Data Mining:

Concepts and Techniques

(3rd ed.)

— Chapter 6 —

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University ©2013 Han, Kamber & Pei. All rights reserved. Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Which Patterns Are Interesting?—Pattern

Evaluation Methods

Summary

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles

Basic Concepts: Frequent Patterns

Items bought	Tid
Beer, Nuts, Diaper	10
Beer, Coffee, Diaper	20
Beer, Diaper, Eggs	30
Nuts, Eggs, Milk	40
Nuts, Coffee, Diaper, Eggs, Milk	50

itemset: A set of one or more items

k-itemset
$$X = \{x_1, ..., x_k\}$$

- *(absolute) support*, or, *support count* of X: Frequency or occurrence of an itemset X
- *(relative) support, s*, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, *s*, probability that a transaction contains $X \cup Y$
 - confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

- *Freq. Pat.:* Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3
 - Association rules: (many more!)
 - *Beer* → *Diaper* (60%, 100%)
 - *Diaper* → *Beer* (60%, 75%)

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

Evaluation Methods

Summary

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ *minsup* threshold
 - confidence ≥ *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - \Rightarrow Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq *minsup*
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database
 Transactions
 List of

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Computational Complexity

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical
 Data Format

The Downward Closure Property and Scalable Mining Methods

- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)
- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}

Illustrating Apriori Principle

Apriori: A Candidate Generation & Test Approach

- <u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

The Apriori Algorithm (Pseudo-Code)

 C_k : Candidate itemset of size k L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} != \emptyset; k++) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k'} \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \text{ that} \\ \text{are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with } minsup \\ \text{end} \end{cases}$

return $\cup_k L_k$;

Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - *abcd* from *abc* and *abd*
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - $C_4 = \{abcd\}$

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori

- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Mining Close Frequent Patterns and Maxpatterns

Further Improvement of the Apriori Method

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Reducing Number of Comparisons

• Candidate counting:

- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Transactions

Buckets

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a *hash-tree*
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

 $\{1 \ 4 \ 5\}, \{1 \ 2 \ 4\}, \{4 \ 5 \ 7\}, \{1 \ 2 \ 5\}, \{4 \ 5 \ 8\}, \{1 \ 5 \ 9\}, \{1 \ 3 \ 6\}, \{2 \ 3 \ 4\}, \{5 \ 6 \ 7\}, \{3 \ 4 \ 5\}, \{3 \ 5 \ 6\}, \{3 \ 5 \ 7\}, \{6 \ 8 \ 9\}, \{3 \ 6 \ 7\}, \{3 \ 6 \ 8\}$

You need:

Hash function

 Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Generate Hash Tree

 $\{1 \ 4 \ 5\}, \{1 \ 2 \ 4\}, \{4 \ 5 \ 7\}, \{1 \ 2 \ 5\}, \{4 \ 5 \ 8\}, \{1 \ 5 \ 9\}, \{1 \ 3 \ 6\}, \{2 \ 3 \ 4\}, \{5 \ 6 \ 7\}, \{3 \ 4 \ 5\}, \{3 \ 5 \ 6\}, \{3 \ 5 \ 7\}, \{6 \ 8 \ 9\}, \{3 \ 6 \ 7\}, \{3 \ 6 \ 8\}$

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Subset Operation

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Improving the Efficiency of Apriori

- Other Methods (<u>Projects for Students</u>)
 - Partition: Scan Database Only Twice
 - A. Savasere, E. Omiecinski and S. Navathe, VLDB'95
 - DHP: Reduce the Number of Candidates
 - DHP: Direct Hashing and Pruning
 - J. Park, M. Chen, and P. Yu. An effective hashbased algorithm for mining association rules. *SIGMOD'95*
 - DIC: Reduce Number of Scans
 - DIC: Dynamic itemset counting
 - H. Toivonen. Sampling large databases for association rules. In VLDB'96

Rule Generation from Frequent Itemsets

- Strong association rules → *minsup* and *minconf*
- $Conf.(A \Longrightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)}$
- Association rules can be generated
 - For each frequent itemset l, generate all nonempty subsets of l
 - For every nonempty subset *s*, output rule " $s \Rightarrow (l s)$ if $\frac{support(l)}{support(s)} \ge minconf$
- Example
 - If {A,B,C,D} is a frequent itemset, candidate rules:
 - ABC →D, ABD →C, ACD →B, BCD →A, A →BCD, B →ACD, C →ABD, D →ABC, AB →CD, AC → BD, AD → BC, BC →AD, BD →AC, CD →AB
 - $|l| = n \rightarrow n^2 2$ candidate association rules (ignoring L $\rightarrow \phi$ and $\phi \rightarrow L$) ?

Rule Generation from Frequent Itemsets

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property
 - *conf*(ABC \rightarrow D) can be larger or smaller than *conf*(AB \rightarrow D)
 - But confidence of rules generated from the same itemset has an anti-monotone property
 - e.g., L = {A,B,C,D}:
 - $conf(ABC \rightarrow D) \ge conf(AB \rightarrow CD) \ge conf(A \rightarrow BCD)$

Rule Generation

Candidate rule is generated by merging two rules that share the same prefix in the rule antecedent

- join(CD \rightarrow AB, BD \rightarrow AC) would produce the candidate rule D \rightarrow ABC
 - Prune rule D → ABC if its subset AD → BC does not have high confidence

Rule Pruning

Rule Generation Algorithm

Moving items from the antecedent to the consequent never changes support, and never increases confidence

> Homework #1 Dead time: 96/2/09

Email: Vahidipour@kashanu.ac.ir

Scalable Frequent Itemset Mining Methods

- Projects for Students
 - FPGrowth: A Frequent Pattern-Growth Approach
 - ECLAT: Frequent Pattern Mining with Vertical Data Format
 - Mining Close Frequent Patterns and Maxpatterns