3.1)

proves a key fact required for the proof of the weak Mordell-Weil theorem (VIIL.1.1).
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Proposition 2.3. Let F be a formal group over the ring R and let m € Z.

(a) [m](T) = mT + (higher-order terms).

(b) If m € R*, then [m] : F — F is an isomorphism.

PROOF. (a) For m > 0, the stated result is a trivial induction using the recursive
definition of [m] and the fact that F(X,Y) = X +Y + ... Then, using

0=F(T,i(T)) =T+i(T)+--,

we see that i(T") = —T + - - -, and now the downward induction for m < 0 is also
clear.
(b) This follows from (a) and the following useful lemma. O

Lemma 2.4. Leta € R* and let f(T') € R[T] be a power series of the form
f(T) = at + (higher-order terms).
Then there is a unique power series g(T) € R[T] satisfying
flg(T)) =T.
The series g(T) also satisfies g(f(T)) = T.
PROOF. We construct a sequence of polynomials g, (7') € R[T] satisfying
flgn(T)) =T (mod T"*)  and  gy11(T) = g, (T) (mod ).

Then the limit g(T') = lim g,,(T)) exists in R[T7] and clearly satisfies f(g(T)) = T.
To start the induction, let g1 (T') = a~*T. Now suppose that g,,_1(7") has been
constructed and has the desired properties. Then g,, (1) must have the form

9n(T) = gn—1(T) + AT"
for some A € R, and we look for a value of A that makes
f(gn(T)) =T (mod T" ).
To do this, we use the induction hypothesis to compute
F(gn(T)) = f(gn—1(T) +AT™)
= f(gn-1(T)) + aAT™ (mod T™*)
=T +bT™ +aXT" (mod T"*')  forsomeb € R.

It thus suffices to take A = —a~!b, which we may do since a € R*. This completes
the proof that g(7T') exists.

Next we apply what we have proven, using the power series g(T) = a=*T +- -
in place of f(T). This gives us a power series i(T) satisfying g(h(T')) = T'. Then

g(F(T)) = g(f(g(M(T)))) = g(f o g(h(T))) = g(M(T)) =T.

Finally, suppose that G(T') € R[T7] is another power series satisfying f (G (t)) = T.
Then

9(T) = g(f(G(T))) = (90 /)(G(T)) = G(T),
which shows that g(T) is unique. O
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IV.3  Groups Associated to Formal Groups

A formal group is, in general, merely a group operation with no actual underlying
group. However, if the ring R is local and complete and if the variables are assigned
values in the maximal ideal M of R, then the power series defining the formal group
converge and thus give M the structure of a group. This section is devoted to an
initial analysis of such groups. We fix the following notation:

R acomplete local ring.
M the maximal ideal of R.

k  the residue field R/ M.

F  aformal group defined over R, with formal group law F'(X,Y).
Definition. The group associated to F /R, denoted by F (M), is the set M endowed
with the group operations

x@ry=F(x,y) (addition) forz,y € M,
Orx = i(x) (inversion) for x € M.

Similarly, for n > 1, we define F(M"™) to be the subgroup of F (M) consisting of
the set M™ together with the above group laws.

The assumption that R is complete ensures that the power series F'(z, y) and i(z)
converge in R for all x,y € M. The formal group axioms immediately imply
that (M) is a group and that F(M") is a subgroup of F(M).

Example 3.1.1. The additive group G, (M) is just M with its usual addition law.
Notice the exact sequence (of additive groups)

0— Gu(M) — R —k — 0.

Example 3.1.2. The multiplicative group @m(./\/l) is the group of 1-units, i.e., the
set 1 + M with group law multiplication. Notice that we again have an exact se-
quence,

2t Rk 1

0 — G (M)

Example 3.1.3. Let E be the formal group associated to an elliptic curve E/K as
described in (IV.2.2.3), where K is the field of fractions of the complete local ring R.
Then, as noted in (IV §1), the power series x(z) and y(z) give a well-defined map

M — E(K), z— P, = (2(2),y(2)).

The construction of the power series for E imply that this map is a homomorphism
of E(M) to E(K).!

"More precisely, they imply that Pr 2,21y = Pz + P,/ for distinct z, z' € M. For z = 2/, we can
let 2’ +— z and use the fact that the map z — P, and the addition law on E(K) are continuous for the
topology induced from K. Alternatively, we could do an explicit, albeit messy, calculation with power
series and the duplication formula.
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As we will see in Chapter VII, there is often an exact sequence

0— E(M)— E(K)— E(k) — 0,

where E is a certain elliptic curve defined over the residue field . In this way, the
study of E(K) is reduced to the study of the formal group E(M) and the study of
an elliptic curve over the smaller, and hopefully simpler, field k.

Proposition 3.2. Let F /R be a formal group defined over a complete local ring.
(a) Foreachn > 1, the map
F(M™) M"
—
]."(Mn+1) Mn+1

induced by the identity map on sets is an isomorphism of groups.

(b) Let p be the characteristic of the residue field k, where p is allowed to equal 0.
Then every element of finite order in F(M) has order that is a power of p.
(See (IV §6) for a more precise description of the torsion subgroup of F(M).)

PROOF. (a) Since the underlying sets are the same, it suffices to show that the map
is a homomorphism. But this is clear, since for any x,y € M"™ we have

z@ry=F(z,y)
= 2 + y + (higher-order terms)
=z+y (mod M?™).

(b) We give two proofs of this important fact. Multiplying an arbitrary torsion el-
ement by an appropriate power of p, it suffices to prove that there are no nonzero
torsion elements of order prime to p. So we let m > 1 with p f m (if p = 0, then m
is arbitrary) and we suppose that x € F (M) satisfies [m](x) = 0. We must show
that x = 0.

For our first proof, we note that since m is prime to p, we have m ¢ M,
so m € R*, since R is a local ring. It follows from (IV.2.3b) that [m] is an auto-
morphism of the formal group F /R, so it induces an isomorphism

[m] : F(IM) —— F(M).

In particular, multiplication-by-m has trivial kernel, so x = 0.

For the second proof, we assume that R is Noetherian and show inductively
that x € M™ for all n > 1. This will imply that x = 0 by Krull’s theorem [8, Corol-
lary 10.20], [73, Corollary 5.4]. We know that € M. Suppose that z € M" and
consider the image Z of  in F(M™) /F(M™T1). On the one hand, Z has order divid-
ing m. On the other hand, from (a) we know that the quotient F(M™)/F(M" 1)
is isomorphic to the k-vector space M"™/M™*1 hence has only p-torsion. There-
fore z =0, s0z € M"T1, 0
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IV.4 The Invariant Differential

We return to the study of a formal group F defined over an arbitrary ring R. In
a formal setting of this sort, a differential form is simply an expression P(T") dT'
with P(T') € R[T]. Of particular interest are those differential forms that respect
the group structure of F.

Definition. An invariant differential on a formal group F /R is a differential form
w(T)=P(T)dT € R[T] dt

satisfying
wo F(T,S) =w(T).

Writing this out, w(T") = P(T") dT is an invariant differential if it satisfies

where Fx (X,Y) is the partial derivative of F' with respect to its first variable. An
invariant differential is said to be normalized if P(0) = 1.

Example 4.1.1. On the additive group G, the differential w = d7T is invariant.

Example 4.1.2. On the multiplicative group G, the following is an invariant dif-
ferential: T
= = = 1 - T T2 - T3 A dT-
Y=ToT ( + +-00)

Proposition 4.2. Let F/R be a formal group. There exists a unique normalized
invariant differential on F/ R. It is given by the formula

w=Fx(0,T)""dT.
Every invariant differential on F /R is of the form aw for some a € R.
PROOF. Suppose that P(7T') dT is an invariant differential on F /R, so it satisfies
P(F(T,S))Fx(T,S) = P(T),
Putting 7' = 0 and remembering that F'(0, S) = S gives
P(S)Fx(0,S5) = P(0).

Since Fx(0,5) = 1+ ---, we see that P(T') is completely determined by the
value P(0), and further that every invariant differential is of the form aw witha € R
and

w=Fx(0,T)"'dT.

Since this differential w is normalized, it remains only to show that it is invariant.
We must prove that
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Fx (0, F(T,S)) " Fx(T,S) = Fx(0,T)"".
To do this, we differentiate the associative law
F(U,F(T,S)) = F(F(U,T),S)
with respect to U to obtain (using the chain rule!)
Fx (U7 F(T,S)) = Fx (F(U, T), S)FX(U7 7).
Putting U = 0 and using the fact that F'(0,7) = T yields
Fx (0, F(T, 5)) = Fx (T, $)Fx (0,T),
which is the desired result. O

Before stating the first corollary, we set the notation f/(7") for the formal deriva-
tive of a power series f(T') € R[T], i.e., f/(T) is obtained by formally differentiat-
ing f(T) term by term.

Corollary 4.3. Let F /R and G/ R be formal groups with normalized differentials wr
and wg. Let f : F — G be a homomorphism. Then

wgo f=f'(0)wsr.

PROOF. Let F'(X,Y) and G(X,Y') be the formal group laws for 7 and G. We claim
that wg o f is an invariant differential for F. To prove this, we compute

(wg o f)(F(T,S)) =wg(G(f(T), f(S))) since f is a homomorphism,
= (wg o f)(T) since wg is invariant for G.

It follows from (IV.4.2) that wg o f is equal to aws for some a € R. Comparing
coefficients of T" on each side gives a = f’(0). O

Corollary 4.4. Let F /R be a formal group and let p € 7 be a prime. There there
are power series f(T),g(T) € R[T] with f(0) = g(0) = 0 such that

PI(T) = pf(T) +9(T7).

PROOF. Let w(T') be the normalized invariant differential on F. From (IV.2.3a) we
have [p]’(0) = p, so (IV.4.3) implies that

pw(T) = (wo [p)(T) = (1 + ) [p)(T) dT.

The series (1 + - - - ) is invertible in R[T7], from which it follows that
[p]'(T) € pRIT].

Therefore every term aT™ in the series [p](T') satisfies eithera € pRorp | n. O
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IV.S The Formal Logarithm

Integrating an invariant differential might, one hopes, yield a homomorphism to the
additive group. Unfortunately, integration tends to introduce denominators, but at
least in characteristic 0 things work fairly well.

Definition. Let R be a torsion-free? ring, let K = R ® Q, let 7/R be a formal
group, and let

w(T) =1+ eiT 4 coT? +e3T? +---)dT
be the normalized invariant differential on F/R. The formal logarithm of F /R is
the power series

log £(T) = /w(T) =T+ %TQ + %QT3 4. € K[T].

The formal exponential of F /R is the unique power series exp »(7') € K[T] satis-
fying
logroexpr(T) =expr(T)ology(T) =T.

The existence and uniqueness of exp » are ensured by (IV.2.4).

Example 5.1. The formal group law and invariant differential of the formal multi-
plicative group F = G,,, are

Fr(X,Y)=X+Y+XY and wg(T)=(1+T) 'dT.

Then the formal logarithm and exponential are given by

log #(T) = /(1 +T) YT = i w

o0

expz(T) = Z

n=1

T n

n!’

(We recall that the “identity element” is at T' = 0, so log ~(T") and exp »(T') are the
standard Taylor series expansions of log(1 + 7T') and e — 1.)

Proposition 5.2. Let R be a torsion-free ring and let F | R be a formal group. Then
logr: F — G,

is an isomorphism of formal groups over K = R® Q. (N.B. The presence of denom-
inators in the coefficients of the power series log (T means that logr generally
does not give an isomorphism of formal groups over R.)

2The assumption that R has no torsion elements means that if n € Z and o € R satisfy na = 0, then
either n = 0 or a = 0. Equivalently, the natural map R — K = R ® Q is an injection.
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PROOF. Let w(T') be the normalized invariant differential on /R, so
w(F(T,S)) = w(T).
Integrating with respect to 7" gives
logz F(T,S) =log F(T) + C(S)

for some “constant of integration” C(S) € K[S]. Taking T' = 0 shows that C'(S) =
log £(.S), which proves that log » is a homomorphism. Further, it has expr as its
inverse, so log £ is an isomorphism. O

Application 5.3. Let R be a torsion-free ring and suppose that F'(X,Y) € R[X, Y]
is a power series satisfying

F(X,F(Y,2)) = F(F(X,Y),Z), F(X,00=0, F(0,Y)=Y.

We observe that the construction of the invariant differential, formal logarithm, and
formal exponential, and the proofs of their basic properties used only these three
properties of F'(X,Y"). Thus letting KX = R ® Q, this proves the existence of power
series log(T'), exp(T) € K[T] satisfying

F(X,Y) = exp(log(X) + log(Y)).

In particular, we see that F'(X,Y) = F(Y, X). In other words, every one-parameter
formal group over a torsion-free ring is automatically commutative. (See Exer-
cise 4.2b for a more precise statement.)

For certain applications it is useful to have a bound on the denominators ap-
pearing in log » and exp . The answer for log  is clear from the definition, while
for exp » we use the following calculation.

Lemma 5.4. Let R be a torsion-free ring, let K = R ®@ Q, and let

oo
G rom,
F(T) =3 2 e K]
n=1
be a power series with a, € R and ay € R*. Then there is a unique power se-
ries g(T) € K[TY] satisfying f(9(T)) = T cf. AV.2.4). The series g(T) has the
form
— b
_ “noomn

n=1

with b,, € R.

PROOF. Differentiating f(g(T")) = T gives

f(9(1)g"(T) = 1.
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and evaluating at 7" = 0 shows that

Differentiating again yields
f'(9(1))g"(T) + £ (9(T))g'(T)? = 0.

Repeated differentiation shows that for every n > 2, the quantity f/(g(7)) g™(T)
can be expressed as a polynomial (with integer coefficients) in the variables

fD(g(T)) with1<i<n and ¢gU(T) withl<j<n-—1.

Evaluating at 7' = 0 expresses a1b,, as a polynomial in ay,...,a,,01,...,b,_1.
Since a1,b; € R*, an easy induction shows that every b,, € R. ]

Proposition 5.5. Let R be a torsion-free ring and let F /R be a formal group. Then

oo

log(T) = C;—”T” and expr(T) = Z
n=1

n=1

b

E

!T

3

with a,,b, € Rand ay, = by = 1.

PROOF. The expression for log ~ follows directly from the definition of the formal
logarithm, and then (IV.5.4) implies that exp » has the specified form. [

IV.6 Formal Groups over Discrete Valuation Rings

Let R be a complete local ring with maximal ideal M, and let /R be a formal
group. As we have seen (IV.3.2b), the associated group F (M) has no torsion of
order prime to p = char(R/M). We analyze more closely the p-primary torsion
when R is a discrete valuation ring.

Theorem 6.1. Let R be a discrete valuation ring that is complete with respect to its
maximal ideal M, let p = char(R/M), and let v be the valuation on R. Let F /R
be a formal group, and suppose that x € F (M) has exact order p" for some n > 1,
ie.,

p")(z) =0 and  [p"7'](x) # 0.
Then
v(zr) < L),l
pn . pTL
PROOF. The statement is trivial (and uninteresting) if char(R) # 0 orif p = 0, since
then v(p) = oo, so we may assume that char(R) = 0 and that p > 0. From (IV.4.4)
we know that there are power series f (1), g(T") € R[1] such that



130 IV. The Formal Group of an Elliptic Curve

[PI(T) = pf(T) + 9(T"),

and (IV.2.3a) tells us that f(T) =T + ---. We are going to prove the theorem by
induction on n.
Suppose first that « # 0 and [p](z) = 0. Thus

0= pf(a) +g(a?).
Since R is a discrete valuation ring and the linear term of f(T) is T, the only way
that the leading term of pf(x) can be eliminated is to have

v(pz) > v(a?).
Hence

v(p) = (p — Dv(z).

Now assume that the theorem is true for n, and let € F(M) have exact or-
der p"*!. Then

v([pl(@)) = v(pf (@) + g(2")) > min{v(pw), v(a")}.

The point [p](x) has exact order p™, so the induction hypothesis tells us that

> (i),
and therefore
pnli(gz—l > min{v(pz),v(z?)}.

Since v(x) > 0 and n > 1, it is not possible to have

v(p)
> v(px).
pn _ pn—l ( )
We conclude that
v(p)
———— > v(a") = pv(z),
pn _ pnfl ( (
which is the desired result. O

Example 6.1.1. Let F be a formal group defined over Z,,, the ring of p-adic integers.
If p > 2, then (IV.6.1) says that F(pZ,) has no torsion at all, and even for p = 2 it
has at most elements of order 2. The same holds for the ring of integers in any finite
unramified extension of . For a general finite extension, the determining factor for
possible p-primary torsion is the ramification degree of the extension, i.e., the value
of v(p) if one takes v to be a normalized valuation.

Next we show that a large piece of F (M) looks like the additive group. The
idea is to use the formal logarithm to define a map, but the presence of denominators
means that convergence is no longer automatic. The following two lemmas will thus
be useful.
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Lemma 6.2. Let v be a valuation and let p € Z be a prime such that 0 < v(p) < co.
Then for all integers n > 1,

(n = 1v(p)
v(n!) < o1

PROOF. We compute

s =3 [2]upy < 35 2020 () < (D100

i=1 =1

O

Lemma 6.3. Let R be a ring of characteristic O that is complete with respect to a
discrete valuation v, and let p € 7 be a prime with v(p) > 0.
(a) Let f(T) be a power series of the form

) =Y %"T” with ay € R.

n=1

If © € R satisfies v(x) > 0, then f(x) convergesin R.
(b) Let g(T) be a power series of the form

n-L i

If ¢ € R satisfies v(z) > v(p)/(p — 1), then g(x) converges in R. If further

" with b, € R.

3‘0‘

by € R*, then
v(g(z)) = v(x).
PROOF. (a) For a general term of f(x) we have
v(anx”/n nv(x) —v(n) since a,, € R,
nv(x) — (log, n)v(p).

This last expression goes to oo as n goes to infinity. Since v is nonarchimedean and R
is complete, the series f(z) converges.
(b) For a general term of the series g(x), we have

v(bpx™/n!) > nv(x) — v(n!) since b, € R,
> no(z) — (n — 1);(_73)1 from (IV.6.2),
=v(x)+(n—-1) (v(m) - :(p)l> .

We are assuming that v(x) > v(p)/(p — 1), so
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v(bpz™/n!) — oo asn — oo,
and
v(bpx™/n!) > v(x) forall n > 2.

Since v is nonarchimedean, the former implies that g(x) converges; and if b; € R*,
so v(byx) = v(z), then the latter shows that the leading term dominates. O

Theorem 6.4. Let K be a field of characteristic 0 that is complete with respect to a
normalized discrete valuation v, i.e., v(K*) = Z, let R be the valuation ring of K,
let M be the maximal ideal of R, and let p be a prime with v(p) > 0. Consider a
Sformal group F/R.

(a) The formal logarithm induces a homomorphism

logr: F(IM) — K,

where the group law on K is addition.
(b) Let r > v(p)/(p — 1) be an integer. Then the formal logarithm induces an
isomorphism

~

logr : F(M") Gu(M").

PROOF. (a) From (IV.5.2) we have an identity of power series
logr(F(X,Y)) = logz(X) +log#(Y).

Hence log, will be a homomorphism on M provided that log(x) converges
for x € M. The convergence follows from (IV.5.5) and (IV.6.3a).

(b) Similarly, since (IV.5.2) says that logr and exp are inverse maps as formal
power series, it suffices to show that for all x € M?", the power series log - (z)
and exp z(x) converge to values in M". This follows directly from the estimates
given in (IV.5.5) and (IV.6.3b). (Note that since v is normalized, the conditions
x € M” and v(z) > r are equivalent.) O

Remark 6.5. If r > v(p)/(p — 1), then (IV.6.4) implies that F(M") is torsion-free,
since G, (M?") certainly has no torsion. We thus recover the n = 1 case of (IV.6.1).

IV.7 Formal Groups in Characteristic p

For this section we let R be a ring of characteristic p > 0.

Definition. Let /R and G/R be formal groups, and let f : F — G be a homo-
morphism defined over R. The height of f, denoted by ht(f), is the largest integer h
such that .

f(T) = g(17")
for some power series g(7') € R[T]. If f = 0, we set ht(f) = oc.) The height

of the formal group F, denoted by ht(F), is the height of the multiplication-by-p
map [p] : F — F.
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Remark 7.1. If mm > 1 is prime to p, then ht([m]) = 0, since (IV.2.3a) says
that [m](T") = mT + ---. On the other hand, (IV.4.4) implies that ht([p]) > 1, so
the height of a formal group over a ring of positive characteristic is always positive.

Proposition 7.2. Let /R and G/R be formal groups, and let f : F — G be a
homomorphism defined over R.

(@) If f'(0) =0, then f(T) = f1(TP) for some f1 € R[T].

(b) Write f(T) = g(T?") with h = ht(f). Then g'(0) # 0.

PROOF. (a) Let wr and wg be the normalized invariant differentials on F and G.
Then

0= f'(0)ws(T) since f/(0) = 0,
= wg (f(T)) from (IV.4.3),
=(1+--)f(T)dT.

Hence f'(T) =0, so0 f(T) = fi(T?).

(b) Let ¢ = p", and if F(X,Y) = > a;;X'Y7 is the power series defining
the formal group F, let F(9) denote the formal group defined by the power se-
ries FIO(X, V) = angin. Using the fact that char(R) = p, it is easy to check
that F(@) is a formal group. We claim that g is a homomorphism from F(@ to G. To
prove this, we compute:

g(F(X,)Y)) = g(F(S.T)%) writing §¢ = X and 77 =Y,
= J(F(5.1))
=G(f(9), f(T1)) since f is a homomorphism,
= Glg(57), (1)
=G(9(X),9(Y)
Suppose that ¢'(0) equals 0. Then from (a) we have g(T") = g1 (7P), which implies

that
h h+1
f(T) =g(T") =g (T" ).
This contradicts the assumption that » = ht(f). Therefore ¢'(0) # 0. O
Next we show that the height behaves well under composition.

Proposition 7.3. Let 7 /R, G/R, and H/R be formal groups, and let

f g

Ft g4 . n
be a chain of homomorphisms defined over R. Then

hi(g o f) = ht(f) + hi(g). O
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PROOF. Write

ht(f)
")

() = f(T

Then ht(f) ~ )t (o)
(90 1)T) = g (R(T™" ")) = g (Hr(2?™ "),

where fl is obtained from f; by raising each coefficient of f; to the pht(9) power.
We know from (IV.7.2b) that g; and f; have nonzero linear terms, so it follows that

ht(g o f) = ht(f) + ht(g). O

We now resume our study of elliptic curves by giving a relationship between
the inseparable degree of an isogeny and the height of the associated map of formal
groups.

Theorem 7.4. Let K be a field of characteristic p > 0, let E1/K and Ey/K be
elliptic curves, and let ¢ : Ey — E3 be a nonzero isogeny defined over K. Further,
let f : Ex — Es be the homomorphism of formal groups induced by ¢. Then

degz‘(¢) = pht(f)~

Corollary 7.5. Let E/K be an elliptic curve defined over a field of positive charac-
teristic. Then

ht(E) =1 or 2.
PROOF. We start with two special cases.

Case 1. ¢ is the p"-power Frobenius map.
Then (I1.2.11) says that deg; ¢ = p", while f(T) = T?", so clearly ht(f) = r.

Case 2. ¢ is separable.

Let w be an invariant differential on F>/K, and let w(7") be the corresponding dif-
ferential on the formal group E». Since ¢ is separable by assumption, (I1.4.2¢) tells
us that ¢*w # 0, so using (IV.4.3) we conclude that

(o f)(T) = [(0)(T) £0.
It follows that f'(0) # 0, and hence ht(f) = 0.

We now use the fact (I1.2.12) that every isogeny is the composition of a Frobenius
map and a separable map. The theorem then follows from the two cases already
considered, since inseparable degrees multiply under composition, while (IV.7.3)
tells us that heights add under composition.

The corollary is immediate on applying the theorem with ¢ = [p], since the
map [p] has degree p? from (I11.6.4a). O
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Exercises

4.1. Let F(X,Y) € R[X,Y] be a power series satisfying
F(X,Y)=X+Y+--- and F(X,F(Y,2))=F(F(X,Y),Z).

(a) Show that there is a unique power series ¢(T") € R[T7] satisfying F (T, Z(T)) = 0. Prove
that 4(7") also satisfies F(i(T)7 T) =0.

(b) Prove that F/(X,0) = X and F(0,Y) =Y.

4.2. (a) Let R = F,[¢]/(¢?). Prove that
FX,)Y)=X+Y +eXY?

defines a noncommutative formal group, i.e., F' has all of the properties to be a formal
group law except that F/(X,Y") # F(Y, X).

(b) *Let R be aring. Prove that there exists a noncommutative formal group defined over R

if and only if there are a nonzero element ¢ € R and positive integers m and n such
that me = € = 0.

4.3. Let R be the ring of integers in a finite extension of Q,, and let 7/ R be a formal group.
(a) Prove that for every z € F(M),
lim [p"](z) = 0.

n—00

(b) Prove that for every o € Zj, there exists a unique homomorphism [a] : F — F satisfy-
ing
[&(T) =aT +--- € R[T].

4.4. Let R and F/R be as in Exercise 4.3, and let h be the height of the formal group over
the residue field R/M obtained by reducing modulo M the coefficients of the formal group
law for JF. Prove that there is a finite extension R’ of R with maximal ideal M’ such that
the p-torsion in F (M) is isomorphic to (Z/pZ)". (Hint. Use the p-adic version of the Weier-
strass preparation theorem [143, Chapter 5, Theorem 11.2].) This provides an alternative proof
of (IV.7.5).

4.5. Let E be the elliptic curve y* = 2% + Az.
(a) Letw(z) = > An2" be the power series for E described in (IV §1). Prove that

An, =0 forall n # 3 (mod4).

(b) Let F(X,Y) = > Fu(X,Y) be the formal group law for E, where F,,(X,Y) is a
homogeneous polynomial of degree n. Prove that

F,=0 forall n#1 (mod4).
(c) Prove results analogous to (a) and (b) for the curve 3> = 2> + B.

4.6. Using the notation from (IV.6.1), let k = R/M, and let h be the height of the formal
group F/k obtained by reducing the coefficients of the formal group law F(X,Y") mod-
ulo M. Suppose that 2 € F (M) has exact order p"**. Prove that

v(z) < [v(p)} ]

IR

Since every formal group has height A > 1, this strengthens (IV.6.1).



This page intentionally left blank



Chapter V

Elliptic Curves over Finite
Fields

In this chapter we study elliptic curves defined over a finite field IF,. The most im-
portant arithmetic quantity associated to such a curve is its number of rational points.
We start by a proving a theorem of Hasse that says that if E/F, is an elliptic curve,
then E/(FF,) has approximately ¢ points, with an error of no more than 2,/q. Follow-
ing Weil, we then reinterpret and extend this result in terms of a certain generating
function, the zeta function of the curve. In the final two sections we study in some
detail the endomorphism ring of an elliptic curve defined over a finite field, and in
particular we give a relationship between End(E) and the existence of nontrivial
p-torsion points. We fix the following notation for Chapter V:

q apower of a prime p.
F,  afinite field with ¢ elements.

F,  an algebraic closure of .

V.1 Number of Rational Points

Let E/F, be an elliptic curve defined over a finite field. We wish to estimate the
number of points in E(F,), or equivalently, one more than the number of solutions
to the equation

E:y® 4+ a1zy + asy = 2% + as2® + asx + ag with (z,y) € Fg.
Since each value of x yields at most two values for y, a trivial upper bound is
#E(Fq) <2+ 1

However, since a “randomly chosen” quadratic equation has a 50% chance of being
solvable in [F;, we expect that the right order of magnitude should be g, rather than 2q.
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The next result, which was conjectured by E. Artin in his thesis and proven by Hasse
in the 1930s, shows that this heuristic reasoning is correct.

Theorem 1.1. (Hasse) Let E/F, be an elliptic curve defined over a finite field. Then
#EF,) - q—1] <244
PROOF. Choose a Weierstrass equation for E with coefficients in Fy, and let
¢p:E—FE, (z,y)— (2%99),

be the ¢M-power Frobenius morphism (II1.4.6). Since the Galois group GFQ JF,

is (topologically) generated by the gM-power map on Fq, we see that for any
point P € E(F,),

P e E(F,) if and only if ¢(P) = P.

Thus
E(F,) = ker(1 - ¢),

so using (II1.5.5) and (II1.4.10c), we find that
#E(Fy) = #ker(1 — ¢) = deg(1 — ¢).

(Note the importance of knowing that the map 1 — ¢ is separable.) Since the degree
map on End(F) is a positive definite quadratic form (II1.6.3) and since deg ¢ = ¢,
the following version of the Cauchy—Schwarz inequality gives the desired result. [

Lemma 1.2. Let A be an abelian group, and let
d:A—7
be a positive definite quadratic form. Then
d(p — ¢) — d(¢) — d(v)| < 2\/d(@)d()  forallh,¢ € A,
PROOF. For ¢, ¢ € A, let
L, ¢) = d(¢ — ¢) — d(¢) — d(v)

be the bilinear form associated to the quadratic form d. Since d is positive definite,
we have for all m,n € Z,

0 < d(myp — ng) = m*d(y) + mnL(v,¢) +nd(¢).
In particular, taking

m=—L($,¢) and n=2d(y)
yields

0 < d(y) (4d()d(¢) — L(¢h, 9)?).

This gives the desired inequality, provided that ¢ # 0, while for ) = 0 the original
inequality is trivial. O
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Application 1.3. Let IF, be a finite field with ¢ odd. We can use Hasse’s result to
estimate the value of certain character sums on IF,. Thus let

f(z) = az® + bax* + cx + d € K|x]
be a cubic polynomial with distinct roots in Fq, and let
x:F, — {£1}

be the unique nontrivial character of order 2, i.e., x(¢) = 1 if and only if ¢ is a square
in IF;. Extend x to Fy by setting x(0) = 0. We can use x to count the [F,-rational
points on the elliptic curve

E:y* = f(x).
Each « € Fy yields zero, one, or two points (z,y) € E(F,) according to whether

the value f(z) is, respectively, a nonsquare, equal to zero, or a square in F,,. Thus in
terms of x we obtain (remember the extra point at infinity)

#E[F,) =1+ > (1+x(f(2))

z€F,

=1+q+ > x(f(@).

z€F,
Comparing this with (V.1.1) yields the following result.
Corollary 1.4. With notation as above,

> x(f@))

z€F,

<24

We note that the sum in (V.1.4) consists of g terms, each of which is +1,
so (V.1.4) says that as « runs through F, the values of the cubic polynomial f(z)
tend to be equally distributed between squares and nonsquares. Indeed, if one takes
a random sequence (e, ..., €,) of ones and negative ones, then the expected value
of e1 + - + €[ is ¢, 50 (V.1.4) says that the set of values of (x(f())),, looks
like a random sequence. ’
Remark 1.5. Hasse’s theorem (V.1.1) gives a bound for the number of points
in E(F,), but it does not provide a practical algorithm for computing #E(F,)
when ¢ is large. See (XI §3).

Remark 1.6. Let E/F, be an elliptic curve, and let P, € E(F,) be points such
that () is in the subgroup generated by P. The elliptic curve discrete logarithm prob-
lem (ECDLP) asks for an integer m satisfying Q = [m|P. If ¢ is small, we can
compute P, [2]P, [3]P, ... until we find @, but for large values of ¢ it is quite diffi-
cult to find m. This has led people to create public key cryptosystems based on the
difficulty of solving the ECDLP. See (XI §§4-7) for a discussion of elliptic curve
cryptography and the ECDLP.
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V.2 The Weil Conjectures

In 1949, André Weil made a series of remarkable conjectures concerning the num-
ber of points on varieties defined over finite fields. In this section we state Weil’s
conjectures and prove them for elliptic curves.

For each integer n > 1, let Fy» be the extension of F, of degree n,
so #Fgn =¢". Let V/F, be a projective variety, say V' is the set of solutions
to

fl(Jjo,...,J)N) == fm(xo,...,l'N) = O,

where fi,..., f;, are homogeneous polynomials with coefficients in FF,. Then
V(Fgn) is the set of points of V' with coordinates in F,». We encode the number
of points in V' (F» ) for all n > 1 into a generating function.

Definition. The zeta function of V/F is the power series

Z(V/[B,:T) = exp (Z(#w >)1:> ~

Here, for any power series F'(T') € Q[[T]] with no constant term, we define the
power series exp(F (7)) to be the series Y, -, F'(T)* /k!. Note that if we know the
series Z(V/F; T), then we can recover the numbers #V (F,» ) by the formula

1 ar

#V (Fqn) = =1 ar" log Z(V/Fq; T)

T=0

The reason for defining Z(V/F; T) in this way, rather than using the more natural
series Y #V (Fyn)T™, will soon be apparent.

Example 2.1. Let V = PV. Then a point of V(F;») is given by homogeneous
coordinates [z, ...,zy] with z; € Fgn not all zero. Two sets of coordinates give
the same point if they differ by multiplication by an element of Fy,.. Hence

N n(NJrl
#P (Fon) = ———— = Zq’”
SO
00 " N )
log Z(P"/F; T) = z_:l (Z > — = ZO —log(1 — ¢'T).
Thus

1
(1=T)A=qT)---(1=¢"T)’
Notice that in this case the zeta function is actually in Q(7'). In general, if there are
numbers a;, . .., a, € C such that

Z(P"/Fy; T) =

#V(Fyn) =xa £ Lo foralln =1,2,...,

then Z(V/Fy; T) is a rational function.
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Theorem 2.2. (Weil Conjectures) Let V/Fy be a smooth projective variety of di-
mension N.
(a) Rationality

Z(V/Fg:T) € Q(T).

(b) Functional Equation
There is an integer ¢, called the Euler characteristic of V, such that

Z(V/F;1/qNT) = £¢N/2T<Z(V/F,; T).

(c) Riemann Hypothesis
The zeta function factors as

oy DT Py (T)
Z(V/FgT) = Po(T)Py(T) - -A-[P2N(T)

with each P;(T') € Z[T), with
P(T)=1-T and Pon(T)=1-¢" T,

and such that for every 0 < i < 2N, the polynomial P;(T) factors over C as

by
P(T) = [[(1 = i) with o] = q'/>.
j=1
The quantity b;, i.e., the degree of P;(T), is called the i™ Betti number of V.

This conjecture was proposed by Weil in 1949 [305] and proven by him for
curves and for abelian varieties. The rationality of the zeta function in general was
established by Dwork [70] in 1960 using techniques of p-adic functional analysis.
Soon thereafter the /-adic cohomology theory developed by M. Artin, Grothendieck,
and others was used to give another proof of rationality and to establish the func-
tional equation. Then, in 1973, Deligne [60] proved the Riemann hypothesis. For a
nice overview of Deligne’s proof, see [123].

We are going to prove the Weil conjectures for elliptic curves. Let £ be a prime
different from p = char(F,). Recall that there is a representation (III §7)

End(E) — End(Ty(E)), v+ 1y,

and choosing a Z-basis for T;(E), we can write ¢, as a 2 X 2 matrix and compute
its determinant and trace, det(t)y), tr(1¢) € Zy.

Proposition 2.3. Ler ¢y € End(F). Then

det(v¢) = deg(v)) and tr(ve) = 1+ deg(v)) — deg(1l — ).

In particular, det(1)y) and tr(1,) are in Z and are independent of {.
PROOF. We already proved this result (II1.8.6). O
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We apply (V.2.3) to an elliptic curve over a finite field. This enables us to com-
pute the number of points and to deduce an important property of the Frobenius
endomorphism.

Theorem 2.3.1. Let E/F, be an elliptic curve, let
¢:E—E, (z,y)— (¢%,y7),
be the q"-power Frobenius endomorphism, and let
a=q+1—#E(F,).

(a) Let o, 3 € C be the roots of the polynomial T? — aT + q. Then o and (3 are
complex conjugates satisfying || = |3| = /q, and for every n > 1,

BE(Fp) = q" +1—a” - g,
(b) The Frobenius endomorphism satisfies
$* —ap+q=0 in End(E).
PROOF. We observed in (V §1) that (II1.5.5) and (I11.4.10c) imply that
#E(F,) = deg(1 - ¢).
We use (V.2.3) to compute

det(¢r) = deg(¢) = q,
tr(¢e) = 1+ deg(¢) —deg(l — ¢) = 1+ ¢ — #E(F;) = a.

Hence the characteristic polynomial of ¢, is
det(T — ¢g) = T? — tr(¢e)T + det(¢p) = T? — aT + q.

(a) Since the characteristic polynomial of ¢, has coefficients in Z, we can factor it
over C as
det(T — ¢g) =T? —aT +q = (T — a)(T — B).

For every rational number m/n € Q we have

det (" — g = detlm 2o _ deglm = nd)

> 0.
n? n2 -

Thus the quadratic polynomial det(T — ¢¢) = T? — aT + q € Z[T is nonnegative
for all T' € R, so either it has complex conjugate roots or it has a double root. In
either case we have |a| = ||, and then from

af} = det ¢y = deg ¢ = q,

we deduce that
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ol = 18] = V-
This gives the first part of (a).

Similarly, for each integer n > 1, the (¢")"-power Frobenius endomorphism
satisfies

#E(Fgn) = deg(l —¢").
It follows that the characteristic polynomial of ¢} is given by

det(T — ¢7) = (T — a™)(T = 3").

(To see this, put ¢, into Jordan normal form, so it is upper triangular with « and /3
on the diagonal.) In particular,

#E([Fgn) = deg(l — ¢")
= det(1 — ¢}) from (V.2.3),
=1-a"=p3"+q".

(b) The Cayley—Hamilton theorem tells us that ¢, satisfies its characteristic poly-
nomial, so ¢7 — ady + ¢ = 0. Applying (V.2.3) gives

deg(¢? — a¢ + q) = det(¢7 — agy + q) = det(0) = 0,
0 ¢? — a¢ + q is the zero map in End(E). O
Using (V.2.3.1a), it is easy to verify the Weil conjectures for elliptic curves.

Theorem 2.4. Let E/F be an elliptic curve. Then there is an o € 7 such that

oy L—al + qT?
ZBEGT) = oy = g1y
Further,
Z(E[Fq;1/qT) = Z(E[F4; T),
and

1—al +qT% = (1 —aT)(1 - BT) with |o|=|8|=q

PROOF. We compute

N HE(F )T
log Z(E/Fy;T) = Z #EE)T" by definition,
n
n=1
0 1—a™— 3" nymn
= Z ( a " +4q") from (V.2.3.1a),
n

Il
-

n

= —log(1 —T) +log(l —aT) +log(l — BT) —log(1l — ¢T).

Hence
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(1 —aT)(1 - BT)

ZEEGT) = (1= )

This is the desired result, since (V.2.3.1a) says that « and 3 are complex conjugates
of absolute value ,/q and that they satisfy

a=a+ 0 =tr(¢y) =1+ q—deg(l —¢) € Z.
Finally, the functional equation is immediate (with € = 0). O

Remark 2.5. To see why (V.2.2¢) is called the Riemann hypothesis, we make a
change of variables by setting 7" = ¢~°. This gives a function of s,

1— aq—s + q1—2s
(1—g*)(L—q'~*)

Cer,(s) = Z(E/Fg;q47 %) =
The functional equation reads

Ceyr,(s) = Coyr, (1 — 5),

which certainly looks familiar. Further, the Riemann hypothesis for Z(E/FF,; T') says
that if (g, (s) = 0, then |¢®| = /g, which is equivalent to Re(s) = 3.

Remark 2.6. Let E/F, be an elliptic curve. The quantity
GZQ+1_#E(F4)

is called the trace of Frobenius, because, as we saw during the proof of (V.2.3.1), it is
equal to the trace of the g-power Frobenius map considered as a linear transformation
of Ty(E). Thus if ¢ denotes the g-power Frobenius map, then (V.2.3) gives

tr(¢e) = 1+ deg(¢) —deg(l — @) =14+ q - #E(Fy) = a.

V.3 The Endomorphism Ring

Let K be a (not necessarily finite) field of characteristic p, and let £/ K be an elliptic
curve. We have seen (I11.6.4) that there are two possibilities for the group of p-torsion
points E[p], namely 0 and Z /pZ. Similarly, as described in (III §9), there are several
possibilities for the endomorphism ring End(E). We now show that the seemingly
unrelated values of E[p] and End(F) are in fact far from independent.

Theorem 3.1. ([60]) Let K be a field of characteristic p, and let E /K be an elliptic
curve. For each integer v > 1, let

¢ E— E®)  and ¢, EP) — E

be the p"-power Frobenius map and its dual.
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(a) The following are equivalent.
(i) E[p"] = 0 for one (all) r > 1.
(ii) qAbT is (purely) inseparable for one (all) r > 1.
(iii) The map [p| : E — E is purely inseparable and j(E) € F .
(iv) End(FE) is an order in a quaternion algebra.
(v) The formal group E /K associated to E has height 2. (See (IV §7).)

(b) If the equivalent conditions in (a) do not hold, then
Ep"l=Z/p"Z  forallr >1,

and the formal group E /K has height 1. If further j(E) € F,, then End(E) is
an order of a quadratic imaginary field. (For the case that j(E) is transcenden-
tal over IF,, see Exercise 5.8.)

Definition. If E has the properties given in (V.3.1a), then we say that F is super-
singular, or that F has Hasse invariant 0. Otherwise we say that E' is ordinary, or
that E has Hasse invariant 1.

Remark 3.2.1. There are other characterizations of supersingular elliptic curves that
are important in various applications. See [111, IV §4] for a description in terms of
sheaf cohomology and [140, Appendix 2 §5] for a description involving residues of
differentials.

Remark 3.2.2. Do not confuse the notions of singularity and supersingularity. A
supersingular elliptic curve is, by definition, an elliptic curve, so it is nonsingular.
The origin of this potentially confusing terminology is as follows. Historically, ellip-
tic curves defined over C whose endomorphism rings are larger than Z were called
singular, where “singular” was used in the sense of “unusual” or “rare.” However, in
this sense, all elliptic curves defined over FP are singular! The endomorphism rings
of most elliptic curves over IF‘,, are orders in imaginary quadratic fields. It is only the
rare and unusual curve whose endomorphism ring is an order in a quaternion algebra,
whence the term “supersingular.”

PROOF OF V.3.1. Conditions (i)—(v) are invariant under field extension, so we may
assume that K is algebraically closed, and in particular, a perfect field. For notational
convenience, we let ¢ = ¢;.

(a) Since the Frobenius map is purely inseparable (I1.2.11b), we have

deg,(¢,) = deg,[p"] = (deg,[p])" = (deg, )"
Combining this with (II.4.10a) yields
#E[p"] = deg, (¢r) = deg(¢)",

from which the equivalence of (i) and (ii) follows immediately.
Next, from (IV.7.4) and the fact that ¢ is purely inseparable, we have

-~ deg; o
deg; & gi[p] :pht(E) 1
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Since QAS has degree p, this shows that (ii) and (v) are equivalent.

We now prove that (ii) = (iii) = (iv) = (ii).

(ii) = (iii). From (ii) it is immediate that [p] = gZA)oqﬁ is purely inseparable, so we
must show that j(E) € F,z. We apply (IL.2.12) to the map ¢ : E®) — E. Since ¢
is purely inseparable by assumption, it follows from (II.2.12) and comparison of
degrees that ngS factors as

E®) ¢ E

N A

E®)
where ¢’ is the p™-power Frobenius map on E(®) and where 1/ has degree one. It
follows from (II.2.4.1) that ¢ is an isomorphism, so

2

. . 2 .
J(E) = j(EW)) = (B
(For the second equality, see (II1.4.6).) Hence j(E) € F ..

(iii) = (iv). Suppose that End(F) is not an order in a quaternion algebra. We
proceed to derive a contradiction. From (I11.9.4) we find that

K=End(F)®Q

is a number field, since it is either Q or an imaginary quadratic extension of Q.

Let £’ be any elliptic curve that is isogenous to F, say ¢ : E — E’. Since
¥ o [p] = [p] o ¥, and since [p] : E — F is purely inseparable by assumption, com-
paring inseparability degrees shows that [p] : E' — E’ is also purely inseparable.
Hence

#E'[p] = deg,[p] = 1,

so from the already proven implications (i) = (ii) = (iii), we conclude that
J(E") € Fp2. This shows that up to isomorphism, there are only finitely many el-
liptic curves that are isogenous to E.

Now choose a prime ¢ € Z with £ # p such that £ remains prime in End(E")
for every elliptic curve E’ that is isogenous to F. Since there are only finitely many
such End(E’) and each is a subring of K, it is easy to find such an ¢; see Exercise 5.5.
From (II1.6.4b) we know that

B[\ = Z/0'7 x 7./0'Z,
so we can choose a sequence of subgroups
o, CcdyC---CF with ®; = 7/ 7.

Let E; = E/®; be the quotient of E by ®;, so from (I[1.4.12) there is an
isogeny E — E; with kernel ®;. We know from above that up to isomorphism,
there are only finitely many distinct £, so we can choose integers m,n > 0 such
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that ), 4, and E,, are isomorphic. Composing this isomorphism with the natural
projection from E,, to E,,,, yields an endomorphism of E,,,,

proj ~
A Em E— Em+n == Em~

Note that the kernel of \ is cyclic of order £™, since ker(\) = @44, /P,y But £ is
prime in the ring End(FE,, ), so by comparing degrees we must have A = u o [("/?]
for some u € Aut(E,,). (Also n must be even.) However, the kernel of [¢"/2] is
not cyclic for any n > 0. This contradiction proves that X is not a number field, and
hence that End(F) is an order in a quaternion algebra.

(iv) = (ii). Suppose that (ii) is false, so qAS,, is separable for all » > 1. We will
prove that End(F) is commutative, which contradicts (iv).
First we show that the natural map

End(E) — End(T,(E))

is injective. Suppose that ¢ € End(E) goes to 0. Then from the definition of T),(E)
we have ¢ (E[p']) for all » > 1. Since [p"] = ¢, o ¢, and since ¢, is surjec-
tive (I1.2.3), it follows that

¢r(kerd)) > ker b,
and thus

#keryp > #kerér forall » > 1.

On the other hand, we know that

# ker QAST = deg Qgr from (II1.4.10c), since QAST is separable,
deg (Z),. = deg ¢, from (I11.6.2¢),
deg ¢ = p" from (IL.2.11c).

Therefore # ker v > p” for all » > 1, which implies that ¢ = 0.

Next, from (III.7.1b) we see that 7,,(E) is either 0 or Z,. Further, we have
T,(E)/pT,(E) = E[p], and by assumption E[p] # 0, so we have T,(E) = Z,.
Combining this fact with the injection proven earlier, we have

End(E) < End(T,(E)) = End(Z,) = Z,.

Therefore End(E) is commutative.
(b) From (I1.6.4c) we know that E[p"] is equal to either 0 or Z/p"Z for ev-
ery r > 1. Hence if condition (i) of (a) is false, then we must have

Ep|=2Z/p"Z forall r > 1.

Further, since (v) is assumed to be false, we can use (IV.7.5) to conclude that E /K
has height 1.
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Next we suppose that j(E) € F, and that E does not satisfy the conditions
in (a). We use (IIL.1.4b,c) to find an elliptic curve E’ defined over a finite field F,-
such that E’ is isomorphic to E. Then ¢, is an endomorphism of E’. Suppose that

¢r € Z C End(E).

Comparing degrees yields
¢ = [£p7?]
for some (even) integer r, and then (II1.4.10) and (I1.2.11b) tell us that
#E[p/?) = deg, ¢, = 1.

This contradicts the assumption that (i) is false. Therefore ¢, ¢ Z, so End(E’) is
strictly larger than Z. By assumption, it is not an order in a quaternion algebra, so
from (I11.9.4), the only remaining possibility is that End(E’) is an order in an imagi-
nary quadratic field. Since End(E’) = End(FE), this completes the proof of (b). [

V.4 Calculating the Hasse Invariant

From (V.3.1a) we see that up to isomorphism, there are only finitely many ellip-
tic curves with Hasse invariant O, since each such curve has j-inyariant in [Fpe.
For p = 2, one easily checks that the only supersingular curve (over Fs) is

E:y?+y=2>

(See also Exercise 5.7.) For p > 2, the next theorem gives a criterion for determining
whether an elliptic curve is supersingular.

Theorem 4.1. Let F be a finite field of characteristic p > 3.
(a) Let E/F, be an elliptic curve given by a Weierstrass equation

E:y? = f(),
where f(x) € F,[z] is a cubic polynomial with distinct roots in F,. Then E is

supersingular if and only if the coefficient of P~ in f(gc)(”_l)/2 is zero.
(b) Let m = (p — 1)/2, and define a polynomial

Let \ € F, with \ # 0, 1. Then the elliptic curve
E:y? =a(x—1)(z—\)

is supersingular if and only if H,(\) = 0.
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(c) The polynomial Hy(t) has distinct roots in Fq. There is one supersingular curve
in characteristic 3, and for p > 5, the number of supersingular elliptic curves
(up to F -isomorphism) is

0 ifp=1(mod12),

{£}+ 1 ifp=5(mod12),

12 1 ifp=T7(mod12),
2 ifp=11 (mod 12).

Remark 4.1.1. The results of (V.4.1) (and more) are mostly in [60]. Our proof of (a)
follows [154], and the proof of (c¢) is from [119]. For a beautiful generalization to
curves of higher genus, see [154].

PROOF. Let
X Fy, — {£1}

be the unique nontrivial character of order 2, and extend x to I, by setting x(0) = 0.
As we have seen in (V.1.3), the character x can be used to count the number of points
of I,

#EF,) =1+q+ Y x(f(x)).

z€F,

Since I is cyclic of order ¢ — 1, for any z € F; we have
x(z) = 2a=1/2 g F,.

Hence
#E[F,) =1+ Z f(ax)la=b/2 as an equality in IF,.

z€F,

Again using the cyclic nature of F, we have the easy result

> {1 ifg—1]1,
l‘: . .
= 0 ifg—1¢i.

Since f(z) is a polynomial of degree 3, if we expand f(x)(9~1/2, we see that the

expansion has terms of the form 2" for 0 < n < %(q — 1). Hence when we sum

over z € I, the only nonzero term comes from x¢ —1 Thus if we let
A, = coefficient of 29~ in f(z) @~ 1/2,
then
#E[F,) =1-A,.
However, note that this equality is taking place in F, so it is actually only a formula
for #E(IF;) modulo p.

On the other hand, letting ¢ : E — FE be the g-power Frobenius endomorphism,
we have (V §2)
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#E(F,) =deg(l—¢)=1—-a+gq,
where

a=1-—deg(l—¢)+ deg(¢).
(Thus [a] = ¢ + ¢.) Equating these two expressions for # E(F,), we find that
a = A, asanequality in F,.
Since a is an integer, this proves that
A;=0 <= a=0(modp).
But ¢ = [a] — ¢, so we find that
a = 0 (mod p) <= ¢ is inseparable (IL5.5),
<= F is supersingular (V.3.1a(i1)).

This proves that
A;=0 <= FEissupersingular.

It remains to show that A, = 0 if and only if A, = 0. Writing
F2)@ T m0/2 = pp) @7 D/2 (f(x)@fl)/z‘)ﬂ
and equating coefficients (remembering that f is a cubic) yields

_ p"
Ap,,,+1 = AprAp .

An easy induction on r gives the desired result.
(b) This is a special case of (a). We need the coefficient of 2P~ in the expres-
sion (z(z — 1)(z — X))™, so the coefficient of 2™ in (z — 1)™(z — A\)™. That co-

efficient is . | |
S (7)) e

which differs from H,, () by a factor of (—1)™.
(b) Let D be the differential operator

2

d
+4(1-2t)= — 1.

D= at(1—1)° -

dt?
Then by a direct calculation and using the fact that m = (p — 1) /2, we find that
m A\ 2
DH,(t) = p;(p — 2 — 44) ( . ) £

In particular, since char(F,) = p, we see that
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DH,(t) =0 inF,[t].

Hence the only possible multiple roots of H,(t) in F, are t = 0 and t = 1. We
compute directly

H(0)=1 and  Hy(1)= (p;l) = (—1)™ (mod p).

Thus the roots of H,(t) are distinct, and each root \ gives a supersingular elliptic
curve
By vy =xz(x—1)(z — ).

It remains to determine to what extent the resulting £, are isomorphic to one another.
For p = 3 we have H,(t) = 1 + ¢, so there is exactly one supersingular elliptic
curve in characteristic 3. It has j-invariant j(—1) = 1728 = 0.
Assume now that p > 5. We recall from (III.1.7) that the association

A= J(A) = 3(Ex)

is six-to-one except over 7 = 0 and j = 1728, where it is, respectively, two-to-one
and three-to-one. Further, if H,(\) = 0, then for every )\ satisfying j(\) = j(\') we
must have H,(\') = 0, since E\ = F), and the roots of H,(t) are precisely those
values of \ for which FE, is supersingular.

For convenience, let €,(j) = 1 if the elliptic curve with the indicated j-invariant
is supersingular, and let €,,(j) = 0 if it is ordinary. Then, using the fact that H,,(¢) has
distinct roots, the above discussion shows that the number of supersingular elliptic
curves in characteristic p > 5 is

1/p—1

s (372 — 2¢,(0) — 3ep(1728)) + 6,(0) + €,(1728)
_p=1 1 1
=4t 26,9(0) + 26p(1728).

We will compute below in (V.4.4) and (V.4.5) that

0 ifp=1 d3), 0 ifp=1 d4),
e, (0) = 0 Hp=Lmodd). i ragy = {0 1P =1(modd)

1 if p=2 (mod 3), 1 if p=3(mod4).
Taking the four possibilities for p (mod 12) gives the stated result. O

Remark 4.2. The differential operator D that we used to prove (V.4.1c) may seem
mysterious. It is called a Picard—Fuchs differential operator for the Legendre equa-
tion

y:=ax(x —1)(x —t).

It arises quite naturally when one views the Legendre equation as defining a family
of elliptic curves parametrized by the complex variable ¢, i.e., when £ is viewed as
an elliptic surface over P!. For an instructive discussion of this connection, see [46,
§2.10].
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Example 4.3. For p = 11 we have

Hy(t) =t +3t + 3 + 2 + 3t + 1
= —t+1D)(t+1)(t—-2)(t+5) (mod 11).

The supersingular j-invariants in characteristic 11 are j = 0 and j = 1728 = 1.

Example 4.4. We compute for which primes p > 5 the elliptic curve
E:y=2%+1

with 7 = 0 is supersingular. The criterion (V.4.1a) says that we need to compute the
coefficient of 2P~ in the polynomial (x3 + 1)(P=1/2 If p = 2 (mod 3), then there
is no #P~! term, so E is supersingular. On the other hand, if p = 1 (mod 3), then
the coefficient of 271 is (Eg :Bﬁ) which is nonzero modulo p, so in this case F is
ordinary.

Example 4.5. Similarly, we compute for which primes p > 3 the elliptic curve
E:y =24z

with j = 1728 is supersingular. This is determined by the coefficient of z(P~1)/2

in the polynomial (22 4 1)(P=1/2 This coefficient is equal to 0 if p = 3 (mod 4)

and to (Eij;ﬁ) if p=1 (mod 4). Hence E is supersingular if p = 3 (mod 4) and

ordinary if p = 1 (mod 4).

These examples might suggest that for a given Weierstrass equation with coeffi-
cients in Z, the resulting elliptic curve is supersingular in characteristic p for half of
the primes. This is in fact true, provided that the elliptic curve has complex multipli-
cation over Q, as do the j = 0 and 5 = 1728 curves. (There is a more precise result
due to Deuring that we do not give, but see for example [266, exercise 2.30].) The
situation for elliptic curves not having complex multiplication is quite different. For
such curves, supersingular primes seem to be very rare.

Example 4.6. Let E be the elliptic curve given by the equation
E:y?+y=2a®—2%—10z — 20,

so j(E) = —212313/115. Then either by using the criterion (V.4.1a) directly, or else
using Exercise 5.1 and [19, Table 3], one finds that the only primes p < 100 for
which FE is supersingular in characteristic p are p € {2,19,29}. More generally,
D.H. Lehmer calculated that there are exactly 27 primes p < 31500 for which F is
supersingular.

It is not hard to prove that for any elliptic curve E/Q, there are infinitely many
primes p such that F is ordinary; see Exercise 5.11. We conclude by stating two
theorems and one conjecture; the proofs of the theorems are unfortunately beyond the
scope of this book. For simplicity we state everything over (Q, but suitable versions
apply over any number field.
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Theorem 4.7. (Serre [234], Elkies [78]) Let E/Q be an elliptic curve without com-
plex multiplication. Then the set of supersingular primes has density 0. More pre-
cisely, for every e > 0 we have

#{p < x: E/F, is supersingular} < z>/**¢.

Conjecture 4.8. (Lang-Trotter [145]) Let E/Q be an elliptic curve without com-
plex multiplication. Then

#{p < x : E/F, is supersingular} ~ lco\gf:

as x — 0o, where ¢ > 0 is a constant depending on E.

Although (V.4.8) is still an open question, a weaker result due to Elkies says that
there are infinitely many supersingular primes.

Theorem 4.9. (Elkies [77]; see also [30]) Let E/Q be an elliptic curve without
complex multiplication. Then there are infinitely many primes p for which E/FF,, is
supersingular.

Exercises

5.1. Verify the Weil conjectures for V' = PV,

5.2. Let V/IF, be a smooth projective variety of dimension N defined over a finite field, and
let € be the Euler characteristic of V' as described in (V.2.2b). Prove that up to 4-1, the function

e€s/2 —
0 Z(V[Fe;q7)
is invariant under the substitution s — N — s.
5.3. Let A be a square matrix with coefficients in a field. Prove that

o (tr AT 1
P (Z n > T det(1 — AT)’

n=1

5.4. Let E/F, and E'/F, be elliptic curves defined over a finite field.
(a) If F and E’ are isogenous over Fy, prove that

#E(Fq) = #E/(Fq)'

Deduce that Z(E/F,,T) = Z(E' /F,, T).
(b) Prove the converse, i.e., if #E(F;) = #E'(F,), then E and E’ are isogenous.
(Hint. Use (I11.7.7a).)

5.5. Let K/Q be an imaginary quadratic field, and let R4, . .., R, be orders in K. Prove that
there is a prime ¢ € Z such that /R; is a prime ideal of R; foralli = 1,2,... n.

5.6. Let E/F, be an elliptic curve.
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(a) Prove that there are integers m > 1 and n > 1 with ged(m,q) = 1 such that
EF,) =2 Z/mZ x Z/mnZ.

(b) With notation as in (a), prove that g = 1 (mod m).

(c) Suppose that ¢ = p > 5 is prime and that E is supersingular. Prove that either m = 1
orm = 2.If p =1 (mod 4), prove that m = 1.

5.7. Let K be a field of characteristic 2 and let E/K be an elliptic curve defined over K.
Prove that E is supersingular if and only if j(E) = 0.

5.8. * Let char(K) = p > 0, and let E/K be an elliptic curve with j(E) ¢ F,. Prove
that End(E) = Z. (Hint. From (I11.9.4), it suffices to show that End(E) is not an order in an
imaginary quadratic field.)

5.9. Prove the following mass formula of Eichler and Deuring:

> FaE -
~ #Aut(E) 24
E/Fyp
supersingular

5.10. Let E/F, be an elliptic curve, let ¢ : E — E be the ¢"-power Frobenius endomor-
phism, and let p = char(FFg).
(a) Prove that E is supersingular if and only if

tr(¢) =0 (mod p).

(The trace of ¢ is computed in End (Tg(E)) for any prime ¢ # p.)
(b) Suppose that g = p > 5 is prime. Prove that E is supersingular if and only if

#E(F,) =p+ 1.

(c) Write down all elliptic curves E//Fs, determine which ones are supersingular by explic-
itly calculating # E/(FF3) and using (a), and show that (b) is false when p = 3.

(d) Repeat (c) for p = 2.

(e) Let p® be the largest power of p such that p* | g. Prove that

tr(¢) =0 (modp) <= tr(¢) =0 (mod p').

(f) Prove that there do not exist any elliptic curves E/Fg satisfying either #E(Fg) = 7
or #E(Fg) = 11. (Hint. Use (e).)

5.11. Let E be an elliptic curve defined over Q, and fix a Weierstrass equation for £ having
coefficients in Z. Prove that there are infinitely many primes p € Z such that the reduced
curve E/IF,, has Hasse invariant 1. (Hint. Fix a prime £ and consider those primes p that split
completely in the field Q(E [K]) obtained by adjoining to Q the coordinates of all ¢-torsion
points of E. Then use Exercise 5.10.)

5.12. Prove that for every prime p > 3, the elliptic curve

E: y2 ="+
satisfies
#E(F,) =0 (mod 4).
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5.13. Let E/F, be an elliptic curve, and for each n > 1, let
an =q" +1—#E(Fqn).
(By convention, we set ap = 2.) Prove that
An4+2 = A10n+1 — GGn forallm > 0.

(This linear recurrence gives a way to compute a,, from the initial values ap = 2 and a1 =
q+1—#E(F,).)

5.14. Let E/F, be an elliptic curve, let m > 1 be an integer satisfying ged(q — 1,m) = 1,
let P € E(F,) be a point of exact order m, and let d be an integer such that ¢® = 1 (mod m).
Prove that E[m] C E(Fa). (Hint. Note that pt,,, C F 4 and use the Weil e,,,-pairing to study
the action of the Frobenius map on a basis for E[m].)

5.15. Let E/F, be a supersingular elliptic curve with p > 5 prime, and let n > 1 be an
integer. Prove that

p"+1 if n is odd,
(p"/2 — (71)“/2)2 if n is even.

#E(Fp") = {

5.16. Let E/FF,> be a supersingular elliptic curve.
(a) Prove that the multiplication-by-p map may be written in the form

[p](z,y) = (9(:5”27y”2)>h(xp27y”2))

with rational functions g, h € F 2 (X, Y).

(b) Prove that g and h are polynomials, i.e., g, h € F,2[X, Y] .

(c) Assume that p > 3 and take a Weierstrass equation for £ with a; = a3 = 0. Prove
thatg = X and h = +Y.

(d) Assume that p > 5 and that F is defined over F,,. Prove that h = —Y.Let¢ : E — E
be the p™-power Frobenius map on E. Prove that $? = [—p] and that b= —¢.

5.17. Let E/F, be an elliptic curve and suppose that we know, a priori, that the zeta function
of E has the form
1—aT +qT? (1 —aT)(1—-BT)

Z(E/K;T) = (1-—T)1—qT)  (1—T)(1—qT)

with a € Z and «, 8 € C. Use this formula to prove that (cf. (V.2.3.1))
#E(F,n)=q" +1—a" — ",

(Hint. Take the logarithmic derivative, i.e., take the logarithm of both sides and then differen-
tiate with respect to 7°.)

5.18. Let E//IF, be an elliptic curve, let P, Q € E(F,) be points such that @ is in the subgroup
generated by P, and let n be the order of P in the group E(FF4). Suppose that we want to solve
the ECDLP, i.e., find an integer m satisfying Q = [m|P.
(a) If we naively compute P, [2]P, [3]P, ... until we find @, approximately how many mul-
tiples of P would we expect to compute?
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(b) Let N > 1 be an integer, let R = [~ N|P, and consider the following two lists:
List1: P, [2]P, [3]P, ..., [N]P.
List2: Q+ R, Q+[2|R, @+ [3]R, ..., Q + [N]R.

How large should we choose N (in terms of n) to guarantee that the two lists contain a
common element?
(c) Show how to use a match between the two lists in order to solve the ECDLP.



Chapter VI

Elliptic Curves over C

Evaluation of the integral giving arc length on a circle, namely [ dz/v/1 — x2, leads
to an inverse trigonometric function. The analogous problem for the arc length of
an ellipse yields an integral that is not computable in terms of so-called elementary
functions. The indeterminacy of the sign of the square root means that such integrals
are not well-defined on C; instead, they are more naturally studied on an associated
Riemann surface. For the arc length integral of an ellipse, this Riemann surface turns
out to be the set of complex points on an elliptic curve F. We thus begin our study of
elliptic curves over C by studying certain elliptic integrals, which are line integrals
on E(C). Indeed, the reason that elliptic curves are so named is because they are the
Riemann surfaces associated to arc length integrals of ellipses. In terms of their ge-
ometry, ellipses and elliptic curves actually have little in common, the former having
genus zero and the latter genus one.

The study of elliptic integrals leads to questions that are fairly difficult to answer
if one restricts attention to integrals. However, just as for the more familiar circular
(trigonometric) functions, it is much easier to develop a theory of the inverse func-
tion to the integral. Thus trigonometry is not generally built up around the function
[ dz/+/1 — 22, but rather around its inverse sin(x). In (VI §§2, 3) we give the rudi-
ments of the theory of elliptic functions, which are meromorphic functions having
two R-linearly independent periods. We then relate this theory back to our original
study of elliptic integrals and use the relationship to make various deductions about
elliptic curves over C. In the final section of this chapter we amplify on the remark
that the study of elliptic curves over C essentially encompasses the theory of elliptic
curves over arbitrary algebraically closed fields of characteristic 0.

The analytic theory of elliptic functions and integrals is a beautiful, but vast, body
of knowledge. The contents of this chapter represent a very modest beginning in the
study of that theory. Further, we have restricted ourselves to the function theory of a
single elliptic curve. There is another sort of function theory that is quite important,
namely the theory of modular functions, in which one studies functions whose do-
main is the set of all elliptic curves over C. We do not discuss modular functions in
the body of this book, but see (C §12) for a brief discussion and a list of references
for further reading.

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 157

in Mathematics 106, DOI 10.1007/978-0-387-09494-6_V1,
(© Springer Science+Business Media, LLC 2009
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Figure 6.1: Three paths for a line integral.

VI.1 Elliptic Integrals

Let E be an elliptic curve defined over C. Since char(C) = 0 and C is algebraically
closed, there is a Weierstrass equation for £ in Legendre form (II1.1.7),

E:Y?=zx(x—1)(z—\).

The natural map
E((C) *)Pl((c), (Iay) =,

is a double cover ramified over precisely the four points 0,1, \, 0o € P1(C).
We know from (IIL.1.5) that w = dx/y is a holomorphic differential form on E.
Suppose that we try to define a map by the rule

P
E((C)#NC7 P»—>/ w,
O

where the integral is along some path connecting O to P. Unfortunately, this map is
not well-defined, since it depends on the choice of path. We let P = (z,y) € E(C)
and look more closely at what is happening in P!(C).

We are attempting to compute the complex line integral

@ dt
/oo NEIE

This line integral is not path-independent, because the square root is not single-
valued. Thus in Figure 6.1, the three integral fa w, [ 5 Ws and f,y w need not be equal.

In order to make the integral well-defined, it is necessary to make branch cuts. For
example, the integral will be path-independent on the complement of the branch cuts
illustrated in Figure 6.2, because in this region it is possible to define a single-valued
branch of /t(t — 1)(t — \). More generally, since the square root is double-valued,



VI.1. Elliptic Integrals 159

OI /

Figure 6.2: Branch cuts that make the integral single-valued.

Figure 6.3: Branch cuts on the sphere.

we should take two copies of IP’l((C), make branch cuts as indicated in Figure 6.3,
and glue them together along the branch cuts to form the Riemann surface illustrated
in Figure 6.4. (Note that P1(C) = C U {oo} is topologically a 2-sphere.) It is readily
seen that the resulting Riemann surface is a torus, and it is on this surface that we
should study the integral [ d¢/+/t(t — 1)(t — A). In fact, elliptic curves arose when
people began to study such integrals, and the reason that elliptic curves acquired their
name is because such “elliptic integrals” arise when one attempts to calculate the arc
length of an ellipse. (See Exercise 6.13b.)
Returning now to our hypothetical map

P
E(C)—>C, P'—>/ w,
o

we see that the indeterminacy comes from integrating across branch cuts in P*(C),
or equivalently around noncontractible loops on the torus. Figure 6.5 illustrates two
closed paths « and 3 for which the integrals fa w and f w may be nonzero. We thus
obtain two complex numbers, which are called periods of F,

wlz/w and LUQ:/(U.
a B

Notice that the paths v and 3 generate the first homology group of the torus. Thus
any two paths from O to P differ by a path that is homologous to ny« + na 3 for
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0
A

Figure 6.4: Joining two copies of the sphere to form a torus.

Figure 6.5: Paths on P! (C) and on the torus.

some integers ni, ng € Z. Thus the integral f OP w is well-defined up to addition of a
number of the form njw; + nows, which suggests that we should look at the set

A= {n1w1 + Nawsg 1 Ny, N9 € Z}

The preceding discussion shows that there is a well-defined map
P
F:E(C) — C/A, P|—>/ w (mod A).
o

The set A is clearly a subgroup of C, so the quotient C/A is a group. Using the
translation invariance of w that we proved in (IIL.5.1), we easily verify that F' is a
homomorphism:

P4+Q P P+Q P Q P Q
/ w;/ er/ wz/ w+/ Tlﬁwz/ er/ w (mod A).
o O P o O O o

The quotient space C/A will be a Riemann surface, i.e., a one-dimensional com-
plex manifold, if and only if A is a lattice, or equivalently, if and only if the peri-
ods w; and wo that generate A are linearly independent over R. This turns out to
be the case, and further, the map F' is a complex analytic isomorphism from E(C)
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to C/A. However, rather than proving these statements here, we instead turn to the
study of the space C/A for a given lattice A. In (VI §3) we construct the inverse
to the map F' and prove that C/A is analytically isomorphic to Ex (C) for a certain
elliptic curve E) /C. We then apply the uniformization theorem (V1.5.1), which says
that every elliptic curve E'/C is isomorphic to some Ej, to deduce (V1.5.2) that the
periods of E/C are R-linearly independent and that F' is a complex analytic iso-
morphism. (For a direct proof of the R-linear independence of w; and w using only
Stokes’s theorem in R?, see [46, §2.9].)

V1.2 Elliptic Functions

Let A C C be a lattice, that is, A is a discrete subgroup of C that contains an R-basis
for C. In this section we study meromorphic functions on the quotient space C/A,
or equivalently, meromorphic functions on C that are periodic with respect to the
lattice A.

Definition. An elliptic function (relative to the lattice A) is a meromorphic func-
tion f(z) on C that satisfies

fz+w) = f(2) forall z € Candall w € A.

The set of all such functions is denoted by C(A). It is clear that C(A) is a field.

Definition. A fundamental parallelogram for A is a set of the form
D= {a+t1w1 F+tows 1 0 < ty,t0 < 1},

where a € C and {wy,ws} is a basis for A. Note that the definition of D implies that
the natural map D — C/A is bijective. We denote the closure of D in C by D. A
lattice and three different fundamental parallelograms are illustrated in Figure 6.6.

Proposition 2.1. A holomorphic elliptic function, i.e., an elliptic function with no
poles, is constant. Similarly, an elliptic function with no zeros is constant.

PROOF. Suppose that f(z) € C(A) is holomorphic. Let D be a fundamental paral-
lelogram for A. The periodicity of f implies that

sup’f(z)’ = sup’f(z)’.
zeC z€D

The function £ is continuous and the set D is compact, so | f (z)| is bounded on D.
Hence f is bounded on all of C, so Liouville’s theorem [3, Chapter 4, §2.3] tells us

that f is constant. This proves the first statement. Finally, if f has no zeros, then 1/ f
is holomorphic, hence constant. 0

Let f be an elliptic function and let w € C. Then, just as for any meromorphic
function, we can look at its order of vanishing and its residue, which we denote by
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Figure 6.6: A lattice and three fundamental parallelograms

ord,, (f) = order of vanishing of f at w,
res,, (f) = residue of f at w.

the following convention.

(See [3, Chapter 4, §§3.2, 5.1].) The fact that f is elliptic implies that the order and
the residue of f do not change if we replace w by w+w for any w € A. This prompts

Notation. The notation ) /A denotes a sum over w € D, where D is a funda-

mental parallelogram for A. By implication, the value of the sum is independent of
the choice of D and only finitely many terms of the sum are nonzero.

Notice that (VI.2.1) is the complex analogue of (II.1.2), which says that an alge-
braic function that has no poles is constant. The next theorem and corollary continue
this theme by proving for C/A results that are analogous to (IL.3.1) and (IIL.3.5)

Theorem 2.2. Let f € C(A) be an elliptic function relative to A.

(a) Z resy (f) = 0.

weC/A

(b)Y ordy(f) =0.

weC/A

(© Z ord,, (flw € A.

weC/A
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PROOF. Let D be a fundamental parallelogram for A such that f(z) has no zeros
or poles on the boundary 9D of D. All three parts of the theorem are simple appli-
cations of the residue theorem [3, Chapter 4, Theorem 19] applied to appropriately
chosen functions on D.

(a) The residue theorem tells us that

1
Z resy (f) = %/{m f(z)d=.

weC/A

The periodicity of f implies that the integrals along the opposite sides of the paral-
lelogram cancel, so the total integral around the boundary of D is zero.

(b) The periodicity of f(z) implies that f'(z) is also periodic, so applying (a) to the
elliptic function f(z)/f(z) gives

Z res, (f'/f) = 0.

weC/A

Since res,, (f'/f) = ord,,(f), this is the desired result.
(¢) We apply the residue theorem to the function zf’(2)/f(z) to obtain

Z ord,, (f)w = ! ZHC)

weC/A 2 op f(2)
1 a+wq a+wi+ws a+ws a /
w0 L L L) e
21\ Jq a+twi atwrtws Jarws) f(2)

In the second (respectively third) integral we make the change of variable
z v z 4wy (respectively z — z + wo). Then the periodicity of f'(z)/f(z) yields

dz

wy atwy f’(z) wi atwsz f’(z)

“omi Ok A0 dz.

Z ord,, (flw =

weC/A

If g(z) is any meromorphic function, then the integral

1 b

1 [y () 4,
2ri J, 9(z)

is the winding number around 0 of the path

[0,1] — C, t— g((1—t)a+tb).

In particular, if g(a) = ¢(b), then the integral is an integer. Thus the periodicity
of f/(z)/f(z) implies that > ord,, (f)w has the form —wany +wyn, for integers ny
and no, soitisin A. O
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Definition. The order of an elliptic function is its number of poles (counted with
multiplicity) in a fundamental parallelogram. Equivalently, (VI.2.2b) says that the
order is the number of zeros.

Corollary 2.3. A nonconstant elliptic function has order at least 2.

PROOF. If f(z) has a single simple pole, then (V1.2.2a) tells us that the residue at
that pole is 0, so f(z) is actually holomorphic. Now apply (VL.2.1). O

We now define the divisor group of C/A, denoted by Div(C/A), to be the group
of formal linear combinations

Z ny(w)  with n,, € Z and n,, = 0 for all but finitely many w.
weC/A

Then for D = > n,,(w) € Div(C/A), we define

deg D = degree of D = Z Ny
and
Div?(C/A) = {D € Div(C/A) : deg D = 0}.

Further, for any f € C(A)* we define the divisor of f to be

div(f) = Z ordy, (f)(w).

weC/A
We see from (VI.2.2b) that div(f) € Div’(C/A). The map
div : C(A)* — Div®(C/A)

is clearly a homomorphism, since each ord,, is a valuation. Finally, we define a
summation map

sum : Div?(C/A) — C/A, sum (Z nw(w)) = anw (mod A).

The next result gives an exact sequence that encompasses our main results so far
for C/A, plus one fact (V1.3.4) that will be proven in the next section.

Theorem 2.4. The following is an exact sequence:
1—C" — CA) — 5 Divd(C/A) —22 . C/A — 0.
PROOF. Exactness on the left is clear, and exactness on the right follows from

sum((w) — (0)) = w. Exactness at C(A)* is (VI.2.1), and exactness at Div’(C/A)
is (VI.2.2¢) and (V1.3.4). ]
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VI.3 Construction of Elliptic Functions

In order to show that the results of (VI §2) are not vacuous, we must construct some
nonconstant elliptic functions. We know from (VI.2.3) that any such function has
order at least 2. Following Weierstrass, we look for a function with a pole of order 2
atz = 0.

Definition. Let A C C be a lattice. The Weierstrass g-function (relative to \) is
defined by the series

1 1 1
plz8)= 5+ ((_w)z‘wz)
weA
w#0

The Eisenstein series of weight 2k (for A) is the series

Gou(A) = > wF,
weA
w#0
(For notational convenience, we write p(z) and Ggy, if the lattice A has been fixed.)

Theorem 3.1. Let A C C be a lattice.

(a) The Eisenstein series Gog () is absolutely convergent for all k > 1.

(b) The series defining the Weierstrass gp-function converges absolutely and uni-
formly on every compact subset of C \. A. The series defines a meromorphic
function on C having a double pole with residue 0 at each lattice point and no
other poles

(c) The Weierstrass g-function is an even elliptic function.

PROOF. Since A is discrete in C, it is not hard to see that there is a constant ¢ = ¢(A)
such that for all N > 1, the number of points in an annulus satisfies

#{weA: N<|w|<N+1} <cN.

(See Exercise 6.2.) This allows us to estimate

1 2 #{weA:N<|w|<N+1} = c
> w|2F <> N2k <> Nok—T < o
weA N=1 N=1
|w|>1
(b) If |w| > 2|z|, then
L] [ s@o—2) | _ lAl@kl+]2]) _ 0]
(o—)2 w2l w2 3| S 5 S TR
(z-w)? w w?(z —w) w2 (o] = |2)° 1wl

It follows from (a) that the series for p(z) is absolutely convergent for all z € C\ A,
and that it is uniformly convergent on every compact subset of C ~. A. Therefore
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the series defines a holomorphic function on C \ A, and it is clear from the series
expansion that p(z) has a double pole with residue 0 at each point in A.

(¢) Replacing w by —w in the series for p, it is clear that p(z) = p(—2), so g is an
even function. We know from (b) that the series for @ is uniformly convergent, so we
can compute its derivative by differentiating term by term,

O (2) = -2 Z ﬁ

It is clear from this expression that @’ is an elliptic function, so ©'(z + w) = ¢’(2)
for all w € A. Integrating this equality with respect to z yields

p(z+w)=p(z) + clw) forall z € C,

where ¢(w) € C is independent of z. Setting z = —%w and using the evenness

of p(z) shows that ¢(w) = 0, so g is an elliptic function. O

Next we show that every elliptic function is a rational function of the Weier-
strsss g-function and its derivative. This result is the analytic analogue of (II1.3.1.1).

Theorem 3.2. Let A C C be a lattice. Then

i.e., every elliptic function is a rational combination of @ and ¢'.

PROOF. Let f(z) € C(A). Writing

oy = LI S =)

we see that it suffices to prove the theorem for functions that are either odd or even.
Further, if f(z) is odd, then f(z)p’(2) is even, so we are reduced to the case that f
is an even elliptic function.

The assumption that f is even implies that

ord, f =ord_,, f foreveryw € C.

Further, we claim that if 2w € A, then ord,, f is even. To see this, we differenti-
ate f(z) = f(—z) repeatedly to obtain

fO2) = (=) fO(=2).
If 2w € A, then f()(2) has the same value at w and —w, so
FOw) = fO(=w) = (=1)"71f D (w).

Thus £ (w) = 0 for odd values of 7, so ord,, f is even.
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A

Figure 6.7: Half a fundamental parallelogram.

Let D be a fundamental parallelogram for A, and let H be “half” of D. In other
words, H is a fundamental domain for (C/A)/{+£1}, or equivalently, C is a disjoint
union

C=(H+A)U(—H+A),

as illustrated in Figure 6.7. The above discussion implies that the divisor of f has the

form
> ((w) + (—w))

weH

for certain integers n,, € Z. Note that for 2w € A, we are using the fact that ord,, f
is even.
Consider the function

gz = JI (e(x)—p(w)™.

weH~{0}

The divisor of p(z) — p(w) is (w) + (—w)—2(0), so we see that f and g have exactly
the same zeros and poles except possibly at w = 0. But then (VI.2.2b) implies
that they have the same order at 0, too. Thus f(z)/g(z) is a holomorphic elliptic
function; hence it is constant from (VI.2.1). Therefore there is a constant ¢ such

that f(z) = cg(z) € (C(p(z), go’(z)) O

In order to prove a converse to (VI.2.2), it is convenient to introduce a “theta
function” for A.

Definition. The Weierstrass o-function (relative to A) is the function defined by the
product
z 1 2
= N = . (Z/w)+7(z/w)
o(z) =o(z;A) =2z H (1 w) e 2 .
wEA
w#0
The next lemma describes the basic facts about o(z) that are needed for our
applications. For further material about o, see exercises 6.3 and 6.4 and [266, I §5].

Lemma 3.3. (a) The infinite product for o(z) defines a holomorphic function on all
of C. It has simple zeros at each z € A and no other zeros.
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d2
(b) ] logo(z) = —p(z)  forall z€ C~ A
2z
(¢) Foreveryw € A there are constants a,b € C, depending on w, such that

o(z4w)=e¥o(2)  forall z € C.

PROOF. (a) The absolute and uniform convergence of the infinite product on C fol-
lows from (VI.3.1a) and standard facts about convergence of infinite products [3,
Chapter 5, §2.3]. The location and order of the zeros is clear by inspection.

(b) The logarithm of o(z) is

logo(z) = logz+§{log (1 — g) - 5 - % (i)Q}v
w0

and (a) tells us that we may differentiate term by term. The second derivative, up to
sign, is exactly the series defining p(z).

(c¢) The Weierstrass g-function is elliptic (VL.3.1c), so p(z + w) = p(z). Integrat-
ing twice with respect to z and using (b) yields

logo(z +w) =logo(z) +az+b
for constants of integration a, b € C. O

Proposition 3.4. Letny,...,n. € Zand 21, ..., 2z, € C satisfy
Zni =0 and Znizi e A.
Then there exists an elliptic function f(z) € C(A) satisfying
div(f) = Zm(zl)

More precisely, if we choose the n; and z; to satisfy > n;z; = 0, then we may take

fz)=]]o(z—=)".
PROOF. Let A =Y n;z; € A. Replacing

ni(z1) +- 4 ne(z) by m(z) + o+ ne(z) +(0) = (),

we may assume that > n;z; = 0. Then (VL.3.3a) implies that

1) =] otz = =)
has the correct zeros and poles, while (V1.3.3¢c) allows us to compute (for any w € A)

f(Z +w) _ He(a(z—zi)-&-b)'m _ e(az-i—b)Eni . e_aE"iZi -1
f(z) '

Therefore f(z) € C(A). O
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We next derive the Laurent series expansions for p(z) around z = 0, from which
we will deduce the fundamental algebraic relation satisfied by p(z) and ¢ (z2).

Theorem 3.5. (a) The Laurent series for p(z) around z = 0 is given by

1 oo
p(z) = =t kz—;(% + 1)Gap22".

(b) For all z € C ~ A, the Weierstrass g-function and its derivative satisfy the
relation ‘
@' (2)? = 4p(2)® — 60G4p(2) — 140Gs.
PROOF. (a) For all z with |z| < |w| we have

oo n

oo (e 1) =20 Ve

n=1

Substituting this formula into the series for p(z) and reversing the order of summa-
tion gives the desired result.
(b) We write out the first few terms of various Laurent expansions:

/

0 (2)? =427% - 24G4272 — 80Gs + - - -,
0(2)2 =27%49G427 %+ 15G6 + - - -,
(2) =272 +3G2%+ - .

z

Comparing these expansions, we see that the function
F(z) = ¢/(2)? — 4p(2)® 4+ 60G4p(2) + 140G

is holomorphic at z = 0 and satisfies f(0) = 0. But f(z) is an elliptic func-
tion relative to A, and from (VL.3.1b) it is holomorphic away from A, so f(z) is
a holomorphic elliptic function. Then (VL.2.1) says that f(z) is constant, and the fact
that f(0) = 0 implies that f is identically zero. O

Remark 3.5.1. It is standard notation to set
g2 = QQ(A) = 60G4(A) and gs = gg(A) = 140G6(A)
Then the algebraic relation satisfied by p(z) and ¢’(z) reads

P/(Z)z = 4@(2)3 — g20(2) — g3

Let E//C be an elliptic curve. The group law E x E — E'is given by everywhere
locally defined rational functions (II1.3.6), so we see in particular that £ = E(C) is
a complex Lie group, i.e., it is a complex manifold with a group law given locally by
complex analytic functions. Similarly, if A C C is a lattice, then C/A with its natural
addition is a complex Lie group. The next result says that C/A is always complex
analytically isomorphic to an elliptic curve.
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Proposition 3.6. Ler go = g2(A) and g3 = g3(A) be the quantities associated to a
lattice A C C.
(a) The polynomial

fx) = 42* — gow — g3

has distinct roots, so its discriminant
3 3
A(A) = g5 — 27g3

is nonzero.
(b) Let E/C be the curve

E:y® =42° - gox — g3,
which from () is an elliptic curve. Then the map
¢:C/A — E(C) Cc P*(C), z— [p(z),p’(z),l]7

is a complex analytic isomorphism of complex Lie groups, i.e., it is an isomor-
phism of Riemann surfaces that is also a group homomorphism.

PROOF. (a) Let {w;1, w2} be a basis for A and let w3 = w; + wo. Then, since ¢’ (z)
is an odd elliptic function, we see that

(5)=-(5")=-+(3)

Y 5 )~ 'Y 5 )~ ® 5 )

so o' (w;/2) = 0. It follows from (VI1.3.5b) that f(x) vanishes at each of the val-
ues © = p(w;/2), so it suffices to show that these three values are distinct.

The function p(z) — p(w;/2) is even, so it has at least a double zero at z = w; /2.
However, it is an elliptic function of order 2, so it has only these zeros in an appro-
priate fundamental parallelogram. Hence p(w;/2) # p(w;/2) for j # .

(b) The image of ¢ is contained in E(C) from (V1.3.5b). To see that ¢ is surjective,
let (x,y) € E(C). Then p(z) — « is a nonconstant elliptic function, so from (VI.2.1)
it has a zero, say z = a. It follows that ¢’(a)? = 32, so replacing a by —a if neces-
sary, we obtain ©’(a) = y. Then ¢(a) = (z,y).

Next suppose that ¢(z1) = ¢(z2). Assume first that 2z; ¢ A. Then the func-
tion p(z) — p(z1) is an elliptic function of order 2 that vanishes at z;, —z1, and z».
It follows that two of these values are congruent modulo A, so the assumption
that 2z1 ¢ A tells us that z5 = 427 (mod A) for some choice of sign. Then

P'(21) = ¢ (22) = ¢/ (£21) = +¢'(21)

implies that zo = 2 (mod A). (Note that '(27) # 0 from the proof of (a).) Similarly,
if 221 € A, then p(z) — p(z1) has a double zero at z; and vanishes at z», S0 we again
conclude that z3 = z; (mod A). This proves that ¢ is injective.

Next we show that ¢ is an analytic isomorphism by computing its effect on
the cotangent spaces of C/A and E(C). At every point of E(C), the differential
form dx/y is holomorphic and nonvanishing. Further, we see that
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(5)-44 -

is also holomorphic and nonvanishing at every point of C/A. Hence ¢ is a local
analytic isomorphism, and the bijectivity of ¢ then implies that it is a global isomor-
phism.

Finally, we must check that ¢ is a homomorphism. Let z1,20 € C. Us-
ing (VL.3.4), we can find a function f(z) € C(A) with divisor

div(f) = (21 + 22) = (21) = (22) + (0).

Then (V1.3.2) allows us to write f(z) = F(p(z),¢/(2)) for a rational function
F(X,Y) e C(X,Y). Treating F'(x,y) as an element of C(x,y) = C(E), we have

div(F) = (¢(21 + 22)) + (¢(21)) + (#(22)) + (6(0)).

It follows from (II1.3.5) that

(21 + 22) = B(21) + P(22),

which completes the proof of the proposition. [

V1.4 Maps Analytic and Maps Algebraic

In this section we investigate complex analytic maps between complex tori. It turns
out that they all have a particularly simple form, and, somewhat more surprisingly,
the maps that they induce on the corresponding elliptic curves via (V1.3.6b) turn out
to be isogenies, i.e., they are given by rational functions.

Let A; and A, be lattices in C, and suppose that o € C has the property
that Ay C As. Then scalar multiplication by « induces a well-defined holomor-
phic homomorphism

¢ : C/A;1 — C/Aq, $a(z) = az (mod Ag).

We now show that these are essentially the only holomorphic maps from C/A;
toC / Ag.

Theorem 4.1. (a) With notation as above, the association
holomorphic maps
{aeC:aly CAy} — {¢p:C/A; — C/A
with ¢(0) =0

o — o

is a bijection.
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(b) Let Ey and Es be elliptic curves corresponding to lattices A1 and Ao, respec-
tively, as in (V1.3.6b). Then the natural inclusion

holomorphic maps
{isogenies ¢ : By — E2} — ¢ ¢ : C/A1 — C/A,
with $(0) = 0
is a bijection.
PROOF. (a) If ¢ = ¢, then
az =Bz (mod Aj) forall z € C.

Hence the map z — («a — )z sends C to A. But A is discrete, so the map must be
constant, which implies that a = .

Nextlet ¢ : C/A; — C/As be a holomorphic map with ¢(0) = 0. Then, since C
is simply connected, we can lift ¢ to a holomorphic map f : C — C with f(0) =0
so that the following diagram commutes:

c I

! l

C/A; —2— C/As.
Thus
f(z+w) = f(2) (mod As) forallw € Ay and all z € C.

Again using the discreteness of Ao, we see that the difference f(z + w) — f(z) must
be independent of z. Differentiating, we find that

fl(z+w)=f'() forallw e Ajandall z € C,

so f/(z) is a holomorphic elliptic function. It follows from (VI1.2.1) that f’(z) is con-
stant, so f(z) = az + v for some a,y € C. The assumption that f(0) = 0 implies
that v = 0, and now f (A1) C As tells us that «A; C As. Hence ¢ = ¢,.

(b) First note that since an isogeny is given locally by everywhere defined rational
functions, i.e., an isogeny is a morphism, the map induced between the corresponding
complex tori is holomorphic. Thus our association

Hom(FE;, E3) — Holomorphic Maps(C/A1,C/A3)

is well-defined, and it is clearly injective.

It remains to prove surjectivity. From (a) it suffices to consider a map of the
form ¢, where « € C* satisfies «A; C As. The induced map on Weierstrass
equations is given by

E1 — E27
[[{3(27A1)7 pl(za Al)a 1] — [p(aza AZ)a @/(QZ7A2)7 1]7
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so we must show that p(az,As) and p'(az, A2) can be expressed as rational ex-
pressions in p(z, A1) and ¢’(z, A1). Using the fact that oAy C Ao, we see that for
any wy € Aq,

p(a(z + w),Ag) = p(az 4+ aw, As) = p(az, As),

and similarly for ' (a2, Ag). Thus p(az, As) and ' (az, Ag) are in the field C(Ay).
The desired result now follows immediately from (V1.3.2), which tells us that
(C(Al) :C(W(Z>Al)7p/(za/\1))' O

Corollary 4.1.1. Let F, /C and E5/C be elliptic curves corresponding to lattices Ay
and Ay as in (V1.3.6b). Then Ey and E5 are isomorphic over C if and only if Ay
and ANy are homothetic, i.e., there exists some o € C* such that A1 = al\s.

Remark 4.2. Since the maps ¢, are clearly homomorphisms, (VI.4.1.1) implies
that every complex analytic map from E1(C) to E5(C) taking O to O is necessarily
a homomorphism. This is the analytic analogue of (II[.4.8), which says that every
isogeny of elliptic curves is a homomorphism.

V1.5 Uniformization

The uniformization theorem for elliptic curves says that every elliptic curve over C is
parametrized by elliptic functions. The most natural proof of this fact uses the theory
of modular functions, that is, functions whose domain is the set of lattices in C. For
example, g2(A) and g5(A) are modular functions. The proof is not difficult, but it
would take us rather far afield, so we are content to state the result and use it to make
various deductions.

Theorem 5.1. (Uniformization Theorem) Let A, B € C be complex numbers satis-
fying 4A3 — 27B? # 0. Then there exists a unique lattice A C C satisfying

gQ(A):A and g3(A)=B.

PROOF. The proof may be found in many textbooks; see for example [5, Theo-
rem 2.9], [210, 1.3.13], [249, §4.2], [266, 1.4.3], or [232, VII Proposition 5]. O

Corollary 5.1.1. Let E/C be an elliptic curve. There exist a lattice A C C, unique
up to homothety, and a complex analytic isomorphism

¢:C/A—)E(C)7 P(z) = [p(z,A),gy’(z,A),l],
of complex Lie groups.

PROOF. The existence is immediate from (VI.3.6b) and (V1.5.1), and the uniqueness
is (VI.4.1.1). ]

We are now in a position to prove the results left undone in (VI §1).
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Proposition 5.2. Let E/C be an elliptic curve with Weierstrass coordinate func-
tions x and y.
(a) Let av and 3 be closed paths on E(C) giving a basis for Hy(E,Z). Then the
periods
dx dx
— and Wy = —
a ¥ B Y
are R-linearly independent.
(b) Let A be the lattice generated by wy and wo. Then the map

w1 =

P
F: E(C) — C/A, F(P) :/o dg (mod A),

is a complex analytic isomorphism of Lie groups. Its inverse is the map de-
scribed in (VI.5.1.1).

PROOF. (a) From (VL.5.1.1), there exists some lattice A; such that the map
¢1 :(C/Al —>E((C)7 ¢1(Z) = [@(27/\1)’@/(7«"/\1)’1],

is a complex analytic isomorphism. It follows that qbfl oo and ¢ 1o 3 are a ba-
sis for H1(C/A41,Z). (Here we are viewing « and /3 as continuous maps from the
unit circle to F(C).) We observe that H;(C/A,Z) is naturally isomorphic to the
lattice Ay via the map ~y — fv dz, while the differential dz/y on E pulls back to

o (c;x) _ i{’((j)) —dz  onC/A;.

Therefore the periods

wlz/d—x:/ dz and wgz/di:/ dz
a Yy floa B Y ;10[3

are a basis for A1, so in particular, they are linearly independent.

(b) We have just shown that the lattice A; corresponding to E in (VI.5.1.1) is pre-
cisely the lattice A generated by the periods of E. The composition F' o ¢ thus gives
an analytic map

(©(2),0"(2)) g
Fog¢g:C/A— C/A, (Fo¢)(z):/ —.

®) Yy
Since J J J
Fdz)="  and  ¢* (“) - ?(2) = d,
Y Y o' (2)
we see that

(Fo¢)dz=dz.

On the other hand, (VIL.4.1a) says that any analytic map C/A — C/A has the
form ¢,(z) = az for some number a € C*. Since ¢} (dz) = adz, we see that
(Fo¢)(z) = z i.e., the composition F' o ¢ is the identity map. But we already know
from (V1.3.6b) that ¢ is an analytic isomorphism, so F' = gbfl is, t0o. O
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Much of the preceding material may be summarized as an equivalence of cate-
gories.

Theorem 5.3. The following categories are equivalent:
(a) Objects: Elliptic curves over C.
Maps: Isogenies.
(b) Objects: Elliptic curves over C.
Maps: Complex analytic maps taking O to O.
(¢) Objects: Lattices A C C, up to homothety.
Maps: Map(A1,As) = {a € C: al; C A}

PROOF. The one-to-one correspondence between elliptic curves over C and lattices
modulo homothety follows from (V1.3.6b), (VL.5.1.1), and (VI.5.2). The matchup of
the maps in (a), (b), and (c) is precisely the content of (VL.4.1). ]

Remark 5.3.1. The equivalence of (a) and (b) in (VL.5.3) is a very special case of
a general principle called GAGA (Géométrie Algébrique et Géométrie Analytique;
see [229]). GAGA says (among other things) that any complex analytic map be-
tween projective varieties over C is necessarily given by rational functions. For an
introductory discussion, see [111, Appendix B].

We now use the uniformization theorem (really (VI.5.1.1)) to make some gen-
eral deductions about elliptic curves over C. It is worth remarking that even without
knowing (VL.5.1.1), everything that we are about to prove would at least apply to
those elliptic curves that occur in (VI.3.6b). The uniformization theorem merely says
that this class of curves includes every elliptic curve over C.

Proposition 5.4. Ler E/C be an elliptic curve and let m > 1 be an integer.
(a) There is an isomorphism of abstract groups
Elm]| = Z/mZ x Z/mZ.
(b) The multiplication-by-m map [m] : E — E has degree m?.

PROOF. (a) From (VI.5.1.1), we know that E(C) is isomorphic to C/A for some
lattice A C C. Hence

Elm] = (f) [m] = # = (mZZ>2'

(b) Since char(C) = 0 and the map [m] is unramified, the degree of [m] is equal to
the number of points in E[m] = [m]~1{O}. O

Let E//C be an elliptic curve. Note that (VI.4.1) allows us to identify End(E)
with a certain subring of C. Thus if E(C) = C/A as in (VL.5.1.1), then

End(E) 2 {aeC:al C A}

Since A is unique up to homothety (V1.4.1.1), this ring is independent of the choice
of A. We use this description of End(E) to completely characterize the endomor-
phism rings that may occur. We recall the following definition from (III §9).
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Definition. Let K be a number field. An order R of K is a subring of K that is
finitely generated as a Z-module and satisfies R ® Q = K.

Theorem 5.5. Let E/C be an elliptic curve, and let wy and wy be generators for the
lattice A associated to E by (V1.5.1.1). Then one of the following is true:
(i) End(E) = Z.
(i) The field Q(w2/w1) is an imaginary quadratic extension of Q, and End(E) is
isomorphic to an order in Q(w1 /ws).

PROOF. Let 7 = w;/wy. Multiplying A by wq/wy shows that A is homothetic
to Z + Zt, so we may replace A by Z + Zt. Let

R={aeC:al CA},

so R = End(E) from (VL.4.1). Then, for any « € R, there are integers a,b, ¢, d
such that
a=a+br and at = c+dr.

Eliminating 7 from these equations yields
o — (a+d)a+ad — be = 0.

This proves that R is an integral extension of Z.
Now suppose that R # Z and choose some « € R ~ Z. Then, with notation as
above, we have b # 0, so eliminating « gives a nontrivial equation

br? — (a —d)T — ¢ = 0.

It follows that Q(7) is an imaginary quadratic extension of Q (note that 7 ¢ R).
Finally, since R C Q(7) and R is integral over Z, it follows that R is an order

in Q(7). O

Proposition 5.6. Let E/C be an elliptic curve, and fix a lattice A and an isomor-
phism E(C) =2 C/A.

(a) There is a natural isomorphism

~

Hi(E(C),Z) —— A, 'y»—>/dz.

(b) There is a natural isomorphism
H,(E(C),Z/mZ) —— E[m].

PROOF. (a) We proved this during the course of proving (VI.5.2a).
(b) From (a) we have

H(E(C),Z/mZ) = H,(E(C),Z) ® Z/mZ = A @ Z/mZ = A/mA.
On the other hand, using the identification F(C) = C/A, we obtain an isomorphism
E(C)[m] = (C/A)m] ={2 € C:mz € A}/JA ——— A/mA. O
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V1.6 The Lefschetz Principle

The Lefschetz principle says, roughly, that algebraic geometry over an arbitrary alge-
braically closed field of characteristic 0 is “the same” as algebraic geometry over C.
One can, of course, make this precise by formulating an equivalence of suitably de-
fined categories, but we will be content here to give an informal presentation.

Our first observation is that if the given field K can be embedded as a subfield
of C, then everything proceeds smoothly. For example, if K C C is any field and
if E/K is an elliptic curve, then the fact that [m] : E — F is a finite algebraic map
implies that E[m] C E(K) C E(C). (To see this, note that for any P € E(K),
the set [m]~1(P) is finite and invariant under Gz /K> SO every point in [m]~1(P) is
defined over K.) Hence, using (VI.5.4), we obtain a proof that

E[m] = E(K)[m] = E(C)[m] = (Z/mZ)>.

Note that the embedding K C C need not be topological (assuming that K has
a topology in the first place). It does not matter that we may have used the topology
of C to reach our conclusions, e.g., using the analytic isomorphism E(C) = C/A,
as long as our hypotheses and conclusions are purely algebraic

Our second observation is that theorems in algebraic geometry generally deal
with finite (or sometimes countable) sets. For example, any variety is defined by a
finite set of polynomial equations (Hilbert basis theorem), and each equation has only
finitely many coefficients. Similarly, an algebraic map between varieties is given by
a finite set of polynomials, each having a finite number of coefficients. Now suppose
that {V1, V4, ...} is a finite (or countable) set of varieties defined over some field K
of characteristic 0, and suppose that {¢1, @2, ...} is a finite (or countable) set of
rational maps defined over K that map the various V; to one another. Let Ky C K
be the field generated over Q by all of the coefficients of all of the polynomials
defining all of the V; and all of the ¢;. It is clear that the transcendence degree of K|
over Q has cardinality at most that of the natural numbers, so we can use Zorn’s
lemma to embed K in C. Then using the above discussion concerning subfields
of C, we are able to reduce most algebro-geometric questions concerning the V; and
the ¢; to the corresponding questions over C, where we may be able to profitably
employ techniques from complex analysis and differential geometry.

To illustrate the Lefschetz principle, we prove two results.

Theorem 6.1. Let K be a field of characteristic 0 and let E/K be an elliptic
curve.
(a) Let m > 1 be an integer. Then

E[m]| =2 Z/mZ x Z/mZ.

(b) The endomorphism ring of E is either Z or an order in a quadratic imaginary

extension of Q, cf. (I11.5.6¢) and (111.9.4).

PROOF. (a) This is immediate from (VI.5.4) and the Lefschetz principle.
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(b) Here we can apply the Lefschetz principle to (VL.5.5), once we note
that End(F) is countably (in fact, finitely) generated from (II1.7.5). Alternatively,
even without (IT1.7.5), we can argue as follows. If End(FE) is neither Z nor quadratic
imaginary, then it contains a finitely generated subring that is neither Z nor imagi-
nary quadratic. Applying the Lefschetz principle to the maps in this subring contra-
dicts (VLS5.5). O

Exercises

6.1. Let A = Zw1 +Zws be a lattice. Suppose that 6(z) is an entire function, i.e., holomorphic
on all of C, with the property that there are constants a;, a2 € C such that

0(z+w1) =a16(z) and 0O(z+ w2) = a20(z) forall z € C.

Prove that
0(z) = be”* for some b, c € C.

6.2. Let A C C be a lattice.
(a) Prove that every fundamental parallelogram for A has the same area. Denote this area
by A(A).
(b) Prove that as R — oo,

mR?
A(A)

#{weA:|w| <R} = + O(R).

(The big-O constant depends on A, of course.)
(c) Prove that there is a constant c(A) such that for all R > 0,
#{wEA:R§ |w] <R—|—1} < cR.
6.3. (a) Prove that for all z,a € C \\ A,

(Hint. Compare zeros and poles.)
(b) Prove that
N o(22)
£ (Z) - 0(2)4 .

(c) Prove that for every integer n, the function o(nz)/ U(z)"2 is in C(A).
(d) More precisely, prove that

~—

2 o(nz
a(z)"*

(="l (n—1))

_ (i+5—1)
_det(p 7 (Z))1§i,j§n—1'

(See also exercises 6.15 and 6.16.)

6.4. Define the Weierstrass ¢-function {(z) (not to be confused with the Riemann (-function)

by the series
1 1 1
((z)=-+ G——+7+Z).

Z—w w w?
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(a) Prove that

d

Tlogo(x) =C(z)  and () = —p(2).
(b) Prove that

((=2) = —=¢(2),
and that for all w € A there exists a constant 7(w) € C satisfying
((z 4+ w) = ((2) + n(w).

If w ¢ 2A, prove that n(w) = 2¢(w/2).
(c) Prove that the map n : A — C given in (b) is bilinear.
(d) Write A = Zw1 + Zws with Im (w1 /w2) > 0. Prove Legendre’s relation

win(w2) — wan(w1) = 2mi.

(Hint. Integrate ((z) around a fundamental parallelogram.) The two numbers 7(w1)
and 7(w2) are called quasiperiods.
(e) Prove that
o(z 4 w) = £ EF/D 55,

where the sign is positive if w € 2A and negative otherwise.
(f) Extend n : A — C to an R-linear map n : C — C by identifying A ®z R with C. Let

G(z) = e ")/ 25 ().

Prove that
’G(z—l—w)‘:‘G(z)! forallw € Aandall z € C.

Thus ‘G (z)’ defines a real analytic function from (C/A) \ {0} to R.

6.5. Verify the values of the following indefinite integrals.

3 _ i " _i i
® [ 0la)" ds = 33568  gnc(e) + e+ C.

6.6. For alattice A C C, let g2(A) and g3(A) be as in (VI.3.5.1), and define

A(A) = g2(A)* — 27g5(A)*  and  j(A) = ”2892(<AA)>3'

(a) Leta € C*. Prove that
g2(ah) = "ga(A)  and  gs(ah) = aCgs(A),
and deduce that
AfaA) =a A(A)  and  j(aA) = j(A).

(b) Prove that j(A1) = j(A2) if and only if there is an a € C* such that A1 = Ao, i.e., if
and only if A1 and A5 are homothetic.
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(c) Prove that ’
J(Z+7i) =1728  and  j(Z+ Ze*™/*) = 0.

6.7. Elliptic curves over R. Let E/C be an elliptic curve corresponding to a lattice A C C.
(a) Prove that F is isomorphic to a curve defined over R if and only if there is an « € C*

such that oA is mapped to itself by complex conjugation. (Hint. First prove that j(A) =
J(A))

(b) Suppose that E is defined over R and that we have chosen a lattice A for E as in (a),
so A is invariant under complex conjugation. Prove that A(A) € R, and that E(R) is
connected if and only if A(A) < 0.

(c) Let E/C be given by a Legendre equation

E:y* =z(z—1)(z—\).

Prove that A € R if and only if E can be defined over R and E[2] C E(R).
(d) If E is defined over R and E[2] C E(R), prove that there is a lattice for E that is
rectangular, i.e., of the form Zwi + Zwat with wi, w2 € R.

6.8. Let K/Q be an imaginary quadratic field, let R be the ring of integers of K, and let hz
denote the class number of R.
(a) Prove that up to isomorphism, there are exactly hx elliptic curves F/C with endomor-
phism ring End(E) &~ R.
(b) If E is a curve as in (a), prove that j(F) is an algebraic number and that its degree
satisfies
[K(i(E)) : K] < hr.

In fact, IC(j(E)) is the Hilbert class field of /C, so the inequality in (b) is an equality.
See (C §11) and the references listed there.

6.9. Let E,/C and E,/C be elliptic curves, and assume that E'; has complex multiplication.
Prove that F; is isogenous to F» if and only if

End(F1) ® Q 2 End(E2) ® Q.

6.10. Let ¢ : E1 — E» be an isogeny of elliptic curves over C, and let ¢o : C/A1 — C/As
be the corresponding analytic map induced by z +— «az as in (VL.4.1), so in particular we
have aA1 C As.
(a) Prove that deg ¢ equals the index (A2 : aAq).
(b) Let m = deg ¢. Prove that the dual isogeny ngS : E5 — FE; corresponds to the analytic
map induced by z — ma !z
(c) Assume that Ay = As. Prove that deg ¢ = Ng(a)/@(). Deduce that  corresponds to
the analytic map induced by z — @z, where & is the complex conjugate of a.

Elliptic Integrals. Exercises 6.11-6.13 develop a minute portion of the classical theory of
elliptic integrals.
6.11. Let E/C be an elliptic curve given by a Legendre equation

E:Y?=X(X-1)(X - ).
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(a) Prove that there is a k € C ~ {0, £1} such that E has an equation of the form
By’ =1 —2*)(1 — k*z?).

(Hint. Let X = (az + b)/(cx 4+ d) and Y = ey/(cx + d)? for an appropriate choice
ofa,b,c,d,e € C.)

(b) For a given value of A, find all possible values of k. Conversely, given k, find all values
of \.

(c) Express the j-invariant j(E) in terms of k.
(d) Suppose that A € R. (See Exercise 6.7.) Show that k£ may be chosen to be real and to
satisfy 0 < k < 1.

6.12. Complete Elliptic Integrals. Let E be an elliptic curve given by an equation
E:y* =01 -2 - k*z?).

To simplify matters, assume that 0 < k < 1 (cf. Exercise 6.11d). Define complete elliptic
integrals to the modulus k by

R = / - / V- x2>1<1 i

1
y 1 — k222
T(k):/ d:)c:/ ST e
o 1—a? o 1—x2

(a) Make appropriate branch cuts and prove that the lattice for E is generated by the periods

1 1 1/k 1
4 dr and 2i dx
/o \/(1—x2)(1—k2m2) : /1 \/(1—m2)(1—k2x2)

(b) The complementary modulus to k is the quantity k' defined by

B4k’ =1 and 0<k <1.

Prove that

dX.

1/k 1 B 1 1
/1 VI —2?)(1 - k2a?) dm_/o VI = X2)(1 - k2X?2)

(Hint. Let & = (1 — K’>X?)~1/2) Conclude that the period lattice of the elliptic
curve E/C is generated by 4K (k) and 2i K (k).
(c) Prove the transformation formulas

K (f‘ﬁ) —(1+KK®K) ad K G%;) _ #K(k’).
6.13. (a) Show that the complete elliptic integrals defined in Exercise 6.12 may also be writ-
ten as
/2 46 /2
K(k) = / — and T(k)= / 1 — k2sin? 0 do.
0 V1 —k2sin?6 0
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(b) Prove that the arc length of the ellipse
22/a® +y°/p =1 witha > b >0

is given by the complete elliptic integral

2
ar(y1- (2)°)
a
(c) Prove that the arc length of the lemniscate

r? = cos(20)

is given by the complete elliptic integral 2v/2K (1 /2 ) Prove that it also equals

1
4 / dx
o V1I—at
Thus the integral giving the arc length of the lemniscate resembles the integral giving the

arc length of the unit circle, i.e., 27 = 4 fol dz /1 — 2.

6.14. The Arithmetic—Geometric Mean. For initial values a,b € R witha > b > 0, we define
sequences {ar } and {b, } recursively by

Gn + bn
2 )

ap = a, bo = b, An4+1 = bn = \/ anbn.

(a) Prove that
1
0< An41 — b'n+1 < §(an - b'n)~
Deduce that the limit
M(a,b) = lim a, = lim by

exists. The quantity M (a, b) is called the arithmetic—geometric mean of a and b.
(b) Prove that
M(a,b) = M(a1,b1) = M(az,b2) =---
and
M (ca, cb) = cM (a,b) for ¢ > 0.

(c) Define an integral I(a,b) by

/2
do
I(a,b) :/ .
0 \/a2 cos? 0 + b2sin? @

Prove that I(a, ) is related to the complete elliptic integrals described in exercises 6.12
and 6.13 by showing that

I(a,b) =a 'K (fﬁc) and  I(a1,b1) = a;°K(k)

fork = (a —b)/(a +b).
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(d) Prove that
M(a,b)I(a,b) = 7/2.
(Hint. Use (c) and Exercise 6.12c to prove that I(a,b) = I(a1, b1). Then calculate the
limit of I(an, b,) asn — o00.)
Combining (c) and (d), observe that the complete elliptic integral K (k) for0 < k < 1
may be computed in terms of the arithmetic—geometric mean.
(e) Prove that the rate of convergence of M (a, b) predicted by (a), namely

an — by, <27 "(a—b),

is far slower than in reality. More precisely, use (b) to show that it suffices to com-
pute M (a, b) in the case that b > 1, and under this assumption, prove that

an — bn om
Untm — bngm < 8 (T) for all m,n > 0.

In particular, since eventually a,, — b, < 8, the sequences {a, } and {b,} converge

doubly exponentially.
(f) Prove that

1
dz T
— = —M(V2,1),
| =g

and use this equality to numerically calculate the value of the complete elliptic integral
on the left-hand side. It was the observation that these two numbers, calculated indepen-
dently, agree to eleven decimal places that led Gauss to initiate an extensive study of the
arithmetic—geometric mean. For a fascinating account of this subject, see [52].

6.15. Let E/C be an elliptic curve and let 1), be the division polynomial defined in Exer-
cise 3.7. Considered as a function on C/A, prove that ¢, (z) is given by

gn(2) = (-1 202

o(2)"*

(Hint. Use the description of div(¢,) in Exercise 3.7f. Then evaluate 2"2_1;&”(2) asz — 0
to find the constant.)

6.16. Let (Wy,),>1 be an elliptic divisibility sequence over C. (See Exercise 3.34 for the
definition of elliptic divisibility sequence.) Assume that W; = 1 and WoW3 W, # 0. Prove
that there are a lattice A C C and a complex number u € C such that

W, — o(nu)

5 forallm > 1.
o(u)™

More precisely, prove that A and w exist, provided that a certain polynomial in W, Wi,
and Wy does not vanish.
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Chapter VII

Elliptic Curves over Local
Fields

In this chapter we study the group of rational points on an elliptic curve defined over
a field that is complete with respect to a discrete valuation. We start with some basic
facts concerning Weierstrass equations and “reduction modulo 7.” This enables us
to break our problem into several pieces, and then, by examining each piece individ-
ually, to deduce a great deal about the group of rational points as a whole. Unless
explicitly stated otherwise, we use the following notation:

K alocal field, complete with respect to a discrete valuation v.

R = {z € K :v(x) > 0}, the ring of integers of K.
R* ={x € K :v(x) = 0}, the unit group of R.
M ={z € K :v(z) > 0}, the maximal ideal of R.
7 auniformizer for R, i.e., M = 7 R.
k = R/ M, the residue field of R.

We further assume that v is normalized so that v(7) = 1. Note that by conven-
tion, v(0) = oo is assigned a value larger than every real number. Finally, in keeping
with our general policy, we assume that both K and k£ are perfect fields.

VII.1 Minimal Weierstrass Equations
Let £/ K be an elliptic curve, and let

E:y® 4+ aizy + asy = 2° + asx® + aux + ag
be a Weierstrass equation for £/ K. The substitution (z,y) — (u"2x,u"3y) leads
to a new equation in which a; is replaced by u’a;, so if we choose u to be divisible
J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 185
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by a sufficiently large power of 7, then we obtain a Weierstrass equation all of whose
coefficients are in R. Having done this, the discriminant A satisfies v(A) > 0. Fi-
nally, since v is discrete, among all such Weierstrass equations with coefficients in R,
we can choose one that minimizes the value of v(A).

Definition. Let £/ K be an elliptic curve. A Weierstrass equation for F is called a
minimal (Weierstrass) equation for E at v if v(A) is minimized subject to the con-
dition that a1, as, as, as, ag € R. This minimal value of v(A) is called the valuation
of the minimal discriminant of E at v.

Remark 1.1. How can we tell whether a given Weierstrass equation is minimal?
First, by definition, all of the a; must be in R, so in particular, the discriminant A
is in R. If the equation is not minimal, then (III.1.2) says that there is a coordinate
change giving a new equation with discriminant A’ = 4 ~'2A € R. Thus v(A) can
be changed only by multiples of 12, so we conclude that

a; € Randv(A) <12 = the equation is minimal.
Similarly, since ¢} = u~%c4 and ¢ = u~Ccg, we have

a; € Randv(cq) <4 = the equation is minimal,
a; € Randv(cg) <6 = the equation is minimal.

If char(k) # 2, 3, then a converse holds. More precisely, if the equation is minimal,
then v(A) < 12 or v(ca) < 4; see Exercise 7.1. For arbitrary K, there is an algo-
rithm of Tate that determines whether a given equation is minimal; see [266, IV §9]
or [283].

Example 1.2. Let p be a prime and consider the Weierstrass equation
E:y+ay+y=a3+2>+222-9

over the field Q. This equation has discriminant A = —2'55? and ¢, = —5 - 211.
From (VIL.1.1), this is a minimal Weierstrass equation at p for every prime p € Z.

Proposition 1.3. (a) Every elliptic curve E/K has a minimal Weierstrass equa-
tion.
(b) A minimal Weierstrass equation is unique up to a change of coordinates
r =u’z' + T, Yy = u3y' +u?sz’ + t,
withu € R* and r,s,t € R.
(c) The invariant differential
dx
w=-——
2y +a1x + as

associated to a minimal Weierstrass equation is unique up to multiplication by
an element of R*.
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(d) Conversely, if one starts with any Weierstrass equation whose coefficients are
in R, then any change of coordinates

r =u?z' + T, Yy = u3y' +u?sa’ + t,
used to produce a minimal Weierstrass equation satisfies u,r,s,t € R.

PROOF. (a) One can easily find some Weierstrass equation with all a; € R, and
among such equations, there exists (at least) one that minimizes v(A), since v is
discrete.

(b) We know from (II1.3.1b) that any Weierstrass equation for F/K is unique up
to the indicated change of coordinates with v € K* and r,s,t € K. Now sup-
pose that the given equation and the new equation are both minimal. From the def-
inition of minimality, we have v(A’) = v(A). We now apply the transformation
formulas described in (IIT §1, Table 3.1). The transformation formula for A says
that u'2A’ = A, so we see that u € R*. Similarly, the transformation formula for bg
(respectively for bg) shows that 4r3 (respectively 3r%) is in R, hence » € R. Finally,
the transformation formula for ay gives s € R, and the transformation formula for ag
givest € R.

(¢) Clear from (b), since w’ = uw.

(d) Since the new equation is to be minimal, we know that v(A’) < v(A), and we
also have u'2A’ = A. Hence v(u) > 0, so u € R. Now the proof of (b) can be
repeated to show that r, s,t € R. O

VII.2 Reduction Modulo 7

We next look at the operation of “reduction modulo 7,” which we denote by a tilde.
Thus, for example, the natural reduction map R — k = R/nR is denoted by ¢ — .
Having chosen a minimal Weierstrass equation for £/ K, we can reduce its coeffi-
cients modulo 7 to obtain a (possibly singular) curve over k, namely

E: y2 +a1zy +azy = 23 + Gox® + Gux + Gg.

The curve £ /k is called the reduction of E modulo 7. Since we started with a min-
imal equation for E, (VIL1.3b) tells us that the equation for E is unique up to the
standard change of coordinates (II1.3.1b) for Weierstrass equations over the residue
field k.

Next let P € E(K). We can find homogeneous coordinates P = [z, yo, 20]
with xg, yo, 20 € R and at least one of zg, yo, zp in R*. Then the reduced point

P = [Z0, 90, %]
is in E(k). This defines a reduction map
E(K) — E(k), P+—— P.

More generally, in a similar fashion we can define a reduction map



188 VILI. Elliptic Curves over Local Fields

P"(K) — P"(k).
Then the reduction map for F(K) C P?(K) is just the restriction of the reduction
map on P?(K).
The curve F/k may be singular (more on this later), but in any case we re-

call (IT1.2.5) that the set of nonsingular points Ens(k:) forms a group. We define two
subsets of F(K) as follows:

Eo(K)={P € E(K): P e Exk)},
Ei(K)={PeE(K): P=0}.
In words, Ey(K) is the set of points with nonsingular reduction and E;(K) is the

kernel of reduction. From (VII.1.3b), these two sets do not depend on which minimal
Weierstrass equation we choose.

Proposition 2.1. There is an exact sequence of abelian groups

0 — F1(K) — Eo(K) — Ey(k) — 0,
where the right-hand map is reduction modulo .

PROOF. We begin by showing that the reduction map is surjective. To do this, we
use Hensel’s lemma and the completeness of K. Thus let

f(z,y) = v* + arzy + asy — 2° — axa? — ayx — ag =0

be a minimal Weierstrass equation for F, let f (z,y) be the corresponding polyno-
mial with coefficients reduced modulo 7, and let P = (&, 3) € Eqns(k) be a point.
Since P is a nonsingular point of F/, we know that either

of
ox

of

(P)#0 or By

(P) #0,
say the latter. (The other case is done similarly.) Choose any zg € R with 9 = &
and look at the equation

f(wo,y) = 0.

When reduced modulo 7, this equation has ﬁ as a simple root, since by assump-
tion (8 /dy) (&0, 3) # 0. Thus Hensel’s lemma [142, Chapter II, Proposition 2] tells
us that the mod 7 root B can be lifted toayy € R such that gy = B and f(zo,y0) = 0.
Then the point P = (z, o) € Eo(K) reduces to P, which completes the proof that
the reduction map Ey(K) — Ens(k) is surjective.

Our next task is to prove that Ey (K ) is a subgroup of E'(K) and that the reduction
map Eo(K) — Ey(k) is a homomorphism. Note that once we have proven these
two facts, the exactness of

0 — E1(K) — Ey(K) — Ep(k) — 0
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at the left and center follows directly from the definition of E;(K), so the proof
of (VIL.2.1) will be complete.

The group laws on E(K) and Eys(k) are defined by taking intersections with
lines in P2, For any line L defined over K, we can find an equation for L of the form

L:Az+By+Cz=0

such that A, B, C' € R and at least one of A, B, C'is in R*. Then the reduction of L
is given by the equation

i:Am—i—By—l—C’z:O,
and it is clear that if P € P?(K) is a point on the line L, then the reduced point Pis
on the reduced line L.

Let Py, P, € Ep(K) and P3 € E(K) be points satisfying P; + P, + P3 = O.
Thus there is a line L that intersects E at the three points Py, P, P3, counted with
appropriate multiplicities. We are going to prove that L intersects E at P, Py, Py
with the correct multiplicities, from which it follows that P3 € Ey(K) and that
P, + P, + Py = O. However, since there are many cases to consider, we will be
content to prove two cases and leave the others to the reader; see Exercise 7.15.

Suppose first that the reduced points Py, Py, Py are distinct. Then

LnE={P, B, By}

consists of three distinct points, the first two of which are in Es(k) by assump-

tion. It follows from (IIL.2.5) that P3 is also in Ey(k); see also Exercise 3.28(b).

Hence P; € Ey(K) and Py + P + P; = O, which is the desired result in this case.
To handle the second case, we use the following general result.

Lemma 2.1.1. Let P,Q € FEy(K) be distinct points whose reductions satisfy

P = Q, and let L be the line through P and Q. Then the line L is tangent to E
at P.

PROOF. We assume that P #* O and leave the reader to handle the case P = O. As
above, we choose a minimal Weierstrass equation

2

E:f(:r,y):y2+a1:ry+a3yf:£37a2:c —aqx —ag = 0,

and we let f (z,y) be the corresponding polynomial with coefficients reduced mod-
ulo 7. Write

P=(a,p) e B(K) and Q= (a+pu B+ e E(K).

The assumption that P = Q # O implies that o, 3 € R and p, A € M. Further, the
assumption that P € Ey(K) means that P is a nonsingular point of E, so either

pyzo o Uiz

We do the case that (9f /8y)(P) # 0 and leave the other case to the reader.
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The fact that f(P) = f(Q) = 0 allows us to compute the first few terms of the
Taylor expansion of f(z,y) around Q. Thus

of

= fe ) + S+ L

== (o, BN+ ap® + b + c)\?
dy
for some a,b,c € R,

3f of

( B+ a—y(a,ﬂ)/\ + ap® + bu + A%

The assumption that (8 f/dy)(P) # 0 is equivalent to (9 f /y)(c, §) € R*, so

v(\) = v (%(a,ﬂ)A) = (gi(a,ﬁ)u + ap® + buA + c)\2> > v(p).

Thus \/u € R, so dividing the Taylor expansion by x and reducing modulo 7 gives
the congruence

of A

—P)+=—(P)-— =0 d M).

50 () 5, (P)- 7 =0 (mod M)
This tells us that the slope of the tangent line to F at the point Pis

dy 5 (0f/0x)(P) _ -
o= " @f o) "

The line L through P and @ is given by the equation
A
L:y—p==(x—a).
1

We have shown that A/ € R, so the reduction of L is the line through P having

slope A / p. This proves that Lis tangent to E at P, which completes the proof of the
lemma when P # O and (9f)(dy)(P) # 0. The other cases are proven similarly.
O

Returning now to the proof of (VIL.2.1), let P;, P, € Ey(K) and P; € E(K)
be distinct points satistying P; + P» + P3 = O, and suppose that their reductions
satisfy R R ~

Py =P, # Ps.
Let L be the line through P1, P, P3. We apply (VIL.2.1.1) with P = Py and Q) = P».
This tells us that L is tangent to E at Pl, and we also have P3 S E, SO we
find that 2P1 + P3 = 0. Since we are assurmng that P1 = PQ, we conclude
that P; € Eys(k) and that Py + P, + Py = 0. O

Note that if v(A) = 0, so A # 0, then E is nonsingular, so E,, = E
and Ey(K) = E(K). In this case, (VIL.2.1) says that E(K) is built from two pieces,
namely E1(K) and E(k). The group E(k) is the set of points on an elliptic curve
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defined over a field that is smaller than K, and indeed we often consider the situa-
tion in which k is a finite field, in which case we analyzed E(k) is some detail in
Chapter V.

The next proposition shows that the other part, £ (K ), is also an object with
which we are already familiar.

Proposition 2.2. Let E /K be given by a minimal Weierstrass equation, let E /R be
the formal group associated to E as in (IV.2.2.3), and let w(z) € R[z] be the power
series from (IV.1.1). Then the map

. z 1
E E (K _—
=m0 o ()
is an isomorphism of groups. (We understand that z = 0 goes to O € Ei(K). For
the definition of E(M), see IV §3).)

PROOF. From (IV.1.1b), the point (z/w(z), —1/w(2)), when considered as a pair
of power series, satisfies the Weierstrass equation for F. Since

w(z) = 23(1+---) € R[#],

we see that w(z) converges for every z € M. It follows that (z/w(z), —1/w(z)) is
in E(K) for z € M, and since v(—1/w(z)) = —3v(z) < 0, it is even in Ey (K).
Thus we have a well-defined map of sets

BM) — Ey(K), 2 <w’(zz)w(12)) .

Further, in deriving the power series giving the group law on E, we simply used the
group law on F in the (z, w)-plane and replaced w with w(z). Therefore the map is
a homomorphism. Further, since w(z) = 0 only for z = 0, the map is injective, so it
remains to show that the image is all of F; (K).

Let (z,y) € Ey(K). Since (z,y) reduces modulo 7 to the point at infinity
on E(k), we see that v(z) < 0 and v(y) < 0. But then from the Weierstrass equation
y? +--- =23+ ---, we must have

3v(x) = 2v(y) = —6r

for some integer r > 1. Hence z/y € M, so the map

~ €T

Ei(K) — E(M), (9c,y)|—>—§7

is well-defined. Again, since the group law on E (M) is defined using the group law
on F, this map is a homomorphism, and it is clearly injective. Hence we have two
injections

E(M) — E|(K) — E(M)

whose composition is the identity map, so they are isomorphisms. O
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VII.3 Points of Finite Order

In this section we analyze the points of finite order in the group F(K). Although we
later prove a stronger result (VII.3.4), we start with an easy proposition that provides
a crucial ingredient in the proof of the weak Mordell-Weil theorem (VIIL.1.1).

Proposition 3.1. Let E/K be an elliptic curve and let m > 1 be an integer that is
relatively prime to char(k).
(a) The subgroup E1(K) has no nontrivial points of order m.
(b) Assume further that the reduced curve E/k is nonsingular. Then the reduction

map .

E(K)[m] — E(k)

is injective, where E(K)[m] denotes the set of points of order m in E(K).

PROOF. From (VIIL.2.1) we have an exact sequence
0 — By(K) — Eo(K) — Eys(k) — 0.

We know from (VIL2.2) that B (K) = E(M), where E is the formal group asso-
ciated to F, and our general result on formal groups (IV.3.2b) says that E (M) has
no nontrivial elements of order m. This proves (a). If we further assume that F is
nonsingular, then Ey(K) = E(K) and Ey(k) = E(k), so the m-torsion of E(K)
injects into E(k), which proves (b). O

Application 3.2. Repeated use of (VII.3.1) generally provides the quickest method
for finding the torsion subgroup of an elliptic curve defined over a number field. Thus
let K be a number field and let K, be its completion at the discrete valuation v. It is
clear that F(K) injects into E(K,), so by applying (VIL3.1) for several different v,
we can obtain information about the torsion in F(K). We illustrate with several
examples over Q.

Example 3.3.1. Let E/Q be the elliptic curve
E:y’4+y=2—z+1.

The discriminant of £ i§ A = —611 = —13 - 47, so Eis nonsingular modulo 2.
It is easy to check that F(Fy) = {O} and E(Q)[2] = {O}; hence (VIL.3.1) implies
that £(Q) has no nonzero torsion points.

Example 3.3.2. Let E/Q be the elliptic curve
E:y? =2%+3.
It has discriminant A = —2%.3% so E is nonsingular modulo p for every
prime p > 5. One easily checks that
#E(Fs)=6 and  #E(F;) =13.

Hence E(Q) has no nontrivial torsion. In particular, the point (1,2) € E(Q) has
infinite order, so E(Q) is an infinite set, two facts that are by no means obvious.
For a complete analysis of F(Q) for curves of the form y?2 =23 + D, see [94] or
Exercise 10.19.
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Example 3.3.3. Let £/Q be the elliptic curve
E:y’=2+x

having discriminant A = —64. The point (0,0) € E(Q) is a point of order 2. We
compute . 3 .
#E[Fs) =4,  #E(F;) =4,  #E(F7) =8

It is not hard to check (Exercise 5.12) that #E(F,) is divisible by 4 for every
prime p > 3. However, we gain additional information by looking at the group
structure modulo different primes. Thus

E(Fs) = {0,(0,0),(2,1),(2,2)} = Z/4Z,
E(Fs) = {0,(0,0),(2,0), (2,0)} = (Z/2Z)>.

Since F(Q)ors injects into both of these groups, we see that (0, 0) is the only nonzero
torsion point in E(Q).

The next result, which is due to Cassels, gives a precise bound on the denom-
inator of a torsion point. Following Katz—Lang [135, Theorem III.3.7], we give a
proof based on general facts concerning formal groups. For an exposition of Cassel’s
original proof, which involves a careful analysis of division polynomials, see [36,
Theorem 17.2] or [135, Theorem II1.1.5].

Theorem 3.4. Assume that char(K) = 0 and that p = char(k) > 0. Let E/K be
an elliptic curve given by a Weierstrass equation

E:y® 4+ a1zy + asy = 2° + asx® + aux + ag

with all a; € R. (Note that the equation need not be minimal.) Let P € E(K) be a
point of exact order m > 2.

(a) If m is not a power of p, then x(P),y(P) € R.

®) If m = p", then

™2(P),m"y(P) € R with 1= {n U(p)nl} ,
pT—=p

where [t] denotes the greatest integer in t.

PROOF. If z(P) € R, there is nothing to prove, so we assume that v(z(P)) < 0.
If the equation for E is not minimal and if (2’,y’) are coordinates for a minimal
equation, then we see from (VII.1.3d) that

v(z(P)) > v(2'(P)) and v(y(P)) > v(y'(P)).

It thus suffices to prove the theorem for a minimal Weierstrass equation.
Since v(ac(P)) < 0, we see from the Weierstrass equation (and the nonarchime-
dean nature of v) that
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3v(z(P)) = 2v(y(P)) = —6s for some integer s > 1.

Further, the point P is in E;(K), the kernel of the reduction map, so under the
isomorphism in (VIL.2.2), the point P corresponds to the element —z(P)/y(P) in
the formal group E(M) But (IV.3.2b) tells us that E(M) contains no torsion of
order prime to p, which proves (a).

To prove (b), we use (IV.6.1). The assumption that —xz(P)/y(P) has exact or-
der p in E(M) implies that

. (_w(P)) . )

y(P)) — pr—pnt

Since 72%z(P) and 73%y(P) are in R, this gives the desired result. O

Application 3.5. Let £/Q be an elliptic curve given by a Weierstrass equation
having coefficients in Z, and let P € E(Q) be a point of exact order m. Em-
bedding E(Q) into E(Q,) for various primes, we deduce integrality conditions
on the coordinates of P. Thus if m is not a prime power, then (VII.3.4a) implies
that 2:(P),y(P) € Z. And if m = p" is a prime power, letting v be the normalized
valuation associated to p, we have

[p“ Qi(lz)?)"l] - L?" —1p”1} B

unless p = 2 and n = 1. We conclude that z(P),y(P) € Z for every torsion
point P € E(Q) whose exact order is at least 3. This is best possible, as shown by
the example

11

For a further discussion of torsion points over number fields, see (VIII §7).

VII.4 The Action of Inertia

In this section we reinterpret the injectivity of torsion (VII.3.1b) in terms of the action
of the Galois group on torsion points. We set the following notation:

K™  the maximal unramified extension of K.
I, the inertia subgroup of Gz /-

Unramified extensions of K correspond to extensions of the residue field k, so the
absolute Galois group of K decomposes as

1 —— GK/Knr —_— Gf(/K — GKnr/K — 1.

I,U GE/k
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In other words, the inertia group /,, is the set of elements of G ¢ - that act trivially on
the residue field k. (For basic properties of local fields, see [92, §7], [142, Chapters I
and II], or [233, Chapters I-IV]. Remember that both K and % are assumed to be
perfect.)

Definition. Let ¥ be a set on which Gz /i acts. We say that X is unramified at v if
the action of I, on X is trivial.

Let F/K be an elliptic curve. We have seen (I §7) that G ¢ /K acts on the torsion
subgroups E[m] and on the Tate modules 7;(E) of E.

Proposition 4.1. Let E /K be an elliptic curve such that the reduced curve E/k is

nonsingular.

(a) Let m > 1 be an integer that is relatively prime to char(k), i.e., satisfying
v(m) = 0. Then E[m] is unramified at v.

(b) Let £ be a prime with £ # char(k). Then Ty(E) is unramified at v.

PROOF. (a) Let K'/K be a finite extension satisfying E[m] C E(K'), and let
R’ = the ring of integers of K’,
M’ = the maximal ideal of R’,
k" = the residue field of R/, i.e., k' = R’ /M,

v’ = the valuation of K.

Our assumption that E has nonsingular reduction means that if we take a minimal
Weierstrass equation for F at v, then its discriminant satisfies v(A) = 0. Since the
restriction of v/ to K is a multiple of v, we see that v'(A) = 0, so the Weier-
strass equation is also minimal at v" and the reduced curve E/k’ is nonsingular.
Now (VIL.3.1b) implies that the reduction map

Elm] — E(K')
is injective.
Let o € I, and P € E[m]. We need to show that P = P. From the definition
of the inertia group, the element o acts trivially on E(k'), so

Pe—P=P° —P=0.

But P — P is clearly in E[m], so the injectivity of the map E[m] — E(k') tells us
that P7 — P = O.

(b) This follows immediately from (a) and the definition of Ty(E) as the inverse
limit of E'[¢"]. O

There is a converse to (VIL.4.1) that is known as the criterion of Néron—-Ogg—
Shafarevich. It characterizes nonsingularity of E /k in terms of the action of the
inertia group on torsion points. We return to this topic in (VII §7), after first studying
the reduced curve £ more closely.
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VILI.5 Good and Bad Reduction

Let F//K be an elliptic curve. From our general knowledge of Weierstrass equa-
tions (III.1.4), the reduced curve E is of one of three types. We classify F according
to these possibilities.

Definition. Let E/K be an elliptic curve, and let E be the reduction modulo M of
a minimal Weierstrass equation for E.

(a) F has good (or stable) reduction if Fis nonsingular.

(b) E has multiplicative (or semistable) reduction if F has a node.

(¢) FE has additive (or unstable) reduction if F has a cusp.
In cases (b) and (c) we say that E' has bad reduction. If E has multiplicative reduc-
tion, then the reduction is said to be split if the slopes of the tangent lines at the node
are in k, and otherwise it is said to be nonsplit.

It is quite easy to read off the reduction type of an elliptic curve from a minimal
Weierstrass equation.

Proposition 5.1. Let E/K be an elliptic curve given by a minimal Weierstrass equa-
tion
E: y2 4+ a1xy + asy = 22+ asx® + agr + ag.
Let A be the discriminant of this equation, and let c4 be the usual expression involy-
ing ai,...,ag as described in (II1 §1).
(a) E has good reduction if and only if v(A) = 0, i.e., A € R*. In this case E/k is
an elliptic curve.
(b) E has multiplicative reduction if and only if v(A) > 0 and v(cs) = 0,
ie., A € Mand c, € R*. In this case Ey is the multiplicative group,

Bos(k) = E.

(c) E has additive reduction if and only if v(A) > 0 and v(cs) > O,
i.e, A cy € M. Inthis case Ey is the additive group,

I

En(k) = k™.

PROOF. The reduction type of £ follows from (IIL.1.4) applied to the reduced Weier-
strass equation over the field k. Then the group Ey(k) is given by (II1.2.5). O

Example 5.2. Let p > 5 be a prime. Then the elliptic curve
Ei:y? =2 +p2®+1

has good reduction over @, while
Ey: vy =234+224p

has (split) multiplicative reduction over Q,,, and
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Es:y® =2 +p

has additive reduction over Q,,. If we go to the extension field Q(\fyf)), then Fs
attains good reduction, since the substitution

z— Ypa’, y— /DY,

yields a minimal Weierstrass equation having good reduction. On the other hand,
the curve E'3 has multiplicative reduction over every extension of Q,,. This is true in
general; after extending the ground field, additive reduction turns into either multi-
plicative or good reduction, while the latter two do not change; see (VII.5.4). This
suggests the origin of the terms stable, semistable, and unstable, although they also
have quite precise definitions in terms of the stability of points in moduli space. For
a high-powered account of the general theory, see [187].

When an elliptic curve £/ K has bad reduction, it is often useful to know whether
it attains good reduction over some extension of K. We give this property a name.

Definition. Let £//K be an elliptic curve. We say that E/K has potential good
reduction if there is a finite extension K’/ K such that F has good reduction over K.

Example 5.3. If K is a finite extension of Q,, and if £/ K has complex multiplica-
tion, then one can show that E has potential good reduction; see Exercise 7.10.

The next proposition explains how reduction type behaves under field exten-
sion, and the proposition immediately following provides a useful characterization
of when an elliptic curve has potential good reduction.

Proposition 5.4. (Semistable reduction theorem) Let E /K be an elliptic curve.

(a) Let K'/K be an unramified extension. Then the reduction type of E over K
(good, multiplicative, or additive) is the same as the reduction type of E
over K'.

(b) Let K'/K be a finite extension. If E has either good or multiplicative reduction
over K, then it has the same reduction type over K'.

(c) There exists a finite extension K'/K such that E has either good or (split)
multiplicative reduction over K.

Proposition 5.5. Let E/K be an elliptic curve. Then E has potential good reduction
if and only if its j-invariant is integral, i.e., if and only if j(E) € R.

PROOF OF (VIL.5.4). (a) For arbitrary characteristic this follows from Tate’s al-
gorithm; see [266, IV §9] or [283]. We prove the result under the assumption
that char(k) > 5, so E has a minimal Weierstrass equation over K of the form

E:y? =23+ Az + B.

Let R’ be the ring of integers of K’, let v’ be the valuation on K’ extending v,
and let
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be a change of coordinates that produces a minimal equation for E over K.
Since K'/K is unramified, we can find a v € K with u/u’ € R'*. Then the sub-
stitution

Xr = ’U,2I’/, Yy = Ugy/,

also gives a minimal equation for E/K’, since
o' (umPA) =o' (W) 712A).

But this new equation has coefficients in R, so by the minimality of the original
equation over K, we have v(u) = 0. Hence the original equation is also minimal
over K'. Further, since v(A) = v'(A) and v(eq) = v'(cq), we see from (VIL5.1)
that the reduction type of E over K is the same as its reduction type over K.

(b) Take a minimal Weierstrass equation for F over K with corresponding quanti-
ties A and ¢4, and let R’ and v’ be as in the proof of (a). Further, let

= u?z +r, y=udy + sulx’ +t,

be a change of coordinates giving a minimal Weierstrass equation for £ over K. The
quantities A’ and ¢ associated to this new equation satisfy

0 <v'(A") =0 (u"'2A) and  0<7'(c) =0 (u"cy).
From (VII.1.3d) we have u € R’, and hence
0 <v'(u) < min iv’(A) 1v'(c )
< < D g lea) o
However, for good (respectively multiplicative) reduction, (VIL.5.1a,b) tells us that
v(A) = 0 (respectively v(cq) = 0), so in both cases we have v'(u) = 0. Hence
V(A" =0'(A) and V() = v (cq),

and another application of (VIL.5.1) shows that F has good (respectively multiplica-
tive) reduction over K.

(c) We assume that char(k) # 2 and take a finite extension of K such that E/K
has a Weierstrass equation in Legendre normal form (II1.1.7),

E:y=a(@-1)(z=N), A#£0,L
(The case char(k) = 2 is covered in (A.1.4a).) For the Legendre equation we have
ca=16(A>—=X+1) and A =161*(\—1)2

We consider three cases.

Casel. A\ € Rand A #Z O or 1 (mod M). Then A € R*, so the given equation
has good reduction.
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Case2. A € Rand A\ = O or 1 (mod M). Then A € M and cs € R*, so the
given equation has multiplicative reduction.

Case 3. A ¢ R. Letr > 1 be the integer such that 7"\ € R*. Then, replacing K
by K (y/7) if necessary, the substitutions z = 7~ "2’ and y = 737/2y give the
Weierstrass equation
() = o'(a’ = 7")(a' = 7N,
This equation for E has integral coefficients and A’ € M and ¢, € R*, so F has
multiplicative reduction.
Finally, we note that in Cases (2) and (3), if the multiplicative reduction is not

already split, then it becomes split over a quadratic extension. O

PROOF OF (VIL5.5). As in the proof of (VIL.5.4c), we make the assumption that
char(k) # 2 and we take a finite extension of K such that E' has a Weierstrass equa-
tion in Legendre form (II1.1.7),

E:y?=z(x—1)(z—\), A#0,1.

(For char(k) = 2, see (A.1.4b).) By assumption, we have j = j(E) € R, and an
easy computation (III.1.7b) shows that j and )\ are related by the equation

256(1 — A(1—\))° —jA%(1 = A2 =0,
This equation and the integrality of 7 imply that
A€R and A#O0orl(mod M).

Thus the given Legendre equation has integral coefficients and good reduction.

Conversely, suppose that F has potential good reduction. Let K’/K be a finite
extension such that E has good reduction over K’, let R’ be the ring of integers of K,
and let A’ and ¢/, be the quantities associated to a minimal Weierstrass equation for F
over K'. Since FE has good reduction over K, we have A’ € (R')*, and hence

) AL
J(E) = (A4? eER.
But j(E) € K, since F is defined over K, so j(E) € R. O

VIL.6 The Group E/E,

Recall that the group Ey(K) consists of the points of £(/) that do not reduce to
a singular point of E(k). Further, from (VIL.2.1) we know that Fy(K) is made
up of two pieces that we have analyzed fairly closely, namely F, (k) and the for-

mal group Ey(K) = E(M). We are left to study the remaining piece, the quo-
tient E(K)/Eo(K).
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The most important fact about this quotient is that it is finite. As the next the-
orem indicates, we can actually say quite a bit more. Unfortunately, a direct proof
working explicitly with Weierstrass equations is quite lengthy, and even the simpli-
fying assumption char(k) > 5 leads to a long case-by-case analysis. So we do not
give the proof in this volume. If the residue field k is finite, then the mere finiteness
of E(K)/Ey(K) can be proven by an easy compactness argument; see Exercise 7.6.

Theorem 6.1. (Kodaira, Néron) Let E/K be an elliptic curve. If E has split
multiplicative reduction over K, then E(K)/Eo(K) is a cyclic group of order
v(A) = —v(j). In all other cases, the group E(K)/Ey(K) is finite and has order at
most 4.

Corollary 6.2. The subgroup Eo(K) has finite index in E(K).

PROOF. The finiteness of E(K)/Ey(K) follows from the existence of the Néron
model, which is a group scheme over Spec(R) whose generic fiber is F/ K; see [266,
IV §85, 6]. The specific description of F(K)/Ey(K) comes from the complete
classification of the possible special fibers of a Néron model; see [266, IV §8].
Alternatively, it is possible to give an elementary, but lengthy, proof via explicit
computations with Weierstrass equations. See (C §15) for further discussion. O

Our most important application of (VIL.6.2) is the proof of the criterion of Néron—
Ogg—Shafarevich, which we give in the next section. Another interesting application
is the following result.

Proposition 6.3. Let K be a finite extension of Q,, so in particular char(K) = 0
and k is a finite field. Then E(K) contains a subgroup of finite index that is isomor-
phic to R, the additive group of R.

PROOF. From (VIL.6.2) we know that E(K)/E(K) is finite, and (VIL.2.1) tells us
that Eo(K)/F,(K) is isomorphic to the finite group Fys(k). (This is where we use
the fact that k is finite.) It thus suffices to prove that E(K) has a subgroup of finite
index that is isomorphic to R*. We know from (VIIL.2.2) that 1 (K) is isomorphic
to the formal group E(M), and (IV.3.2a) tells us that £(M) has a filtration

EM) c E(M?) c E(M?) C---.

Further, each quotient (M) /E(M 1) is isomorphic to M’/ M#+!, which is fi-
nite, since it is a one-dimensional k-vector space, so it suffices to prove that there is
some 7 > 1 such that £ (M) is isomorphic to RT. This last assertion is a conse-
quence of (IV.6.4b), which says that if r is sufficiently large, then the formal loga-
rithm map

log : EM") —=— G(M") =a"R= R

is an isomorphism. O
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VIL.7 The Criterion of Néron—Ogg—Shafarevich

If an elliptic curve E/K has good reduction and m > 1 is an integer that is prime
to char(k), then we have seen (VIL.4.1) that the torsion subgroup E[m] is unramified.
Various partial converses to this statement were proven by Néron, Ogg, and Shafare-
vich, and these were vastly generalized by Serre and Tate. We follow the exposition
in [239].

Theorem 7.1. (Criterion of Néron—Ogg-Shafarevich). Ler E/K be an elliptic

curve. Then the following are equivalent:

(a) F has good reduction at K.

(b) E[m)] is unramified at v for all integers m > 1 that are relatively prime
to char(k).

(¢) The Tate module T;(F) is unramified at v for some (all) primes { satisfy-
ing ¢ # char(k).

(d) E[m)] is unramified at v for infinitely many integers m > 1 that are relatively
prime to char (k).

PROOF. The implication (a) = (b) has already been proven in (VIL.4.1), and the
implications(b) = (c) = (d) are obvious. (Note that T;(E) is unramified if and only
if E[¢"] is unramified for every n > 1.) It remains to prove that (d) implies (a).

Assume that (d) is true. Let K™ be the maximal unramified extension of K, and
choose an integer m satisfying the following conditions:

(i) m is relatively prime to char(k).
i) m > #E(K™)/Ey(K™).
(iii) E[m] is unramified at v.

It is clear that such an m exists, since we are assuming that (d) is true and the quotient
group E(K™)/Ey(K™) is finite from (VIL.6.2).
We consider the two exact sequences

0 — Eo(K™) — E(K™) — E(K™)/Eo(K™) — 0,
0 — Ey(K™) — Eo(K™) — En(k) — 0.

(Note that & is the residue field of the ring of integers of K™.) Since E[m] C E(K™),
we see that £/(K™) has a subgroup that is isomorphic to (Z/mZ)?. But from (ii), the
group E(K™)/Ey(K™) has order strictly less than m. It follows from the first exact
sequence that there is a prime ¢ dividing m such that F(K™) contains a subgroup
isomorphic to (Z/¢Z)?. Now look at the second exact sequence. From (VII.3.1a), the
group 1 (K™) contains no nontrivial /-torsion, so we conclude that Fy(k) contains
a subgroup isomorphic to (Z/(Z)?.

Suppose that E has bad reduction over K™. If the reduction is multiplicative,
then (VIL.5.1Db) tells us that

Bu(F) =
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in which case the ¢-torsion p, is isomorphic to Z/¢Z. Hence E cannot have multi-
plicative reduction. Similarly, if &/ has additive reduction over K™, then (VIL5.1c)
says that

En(k) = kT,

SO E‘nS(E) has no /¢-torsion. Thus E also cannot have additive reduction. Having
eliminated multiplicative and additive reduction as possibilities, all that remains is
for E to have good reduction over K™. Finally, since K™ /K is unramified, we
use (VIL.5.4a) to conclude that E has good reduction over K. ]

Corollary 7.2. Let E1 /K and Es/K be elliptic curves that are isogenous over K.
Then E4 has good reduction over K if and only if E5 has good reduction over K.

PROOF. Let ¢ : F; — FE5 be a nonzero isogeny defined over K, and let m > 2 be
an integer that is relatively prime to both char(k) and deg ¢. Then the induced map

¢ : Ey[m| — Es[m]

is an isomorphism of G g x-modules, so in particular, either both E7[m] and E2[m]
are unramified at v, or both are ramified at v. Now use the (a) < (d) equivalence
in (VIL7.1). O

Another immediate corollary of (VIL.7.1) is a criterion, in terms of the action of
inertia, for determining whether an elliptic curve has potential good reduction.

Corollary 7.3. Let E/K be an elliptic curve. Then E has potential good reduction
if and only if the inertia group I, acts on the Tate module T;(E) through a finite
quotient for some (all) prime(s) ¢ # char(k).

PROOF. Suppose that F has potential good reduction, and let K’/ K be a finite ex-
tension such that E has good reduction over K’. Extending K’, we may assume
that K'/K is a Galois extension. Let v’ be the valuation on K’ and let I, be the
inertia group of G’z i, We know from (VIL7.1) that [, acts trivially on T (E) for
any prime ¢ # char(k). Hence the action of I,, on Ty(F) factors through the finite
quotient I, /I,. This proves one implication.

Assume now that for some prime ¢ # char(k), the inertia group I,, acts on T (E)
through a finite quotient, say I,,/.J. Then the fixed field of .J, which we denote
by K7, is a finite extension of K™ = K. Hence we can find a finite exten-
sion K’/ K such that K7 is the compositum

K7 = K'K™.

Then the inertia group of K’ is equal to J, and by assumption J acts trivially
on T;(E). Now (VIL7.1) implies that F has good reduction over K. O
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Exercises

7.1. Assume that char(k) # 2, 3.
(a) Let E/K be an elliptic curve given by a Weierstrass equation with coefficients a; € R.
Prove that the equation is minimal if and only if either v(A) < 12 or v(c4) < 4.
(b) Let E/K be given by a minimal Weierstrass equation of the form

E:y2:x3+A:c+B.

Prove that E' has
(i) good reduction <= 443 + 27B? € R*,
(ii) multiplicative reduction <= 443 + 27B? € M and AB € R*,
(iii) additive reduction <= A € M and B € M.

7.2. Let E/K be an elliptic curve with j-invariant j(F) € R. Prove that the minimal dis-
criminant A of E satisfies

v(A) < 12 4 12v(2) + 6v(3).
7.3. Describe all Weierstrass equations
E:y’ + a1zy + asy = 2° + ax2” + auz + ag

with a; € Z and A # 0 such that E(Q) contains a torsion point P with z(P) ¢ Z.
(Hint. See (VIIL.3.5).)

7.4. Let E/K be an elliptic curve given by a minimal Weierstrass equation, and for each
n > 1, define a subset of E(K) by

En(K)={P € E(K):v(x(P)) < -2n} U{O}.

(a) Prove that F,, (K) is a subgroup of E(K).
(b) Prove that
En(K)/Eny1(K) = k™.

7.5. Show that the following elliptic curves have good reduction over a field of the indicated
form by writing down a minimal equation for £ over that field.

@ E:y®=a’+u, Q2(n,i), n* =2, i* = —1.
() E:y*+y=2a° Qs(m,n), 72 =+/=3, n* =2.
© E:y*=a*+2>-32z-2, Qs(m), 7' =5.

7.6. Assume that K is locally compact for the topology induced by the discrete valuation v.
(This is equivalent to the assumption that the residue field & is finite; see [42, §7].) This exer-
cise sketches a proof of (VII.6.2) for such fields. However, we note that for applications such
as (VIL7.1) we need to know the stronger statement that E(K)/FEo(K) is finite when the
residue field k is algebraically closed.
(a) Use v to define a topology on P (K) and show that P™¥ (K) is compact for this topology.
(b) Let E/K be an elliptic curve, let E(K) C P?*(K) be the inclusion coming from
a minimal Weierstrass equation, and give FE(K) the topology induced from P?(K).
Prove that E(K) is compact, and that for any P € E(K), the translation-by-P
map 7p : E(K) — E(K) is continuous.
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(c) Prove that Eo(K) is an open subset of E(K). (It is also a closed subset!)
(d) Prove that E(K)/Eo(K) is finite.

7.7. The following examples illustrate some special cases of (VIL.6.1). We assume throughout
that char(k) # 2, 3. Let E/K be an elliptic curve given by a Weierstrass equation

E:yQ:x?’—l—Aaz—i—B‘

(a) Ifv(A) > 1and v(B) = 1, prove that E(K) = Eo(K).

(b) If v(A) = 1 and v(B) > 2, prove that E(K)/Eo(K) = Z/2Z. (Hint. Suppose that
P,Q ¢ Eo(K). Use the addition formula to show that P + Q) € Eo(K).)

(c) If v(A) > 2 and v(B) = 2, prove that E(K)/Ey(K) is either 0 or Z/3Z.

7.8. Let /K be an elliptic curve, and let m be an integer that is relatively prime to char(k).
Prove that
E() (Knr)/mE()(Km) =0.

7.9. Let E/K be an elliptic curve with potential good reduction, let m be an integer that is
relatively prime to char(k), and let K (E[m]) be the field obtained by adjoining to K the
coordinates of the points in E[m)].
(a) Prove that the inertia group of K (E[m]) /K is independent of m. (Hint. For each prime
£ # char(k), let £/ = £if £ > 3 and let ' = 4 if £ = 2. Show that p,(I,) has trivial
intersection with the kernel of the map

Aut(Ty(E)) — Aut(Ty(E)/¢'T)(E)) = GLy(Z/('Z).

Characterize the inertia group of K (E[m} ) /K in terms of the kernels of the various py.)
(b) Prove that K (E[m]) /K is unramified if and only if E has good reduction at v.
(c) If char(k) > 5, prove that K (E [m]) /K is tamely ramified.

7.10. Let K be a finite extension of Q,, let R be the ring of integers of K, and let £/ K be an
elliptic curve with complex multiplication. Prove that j(F) € R. (Hint. Use the description of
the maximal abelian extension K™ of K provided by local class field theory to prove that the
action of G gav / jc ON T, (F) factors through a finite quotient. Then apply (VIL5.5), (VIL.7.3),
and Exercise 3.24.)

7.11. Use Exercise 3.23 to prove (VIL.5.4c) and (VIL5.5) in characteristic 2.

7.12. Let [K : Qp] = 2, let E/K be an elliptic curve given by a Weierstrass equation having
coefficients in R, and let P € E(K) be a point of exact order m > 2 such that z(P) ¢ R,
i.e., such that v (z(P)) < 0.
(a) Prove that p = 2 or 3 and that m = 2, 3, or 4. Give examples to show that each value
of m is possible.
(b) Suppose that the reduced curve E /k is supersingular. Prove that p = m = 2.

7.13. Let E/F, be an elliptic curve with the property that #E(FF,,) = p. (Such curves are
called anomalous.) Let P,Q € E(F,) be points such that @ is in the subgroup generated
by P. This exercise describes an algorithm that solves the elliptic curve discrete logarithm
problem (ECDLP) for anomalous curves, i.e., it finds an integer m satisfying @ = [m]P.
(See (V.1.6) and Exercise 5.18.)
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(a) Let E'/Q, be an elliptic curve whose reduction modulo p is E /F,,. Prove that there are
points P’, Q" € E'(Q,) whose reductions modulo p are, respectively, P and Q.
(b) Prove that [p] P’ and [p]Q’ are in the formal group E1(Qp).
(c) Let
logp : E} (Qp) — Qp

be the formal logarithm map (IV.6.4a), and let

o (192
log g ([p]P’)

Prove that r € Z,,.
(d) Letm € Z be an integer satisfying m = r (mod p). Prove that Q = [m|P.

7.14. Let P € Fo(K) and let L be the tangent line to £ at P. Prove that the reduced line L
is the tangent line to E at P; cf. (VIL.2.1.1).

7.15. Let P1, P, € Eo(K) and P; € E(K) satisfy P1 + P> + P3 = O, and let L be the
line intersecting £ at P, P2, P3, with appropriate multiplicities. For each of the following

situations, show that L intersects E at Py, P>, P3 with appropriate multiplicities, and hence
that P € Ew(k), Ps € Eo(K), and P+ P+ Py = 0. Use your results to complete the
proof of (VIL.2.1).

(@) Pi, P2, P are distinct and P, = P> = Ps.

(b) P, =P, # Psand P, = P, # Ps.

(C) P1 = P2 7é P3 and ]51 = ]52 = ]55

d) Pp=P=Ps.
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Chapter VIII

Elliptic Curves over Global
Fields

Let K be a number field and let E/K be an elliptic curve. Our primary goal in this
chapter is to prove the following result.

Mordell-Weil Theorem. The group E(K) is finitely generated.

The proof of this theorem consists of two quite distinct parts, the so-called “weak
Mordell-Weil theorem,” proven in (VIII §1), and the “infinite descent” using height
functions proven in (VIII §§3,5,6). We also give, in (VIII §4), a separate proof of the
descent step in the simplest case, where the general theory of height functions may
be replaced by explicit polynomial calculations.

The Mordell-Weil theorem tells us that the Mordell-Weil group E(K) has the
form

E(K) =2 E(K)s X 2",

where the torsion subgroup F(K ) is finite and the rank r of E(K) is a nonneg-
ative integer. For a given elliptic curve, it is relatively easy to determine the torsion
subgroup; see (VIII §7). The rank is much more difficult to compute, and in gen-
eral there is no known procedure that is guaranteed to yield an answer. We study the
question of computing the rank of E(K) in more detail in Chapter X.

The following notation will be used for the next three chapters:

K anumber field.
My acomplete set of inequivalent absolute values on K.
My the archimedean absolute values in M.
M3}, the nonarchimedean absolute values in M.
v(z) = —log|z|,, for an absolute value v € M.

ord, normalized valuation forv € M2, ie., satisfying ord, (K*) = Z.

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 207
in Mathematics 106, DOI 10.1007/978-0-387-09494-6_VIII,
(© Springer Science+Business Media, LLC 2009
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R the ring of integers of K, equal to {x € K : v(z) > O forallv € M%}.
R*  the unit group of R, equal to {z € K : v(z) =0 forallv € MY }.
K,  the completion of K atwv forv € Mx.
R, thering of integers of K, forv € MY.
M,  the maximal ideal of R, forv € M.
k,  the residue field of R, forv € M.

Finally, in those situations in which it is important to have the absolute values
in My coherently normalized, such as in the theory of height functions, we always
adopt the “standard normalization” as described in (VIII §5).

VIII.1 The Weak Mordell-Weil Theorem

Our goal in this section is to prove the following result.

Theorem 1.1. (Weak Mordell-Weil Theorem) Let K be a number field, let E /K be
an elliptic curve, and let m > 2 be an integer. Then

E(K)/mE(K)
is a finite group.

For the rest of this section, £/ K and m are as in the statement of (VIIL.1.1). We
begin with the following reduction lemma.

Lemma 1.1.1. Let L/K be a finite Galois extension. If E(L)/mE(L) is finite,
then E(K)/mE(K) is also finite.

PROOF. The inclusion F(K) — FE(L) induces a natural map
E(K)/mE(K) — E(L)/mE(L).
Let @ be the kernel of this map, so

E(K) NmE(L)

¢ =B R

Then for each P (mod mE(K)) in ®, we can choose a point Qp € E(L) satisfy-
ing [m]Qp = P. (The point Qp need not be unique, of course.) Having done this,
we define a map of sets (which is not, in general, a group homomorphism)

/\p:GL/KHE[m], )\p(O’):Qgprp.
Note that Q% — Qp is in E[m)], since

[m)(QF — Qp) = ([MQp)” — [M|Qp = P — P =0.
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(The map Ap is an example of a 1-cocycle; see (VIII §2).)
Suppose that P, P’ € E(K) N mE|[L] satisfy \p = Ap/. Then

(Q@p—Qp)’ =Qp—Qp  forallo € Gk,
so Qp — Qpr € E(K). It follows that
P—P =m|Qp — [mQp € mE(K),
and hence that P = P’ (mod mE(K)). This proves that the association
<I>—>Map(GL/K,E[m]), P+—— \p,

is one-to-one. But G/ and E[m] are finite sets, so there is only a finite number of
maps between them. Therefore the set ® is finite.
Finally, the exact sequence

0— ®— E(K)/mE(K)— E(L)/mE(L)
nests E(K)/mE(K) between two finite groups, so it, too, is finite. O

Using (VIIL.1.1.1), we see that it suffices to prove the weak Mordell-Weil theo-
rem (VIII.1.1) under the additional assumption that

E[m] ¢ E(K).

For this remainder of this section we assume, without further comment, that this
inclusion is true.

The next step is to translate the putative finiteness of E(K)/mE(K) into a state-
ment about a certain field extension of K. In order to do this, we use the following
tool.

Definition. The Kummer pairing

k1 E(K) x Gg e — Elm]

is defined as follows. Let P € E(K) and choose any point ) € E(K) satisfy-
ing [m]@Q = P. Then
k(Po)=Q° — Q.

The next result describes basic properties of the Kummer pairing.

Proposition 1.2. (a) The Kummer pairing is well-defined.

(b) The Kummer pairing is bilinear.

(c) The kernel of the Kummer pairing on the left is mE(K).

(d) The kernel of the Kummer pairing on the right is G i /1> Where

L = K (im] " B(K))

is the compositum of all fields K(Q) as @ ranges over the points in E(K)
satisfying [m]Q € E(K).
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Hence the Kummer pairing induces a perfect bilinear pairing
where L is the field given in (d).

Remark 1.2.1. The field L described in (VIII.1.2) is the elliptic analogue of the
classical Kummer extension K’/K obtained by adjoining all m™ roots to K. More
precisely, assuming that p,, C K, there is a perfect bilinear pairing

K*J(K*)" % Ggryie = M, (a,0) — ¥/a’ [ ¥a,
exactly analogous to the pairing E(K)/mE(K) x G,k — E[m]in (VIIL1.2).

PROOF OF (VIII.1.2). Most of this proposition follows immediately from basic
properties of group cohomology; see (VIII §2). For the convenience of the reader,
we give a direct proof here.

(a) We must show that (P, o) is in E[m] and that its value does not depend on the
choice of Q. For the first statement, we observe that

[mlk(P, o) = [mlQ” — [m]Q = P7 — P =0,

since P € E(K) and o fixes K. For the second statement, we note that any other
choice has the form @) + T for some T' € E[m]. Then

Q+T)°-Q+T)=Q"+T° -Q-T=0Q" - Q,

because we have assumed that E[m| C E(K), so o fixes T
(b) The linearity in P is obvious. For linearity in o, we let 0,7 € Gy x and
compute

K(PoT) =Q7T —Q=(Q7 = Q)" —(Q" = Q) = K(P,0)" + K(P,7).
But x(P,0) € E[m] C E(K), so k(P,0) is fixed by 7.
(c) Suppose that P € mE(K), say P = [m]Q with Q € E(K). Then @ is fixed
by every 0 € G /. 0
k(Po)=Q% —Q = 0.
Conversely, suppose that x(P,0) = 0 for all o € G /i - Then choosing some
point Q € E(K) with [m]Q = P, we have

Q7 =Q forallo € Gg k.

Therefore ) € E(K), so P = [m]Q € mE(K).
(d) Ifo € Ggp, then
H(P,O’):Qan:O,
since ) € E(L) from the definition of L. Conversely, suppose that o € G/

satisfies k(P, o) = O for all P € E(K). Then for every point Q € E(K) satisfy-
ing [m]Q € E(K) we have
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0 = ([mQ,0) = Q" - Q.

But L is the compositum of K (Q) over all such @, so o fixes L. Hence 0 € G /.-
Finally, the last statement of (VIII.1.2) is clear from what precedes it, once we

note that L/ K is Galois because elements of Gz, map [m] ™' E(K) to itself. Al-

ternatively, it follows from (d) that G/, is the kernel of the homomorphism

G[(/K—>Hom(E([(),E'[?TL])7 o'|—>/§(-,a)7
s0 G'g /1, is a normal subgroup of G i /- O

It follows from (VIII.1.2) that the finiteness of E(K)/mE(K) is equivalent to
the finiteness of the extension L/ K. The next step in the proof of the weak Mordell—
Weil theorem is to analyze this extension. Our main tool will be (VIL.3.1), which we
restate after making the appropriate definitions.

Definition. Let K be a number field and let £/ K be an elliptic curve. Let v € My
be a discrete valuation. Then E is said to have good (respectively bad) reduction at v
if E has good (respectively bad) reduction when considered over the completion K,
cf. (VII §5). Taking a minimal Weierstrass equation for E over K, we denote the
reduced curve over the residue field by E, /ky,. N.B. It is not always possible to
choose a single Weierstrass equation for £ over K that is simultaneously minimal
for all K,,. However, this can be done if K = Q. See (VIII §8) for further details.

Remark 1.3. Take any Weierstrass equation for E/K,
E: y2 + a2y + a3y = z° + a2x2 + aqx + ag,
say with discriminant A. Then for all but finitely v € MY we have
v(a;) >0 fori=1,...,6 and v(A)=0.

For any v satisfying these conditions, the given equation is already a minimal Weier-
strass equation and the reduced curve E, /k, is nonsingular. This shows that E has
good reduction at v for all but finitely many v € M.

Proposition 1.4. (restatement of (VIL.3.1b)) Let v € M?( be a discrete valuation
such that v(m) = 0 and such that E has good reduction at v. Then the reduction
map

E(K)[m] — Ey(ky)
is injective.
We are now ready to analyze the extension L/K appearing in (VIIL.1.2).

Proposition 1.5. Let
L =K ([m]"'B(K))

be the field defined in (VIII.1.24).
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(a) The extension L/ K is abelian and has exponent m, i.e., the Galois group G,/ k
is abelian and every element of G 1,/ i has order dividing m.
(b) Let

S={ve MY, : E has bad reduction atv}U{v e MY - v(m) # 0} UM.

The L/K is unramified outside S, i.e., ifv € Mg andv ¢ S, then L/K is
unramified at v.

PROOF. (a) This follows immediately from (VIII.1.2), which implies that there is an
injection
Gr/x — Hom(E(K), E[m]), ocr—k(-,0).

(b) Let v € Mg with v ¢ S, let Q € E(K) satisfy [m]Q € E(K), and
let K’ = K(Q). It suffices to show that K’/ K is unramified at v, since L is the com-
positum of all such K'. Let v’ € Mg be a place of K’ lying above v and let &/, /k,
be the corresponding extension of residue fields. The assumption that v ¢ S ensures
that E has good reduction at v, so it also has good reduction at v’, since we can take
the same Weierstrass equation. Thus we have the usual reduction map

E(K') — E(ky),

which we denote as usual by a tilde.
Let [y, C G be the inertia group for v’ /v, and take any element o € I,y /,,.

By definition, an element of inertia such as o acts trivially on E(k/,), so
G- -0-0
On the other hand, the fact that [m]Q € E(K) tells us that
Q7= Q) = (MQ)” - [ = 0.

Thus Q° — Q is a point of order m that is in the kernel of the reduction-modulo-v’
map. It follows from (VIII.1.4) that

Q" -Q=0.

This proves that @ is fixed by every element of the inertia group I, ,,, and hence
that K’ = K(Q) is unramified over K at v’. Since this holds for every v’ lying
over v and for every v ¢ S, this completes the proof that K’/ K is unramified outside
of S. O

All that remains to complete the proof of the weak Mordell-Weil theorem is to
show that any field extension L /K satisfying the conditions of (VIIL.1.5) is necessar-
ily a finite extension. The proof of this fact relies on the two fundamental finiteness
theorems of algebraic number theory, namely the finiteness of the ideal class group
and the finite generation of the group of S-units.
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Proposition 1.6. Let K be a number field, let S C My be a finite set of places
that contains Mz?, and let m > 2 be an integer. Let L /K be the maximal abelian
extension of K having exponent m that is unramified outside of S. Then L/K is a
finite extension.

PROOF. Suppose that we know that the proposition is true for some finite exten-
sion K’ of K, where S’ is the set of places of K’ lying over S. Then LK’ /K, being
abelian of exponent m unramified outside .S, would be finite, and hence L/K would
also be finite. It thus suffices to prove the proposition under the assumption that K
contains the m™ roots of unity g,,,.

Similarly, we may increase the size of the set .S, since this only has the effect of
making L larger. Using the fact that the class number of K is finite, we adjoin a finite
number of elements to S so that the ring of S-integers

Rs={a€ K :v(a) >0forallv e Mg withv ¢ S}

is a principal ideal domain. (Explicitly, choose integral ideals a1, . . ., aj representing
the ideal classes of K and adjoin to .S the valuations corresponding to the primes
dividing a; - - - a5.) We also enlarge S so as to ensure that v(m) = 0 forall v ¢ S.

We now apply the main theorem of Kummer theory, which says that if a field
of characteristic O contains u,,,, then its maximal abelian extension of exponent m
is obtained by adjoining the m™" roots of all of its elements. For a proof of this
result, see any basic textbook on field theory, for example [17, §2], [68, §17.3], or [7,
Theorem 25], or do Exercise 8.4. Thus L is the largest subfield of

K(%/a :a€K)

that is unramified outside of S.
Let v € Mg with v ¢ S. Consider the equation

Xm—a=0

over the local field K. Since v(m) = 0 and since the discriminant of the polyno-
mial X™ — a equals +m™a™"!, we see that K, ( %/a)/K, is unramified if and
only if

ord,(a) =0 (mod m).

(Recall that ord, is the normalized valuation associated to v.) We note that when
we adjoin m™™ roots, it is necessary to take only one representative for each class
in K*/(K*)™, so if we let

Ts={ae K*/(K*)™ :ord,(a) = 0 (mod m) for all v € M withv ¢ S},

then
LZK(%:GGTs).

To complete the proof of (VIIL.1.6), it suffices to show that the set Ts is finite.
Consider the natural map
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Ry — Ts.

We claim that this map is surjective. To see this, suppose that a € K™ represents
an element of T's. Then the ideal aRg is the m™ power of an ideal in Rg, since the
prime ideals of Rg correspond to the valuations v ¢ S. Using the fact that Rg is a
principal ideal domain, we can find a b € K* such that aRg = b™ Rg. Hence there
isawu € R satisfying

a=ub™.

Then a and u give the same element of T's, which proves that R surjects onto 7.
Further, the kernel of the map R — T clearly contains (R%)™, which proves that
there is a surjection

Ry/(Rg)™ — Ts.

(This map is actually an isomorphism.) Finally, we apply Dirichlet’s S-unit theo-
rem [142, V §1], which says that R% is a finitely generated group. It follows that T's
is finite, which completes the proof of the proposition. O

The preceding three propositions may now be combined to prove the main result
of this section.

PROOF OF THE WEAK MORDELL-WEIL THEOREM (VIIL.1.1). Let
L=K(m] ' E(K))

be the field defined in (VIIL1.2d). Since E[m] is finite, the perfect pairing given
in (VIIL2.1) shows that E(K)/mE(K) is finite if and only if G x is finite.
Now (VIII.1.5) says that L has certain properties, and (VIII.1.6) says that any ex-
tension of K having these properties is a finite extension. This gives the desired
result. (Note that (VIII.1.3) ensures that the set S of (VIII.1.5b) is a finite set.) [

Remark 1.7. The heart of the proof of the weak Mordell-Weil theorem lies in the
assertion that the field L = K ([m] ' E(K)) is a finite extension of K. We proved
this by first showing (VIIIL.1.5) that it is abelian of exponent m and that it is unram-
ified outside of a certain finite set S C M. The desired result then followed from
basic Kummer theory of fields as given in the proof of (VIII.1.6). It is worth noting
that rather than using (VIII.1.6), we could have used the more general theorem of
Minkowski that asserts that there are only finitely many extensions of K of bounded
degree that are unramified outside of S. To apply this in the present instance, note
that for any @ € [m| ! E(K), the field K (Q) has degree at most m? over K, since
the Galois conjugates of @ all have the form ) + T for some 7' € E[m] and we are
assuming that E[m] C E(K). It follows from Minkowski’s theorem that as () ranges
over [m]"!E(K), there are only finitely many possibilities for the fields K (Q).
Hence their compositum K ([m] ' E(K)) is a finite extension of K.

Remark on Effectivity 1.8. Let E/K be an elliptic curve with E[m] C E(K),
let S C My be the usual set of bad places for E/K as described in (VIIL.1.5b), and
let L/ K be the maximal abelian extension of K having exponent m such that L/ K
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is unramified outside of S. Then (VIIL.1.2) and (VIII.1.5) tell us that the Kummer
pairing induces an injection

E(K)/mE(K) — Hom(GL/K7 E[m})

It is possible to make the proof of (VIIL.1.6) completely explicit, and hence to ex-
actly determine the group G,/ ; see Exercise 8.1. Thus we can describe all of the
elements of the group Hom (G x, E[m]), so the crucial question is that of deter-
mining which of these elements come from points of F(K)/mE(K). It is this last
question for which there is, at present, no known effective solution. In Chapter X
we examine this problem in more detail. There we will exhibit a smaller group into
which E(K)/mE(K) injects and discuss what can be said about the cokernel. We
want to stress that this is the only stage at which the Mordell-Weil theorem is in-
effective; if we know generators for E(K)/mE(K), then we can effectively find
generators for E(K); see (VIIL.3.1) and Exercise 8.18.

We also remark that there is a conditional algorithm due to Manin [156], [114,
§ F.4.1] that effectively computes generators for E'(K) if one accepts the validity of a
number of standard (but very deep) conjectures, including in particular the conjecture
of Birch and Swinnerton-Dyer (C.16.5).

VIII.2 The Kummer Pairing via Cohomology

In this section we reinterpret the Kummer pairing from (VIII §1) in terms of group
cohomology. The methods used here will not be used again until Chapter X and may
be omitted by the reader wishing to proceed directly to the proof of the Mordell-Weil
theorem. For a summary of the basic facts on group cohomology that are used in this
section, see Appendix B and/or the references listed there.

We start with the short exact sequence of Gz /- -modules

7% [m]

0 — Elm] — E(K) E(K) — 0,

where m > 2 is a fixed integer. Taking G, -cohomology yields a long exact
sequence that starts

[m]

0 —— E(K)m —— E(K) ™ BE(K) ﬁ/
5

[m]

—— H'(Gg/k, E(K)).

C"Hl(GK/K,E[m]) E— Hl(Gf(/KvE(K))

From the middle of this exact sequence we extract the following short exact se-
quence, which is called the Kummer sequence for E/K:

— bes@) — s HY(Gg i, Blm]) — HY(Gg /s, E(K))[m] — 0.
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(As usual, for any abelian group A, we write A[m] to denote the m-torsion subgroup
of A.)
From general principles, the connecting homomorphism ¢ is computed as fol-

lows. Let P € E(K) and choose some Q € E(K) satisfying [m]Q = P. Then a 1-
cocycle representing §(P) is given by

¢:Grxk — Elm], ¢ =0Q7-0Q.
But this is exactly the Kummer pairing defined in (VIII §1),
¢o = Kk(P,0).

(This assumes that we use the same () on both sides, of course.)
Now suppose that E[m] is contained in E(K). Then

Hl (GI_(/Kv E[mD = Hom(Gl_(/K7 E[m])7
so under this assumption we obtain an injective homomorphism
E(K)/mE(K) — Hom(Gg,x, E[m]), P— k(P ).

This provides an alternative proof of (VIII.1.2abc).

Similarly, we can use the inflation—restriction sequence (B.2.4) to give a quick
proof of the reduction lemma described in (VIIL.1.1.1). Thus if L/ K is a finite Galois
extension, say satisfying E[m] C E(L), then we have a commutative diagram

0— @ —  EB(K)/mBE(K) — B(L)/mE(L)

L J l

0 — H'(Grk, E[m]) R H'(Gg i, Elm]) = H'(Gg,p, Elm)),
where the vertical arrows are injections. Since G,/ ¢ and E[m] are finite groups, the
cohomology group H'* (G LK, B [m]) is finite, so @ is also finite. We observe that
the map A\p : G;x — E[m] defined in the proof of (VIIL.1.1.1) is a cocycle whose
cohomology class is precisely the image of P € ® in H* (GL/K, E[m])

Returning now to the general case, we reinterpret (VIII.1.5b) in terms of coho-
mology.

Definition. Let M be a G, g-module, let v € MY, be a discrete valuation, and
let I, C G'g/k be an inertia group for v. A cohomology class £ € H" (G gy, M)
is said to be unramified at v if it is trivial when restricted to H" (I, M). (The inertia
group I, depends on choosing an extension of v to K, but one can show that the
definition of unramified cohomology class is independent of this choice; cf. (X.4.1.1)
and Exercise B.6.)

Proposition 2.1. Let

S = {v € M}, : E has bad reduction at v} U {v € My : v(m) # 0} U M.
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Then the image of E(K) in H! (G g/ B [m]) under the connecting homomor-
phism § consists of cohomology classes that are unramified at every v € Mg
withv ¢ S.

PROOF. Let P € E(K) and, as above, let
Co = QG - Q

be the cocycle representing §(P) for some point @ satisfying [m]Q = P. Then
(VIIL.1.5b) says that the field K (Q) is unramified at v. (N.B. The proof of (VIIL.1.5b)
did not use the assumption that F[m] is contained in E(K).) Hence I, acts trivially
on@Q,soc, =0forallo € I,,. O

The Kummer Sequence for Fields

The exact sequences that we have derived for elliptic curves are analogous to the
classical exact sequences that arise in Kummer theory for fields. To make the analogy
clear, we briefly recall the relevant material. The multiplication-by-m sequence for
an elliptic curve £ corresponds to the following exact sequence of G /i -modules:

1—>um—>K*i>I_(*—>l.

Taking G -cohomology yields a long exact sequence from which we extract the
short exact sequence

L — K™ J(K*)™ == H" (G i pom) — H'(Grejsc, K)lm] — 0.
Hilbert’s famous “Theorem 90 (B.2.5) asserts that
HY(Gg i, K*) =0,
so the connecting homomorphism is an isomorphism. This is in marked contrast to
the situation for elliptic curves, where the nontriviality of H' (G, E(K)) pro-

vides much added complication. (See Chapter X.) Collecting this material and using
an explicit computation of the connecting homomorphism gives the following result.

Proposition 2.2. There is an isomorphism
§: K" [(K")" —"— H'(Gg ks M)
given by the formula
d(a) = cohomology class of the map o — o /«,

where o € K* is any element satisfying ™ = a.
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VIII.3 The Descent Procedure

Our primary goal in this chapter is to prove that E(K), the group of rational points
on an elliptic curve, is finitely generated. So far, we know from (VIIL.1.1) that the
quotient group F(K)/mE(K) is finite. It is easy to see that this is not enough. For
example, R/mR = 0 for every integer m > 1, yet R is certainly not a finitely gen-
erated group. Similarly, if £/Q,, is an elliptic curve, then (VIL6.3) says that E(Q,)
has a subgroup of finite index that is isomorphic to Z,,. Hence E(Q,)/mE(Q,) is
finite, while E(Q),) is not finitely generated.

An examination of these two examples shows that the problem occurs because of
the large number of elements in the group that are divisible by m. The idea used to
complete the proof of the Mordell-Weil theorem is to show that on an elliptic curve
over a number field, the multiplication-by-m map tends to increase the “size” of a
point, where there are only finitely many points whose “size” is bounded. This will
bound how high a power of m may divide a point, and thus eliminate problems such
as in the above examples. Of course, all of this is very vague until we explain what
is meant by the “size” of a point.

In this section we axiomatize the situation and describe the type of size (or height)
function needed to prove that an abelian group is finitely generated. Then, in the
next section, we define such a function on an elliptic curve in the simplest case and
use explicit formulas to prove that it has the desired properties. This will suffice to
prove a special case of the Mordell-Weil theorem. We then turn to the general case
and develop the theory of height functions in sufficient generality both to prove the
Mordell-Weil theorem and to be useful for later applications.

Theorem 3.1. (Descent Theorem) Let A be an abelian group. Suppose that there
exists a (height) function
h:A—R

with the following three properties:
(1) Let Q € A. There is a constant Cy, depending on A and @Q), such that

P+ Q) <2h(P)+Cy  forall P € A.
(ii) There are an integer m > 2 and a constant Cs, depending on A, such that
h(mP) > m?h(P) —Cy  forall P € A.
(iii) For every constant Cs3, the set
{PeA:nP)<Cs}

is finite.
Suppose further that for the integer m in (ii), the quotient group A/mA is finite.
Then A is finitely generated.

PROOF. Choose elements Q1,...,Q, € A to represent the finitely many cosets
in A/mA, and let P € A be an arbitrary element. The idea is to show that the



VIII.3. The Descent Procedure 219

difference between P and an appropriate linear combination of @1, . . ., @, is a mul-
tiple of a point whose height is smaller than a constant that is independent of P.
Then @4, . .., @, and the finitely many points with height less than this constant are
generators for A.

We begin by writing

P=mP; +Q; for some 1 < iy <.
Next we do the same thing with Pj, then with P, etc., which gives us a list of points

P:mP1+Qi17
P =mPy + Qy,,

Pn—l :mPn+Q1W

For any index j, we have

WP < 5 (hmPy) + Co) from (i),
= %(h(ij - Qi)+ ()
< % (2h(Pj—1) + C] + Cy) from (i),
where C/ is the maximum of the constants from (i) for @ € {—Q1, ..., —Q,}. Note

that C{ and C,, do not depend on P.
We use this inequality repeatedly, starting from P,, and working back to P. This
yields

2 \" 1 2 4 on—1
M) = () h(P”(mz*mz+mz+“'+W) (C} +Cy)

m2

2\" Ci +Cy

= pP)4+ 2Lt 72
<<m2> h()+m2_2

1 1
< 2—nh(P) + 5(0{ +C5) since m > 2.

It follows that if n is sufficiently large, then
1
h(P,) <1+ 5(C{ + Cy).

Since P is a linear combination of P, and @1, ..., Q,,

P=m"P, + ijleij,

j=1

it follows that every P in A is a linear combination of points in the set
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{Ql,...,QT}U{QeA:h(Q)g1+;(C{+C2)}.

Property (iii) of the height function A tells us that this is a finite set, which completes
the proof that A is finitely generated. O

Remark 3.2. What is needed to make the descent theorem effective, i.e., to al-
low us to find generators for the group A? First, we must be able to calculate
the constants C; = C1(Q);) for each of the elements @Q1,...,Q, € A represent-
ing the cosets of A/mA. Second, we must be able to calculate the constant Cs.
Third, for any constant C'3, we must be able to determine the elements in the finite
set {P e A:h(P)< Cg}. The reader may check (Exercise 8.18) that for the height
functions used on elliptic curves (VIII §§4, 5, 6), all of these constants are effectively
computable, provided that we can find elements of E(K) that generate the finite
group E(K)/mE(K). Unfortunately, at present there is no known procedure that
is guaranteed to give generators for E(K)/mE(K). We return to this question in
Chapter X.

VIII.4 The Mordell-Weil Theorem over Q

In this section we prove the following special case of the Mordell-Weil theorem.

Theorem 4.1. Let E/Q be an elliptic curve. Then the group E(Q) is finitely gener-
ated.

We will, of course, soon be ready to prove the general case; see (VIIL.6.7). How-
ever, it seems worthwhile to first prove (VIII.4.1), since in this case the necessary
height computations using explicit formulas are not too cumbersome.

Fix a Weierstrass equation for £//Q of the form

E:y*=a2>4+Ac+B  withA,BcZ.

We know from (VIIL1.1) that F(Q)/2FE(Q) is finite, so in order to apply the descent
result (VIIL.3.1), we need to define a height function on E(Q) and show that it has
the requisite properties.

Definition. Let ¢t € Q, and write ¢ = p/q as a fraction in lowest terms. The height
of t, denoted by H (t), is defined by

H(t) = max{|pl |ql}.
Definition. The (logarithmic) height on E(Q), relative to the given Weierstrass
equation, is the function
logH(ac(P)) if P# 0,

he 1 B(Q) — R, he(P) = {0 if P=0.

We note that h,,(P) is always nonnegative.
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The next lemma gives us the information that we need in order to apply (VIIL.3.1)
with the height function h,,.

Lemma 4.1. Let E/Q be an elliptic curve given by a Weierstrass equation
E:y =2+ Az +B with A, B € Z.
(a) Let Py € E(Q). There is a constant Cy that depends on Py, A, and B such that
hy (P + Py) < 2h,(P)+ Cy forall P € E(Q).
(b) There is a constant Cy that depends on A and B such that
h ([2]P) > 4hy(P) — Co forall P € E(Q).
(c) For every constant Cs, the set
{P € E(Q):h,(P) < Cs}
is finite.

PROOF. We may assume that C; > max{h,(P), h([2]Py)}, which ensures
that (a) is true if Py = O orif P € {O,+F}. In all other cases we write

a b agp b
P = (1177y) = <d23 d?’) and pP= (Io,yo) = <d§7d%) )

where all fractions are in lowest terms. The addition formula (I11.2.3d) says that

2
2(P+ Py) = (H) — T — xo.
- Zo

Expanding this expression and using the fact that P and P, satisfy the given Weier-
strass equation yields

(zz0 + A)(T + 70) + 2B — 2yy0

((E — £E())2
 (aag + Ad?d3)(ad + aod?) 4+ 2Bd*d§ — 2bdbody
N (ad — apd?)? '

In computing the height of a rational number, cancellation between numerator
and denominator can only decrease the height, so we find by an easy estimation that

H(z(P+ Py)) < C{max{[al?,|d|*, |bd|},

where C] has a simple expression in terms of A, B, ag, by, dg. Since H (a:(P)) =
max{|al,|d|?}, this is almost what we want, the only possible difficulty being the
presence of |bd| in the maximum. To deal with this problem, we use the fact that the
point P lies on the curve E, so its coordinates satisfy
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b? = a® + Aad* + BdS.

Thus
b < Cf max{|a|*?,|d|*},

which combined with the above estimate for H (z(P + Py)) yields
H(z(P+ By)) < Cymax{|a|,|d|*} = C1 H (z(P))”.
Taking logarithms gives the desired result.
(b) Choosing C5 to satisfy
Cy > 4max{h,(T) : T € E(Q)[2]},

we may assume that [2]P # O. Then, writing P = (z,y), the duplication for-
mula (II1.2.3d) reads
x* — 2422 — 8Bx + A?
423 + 4Ax + 4B
It is convenient to define homogeneous polynomials
F(X,Z)=X"-2AX?Z? -8BX 7% + A?Z*,
G(X,7)=4X7 +4AXZ* + ABZ*.

z([2P) =

If we write # = x(P) = a/b as a fraction in lowest terms, then z([2]P) may be
written as a quotient of integers,

F(a,b)
G(a,b)’
However, in contrast to the proof of (a), we are now looking for a lower bound
for H (x([2]P)), so it is necessary to bound how much cancellation may occur be-
tween numerator and denominator.

To do this, we use the fact that F/(X,1) and G(X, 1) are relatively prime poly-
nomials, so they generate the unit ideal in Q[X]. This implies that identities of the
following sort exist.

Sublemma 4.3. Let A = 4A3 4 27B2, and define polynomials
F(X,Z)=X*—-24X%7% - 8BX 7> + A% Z*,

+(12P) -

G(X,Z) =4X°Z + 4AX Z° + 4BZ*,
f(X,2) =12X2Z + 16AZ3,

g1(X,Z) =3X3 - 5AXZ* - 2TBZ3,
f2(X, Z) = 4(4A% + 27TB*) X? — 4A’BX?*Z

+4A(3A% +22B*)X Z? + 12B(A3 +8B*) 73
92(X,7Z) = A*bX? + A(5A® + 32B*)X?Z
+2B(13A463 + 96B*) X Z? — 3A%(A® +8B%)Z5.
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Then the following identities hold in Z[A, B, X, Z]:

H(X,2)F(X,Z) - g1(X,2)G(X,Z) = ANZ",
f2(X,Z2)F(X,Z) — g2(X, 2)G(X, Z) = 4AX".

PROOF. One can check that if A # 0, then F(X, Z) and G(X, Z) are relatively
prime homogeneous polynomials, so identities of this sort must exist. Checking the
validity of the two identities is, at worst, a tedious calculation, which we leave for
the reader. To actually find the polynomials f1, g1, f2, g2, one can use the Euclidean

algorithm or the theory of resultants.

We return to the proof of (VIII.4.2b). Let

6 = ged(F(a,b),G(a,b))

denote the cancellation in our fraction for z ([2] P). From the equations

f1<a’a b)F(av b) — g1 (av b)G(aa b) = 4Ab77
f2(a,b)F(a,b) — g2(a,b)G(a,b) = 4Aa”,

we see that § divides 4A. This gives the bound
0] < [4A],

and hence

G(a,b)‘}.

max{‘F(a, b)|,
H(2([21P)) > 1A|

On the other hand, the same identities give the estimates

[4Ab7| < 2max{|fi(a,b)|,|g1(a,b)|} max{|F(a,b)|,|G(a,b)|},
,|G(a,b)|}.

)

[4Aa’| < 2max{] f2(a,b)

g2(a,b) |} max{ |F(a7 b)

Looking at the expressions for f1, f2, g1, g2 in (VIIL.4.3), we have

max{‘fl(a,b) g1(a,b)|, | f2(a,b)

) ) 9

92(a, b)|} < Cmax{|a|3, |b|3}7

O

where C' is a constant depending on A and B. Combining the last three inequalities

yields

max{\4Aa7|, |4Ab7|} < 2Cmax{|al*, [b]*} max{’F(a, b)|, ’G(a7 b)|}

Canceling max{|a|?, [b|*} from both sides, we obtain the estimate

max{|F(a,b)|,
[4A

and then using the fact that max{|al, [b|} = H (z(P)) gives the desired result,

G(a, b)’} > (20)71 maX{|a|47 |b|4}’
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H(x([2]P)) > (2€) " H (x(P))"
(c) For any constant C, the set
{teQ:H()<C}

is clearly finite. Indeed, it has at most (2C' + 1)2 elements, since the numerator and
denominator of ¢ are integers restricted to lie between —C' and C'. Further, given
any value for z, there are at most two values of y for which (x,y) is a point of E.
Therefore

{P € E(Q) : h.(P) < C5)

is also a finite set. O

The proof of (VIIL.4.1) is now simply a matter of fitting together what we have
already done.

PROOF OF (VIIL.4.1). We know from (VIIL1.1) that F(Q)/2FE(Q) is finite. It fol-
lows from (VIII.4.2) that the height function

hy : E(Q) — R

satisfies the conditions needed to apply the descent procedure (VIIL.3.1) with m = 2.
The conclusion of (VIIL3.1) is that F(Q) is finitely generated. O

VIIL.S Heights on Projective Space

In order to use the descent theorem (VIIL.3.1) to prove the Mordell-Weil theorem
in general, we need to define a height function on the K -rational points of an el-
liptic curve. It is possible to proceed in an ad hoc manner using explicit equations,
as was done in the last section, but we instead develop a general theory of height
functions. From this general theory will follow all of the necessary properties, plus
considerably more. Elliptic curves are given as subsets of projective space, so in this
section we study a height function defined on all of projective space, and then in
the next section we examine its properties when restricted to the points of an elliptic
curve.

Example 5.1. Let P ¢ PV (Q) be a point with rational coordinates. Since Z is a
principal ideal domain, we can find homogeneous coordinates

P:[:L‘(),...,l‘N]

satisfying
To,..., TN € 7L and ged(zg, ..., xn) = 1.

Then a natural measure of the height of P is

H(P) = max{|zo|,...,|zn]}.
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With this definition, it is clear that for any constant C', the set
{PePN(Q):HPP)<C}

is a finite set. Indeed, it has at most (2C + 1) elements. This is the sort of finiteness
property that is needed for the descent procedure described in (VIIL.3.1).

If we try to generalize (VIIL.5.1) to arbitrary number fields, we run into the dif-
ficulty that the ring of integers need not be a principal ideal domain. We thus take
a somewhat different approach, for which purpose we now specify more precisely
how the absolute values in Mg are normalized.

Definition. The set of standard absolute values on (Q, which we denote by Mg,
consists of the following:

(i) Mg contains one archimedean absolute value, defined by

|z|oo = usual absolute value = max{z, —x}.

(ii) For each prime p € Z, the set Mg contains one nonarchimedean (p-adic)
absolute value defined by

a
ni
Py

n

=p- for a, b € Z satisfying p 1 ab.
P

The set of standard absolute values on a number field K, denoted by Mk, is the
set of all absolute values on K whose restriction to QQ is one of the absolute values
in M@.

Definition. Let v € M. The local degree at v, denoted by n,, is
Ny = [Kv : QUL

where K, and Q, denote the completions of K and QQ with respect to the absolute
value v.

With the preceding definitions, we state two basic facts from algebraic number
theory that will be needed later.

Extension Formula 5.2. Ler L/ K /Q be a tower of number fields, and let v € M.

Then
Z Ny = [L: K]ny,

weMr,
wlv

(Here w | v means that w restricted to K is equal to v.)

Product Formula 5.3. Let x € K*. Then

I I

vEMg

Ny
ne=1
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For proofs of (VIIL.5.2) and (VIIL.5.3), see any standard text on algebraic number
theory, for example [142, I1 §1 and V §1].
We are now ready to define the height of a point in projective space.

Definition. Let P € PV (K) be a point with homogeneous coordinates
P =lzg,...,zN], Zg,...,oN € K.

The height of P (relative to K) is

Hi(P)= [] max{|zolo,...,|znlu}""
vEMEK

Proposition 5.4. Let P ¢ PV (K).
(a) The height Hy (P) does not depend on the choice of homogeneous coordinates
for P.
(b) The height satisfies
Hg(P)>1.

(c) Let L/K be a finite extension. Then
Hp(P) = Hy(P)Y K4,

PROOF. (a) Any other choice of homogeneous coordinates for P has the form
[Azg, ..., A\xy] for some A € K*. Using the product formula (VIIL.5.3), we have

H max{|)\a:0\v,...,|)\xN|v}”v — H |A|™ maX{|$o|u,...,|xN|v}m
vEMR vEMK
= H max{|x0|v,...,|xN\v}nu.
vEMK

(b) Given any point P in projective space, we can always find homogeneous coor-
dinates for P such that one of the coordinates is 1. Then every factor in the product
defining H (P) is at least 1.

(c) We compute

Hp(P)

H max{|x7;|w}n"’

weMrp,

H H Inax{|33z'|v}nw since z; € K,

veEMig weMry,
wlv

[T mesx{fal, } =" from (VIIL5.2),
vEMp
= Hy (P51, O
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Remark 5.5. If K = Q, then Hgp agrees with the more intuitive height function
given in (VIIL5.1). To see this, let P € PV (Q) and choose homogeneous coordi-
nates [xo, ..., 2zn] for P with z; € Z and ged(xg,...,znx) = 1. Then, for any
nonarchimedean absolute value v € Mg, we have |z;|, < 1 for all 7 and |z;|, = 1

for at least one 7. Hence in the product defining Hg(P), only the factor for the archi-
medean absolute value contributes, so

Ho(P) = max{|aco|oo, ce |:L'N\Oo}.
In particular, it follows that for any constant C, the set
{PeBV(Q): Ho(P) < C}

is finite. One of our goals is to extend this statement to H . We will actually prove
something stronger; see (VIIL.5.11).

Sometimes it is easier to work with a height function that is not relative to a
particular number field. We use (VIIL.5.4¢) to create such a function.

Definition. Let P € PV (Q). The (absolute) height of P, denoted by H(P), is
defined as follows. Choose a number field K such that P € PV (K). Then

H(P) = Hy(P)"/IF4,

where we take the positive root. We see from (VIIL.5.4¢) that H (P) is well-defined,
independent of the choice of K, and (VIIL.5.4b) implies that H(P) > 1.

We next investigate how the height changes under mappings between projective
spaces. We recall the following definition; cf. (I.3.3).

Definition. A morphism of degree d between projective spaces is a map

where fo,...,fm € @[XO_, ..., Xn] are homogeneous polynomials of degree d
having no common zero in QV other than Xy = --- = X,y = 0. If F' can be written
using polynomials f; having coefficients in K, then F' is said to be defined over K.

Theorem 5.6. Let
F.pN —pM

be a morphism of degree d. Then there are positive constants C1 and Cs, depending
on F, such that

C1H(P)* < H(F(P)) < CoH(P)*  forall P € PN(Q).

PROOF. Write F' = [fo,..., fa] using homogeneous polynomials f; having no
common zeros, and let P = [z, ..., zy] € PY(Q) be a point with algebraic coor-
dinates. Choose some number field K that contains zq, . . . , z 5 and also contains all

of the coefficients of all of the f;. For each absolute value v € M, we let
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ax |fj(P)‘v’

|P|, = max |zi|, and ‘F(P)‘ = m
0<i<N v 0<i<M

and we also define
|F|, = max{|al, : ais a coefficient of some f; }.

Then, from the definition of height, we have

Ny v

Hig(P)= [] IPI and  Hg(F(P)= [] |F(P)
vEMK vEMK

v )

so it makes sense to define

Hix(F)= [] IFl.
vEMEK

In other words, Hy (F) = H([ag,a1,...]), where the a; are the coefficients of
the f;. Finally, we let C, Cs, . .. denote constants that depend only on M, N, and d,

and we set
1 ifve Mg,
€(v) = . x
0 ifve Mg.

To illustrate the utility of the function €, we observe that the triangle inequality may
be concisely written as

tr 4+ talo < 0O max{|t1]v, . [talo }

for all v € Mg, both archimedean and nonarchimedean.
Having set notation, we turn to the proof of (VIIL.5.6). The upper bound is rela-
tively easy. Let v € Mg . The triangle inequality yields

f(P)|, < C;™|F|,| P2,

since f; is homogeneous of degree d. Here C could equal the number of terms

in f;, which is at most (N er d), i.e., the number of monomials of degree d in N + 1

variables. Since this estimate holds for every ¢, we find that
[F(P)], < C1|FLL|PI;.

Now raise to the n,, power, multiply over all v € M, and take the [K : Q]™ root.
This yields the desired upper bound

H(F(P)) < C1H(F)H(P)?,

where we have used the formula (VIIL.5.2),
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It is worth mentioning that in proving this upper bound, we did not use the fact
that the f; have no common nontrivial zeros. However, we will certainly need to use
this property to prove the lower bound, since without it there are easy counterexam-
ples; see Exercise 8.10.

Thus we now assume that the set

{Qe AN Q) : fo(Q) == fu(Q) =0}

consists of the single point (0,...,0). It follows from the Nullstellensatz
([111, L1.3A], [73, Theorem 1.6]) that the ideal generated by fo,..., fn
in Q[Xo, ..., Xn] contains some power of each of Xy, ..., Xy, since each X; also
vanishes at the point (0, ...,0). Thus there are polynomials g;; € Q[Xo, ..., Xn]
and an integer e > 1 such that

M
Xf:zg”fj foreach 0 <i < N.
5=0

Replacing K by a finite extension if necessary, we may assume that each
gij € K[Xo,...,Xn], and discarding all terms on the right-hand side except those
that are homogeneous of degree e, we may assume that each g;; is homogeneous of
degree e — d. We further set the following reasonable notation:

|G, = max{|bl, : bis a coefficient of some g;; },

Hy(G) = H G

vEMg

Ny
v ot

We observe that e and Hy (G) may be bounded in terms of M, N, d, and Hg (F),

although finding a good bound is not an easy task. See (VIII.5.7) for a discussion. For

our purposes it is enough to know that e and H i (G) do not depend on the point P.
Recalling that P = [z, ..., 2 n], we see that the formula for X¢ implies that

< s max |gi;(P)f;(P)],

.le —
|xl|v 0<j<M

M
> 9i(P)f;(P)
j=0

v

<" max |gii(P)| |F(P)]

We now take the maximum over ¢ to obtain

e(v)
|Pl; < Gy Og}%w!gij(lj)\v
0<i<N

|[F(P)],.

v

Each g;; is homogeneous of degree e — d, so the usual application of the triangle
inequality yields

935 (P)[, < 5|, [PI.
Here C's may depend on e, but as noted earlier, we can bound e in terms of M, N,
and d. Substituting this estimate into the earlier one and multiplying by | P|?~¢ gives
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and now the usual raising to the n, power, multiplying over v € Mg, and taking
the [K : Q]™ root yields the desired lower bound. O

Remark 5.7. As indicated during the proof of (VIIL5.6), the dependence of C, on F'
in the inequality
Ci1H(P)! < H(F(P))

is not at all straightforward. It is possible to express C in terms of the coefficients
of certain polynomials whose existence is guaranteed by the Nullstellensatz, and the
Nullstellensatz can be made completely explicit by the use of elimination theory, but
this method leads to a very poor estimate. For an explicit version of the Nullstellen-
satz in which an effort has been made to give good estimates for the coefficients,
see [162].

We also record the special case of (VIIL.5.6) for an automorphism of P .

Corollary 5.8. Letr A € GLy4+1(Q), so multiplication by the matrix A induces an
automorphism A : PN — PN There are positive constants Cy and Cs, depending
on the entries of the matrix A, such that

C1H(P) < H(AP) < CoH(P)  forall P € PV (Q).
PROOF. This is (VIIL.5.6) for morphisms of degree one. O

We next investigate the relationship between the coefficients of a polynomial and
the height of its roots.

Notation. For z € Q, let
H(z) = H([gc, 1]),

and similarly for x € K, let

Theorem 5.9. Let

F(T) =aT +a, T+ +ag=ao(T —ar) - (T — aq) € Q[T]
be a polynomial of degree d. Then

d d

2 [ H(ey) < H([ao, ... ad)) <27 [] H(ay).
j=1 j=1

PROOF. First note that the inequality to be proven remains unchanged if f(7') is
multiplied by a nonzero constant. It thus suffices to prove the result for monic poly-
nomials, so we may assume that ag = 1.

Let K = Q(avu,...,aq), and for v € My, set
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2 ifve M,
€(v) = . 0
1 ifve Mg.

Note that this notation differs from the notation used in the proof of (VIIL.5.6).
In the present instance, the triangle inequality reads

|z + ylv < e(v) max{|zly, y|o } forv € Mg and z,y € K.

Of course, if v € MY and |z|, # |y|v, then the triangle inequality becomes an
equality.
We are going to prove that

d d
e(v)™¢ H max{|al,, 1} < Oriliagcd{|ai|v} < e(v)?1 H max{|a;l,, 1}
Jj=1 - j=1

Once we have done this, raising to the n,, power, multiplying over all v € M, and
taking the [K : Q] root gives the desired result.

The proof is by induction on d = deg(f). For d = 1 we have f(T) =T — «ay,
so the inequalities are clear. Assume now that we know the result for all polynomials
(with roots in K) of degree d — 1. Choose an index k such that

lak]o > [ogle forall0 < j <d,
and define a polynomial
g(T) = (T —ar) -+ (T — g1 (T = 1) -+ (T — aa)
= b7 + 0 T2 4 by
Thus f(T) = (T — ax)g(T'), so comparing coefficients yields
a; = b; — apb;_1.

(This holds forall 0 < i < dif wesetb_, = by = 0.)
We begin with the upper bound:

Orélggd{\ailv} = Orgiagd{lbi —agbi—1]}

< e(v) Or£1ia<xd{ |03, lovkbi—1]0 } triangle inequality,

< e(v) Oréllfcmgxd{|bi|v} max{ |y, 1}
d
< e(v)d_ln max{|a;ly, 1} induction hypothesis
j=1 applied to g.

Next, to prove the lower bound, we consider two cases. First, if |ag|, < e(v),
then by the choice of the index k£ we have
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d

H max{|a;y, 1} < max{|olo, 1}d < e(v)?,
j=1

so the result is clear. (Remember that ag = 1.) Next, suppose that ||, > €(v). Then

Orgggd{lailv} = Orgiaécd{\bi —agbi—1lv} > €(v) Ogrlngégl{lbilu}{\aklm 1}.

Here the last line is an equality for v € MY, while for v € My® we are using the
calculation
Orgiagd{lbi —agbi1]o} = (Jarls — 1) Ogr?gj_l{‘b”v}
1 .
> €(v) " Hokw ogr?gafflﬂbi‘”} since ||, > €(v) = 2.

Applying the induction hypothesis to g gives the desired lower bound, which com-
pletes the proof of (VIIL.5.9). [

Our first application of (VIIL.5.9) is to show that there are only finitely many
points of bounded height in projective space. To do this, we first need to show that
the action of the Galois group does not affect the height of a point.

Theorem 5.10. Let P € PV (Q) and let 0 € G q. Then
H(P") = H(P).

PROOF. Let K/Q be a field such that P € PV (K). The field K may not be Galois
over Q, but in any case o gives an isomorphism ¢ : K — K7, and o likewise
identifies the sets of absolute values of K and K7,

o Mg ———— Mo, v— 7.

Here, if + € K and v € Mpg, then the associated absolute value v“ satis-
fies |27 |y» = |z],. It is clear that o also induces an isomorphism K, — K3, so
the local degrees satisfy n,, = n,o. We now compute

Hie(P7) = T max{lafl )™

wWEMgo

H maX{ |$ﬂuﬂ }nm

vEMK

H max{|aci|v}n'”

veEMK
= Hy(P).

Since [K : Q] = [K7 : Q], this is the desired result. O
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Theorem 5.11. Letr C and d be constants. Then the set
{PePY(Q): H(P) < Cand [Q(P): Q] <d}

is a finite set of points, where we recall from (1 §2) that Q(P) is the minimal field of
definition of P. In particular, for any number field K,

{PePN(K): Hk(P) < C}
is a finite set.
PROOF. Let P € PV (Q). We choose homogeneous coordinates for P, say
P =[zo,...,TN],

with some z; = 1. Then Q(P) = Q(xo, . .., zn ), and we have the easy estimate

HQ(P)(P) = H OI<11122)§V{|I7|1)}71U
vEMyrpy

mN< II max{iml}"”)

vEMq(p)

V

omax Hop)(@:).

Thus if H(P) < C and [Q(P) : Q] < d, then

) < o) < d.
omax Hypy(zs) < C and omax [Q(z;): Q] <d

It thus suffices to prove that the set
{zeQ:H(z) <Cand [Qz): Q] <d}

is finite. In other words, we have reduced to the case that N = 1.

Suppose that z € Q is in this set, and let e = [Q(z) : Q], so e < d. Further,
let z1,...,x. € Q be the conjugates of x, where we take 1 = x. The minimal
polynomial of = over Q is

foT) = (T —z1) - (T —2e) =T+ a1 T + - + a. € Q[T].

We estimate

H([1,a1,...,a.]) <2°7' [] H(x;) from (VIIL5.9),

j=1
=27 H(z)® from (VIIL5.10),
< (20)? since H(z) < C'and e < d.

Since the a; are in Q, it follows that for a given C' and d, there are only finitely
many possibilities for the polynomial f, (7). (We are using the easy-to-prove case
of (VIL5.11) with K = Q; see (VIIL5.1) and (VIIL.5.3).) Since each polyno-
mial f,(T") has a most d roots in K, and thus contributes at most d elements to
our set, this completes the proof that the set is finite. O
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Remark 5.12. Tracing through the proof of (VIIL.5.11), it is easy to give an upper
bound, in terms of C' and D, for the number of points in the set

{PePY(Q): H(P) < Cand [Q(P): Q] <d}.

(See Exercise 8.7a.) A formula due to Schanuel gives a precise asymptotic formula
for
#{P ePN(K): Hx(P) < C}

as a function of C' as C' — oo. See [139, Chapter 3, Section 5] or [220] for details.

VIIL.6 Heights on Elliptic Curves

In this section we use the general theory of heights as developed in the previous
section to define height functions on elliptic curves. The main theorems that we
prove, (VIIL.6.2) and (VIIL.6.4), highlight the interplay between the height function
and the addition law on the elliptic curve. As an immediate corollary, we deduce the
remaining results needed to prove the Mordell-Weil theorem for arbitrary number
fields (VIIL.6.7).

It is convenient to use “big-O” notation.

Notation. Let f and g be real-valued functions on a set S. We write
f=9+0()
if there are constants C and C5 such that
Cy < f(P)—g(P) < Cq forall P € S.

If only the lower inequality is satisfied, then we write f > g 4+ O(1), and similarly
if only the upper inequality is true, then we write f < g + O(1).

Let £ Z K be an elliptic curve. Recall from (I1.2.2) that any nonconstant func-
tion f € K(F) determines a surjective morphism, which we also denote by f,

[1,0] if P is apoleof f,

U F F {[f(P), 1] otherwise.

It would be reasonable to use f to define a height function on E(K) by set-
ting Hy(P) = H(f(P)). However, the height function H tends to behave multi-
plicatively, as for example in (VIIL.5.6), while for our purposes it is more convenient
to have a height function that behaves additively. This prompts the following defini-
tions.

Definition. The (absolute logarithmic) height on projective space is the function
h:PN(Q) — R, h(P) = log H(P).
Note that (VIIL.5.4b) tells us that A(P) > 0 for all P.
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Definition. Let E/K be an elliptic curve, and let f € K(FE) be a function. The
height on E (relative to f) is the function

by B(K)— R, hy(P)=h(f(P)).

We start by transcribing the finiteness result from (VIII §5) into the current set-
ting.

Proposition 6.1. Let E/K be an elliptic curve, and let f € K (E) be a nonconstant
function. Then for any constant C, the set

{P e E(K):hs(P)<C}
is a finite set of points.

PROOF. The function f € K(E) is defined over K, so it maps points P € E(K) to
points f(P) € P!(K). Hence f gives a finite-to-one map from the set in question to
the set

{QePY(K): HQ) < e}
Finally, we know from (VIIL.5.11) that this last set is finite. ]

The next theorem gives a fundamental relationship between height functions and
the addition law on an elliptic curve.

Theorem 6.2. Let I// K be an elliptic curve, and let f € K (E) be an even function,
i.e., a function satisfying f o [—1] = f. Then for all P,Q € E(K) we have

hi(P+ Q)+ hf(P = Q) = 2hs(P) + 2h;(Q) + O(1).

The constants inherent in the O(1) depend on the elliptic curve E and the function f,
but are independent of the points P and Q).

PROOF. Choose a Weierstrass equation for E/K of the form
E:y? =23+ Az + B.

We start by proving the theorem for the particular function f = z. The general case
is then an easy corollary.

Since h,(O) = 0 and h,(—P) = h,(P), the desired result is clear if P = O or
if @ = O. We now assume that P # O and ) # O, and we write

z(P) = [z1,1], z(Q) = [22,1],
z(P+ Q) = [x3,1], (P — Q) = [x4,1].

Here x5 or x4 may equal co if P = 4+@). The addition formula (II1.2.3d) and a little
bit of algebra yield the relations
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2(.%‘1 + .TQ)(A + xll‘g) + 4B
(fﬂl —+ SUQ)z — 41[,’15U2
(1311‘2 — A)2 — 4B(JC1 + 562)

(z1 + x2)2 — 4z 70 '

T3+ T4 =

X3y =

Define a map g : P2 — P2 by
g([t,u,v]) = [u® — 4tv, 2u(At + v) + 4Bt*, (v — At)* — 4Btu].
Then the formulas for x5 and x4 show that there is a commutative diagram

ExE —% . ExE

|

o P! x P! Pl x P! o

| |

p2 4 P2

where

and where the vertical map o is the composition of the two maps

ExE—P' xP, (PQ)+— (z(P),z(Q)),
and
P! x P! — P2, ([a1, B1], [z, Ba]) — [B1 B2, 1 B2 + 2B, arcva).

The idea here is that we are viewing t, u, and v as representing 1, x1 + 22, and x1 2o,
s0 g([t,u,v]) becomes [1, x5 + 4, T334).

The next step is to show that g is a morphism, which will allow us to ap-
ply (VIIL5.6). By definition (cf. (I.3.3)), we must show that the three homogeneous
polynomials defining g have no common zeros other than ¢ = v = v = 0. Suppose
that g([t,u, v]) = 0.If ¢ = 0, then from

u? —4tv =0 and (v— At)> —4Btu =0

we see that u = v = 0. Thus we may assume that ¢ # 0, so we may define a new
quantity x = u/2t. [Intuition: If we identify

t=1, U =T+ To, V=TT,

then the equation u? — 4tv = 0 becomes (z; — x2)? =0, s0 z; = 15 = u/2t. In
other words, we are now dealing with the case that P = +Q).]

Using the new quantity , the equation u? — 4tv = ( can be written as 2% = v /t.
Now dividing the equalities

2u(At 4+ v) + 4Bt? =0 and (v — At)> —4Btu = 0
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by ¢2 and rewriting them in terms of z yields the two equations
Y(z) = 4x(A + 22) + 4B = 42° + 4Ax + 4B = 0,
P(x) = (502 - A)2 — 8Bz = z* — 242% —8Bx + A? = 0.

These polynomials should be familiar, since their ratio is the rational function that
appears in the duplication formula (I11.2.3d). In order to show that (X ) and ¢(X)
have no common root, it suffices to verify the following formal identity that we
already used in the proof of (VIIL.4.3),

(12X2% 4 16A4)p(X) — (3X> — 5AX — 27B)(X) = 4(4A3 + 27B?) £ 0.

Note how the nonsingularity of the Weierstrass equation plays a crucial role here.
This completes the proof that g is a morphism.
We return to our commutative diagram and compute

h(o(P+Q,P—Q)) =h(c0G(P,Q))
=h(goa(P,Q))
=2h(c(P,Q)) + O(1) from (VIILS5.6),

since ¢ is a morphism of degree 2. To complete the proof of (VIIL.6.2) for f = =, we
will show that

h(O’(Rl, Rg)) = hw(Rl) + hw(Rg) + 0(1) forall Ry, Ry, € E(R)
Then, applying this relation to each side of the equation
h(o(P+Q,P—Q)) =2h(c(P,Q)) +O(1)

gives the desired result.
It is clear that if either Ry = O or Ry = O, then h(o(Ry, Ry)) is equal
to hy(R1) + h,(R2). Otherwise we write

2(Ry) = [aq,1] and xz(Ra) = [az, 1],
and then
h(o(R1,R2)) = h([l,1+az,0qaz]) and  hy(Ry)+he(R2) = h(on)+h(as).
We apply (VIIL.5.9) to the polynomial (T4« ) (T'+az) to obtain the desired estimate
h(on) + h(az) —log4 < h([1, a1 + az, aras]) < h(aq) + h(az) + log 2.

Finally, in order to deal with an arbitrary even function f € K(FE), we prove in
the next lemma (VIII.6.2) that

hy = %(deg fhz +O(1).

Then (VIIL.6.2) follows immediately on multiplying the proven relation for h,
by % deg f. O
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Lemma 6.3. Let f,g € K(E) be even functions. Then
(degg)hy = (deg f)hg + O(1).

PROOF. Let 2,y € K(F) be Weierstrass coordinates for E/K. We know from
(II1.2.3.1) that the subfield of K (FE) consisting of even functions is exactly K (x),
so we can find a rational function r(X) € K (X) such that there is a commutative

diagram
\

P! . P

E

x

Hence, using (VIIL.5.6) and the fact (I.2.1) that r is a morphism, we deduce that
hy =hgor = (degr)h, +O(1).

The diagram tells us that
deg f = (degx)(degr) = 2degr,

so we find that
2hy = (deg f)hy + O(1).

The same reasoning applied to g yields
2hg = (deg g)h. + O(1),
and combining these last two equalities gives the desired result. O

Corollary 6.4. Let E/K be an elliptic curve, and let f € K(FE) be an even func-
tion.

(@) Let Q € E(K). Then

hy(P+Q) < 2hp(P)+O(1)  forall P € B(K),

where the O(1) depends on E, f, and Q.
(b) Let m € Z. Then

hy([m]P) = m*hp(P)+O(1)  forall P € E(K),
where the O(1) depends on E, f, and m.

PROOF. (a) This follows immediately from (VIIL.6.2), since h¢(P — @) > 0.

(b) Since f is even, it suffices to consider m > 0. Further, the result is trivial
for m = 0 and m = 1. We use induction to complete the proof. Suppose that the de-
sired result is known for m — 1 and for m. Replacing P and @ in (VIIL.6.2) by [m]P
and P, respectively, we find that
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hy([m+1]P) = —hy([m — 1]P) + 2hs([m]P) + 2h(P) + O(1)
= (=(m—1)*>+2m® +2)hs(P) + O(1) by the induction
hypothesis,
= (m+1)%hs(P) + O(1).
This completes the induction proof. [

Remark 6.5. Itis clear that (VIIL.6.2), (VIIL.6.3), and (VIII.6.4) are also true for odd
functions f, since then f 2 is even, and it is easy to check that hy> = 2h . More gen-
erally, although we do not give the proof, our results are true for arbitrary f € K(F)
to “within e.” Precisely, say for (VIII.6.4b), for every € > 0 it is true that

(1 —e)ym?hy +O(1) < hy o [m] < (1 +€e)ym?hy + O(1),

where now the O(1) depends on E, f, m, and €. See Exercise 9.14c¢ or, for a general
result, see [139, Chapter 4, Corollary 3.5].

Remark 6.6. We can interprest (VIIL.6.2) as saying that the height function hy
is more or less a quadratic form. We will see later (VIII §9) that there is an ac-
tual quadratic form, called the canonical height, that differs from hy by a bounded
amount.

We now have all of the tools needed to complete the proof of the Mordell-Weil
theorem.

Theorem 6.7. (Mordell-Weil theorem) Let K be a number field, and let E /K be
an elliptic curve. Then the group E(K) is finitely generated.

PROOF. Choose any even nonconstant function f € K(FE), for example, f could
be the x-coordinate on a Weierstrass equation. The Mordell-Weil theorem follows
immediately from the weak Mordell-Weil theorem (VIII.1.1) with m = 2 and the
descent theorem (VIIL.3.1) as soon as we show that the height function

hy:E(K) —R
has the following three properties:
(i) Let @ € E(K). There is a constant C, depending on E, f,and (), such that
hf(P+ Q) < 2hs(P)+ C4 forall P € E(K).

(i1) There is a constant C'5, depending on F and f, such that
hy([2]P) = 4hs(P) — Cy forall P € E(K).
(iii) For every constant C', the set
(P e B(K): hy(P) < C4)
is a finite set of points.

Here (i) is a restatement of (VIII.6.4a), while (ii) is immediate from the m = 2 case
of (VIIL.6.4b), and (iii) is (VIIL.6.1). This completes the proof of the Mordell-Weil
theorem. O
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VIIL.7 Torsion Points

The Mordell-Weil theorem implies that the group of rational torsion points on an
elliptic curve is finite. Of course, this also follows from the corresponding result
for local fields. Since we may view an elliptic curve defined over a number field K
as being defined over the completion K, for each v € My, the local integrality
conditions for torsion points (VIL.3.4) can be pieced together to give the following
global statement.

Theorem 7.1. Let E/K be an elliptic curve with Weierstrass equation
2 _ .3 2
Yy~ +arzy + azy = 17 + ax” + asT + ag,

and assume that ay, . . . , ag are all in the ring of integers R of K. Let P € E(K) be
a torsion point of exact order m > 2.
(a) If m is not a prime power, then

z(P),y(P) € R.

(b) If m = p" is a prime power; then for each v € MY we let

= [ ord, (p) ] ’
p

n_ pn—1
where [ - | denotes the greatest integer. Then
ord, (z(P)) > —2r, and ord, (y(P)) = —3r,.
In particular, if ord, (p) = 0, then x(P) and y(P) are v-integral.

The next corollary was proven independently by Lutz and Nagell, who had dis-
covered divisibility conditions somewhat weaker than those given in (VIIL.7.1).

Corollary 7.2. ([152], [190]) Let E/Q be an elliptic curve with Weierstrass equa-
tion
v =a2>+ Az +B, A Bel.

Suppose that P € E(Q) is a nonzero torsion point.
(@) z(P),y(P) € Z
(b) Either [2]P = O or else y(P)? divides 4A® + 27B2.

PROOF. (a) Let P have exact order m. If m = 2, then y(P) = 0, so z(P) € Z, since
it is the root of a monic polynomial with integer coefficients. If m > 2, the desired
result follows immediately from (VIIL.7.1), since the quantity r, in (VIIL7.1b) is
necessarily 0.

(b) We assume that [2] P # O, so y(P) # 0. Then applying (a) to both P and [2] P,
we deduce that z(P), y(P), z([2]P) € Z. Let

H(X)=X*-24X? -8BX +A* and (X)=X>+AX +B.
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Then the duplication formula (II1.2.3d) reads

_ oz(P)
4 (z(P))”

On the other hand, we have the usual polynomial identity (VIII.4.3)

=([2)P)

FX)(X) = g(X)(X) = 44 + 2782,
where f(X) =3X?+4Aand g(X) = 3X3 —5AX — 27B. Setting X = x(P) and
using the duplication formula and the fact that y(P)? = ¢ (x(P)) yields
y(P)? (47 (2(P))(2IP) = g(a(P)) ) = 44 + 272,
Since all of the quantities in this equation are integers, the desired result follows. [

Remark 7.3.1. A glance at the proof of (VIII.7.2b) shows that we have proved that
any point P € E(Q) such that 2(P) and z([2] P) are both integers has the property
that y(P)? divides 443 + 27B?. The same argument works for number fields. Fur-
ther, even if z(P) or z([2]P) is not integral, any bound on their denominators, for
example as in (VIIL7.1b), gives a corresponding bound for y(P); see Exercise 8.11.

Remark 7.3.2. Recall from (VIIL.3.2) that in practice, one of the fastest methods to
bound the torsion in E(K) is to choose various finite places v for which E has good
reduction and use the injection (VII.3.1)

E(Ky)[m] — E(ky),

which is valid for integers m that are prime to char(k,).

Example 7.4. The Weierstrass equation
E:y* =% — 432 4 166

has
4A°% 4+ 27B? = 425984 = 215 . 13.

Hence any torsion point in F(Q) has its y-coordinate in the set
{0, £1, £2, +4, +8, +16, +32, +64, +128}.
A little bit of work with a calculator reveals the points
{(3,£8), (—5,£16), (11,432)}.

On the other hand, since F has good reduction modulo 3, we know that Ei(Q)
injects into E(F3) (cf. VIL3.5), and it is easy to check that #FE(F3) = 7. This
still does not prove anything, since the divisibility condition in (VIIL.7.2b) is only
necessary, not sufficient. However, using the doubling formula for P = (3, 8) yields
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z(P) =3, z([2]P) = -5, z([4]P) = 11, z([8]P) = 3.

Hence [8]P = P, so P is a torsion point of exact order 7 or 9. (Note that it doesn’t
have order 3, since z(P) # z([2]P).) From above, the only possibility is order 7,
so we conclude that Fi(Q) is a cyclic group of order 7 consisting of the six listed
points, together with O.

Our discussion thus far has focused on characterizing the torsion subgroup of a
given elliptic curve. Another type of question that one might ask is the following:
given a prime p, does there exist an elliptic curve E/Q such that E(Q) contains a
point of order p? The answer for most primes is no. For example, F(Q) can never
contain a point of order 11, a fact that is by no means obvious. Such a statement,
which deals uniformly with the set of all elliptic curves, naturally tends to be more
difficult to prove than does a result such as (VIIL.7.2) in which the bound changes
as the elliptic curve is varied. The definitive characterization of torsion subgroups
over Q is given by the following theorem due to Mazur; the proof is unfortunately
far beyond the scope of this book.

Theorem 7.5. (Mazur [165], [166]) Let E/Q be an elliptic curve. Then the torsion
subgroup Eis(Q) of E(Q) is isomorphic to one of the following fifteen groups:
Z/NZ withl < N <10o0r N = 12,
Z)27 x Z/2NZ7 withl < N < 4.
Further, each of these groups occurs as E.s(Q) for some elliptic curve E/Q. (See
Exercise 8.12 for an example of each possible group.)

Mazur’s theorem was generalized to number fields of degree up to 14 by Kami-
enny and others [2, 121, 122], and then the general case was settled by Merel.

Theorem 7.5.1. (Merel [170]) For every integer d > 1 there is a constant N (d)
such that for all number fields K /Q of degree at most d and all elliptic curves E /| K,

| Erors (K)| < N(d).

Remark 7.6. Prior to the proof of Merel’s theorem (VIIL.7.5.1), Manin [155] used
a completely different method to show that for any fixed prime p, the p-primary
component of Ey,s(K ) may be bounded in terms of K and p.

Remark 7.8. For those torsion subgroups that are allowed by Mazur’s theorem
(VIIL.7.5), it is a classical result that the elliptic curves having the specified tor-
sion subgroup lie in a one-parameter family. For example, the curves E/K with a
point P € E(K) of order 7 all have Weierstrass equations of the form

v+ (1 +d—d)ey+ (d? — d¥)y =23 + (d* — d®)z?, P =(0,0),
with
de K and A=d"(d—1)"(d®—8d*+5d+1)#0.
See Exercise 8.13a,b for a derivation and [132] for a complete list of such formulas.
In general, the elliptic curves F/K with a point P € E(K) of order m > 4 are

parametrized by the K -rational points of another curve, called a modular curve; see
Exercise 8.13c and (C §13).
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VIIL.8 The Minimal Discriminant

Let E/K be an elliptic curve. For each nonarchimedean absolute value v € M- we
choose a Weierstrass equation for F,

y12; + a1,0T0Yy + A30Yy = ﬂﬂi + a2,vx12; + aq%y + a60,
that is a minimal equation for F at v. In other words, all of the a; ,, satisfy
Ordv(ai,v) Z Oa

and subject to this condition, the discriminant A, of the equation has valuation
ord, (A,) that is as small as possible.

Definition. The minimal discriminant of E/K, denoted by D, is the (integral)
ideal of K given by
Doy = [ pteo.
veM?Y,

Here p, is the prime ideal of R associated to v. Thus D, i catalogs the valuation of
the minimal discriminant of E at every place v € M. It measures, in some sense,
the arithmetic complexity of the elliptic curve E.

We now ask whether it is possible to find a single Weierstrass equation that is
simultaneously minimal for every v € M. Let

y2 + a1y +azy = 3+ a2x2 + asx + ag

be any Weierstrass equation for £/K, say with discriminant A. For each v € MY
we can find a change of coordinates

2 3 2
T = UyTy + T, Y = UpYy + SpUyTy + Ty,

that transforms the initial equation into an equation that is minimal at v. As usual,
the discriminants of the two equations are related by

A = u,1j2Av.
Hence if we define an ideal

an = H pv—ordv(uv)V

veMY,
then the minimal discriminant is related to A via the formula
12
Dp/k = (A)ax.

Lemma 8.1. With notation as above, the ideal class in K of the ideal a is indepen-
dent of A.
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PROOF. Suppose that we take a different Weierstrass equation for F over K, say
with discriminant A’. Then A = u!'2A’ for some v € K*, so directly from the
definitions we see that

12
(AR = Dp/x = (A)ag = (A)((w)aa) "
Hence aar = (u)aa, so aar and aa are in the same ideal class. O

Definition. The Weierstrass class of E/ K, denoted by ag /K> is the ideal class in K
corresponding to any ideal aa as above.

Definition. A global minimal Weierstrass equation for E/ K is a Weierstrass equa-
tion

y2 + a1y +azy = s+ a2x2 + asx + ag
for E/K such that ay,as,as,as,as € R and such that the discriminant A of the
equation satisfies D/ = (A).

Proposition 8.2. There exists a global minimal Weierstrass equation for E /K if and
only if ap/x = (1).

PROOF. Suppose that E/K has a global minimal Weierstrass equation, say with
discriminant A. Then Dy JK = (A), so with notation as above, for any v € M?( we
have

12ord,(aa) = ord,(Dg k) — ord,(A) = 0.

Hence ap = (1),s0 ap/x = (class of an) = (1).

Conversely, suppose that dg/x = (1). Choose any Weierstrass equation
for E/K having ay,...,as € R, and let A be the discriminant of this chosen
equation. For each v € MY, let

2 3 2
T = UyTy + T, Y = UyYo + SplUyTy + to,

be a change of variables that produces a minimal equation at v, say with coeffi-
cients aj y, ..., ap, and discriminant A,,. Letting

S ={veMj :ord,(A) #0},

the chosen equation is already minimal for all v ¢ S, so we may take u, = 1
andr, = s, =t, = 0forv ¢ S. Note that S is a finite set. Further, from (VIL.1.3d),
we see that w,, 7y, Sy, , are v-integral for all v € M?(.

The assumption that 6,5 = (1) means that the ideal

H pgrdv (uy)

’UEM?(
is principal, say generated by v € K. This means that

ord, (u) = ordy (u,) forallv € My-.
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We use the Chinese remainder theorem [142, Chapter I, Section 4] to find elements
r,s,t € R such that for all v € S we have

ord,(r —ry), ord,(s — s,), ord, (t — t,) > max, 60rdv(uivai,v).
1= 1Ly Ey

Now consider the new Weierstrass equation for £/K given by the change of
coordinates
=z +r, y = udy' + su’x’ +t,

having coefficients a}, . . ., aj and discriminant A’. Then A = u!'2A’, so

ord, (A") = ord, (u™"?A) = ord, ((u,/u)'?A,) = ord,(A,).

Thus the discriminant of the new equation is minimal at all v € M?(, so in order
to verify that it is a global minimal equation, we must show that all of its coeffi-
cients are integral. This is easily checked using the coefficient transformation for-
mulas (III.1.2). If v ¢ S, then ord,(u) = 0, so each a} is v-integral since it is a
polynomial in r,s,t,a1,...,as. For v € S we illustrate the argument for a, the
other coefficients being done similarly. Thus

ord, (uah) = ord,(az — say + 3r — s%)
= ord, (Ugalv —(s—su)(a1 + s+ sy) +3(r —ry))

= ord, (ui az.y),

where the last line follows from the previous one by our choice of r and s and the
nonarchimedean nature of v. Since

ord, (u) = ord, (uy) and ord,(az,,) > 0,
this gives the desired result. O

Corollary 8.3. If K has class number one, then every elliptic curve E/K has a
global minimal Weierstrass equation. In particular, this is true for K = Q.

The converse to (VIII.8.3) is also true; see Exercise 8.14.

Example 8.4. The Weierstrass equation
E:y =2>+16
has discriminant A = —2'233 and it is not minimal at 2. The substitution
x =4z, y =8y +4,
gives the global minimal equation

W) +y = @)
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Example 8.5. Let K = Q(v/—10), so K has class number 2, the class group being
generated by the prime ideal p = (5,4/—10). Let E/K be the elliptic curve given
by the equation

E:y* =2 +125.
This equation has discriminant A = —2*3356, so (VIL.1.1) tells us that it is already
minimal at every prime of K except possibly at the prime p lying over (5). For p, the
change of coordinates

= (IO, y= (IO

gives an equation

that has good reduction at p. Hence
Dr/x = (2433) and ap/k = (ideal class of p).

Since ag,k is not principal, (VIIL.8.2) tells us that /K does not have a global
minimal Weierstrass equation.

Remark 8.6. If K has class number one and F/K is an elliptic curve, then we can
construct a global minimal Weierstrass equation for £/ K by finding local minimal
equations, e.g., by using Tate’s algorithm [266, IV §9], [283], and then following the
proof of (VIIL.8.2). There is also an algorithm, due to Laska [146], that is fast and
easy to implement on a computer.

Even if R has class number greater than one, it is often useful to know that an
elliptic curve E'/ K has a global Weierstrass equation that is, in some sense, “almost
minimal.” The following proposition gives one possibility; see Exercise 8.14c for
another.

Proposition 8.7. Let S C My be a finite set of absolute values containing MzS and
all finite places dividing 2 and 3. Assume further that the ring of S-integers Rg is a
principal ideal domain. Then every elliptic curve E /K has a Weierstrass equation
of the form

E:y*=234Az+ B

with A, B € Rg and discriminant A = —16(4A3 + 27B?) satisfying
Dg/kRs = ARs.
(Such a Weierstrass equation might be called S-minimal.)
PROOF. Choose any Weierstrass equation for /K of the form
E:y* =2+ Az + B,

and let A = —16(4A3 + 27B?). For each v € My with v ¢ S, choose u, € K*
such that the substitution
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e=uyr',  y=uy,
gives a minimal equation at v. Then
V(P k) = v(A) = 120(uy) forallv € My withv ¢ S.
Since Rg is a principal ideal domain, we can find an element v € K™ satisfying
v(u) = v(uy) forallv € My withv ¢ S.

Then the equation

E:y’=2+u*Az+u °B

has the desired property. O

VIII.9 The Canonical Height

Let E/K be an elliptic curve, and let f € K(F) be an even function. We saw
in (VIIL6.1) and (VIIL.6.4) that the height function hs is more or less a quadratic
form, at least “up to O(1).” André Néron asked whether one could find an actual
quadratic form that differs from h; by a bounded amount. He constructed such a
function by writing it as a sum of “quasi-quadratic” local functions [194]. At the
same time, John Tate gave a simpler global definition. In this section we describe
Tate’s construction. (For a discussion of local height functions, see (C §18) or [266,
Chapter VIJ.)

Proposition 9.1. (Tate) Let E/K be an elliptic curve, let f € K(FE) be a noncon-

stant even function, and let P € E(K). Then the limit

1 : _
mj\}gnm‘l Mhy (12Y1P)

exists and is independent of f.

PROOF. We prove that the limit exists by showing that the sequence is Cauchy. Ap-
plying (VIIL.6.4b) with m = 2, there is a constant C' such that for all Q € E(K),

hy([21Q) — 4hs(Q)] < C.

For integers N > M > 0 we use a telescoping sum argument to estimate
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ST A (2 P) 4 (12P)

IN

47 g (27 P) — by ([27]P)|
n=M
N-1
< Z el taking ) = [2"] P above,
n=M
<4 M.

This shows that the sequence 4~ h s ([2V]P) is Cauchy, hence it converges.
Next let g € K(F) be another nonconstant even function. Then from (VIIL.6.3)
we have

(degg)hy = (deg f)hy + O(1),

)
4=Nhs(2VP 4=Np,([2N]P
deg(f) deg(g) N—o0
Hence the limit does not depend on the choice of the function f. O

Definition. The canonical (or Néron—Tate) height on E /K, denoted by hor hg, is
the function

h:E(K)— R
defined by

h(P)

1 . _
B deg(f) ngnoo4 he ([271P),

where f € K(FE) is any nonconstant even function.
Remark 9.2. From (VIIL.9.1), the canonical height is well-defined and independent
of the choice of f. We remark that some authors use a canonical height that is equal

to 2h. This is more natural in some contexts, for example it eliminates a power of 2
in the statement of the conjecture of Birch and Swinnerton-Dyer (C.16.5).

Theorem 9.3. (Néron, Tate) Let E/K be an elliptic curve, and let h be the canoni-
cal height on E. -
(a) Forall P,Q € E(K) we have

h(P + Q)+ h(P — Q) = 2h(P) + 2h(Q) (parallelogram law).

(b) Forall P € E(K) and all m € Z,

h(Im]P) = m*h(P).
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(c) The canonical height hisa quadratic formon E, i.e., h is an even function, and
the pairing
(+, ) B(K) x E(K) — R,
(P,Q) = h(P + Q) — h(P) - h(Q),

is bilinear.
(d) Let P € E(K). Then h(P) > 0, and

h(P)=0 ifandonlyif P isa torsion point.

(See also Exercise 8.6.)
(e) Let f € K(E) be an even function. Then

(deg f)h = hy + O(1),

where the O(1) depends on E and f.

Further, if W:E (K) — R is any other function satisfying (e) for some nonconstant
even function f and satisfying (b) for some integer m > 2, then h' = h.

PROOF. We start with (e) and then return to (a)—(d).
(e) Inthe course of proving (VIIL.9.1) we found a constant C', depending on f, such

that for all integers N > M > 0 and all points P € F(K),
|47 Ry (12V]P) = 4~y (12¥]P) | < 47 €
Taking M = 0 and letting N — oo gives the desired estimate
|(deg f)R(P) — hy(P)| < C.
(a) From (VIIL6.2) we have
hy(P+ Q)+ hy(P = Q) = 2hs(P) +2hs(Q) + O(1).

We replace P and @ by [2V]P and [2V Q], respectively, divide by (deg f)4%, and
let N — oo. The O(1) term disappears and we obtain

WP + Q) + h(P — Q) = 2h(P) + 2h(Q).
(b) From (VIIL.6.4b) we have
hy([m]P) = m*h;(P) + O(1).

As usual, we replace P by [2VV] P, divide by 4V, and let N — oc. (Alternative proof:
Use (a) and induction on m.)

(c) Itis a standard fact from linear algebra that a function satisfying the parallelo-
gram law is quadratic. For completeness, we include a proof.
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Putting P = O in the parallelogram law (a) shows that h(—Q) = h(Q), so h is
even. By symmetry, it suffices to prove that

(P+R,Q)=(P,Q)+ (RQ),

which in terms of h is

WMP+Q+R)—h(P+R)—h(P+Q)—h(R+Q)+ h(P)+h(Q)+h(R) = 0.

Four applications of the parallelogram law and the evenness of h yield

The alternating sum of these four equations is the desired result.
(d) The first conclusion is clear, since hy(P) > 0 for all functions f and all
points P, so B(P) is a limit of nonnegative values. For the second, we observe that
one implication is immediate, since if P is a torsion point, then [2/V] P takes on only
finitely many values as N varies, so 4 Vhy([2V]P) — 0 as N — oc.

Conversely, let P € FE(K') for some finite extension K’/K, and suppose
that i(P) = 0. Then

h([m]P) = m*h(P) =0  for every integer m,
so from (e) there is a constant C' such that for all m € Z,

by ((mIP) = |(deg )i ([m]P) — by (fm]P)| < C.
Thus the set { P, [2] P, [3]P, ...} is contained in

{Qe B(K'): hy(Q) < C}.

Now (VIIL.6.1) tells us that this set of bounded height is a finite set, so P must have
finite order.

This completes the proof of (a)—(e). Finally, to prove uniqueness, suppose that
there are an integer m > 2 and a nonconstant even function f such that 4’ satisfies

B o[m]=m?h  and  (degf)h' =hs+ O(1).
Repeated application of the first equality yields

B oo [mN]=m?*h' forN=1,2,3,....

Further, since h satisfies (e), we have
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Hence for any point P € E(K) we have

W(P) =m=N I ([m })
=-2N<< row)

(P) (m*ZN) since h satisfies (b).

I
@)

Letting N — oo yields i/ (P) = h(P). O

Remark 9.4. The Mordell-Weil theorem implies that E(K) ® R is a finite-dimen-
sional real vector space, and (VIIL.9.3cd) implies that hisa positive definite quadratic
form on the quotient space E(K)/Eios(K), where Eis(K) denotes the torsion
subgroup of E(K). The quotient E(K)/Es(K) sits as a lattice in the vector
space E(K) @R, so it would appear to be clear that the extension of h to E(K) ® R
is also positive definite. This is true, but as was pointed out by Cassels, one must use
more than just (VIIL.9.3cd).

Lemma 9.5. Let V be a finite-dimensional real vector space and let L C 'V be a
lattice, i.e., L is a discrete subgroup of V' containing a basis for V. Let q : V — R
be a quadratic form, and suppose that q has the following properties:

(i) For P € L, we have q(P) = 0 if and only if P = 0.

(ii) For every constant C, the set

{PeL:q(P)<C}

is finite.
Then q is positive definite on V.

PROOF. Choose a basis for V' such that for a vector x = (21,...,2z,) € V, the
quadratic form ¢ has the form

S t
_ 2 2
X) = E Ty — E Lotis
i=1 i=1

where s + ¢t < r = dim(V). For the existence of such a basis, see for example [143,
Chapter X1V, §8§3,7] or [296, §12.7]. Using this basis to identify V' = R"™ as R-vector
spaces, we let ;4 be the measure on V' corresponding to the usual measure on R™. We
apply the following basic result due to Minkowski:

Let B C V be a convex set that is symmetric about the origin. If u(B)
is sufficiently large, then B contains a nonzero lattice point.

For a proof of Minkowski’s result, see for example [108, Theorem 447] or [142,
Chapter 5, Section 3]. Now consider the set
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s t
B(e,é):{x:(xl,...,xr)eV:foge and inHS(S}.
i=1 i=1

The set B(e, d) is convex and symmetric about the origin. Further, let
A=inf{q(P): P€ L, P#0}.

From (i) and (ii) we have A > 0.

Now suppose that ¢ is not positive definite on V, so s < r. Then Minkowski’s
theorem tells us that if ¢ is sufficiently large, then B (%)\, 5) contains a nonzero
lattice point P. (The volume of B (%)\, 5) is infinite if s + ¢ < r, and it grows
like §%/2 as § — oo if s 4t = r.) But the point P satisfies

s t
1
P) = 2_ 2 <A
q( ) ;xz ;$1+5—2 )
contradicting the definition of \. Therefore ¢ is positive definite on V. 0

Proposition 9.6. The canonical height extends to a positive definite quadratic form
on the real vector space E(K) @ R.

PROOF. We consider the lattice E(K)/Fiors(K) inside the vector space F(K) @ R
and apply (VIIL.9.5) to get the desired result. Condition (i) of (VIIL9.5) is ex-
actly (VIIL.9.3cd). Condition (ii) of (VIIL.9.5) follows from (VIIL.9.3e), which says
that bounding h is the same as bounding A, and then applying (VIIL6.1). O

We now have the following quantities associated to £/ K:

E(K)®R a finite-dimensional vector space.

h a positive definite quadratic form on E(K) ® R.
E(K)/FEis(K) alatticein F(K) @ R.

In such a situation, an extremely important invariant is the volume of a fundamental
domain for the lattice, computed with respect to the metric induced by the quadratic
form. For example, the discriminant of a number field K is the volume of its ring
of integers with respect to the quadratic form x — Tracey /Q(JUQ). Similarly, the
regulator of K is the volume of its unit group via the logarithm mapping and the
usual metric on Euclidean space.

Definition. The canonical height (or Néron—Tate) pairing on E/K is the bilinear
form

() ) E(K) x B(K) — R,
defined by
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Definition. The elliptic regulator of E/K, denoted by Rp/k, is the volume of a
fundamental domain for E(K)/Eius(K) computed using the quadratic form A. In
other words, choose points P, ..., P, € E(K) that generate E(K)/Fios(K), and
then

RE/K = det((Pi, Pj>) 1<i<r-

1<j<r
(If r =0, we set Rg,x = 1 by convention.)

An immediate corollary of (VIII.9.6) is the following result.
Corollary 9.7. The elliptic regulator satisfies R/ > 0.

Remark 9.8. We have defined the elliptic regulator using the absolute height, but
there are situations in which it is more convenient to define the height relative to a
given number field K. The regulator relative to K differs from R,k by a factor
of [K : Q]".

Since E(P) > 0 for all nontorsion points P € E(K), it is natural to ask how
small h(P) can be if it is not zero. One might guess that 4(P) must be large if the
elliptic curve is “complicated” in some sense. The following precise conjecture is a
strengthened version of a conjecture of Lang [135, page 92].

Conjecture 9.9. Let E/K be an elliptic curve with j-invariant ji and minimal
discriminant Dg k. There is a constant C' > 0, depending only on [K : Q|, such
that for all nontorsion points P € E(K) we have

iL(P) > C'I?ﬂax{h(jE),IOgNK/@’DE/K7 1}.

Note that the strength of the conjecture lies in the fact that the constant c is inde-
pendent of both the elliptic curve E and the point P. Such estimates have applications
to counting integral points on elliptic curves; see (IX.3.6). We briefly summarize
what is currently known about (VIIL.9.9).

Theorem 9.10. Let E/K, jg, and Dy, be as in (VIIL9.9). Then the height in-
equality A

h(P) > Cmax{h(jg),log Nk, Pg/r,1}
is valid for the following choices of C".

(a) (Silverman [254], [260]) Let v(E) be the number of places v € MY such
that ord, (jg) < O, i.e., the number of primes dividing the denominator of jg.
Then C > 0 may be chosen to depend only on [K : Q] and v(E).

(b) (Hindry—Silverman [113]) Assume that the ABC' conjecture' is true for the
field K. Then C' > 0 may be chosen to depend only on [K : Q] and on the
exponent and constant appearing in the ABC' conjecture.

The proof of (VIIL.9.10) is beyond the scope of this book, but see Exercise 8.17 for
a special case.

'The ABC' conjecture is described in (VIIL11.4), (VIIL11.6). It suffices to assume that the ABC
conjecture is true for some fixed exponent, or equivalently, that Szpiro’s conjecture (VIIL.11.1) is true for
some fixed exponent.
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VIII.10 The Rank of an Elliptic Curve

The Mordell-Weil theorem (VIIL.6.7) says that the Mordell-Weil group E(K) of an
elliptic curve can be written in the form

E(K) = Eow(K) x 77"

As we have seen in (VIII §7), the torsion subgroup Ei(K) is relatively easy to
compute, both in theory and in practice. The rank r is much more mysterious, and an
effective procedure for determining it in all cases is still being sought. There are very
few general facts known concerning the rank of elliptic curves, but there are a large
number of fascinating conjectures. In Chapter X we describe some of the methods
that have been developed for actually computing the group F(K).

The rank of a “randomly chosen” elliptic curve over QQ tends to be quite small,
and it is difficult to produce curves E'/Q having even moderately high rank. Nonethe-
less, there is the following folklore conjecture:

Conjecture 10.1. There exist elliptic curves E/Q of arbitrarily large rank.

A key piece of evidence for this conjecture comes from work of Shafarevich and
Tate [244], who show that the analogous result is true for function fields, i.e., with Q
replaced by the field of rational functions IF,,(T"). The Shafarevich-Tate construc-
tion leads to curves with constant j-invariant jg € IF),, but subsequent constructions
by Shioda [251] for F,,(T") and Ulmer [295] for F,,(T) give examples with noncon-
stant j-invariant.

Néron constructed an infinite family of elliptic curves over Q having rank at
least 10 [192], and later authors have constructed families of rank up to 19; see
for example [76, 85, 188]. Within these families, clever search techniques due to
Mestre [171] and others have yielded individual curves of higher rank. For example,
Elkies [76] has produced the elliptic curve

v tay+y=a° -2’

— 20067762415575526585033208209338542750930230312178956502x
+ 3448161179503055646703298569039072037485594435931918
0361266008296291939448732243429

with rank E(Q) > 28.

Attached to an elliptic curve F//K is a certain Dirichlet series Ly, (s) called
the L-series of E/K; see Exercise 8.19. or (C §16). For the moment, it is enough to
know that the definition of L i () involves only the number of points on the reduc-
tions E(k,) for the finite places v € M 9. There is a famous conjecture of Birch and
Swinnerton-Dyer that says that the order of vanishing of L,k (s) at s = 1 is exactly
equal to the rank of F(K). The conjecture further asserts that the leading coefficient
in the Taylor series expansion of Lp/k(s) around s = 1 should be expressible in
terms of various global arithmetic quantities associated to F/(K), including the el-
liptic regulator R, k. Thus in some sense, the conjecture of Birch and Swinnerton-
Dyer is a local—global principle for elliptic curves, since it hypothetically shows how
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information about the v-adic behavior of E for all places v € Mg determines global
information such as the rank of F(K’) and the elliptic regulator R/ . For further
discussion of L-series and the conjecture of Birch and Swinnerton-Dyer, including
some progress toward proving it, see (C §16).

In addition to wanting an effective method for computing the rank of an elliptic
curve, it would be good to have a theoretical bound for the size of a generating
set. Based partly on an analogy with the problem of computing generators for the
unit group in a number field and partly on a number of deep conjectures in analytic
number theory, Serge Lang suggested the following estimate.

Conjecture 10.2. (Lang [138], [141, Conjecture II1.6.4]) Ler e > 0 and let E/Q be
an elliptic curve of rank r. Then there is a basis P, . . ., P, for the free part of E(Q)
satisfying
~ 2 1
AT r —+e'

i P < C Dol
Here h is the canonical height on E (VIII §9), D q is the minimal discriminant
of E/Q (VI §3), and C. is a constant depending only on e.

Lang’s conjecture is actually more precise than (VIII.10.2); see [138] or [141, Con-
jecture I11.6.4].

Since h is a logarithmic height, the conjecture says that the x-coordinates of
the generators may grow exponentially with the discriminant of the curve. This is
similar to the way in which the height H(u) of a generator for the unit group in a
real quadratic field often grows exponentially with the discriminant of the field. Of
course, it is easy to chose a sequence of fields such that H (u) grows polynomially,
but on average, one expects the growth to be exponential. The following example of
Bremner and Cassels illustrates this exponential behavior. They show that the curve

y? =23 4+ 877z

has rank 1 and that the x-coordinate of the smallest generator P is

2(P) = 612776083187947368101 \ >
~\78841535860683900210

We compute
log h(P)
log|Dg/ql

so this example is roughly in the range suggested by Lang’s conjecture.

~ 0.158,

VIIL.11 Szpiro’s Conjecture and ABC

For ease of exposition, we restrict attention in this section to elliptic curves defined
over Q. Let E/Q be such a curve, and let

y2 + a2y + azy = 2+ a2x2 + asx + ag
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be a global minimal Weierstrass equation (VIIL.8.3) for £//Q. The discriminant A g
of this equation is then the minimal discriminant of E/Q, or, more properly, the
minimal discriminant of E/Q is the ideal generated by A .

The primes dividing A g are the primes for which E' has bad reduction. There is
another quantity associated to £ that also encodes the primes of bad reduction. It is
called the conductor of E and is denoted by Ng. The following definition of Ng
is not quite correct, but suffices for our purposes. We write Ng as a product

Np= [ #®,

p prime

where
0 if F has good reduction at p,

fp(E) =<1 if E has multiplicative reduction at p,
2 if E has additive reduction at p.

(For p = 2 or 3, if E has additive reduction, then fp(E ) may be greater than 2, but in
any case it always satisfies f3(E) < 3 and fo(E) < 5. See [266, IV §10] for further
information about the conductor of an elliptic curve.)

Roughly speaking, the conductor N is the product of the primes at which F
has bad reduction raised to small powers, while the discriminant A g is a product of
the same primes, but they may sometimes appear to large powers. A deep conjecture
made by Szpiro in 1983 says that although an occasional prime may appear in Ag
to a high power, most primes do not.

Conjecture 11.1. (Szpiro’s conjecture) For every € > 0 there exists a k. such that
Jor all elliptic curves E/Q,
‘AEl S KEN2+€.

Although the statement of (VIII.11.1) seems relatively innocuous, the next result
gives some indication of its strength.

Proposition 11.2. Szpiro’s conjecture (easily) implies Fermat’s last theorem for all
sufficiently large exponents, i.e., if n is sufficiently large, then the Fermat equa-
tion a™ + b = ¢" has no solutions with a,b, ¢ € Z and abc # 0.

PROOF. Suppose that a™ + b" = ¢" with a, b, ¢ € Z and abc # 0. We consider the
elliptic curve (sometimes called a Frey curve)

E:y?=ax(x+a")(z—b").
This Weierstrass equation for E has discriminant
Agpe = 16a*6°"(a™ 4 b")* = 16(abc)?".

The minimal discriminant of £/Q, which for notational clarity we denote by AR,
may be somewhat smaller than A ; ., but it cannot be too much smaller. More pre-
cisely, we prove below (VIIL.11.3a) that the minimal discriminant of E/Q satisfies
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labe|?”

A > 2

Szpiro’s conjecture (VIIL11.1) relates the minimal discriminant AB™ to the con-
ductor N, where we observe that the conductor has the trivial upper bound

Ng = H pir(E) < H p? < |2abc|?.
p|2abe p|2abe
Szpiro’s conjecture with e = 1 gives

‘2n

b .
|a208 < |A®BM| < KNE < k|2abe|'

for an absolute constant k. Thus
|abc|2n—14 S 222,{)

and since we certainly have |abc| > 2, this inequality yields an absolute upper bound
for n. Hence if n is sufficiently large, then the equation a™ +b" = ¢” has no solutions
in nonzero integers. O

Lemma 11.3. Let A, B,C' € Z be nonzero integers satisfying
A+B=C and ged(A, B,C) =1,
and let E/Q be the elliptic curve
E:y? =z(x+ A)(x — B).
(a) The minimal discriminant A of E is given by either
|Ag| =2 ABC|? or |Ap| =278 ABC|?.

In particular,
Ag| > 278 ABC.

(b) The curve E has multiplicative reduction modulo p for all odd primes divid-
ing ABC.

PROOF. (a) The given Weierstrass equation for F has discriminant
A =16A?B*(A+ B)? = 16A*B*C*?
and associated quantities
cy =16(A* + AB+ B?*)  and  cg = —32(24% + 34°B + 3AB? 4 2B%).

Let = u?2’ +r and y = w3y’ + u?sa’ 4 t be a change of variables that creates
a global minimal Weierstrass equation for E; see (VIIL.8.3). Applying (VIL.1.3d)
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one prime at a time, we deduce that u, r, s,t € Z. The change of variable formulas
in (IIT §1) then imply that

ut | ey and ub | cq.
A simple resultant or Euclidean algorithm calculation gives the identities
(22A% — 8AB — 8B%)cy + (A + 2B)cg = 28842,
—(8A% + 8AB — 22B%)cy — (2A + B)cg = 288B2.
Hence, using the assumption that ged(A, B) = 1, we find that
u? | gcd(288A*, 288 B*) = 288 = 2° - 32,

from which it follows that w = 1 or 2. Therefore the absolute value of the minimal
discriminant A g of E/Q,

|Ap| = [u A = [u*(4ABC)?),

is equal to either 16| ABC|? or 2-8|ABC?.
(b) We recall from (a) that the ¢4 value and the discriminant A of the Weierstrass
equation 32 = z(x + A)(z — B) are

ey =16(A> 4+ AB+B?) and A =1642B>C?.
For any prime p, we have from (VIL.5.1) that
E has good reduction if p f A,

E has multiplicative reduction if p | A and p { ¢4,
E has additive reduction if p | A and p | ¢4.

Let p be an odd prime dividing A. If p | A or p | B, then the assumption that
ged(A, B) = 1 implies that p t ¢4, so E has multiplicative reduction at p. Similarly,
if p | C,s0 A+ B =0 (mod p), then ¢, = 1642 (mod p), and hence again p { ¢4
and E has multiplicative reduction at p. O

Szpiro’s conjecture is closely related to the ABC' conjecture that was proposed
by Masser and Oesterlé in 1985; see [196, Part I].

The ABC Conjecture 11.4. (Masser—QOesterlé) For every ¢ > 0 there exists a
constant k. such that for all nonzero integers A, B, C' € 7 satisfying

A+B=C and ged(A, B,C) =1,

we have
1+e
max{|A|,|B|,|C’|}§/<;€< 11 p) ,
p|ABC

(The product is over all primes dividing ABC'.)
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The intuition behind the ABC' conjecture is that in any sum of three relatively
prime integers, it is not possible for all three terms to be divisible by many high prime
powers. It is not hard to show that the ABC conjecture implies Szpiro’s conjecture,
and the converse is also true if one allows a slightly larger exponent.

Proposition 11.5. (a) If Szpiro’s conjecture (VIL.11.1) is true, then the ABC' con-
jecture (VIII.11.4) is true with exponent % (See also Exercise 8.20.)
(b) The ABC conjecture implies Szpiro’s conjecture.

PROOF. (a) Let A, B, C be as in the statement of Szpiro’s conjecture. Relabeling if
necessary, we may assume that C' > B > A > 0, so in particular

2B>A+B=C.
We consider the elliptic curve
E:y? =z(x+ A)(x — B).
From (VIII.11.3a) we know that the minimal discriminant of E satisfies
|Ag| > 278(ABC)?.

On the other hand, we know from (VIII.11.3b) that E has multiplicative reduction at
all odd primes of bad reduction, so directly from the definition of the conductor,

N = 2°¢ H P for some e < 2.

p=>3
p|ABC

Applying Szpiro’s conjecture to F, we deduce that for every € > 0 there is
a ke > 0 such that

278(ABC)2 S |AE| § ReNg—‘rE S KZ€212+26 H p6+6-
p|ABC

Using the fact that A > 1 and B > %C yields

2710C4 S K/5212+26 H p6+67
p|ABC

and taking fourth roots gives the ABC conjecture with exponent %
(b) Let E/Q be an elliptic curve given by a minimal Weierstrass equation. Then as
described in (IIT §2), the discriminant and associated quantities ¢4 and cg are related
by the formula

1728A = ¢} — c§.

We will prove (b) under the assumption that ged(c}, c2) = 1 and leave the general
case as an exercise for the reader; see Exercise 8.21. This assumption allows us to
apply the ABC conjecture with
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A=c3, B = —cg, and C=A,

which yields

masx{[ell [2] 1A} <ne [ 2
plcace A

The product on the right is clearly smaller than |c4cg N E|1+€, so we obtain the fol-
lowing three inequalities:

lcal> ¢ < kel Np|' e,

lco|' ¢ < Ke|eaNg|'Te,

|A| < K6|C4CGNE|1+€.

We are going to take an appropriate (multiplicative) linear combination of these
inequalities to eliminate c4 and cg. To do this, we raise the first inequality to
the 2 4 2¢ power, raise the second inequality to the 3 + 3¢ power, raise the third
inequality to the 1 — 5e power, and multiply the resulting three inequalities. Cancel-
ing [cq|*F2¢2¢%|¢6[3-3¢ from both sides yields

|A‘1_5€ < IQGNngGE
= € .
This is Szpiro’s conjecture, up to adjusting the €. O

Remark 11.6. It is not difficult to formulate versions of Szpiro’s conjecture and
the ABC conjecture over a number fields. For example, if F/K is an elliptic curve
defined over a number field K, we define the (naive) conductor of E/K to be the

ideal
mE/K = prP(E)7
p

where f,(E) is 0, 1, or 2 according to whether E has good, multiplicative, or ad-
ditive reduction at p. Then Szpiro’s conjecture says that for every ¢ > 0 there is a
constant k = (e, K), depending only on € and K, such that
N0 Pr/x < £(NgjoNe )t
Next suppose that A, B, C € Ry satisfy A+ B = C. Then the ABC conjecture
says that for every e > 0 there is a constant k = (¢, K'), depending only on € and K,
such that

HK([Avac]) S R H (NK/QP)1+6
p|ABC

(There is no relative primality condition on A, B, and C, since any common “factors”
leave the left-hand side unchanged while increasing the right-hand side.)

It is very interesting to ask how the constants s appearing in these conjectures
depend on the field K.
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Remark 11.7. Let k be a field of characteristic 0. There are analogues of Szpiro’s
conjecture and the ABC' conjecture in which Q is replaced by a rational func-
tion field k(T"), or more generally, the number field K is replaced by the function
field k(C') of an algebraic curve C. Somewhat surprisingly, both conjectures are quite
easy to prove in the function field setting, and indeed considerably stronger results
are known. For example, the three-term sum in the ABC' conjecture may be replaced
by a sum having more terms. See [157, 258, 278] for A + B = C' and [31, 158, 300]
for Ay +---+ A, =0.

Remark 11.8. Frey has noted that Szpiro’s conjecture (VIIL.11.1) implies the uni-
form boundedness of torsion on elliptic curves (VIIL.7.5), (VIIL.7.5.1). The idea is as
follows. Suppose that P € E(K) is a point of exact order N, and let ¢ : E — E’
be the isogeny whose kernel is the subgroup generated by P. Assuming that IV is
sufficiently large (depending only on the field K), an elementary calculation using
Tate curves (see (C §14) or [266, Chapter V]) shows that there are ideals a and b such
that the minimal discriminants of E and E’ have the form

Dg = ab®¥ and Dg = aVb.

Since the primes of bad reduction divide the discriminant, we see that the conduc-
tors Mz and N divide a2b2. We apply Szpiro’s conjecture to E and E’ to obtain

Ni/o(PeDE) < ke Ngjo(NeMNe ),
and then substituting the discriminants’ and conductors’ values gives
NK/Q(Clb)N+1 < Ke NK/Q(Clb)12+26.

Discarding the finitely many elliptic curves defined over K with everywhere good
reduction (IX.6.1), we may assume that N x /Q(ab) > 2, and then the last inequality
gives a bound for /V that is independent of the curve E. See [89, 90, 113] for further
details.

Exercises

8.1. Let E//K be an elliptic curve, let m > 2 be an integer, let H x be the ideal class group
of K, and let

S = {v € M : E has bad reduction at v} U {v € Mg : v(m) # 0} U M.

Assume that E[m] C E(K). Prove the following quantitative version of the weak Mordell-
Weil theorem:

rankz/mz E(K)/mE(K) < 245 + 2rankgmz Hi[m].
8.2. For each integer d > 1, let E4 be the elliptic curve

E:y2:x3—d2az.
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Prove that
E4(Q) = (finite group) x Z"

for an integer 7 satisfying
r < 2v(2d),

where v(IN) denotes the number of distinct primes dividing N. (Hint. Use Exercise 8.1.)

8.3. Let E/K be an elliptic curve and let L/ K be an (infinite) algebraic extension. Suppose
that the rank of E(M) is bounded as M ranges over all finite extensions M /K such that M
is contained in L, i.e., assume that

sup rank E(M)
KCMCL
[M:K] finite
is finite.
(a) Prove that F(L) ® Q is a finite-dimensional Q-vector space.
(b) Assume further that L/ K is Galois and that Eior (L) is finite. Prove that E(L) is finitely
generated.

8.4. Assume that pt,, C K. Prove that the maximal abelian extension of K of exponent m is
the field

K(a'™:a€K).

(Hint. Use (VIIL.2.2), which in this case says that every homomorphism x : Gr/x = M,
has the form (o) = a” /a for some a € K™ satisfying o™ € K.)

8.5. Let¢ € HY(Gx /1> M) be unramified at v. Prove that the cohomology class of & con-
tains a 1-cocycle ¢ : Gg i — M satisfying ¢, = 0 for all o € I,. (Hint. Use the inflation—
restriction sequence (B.2.4) for I, C Gz k)

8.6. Prove Kronecker’s theorem: Let x € Q*. Then H(z) = 1 if and only if x is a root of
unity. (This is the multiplicative group version of (VIIL.9.3d).)

8.7. (a) Give an explicit upper bound, in terms of N, C, and d, for the number of points in

the set
{PePY(Q): H(P)< Cand [Q(P): Q] <dj}.
(b) Let
vk(N,C) = #{P e PY(K): Hx(P) < C}.
Prove that

N
lim vo(N,C) _ 2 ’
C—o0 CN +1 C (N + 1)

where ((s) is the Riemann zeta function. (For further information about v (N, C'),

see (VIIL.5.12).)

8.8. Prove the following basic properties of height functions.
() Hxiz2---xn) < H(z1)H(z1)--- H(zN).
(b) Hx1+ a2+ +an) < NH(z1)H(x2) - - H(xzn).
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(c) For P = [x0,...,zn] € PY(Q) and Q = [yo, . . ., yrr] € PM(Q), define
P%Q = [zoyo, Toy1, - - ., TiYj, . - ., anym) € PN (Q).
Prove that
H(PxQ)=H(P)H(Q).

(The map (P, Q) — P % Q is the Segre embedding of PN x PM into PMN+M+N
See [111, exercise 1.2.14].)
(d) Let M = (N]C,Ld) — 1 and let fo(X),..., fm(X) be the M distinct monomials of de-

gree d in the N + 1 variables Xo, . .., X . For any point P = [zo, ..., zn] € PY(Q),
let

P@D = [fo(P),..., fur(P)] € PM(Q).
Prove that
HPD) = H(P)? = H([gg(d)7 ... ,:n'fv])

(The map P — P ig the d-uple embedding of P" into PM.See[111, exercise 1.2.12].)

8.9. Let xp,...,xny € K and let b be the fractional ideal of K generated by zo,...,zN.
Prove that

HK([x07...,:rN]) I(NK/Qb)71 H Olgllag)gv{kﬂz‘v}nu
ve]t{?

8.10. Let F' be the rational map
F:P2 _)Pza [IayVZ] L — [1'27.’1‘y722],

from (I.3.6). Note that F' is a morphism at every point except at [0, 1, 0], where it is not defined.
Prove that there are infinitely many points P € P?(Q) such that

H(F(P)) = H(P).
In particular, (VIIL.5.6) is false if the map F' is merely required to be a rational map.

8.11. Prove the following generalization of (VIIL.7.2) to arbitrary number fields. Let £/ K be
an elliptic curve given by an equation

v =2+Az+ B

with A, B € R, and let A = 4A% 4+ 27B? Let P € E(K) be a point of exact order m > 3,
andletv € M.
(a) If m = p™ is a prime power, prove that

—67, < ordy (y(P)Q) < 67y + ord, (A),

o [t ]

where

pn _ pnfl
(b) If m = 2p™ is twice a prime power, prove that
0 < ordy (y(P)?) < 21y + ordy(A),

where 7, is as in (a).
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(c) If m is not of the form p™ or 2p™, prove that

0 < ord, (y(P)Q) < ordy,(A).

8.12. Calculate E(Q)wrs for each of the following elliptic curves.

(a)
(b)
()
(d)
(e)
()
(&)
(h)

Yy =a" -2 )
y? =12 +8 )
y?=a+4 (k)
y? =2 + 4z )
v —y=a’—a* (m)
v=2>+1 (n)
y? = a® — 43z + 166 (0)
y? + Toy = 2° + 162

Vv rayt+y=a>—2> 14z +29
2 +ay =2 — 452+ 81

y? 4+ 43zy — 210y = 2 — 21022
y? =a — 4z

y? =234+ 22% — 3z

y? + bxy — 6y = x> — 322

y? + 17zy — 120y = 2> — 6022

8.13. (a) Let £/ K be an elliptic curve and let P € E(K) be a point of order at least 4. Prove

that there is a change of coordinates such that E has a Weierstrass equation of the form

E:y2+uxy+vy:$3+vx2

with u,v € K and P = (0,0).

(b) Prove that there is a one-parameter family of elliptic curves F/K having a K -rational

point of order 6. (Hint. Set [3]P = [—3]P in (a) and find a relation between v and v.)
Same question for points of order 7, order 9, and order 12.

(c) Prove that the elliptic curves FE/K having a K-rational point of order 11 are

parametrized by the K -rational points of a certain curve of genus one.

8.14. (a) Generalize (VIIL.8.2) as follows. Let £//K be an elliptic curve and let a be any

integral ideal in the ideal class a g, k. Prove that there is a Weierstrass equation of £ /K
having coefficients a; € R and discriminant A satisfying

(A) = DE/KI'112.

(b) Suppose that E/K has everywhere good reduction and that the class number of K is

(©)

(d)

relatively prime to 6. Prove that £// K has a global minimal Weierstrass equation.
Prove that every elliptic curve E/ K has a Weierstrass equation with coefficients a; € R
and discriminant A satisfying

|NK/Q A| S |DiSCK/Q|6|NK/QDE/K|.

Qualitatively, this says that there is a Weierstrass equation for £ whose nonminimality
is bounded solely in terms of K. Such an equation might be called quasiminimal.

Let b be an ideal class of K. Prove that there is an elliptic curve /K such that az JK =
b. In particular, if K does not have class number one, then there exist elliptic curves
over K that do not have global minimal Weierstrass equations. This gives a converse
to (VIIL8.3). (See also [15] for an estimate of how many F//K have @, i equal to b.)

8.15. Prove that there are no elliptic curves F'/Q having everywhere good reduction.

(Hint. Suppose that there is a Weierstrass equation with integer coefficients and discrimi-
nant A = £1. Use congruences modulo 8 to show that a; is odd, and hence ¢4 = 1 (mod 8).
Substitute ¢4 = u 4 12 into the formula ¢} — ¢ = +1728. Show that u is either a square or
three times a square. Rule out both cases by reducing modulo 8.)
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8.16. Show that the conclusion of (VIIL.9.5) is false if the quadratic form g is not required to
satisfy the finiteness condition (ii).

8.17. Fix nonzero integers A and B with 4A® 42782 # 0. For each integer d # 0, let E;/Q
be the elliptic curve
Eq:y*=2°+d°Az + d°B.

Assuming that d is squarefree, prove the following properties of Fg:

(a) jE is independent of d.

(b) log [Di/q| = 6log|d| + O(1).

(c) Every P € E4(Q) satisfies either [2]P = 0 or h(P) > 3 log|d| + O(1).

(d) For all but finitely many squarefree integers d, the torsion subgroup of Fq(Q) is one

of {0}, Z/27Z, and (Z,/2Z).

Note that the O(1) bounds in (b) and (c) may depend on A and B, but they should be inde-
pendent of d. In particular, (c) provides a proof of (VIIL.9.9) for the family of curves Eq.
(Hint for (c). If P = (r,s) € Eq(Q), then P’ = (r/d,s/d*/?) € E1(Q). Prove the fol-

lowing facts: (i) h(P) = h(P'); (ii) either s = 0 or hy(P') is greater than 2log |d;
and (iii) |2 — %, | is bounded.)

8.18. Let E/K be an elliptic curve given by a Weierstrass equation
y? =% + Az + B.

(a) Prove that there are absolute constants c1 and cz such that for all points P € E(K) we
have
|ha ([21P) — 4ho(P)| < e1h([A, B,1]) + ca.

Find explicit values for ¢; and c2. (Hint. Combine the proofs of (VIII.4.2) and (VIIL.5.6),
keeping track of the dependence on the constants. In particular, note that the use of the
Nullstellensatz in (VIIL.5.6) can be replaced by the explicit identities given in (VIIL.4.3).)

(b) Find absolute constants cs and c4 such that for all points P € E(K) we have
1 .
‘Ehx(P) - h(P)‘ < esh([A, B, 1)) + e

(Hint. Use (a) and the proof of (VIIL.9.1).)
(c) Prove that for all integers m > 1 and all points P, Q € E(K) we have

|ha ([m]P) — m*ha(P)| < 2(m® 4 1) (csh([A, B,1]) + c4)
and
ha(P 4 Q) < 2he(P) + 2h0(Q) + 5(csh([A, B, 1]) + c4).

(Hint. Use (b) and (VIIL.9.3).)
(d) LetQ1,...,Q, € E(K) be a set of generators for E(K)/2F(K). Find absolute con-
stants cs, cg, and c7 such that the set of points P € E(K) satisfying

he(P) < ¢s max hy(Qi) + csh([A, B,1]) + ¢7

1<:i<r

contains a complete set of generators for E(K). (Hint. Follow the proof of (VIIL.3.1),
using (c) to evaluate the constants that appear.)
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8.19. The L-Series Attached to an Elliptic Curve. Let E/Q be an elliptic curve and choose a
global minimal Weierstrass equation for F/Q,

E y2 + a1xy + asy :x3 —0—a2:r2—|—a4x+a6.

(See (VIIL.8.3).) For each prime p, let E denote the reduction of the Weierstrass equation
modulo p, and let ~

tp=p+1-— #E(Fp)~
The L-series associated to E /Q is defined by the Euler product

Le(s)= J[ A=t J[ O—tap™>+p" )"

p|A(E) PtA(E)

(a) If Lge(s) is expanded as a Dirichlet series Z cnn” %, show that for all primes p, its p‘h co-
efficient satisfies ¢, = t,,.

(b) If E has bad reduction at p, so p | A(FE), prove that ¢, equals 1, —1, or 0 according
to whether the reduced curve E (mod p) has a node with tangents whose slopes are
rational over I, (split multiplicative reduction), a node with tangents whose slopes are
quadratic over [F), (nonsplit multiplicative reduction), or a cusp (additive reduction). (Cf.
Exercise 3.5).

(c) Prove that the Euler product for Lg(s) converges for all s € C with Re(s) > 3.
(Hint. Use (V.1.1).)

There are many important theorems and conjectures concerning the L-series of elliptic curves;
see (C §16).

8.20. We proved in (VIIL.11.5a) that Szpiro’s conjecture implies a weaker form of the ABC
conjecture with exponent % This exercise explains how to reduce the exponent to g.
Relabeling A, B, C' if necessary, we may assume that C' > B > A > 0. Let E be the
curve y*> = z(z + A)(x — B) used in the proof of (VIIL.11.5a).
(a) Prove that there is an isogeny of degree 2 from E to the elliptic curve

E :y* =2 —2(A— B)z® + C°x.

Show that the discriminant of the equation for E’ is A’ = —28 ABC".

(b) Prove a version of (VIIL.11.3) for E’. In particular, prove that E’ has multiplicative
reduction modulo p for all odd primes dividing ABC' and that its minimal discriminant
satisfies

|Ap/| >27%%|ABC|.

c zpiro’s conjecture to £’ and deduce that
(c) Apply Szpiro’ j E’ and ded h

6
C < ke H po e,

p|ABC
where the constant x. depends only on e.

8.21. We proved (VIIL.11.5b) that the ABC conjecture (VIIL.11.4) implies Szpiro’s conjec-
ture (VIIL11.1) under the assumption that gcd(ca,cs) = 1. Prove that this implication is
still true when ged(ca, cg) > 1. (Hint. Let G = ged(c}, c&) and apply the ABC' conjecture
with A = ¢} /G, B = —c¢/G, and C = A/G. Use the minimality of the equation to bound
the powers of the primes p dividing G. Also show that if p > 5 divides G, then E has additive
reduction at p, so p* | Ng.)
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8.22. Let m,n, ¢ be positive integers and consider the equation

™ oyt =2t

()

Assuming the ABC' conjecture (VIIL.11.4), prove the following two statements (see also Ex-
ercise 9.17):
(@ If m 4+ n"'4+¢71 <1, then () has only finitely many solutions z,y,z € Z
with ged(z, v, 2) = 1.
(b) There is a constant «’, depending only on the constant appearing in the ABC conjecture,
such that if () has a solution in relatively prime integers satisfying |z|, |y|, |z| > 2, then

max{m,n, £} < x'.
8.23. Let A, B, C € Z be as in the statement of the ABC' conjecture (VIII.11.4), and let
E:y* =z(z+ A)(z — B)
be the elliptic curve used in the proof of (VIII.11.5a). Assume further that
A =0 (mod 16) and B =3 (mod 4).
(a) Prove that the substitutions x — 4x and y — 8y + 4z give a global minimal Weierstrass
equation for E,
A-B-1, AB

S T
(b) Verify that the Weierstrass equation in (a) sati