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What Is Frequent Pattern Analysis?

n Frequent pattern: a pattern (a set of items, subsequences, substructures, 

etc.) that occurs frequently in a data set 

n First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context 

of frequent itemsets and association rule mining

n Motivation: Finding inherent regularities in data

n What products were often purchased together?� Beer and diapers?!

n What are the subsequent purchases after buying a PC?

n What kinds of DNA are sensitive to this new drug?

n Can we automatically classify web documents?

n Applications

n Basket data analysis, cross-marketing, catalog design, sale campaign 

analysis, Web log (click stream) analysis, and DNA sequence analysis.
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Why Is Freq. Pattern Mining Important?

n Freq. pattern: An intrinsic and important property of 
datasets 

n Foundation for many essential data mining tasks

n Association, correlation, and causality analysis

n Sequential, structural (e.g., sub-graph) patterns

n Pattern analysis in spatiotemporal, multimedia, time-
series, and stream data 

n Classification: discriminative, frequent pattern analysis

n Cluster analysis: frequent pattern-based clustering

n Data warehousing: iceberg cube and cube-gradient 

n Semantic data compression: fascicles
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Basic Concepts: Frequent Patterns

n itemset: A set of one or more 
items

n k-itemset X = {x1, �, xk}

n (absolute) support, or, support 
count of X: Frequency or 
occurrence of an itemset X

n (relative) support, s, is the 
fraction of transactions that 
contains X (i.e., the probability
that a transaction contains X)

n An itemset X is frequent if X�s 
support is no less than a minsup
threshold

Customer

buys diaper

Customer

buys both

Customer

buys beer

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk
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Basic Concepts: Association Rules

n Find all the rules X à Y with 

minimum support and confidence

n support, s, probability that a 
transaction contains X È Y

n confidence, c, conditional 
probability that a transaction 
having X also contains Y

Let  minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, 
{Beer, Diaper}:3

Customer

buys 

diaper

Customer

buys both

Customer

buys beer

Nuts, Eggs, Milk40

Nuts, Coffee, Diaper, Eggs, Milk50

Beer, Diaper, Eggs30

Beer, Coffee, Diaper20

Beer, Nuts, Diaper10

Items boughtTid

n Association rules: (many more!)
n Beer à Diaper  (60%, 100%)
n Diaper à Beer  (60%, 75%)
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Association Rule Mining Task

n Given a set of transactions T, the goal of association 
rule mining is to find all rules having 

n support ! minsup threshold

n confidence ! minconf threshold

n Brute-force approach:

n List all possible association rules

n Compute the support and confidence for each rule

n Prune rules that fail the minsup and minconf
thresholds

Þ Computationally prohibitive!



Mining Association Rules

Example of Rules:

{Milk,Diaper} ® {Beer} (s=0.4, c=0.67)

{Milk,Beer} ® {Diaper} (s=0.4, c=1.0)

{Diaper,Beer} ® {Milk} (s=0.4, c=0.67)

{Beer} ® {Milk,Diaper} (s=0.4, c=0.67) 

{Diaper} ® {Milk,Beer} (s=0.4, c=0.5) 

{Milk} ® {Diaper,Beer} (s=0.4, c=0.5)

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Observations:

� All the above rules are binary partitions of the same itemset: 

{Milk, Diaper, Beer}

� Rules originating from the same itemset have identical support but

can have different confidence

� Thus, we may decouple the support and confidence requirements



Mining Association Rules

n Two-step approach: 

1. Frequent Itemset Generation

� Generate all itemsets whose support ³ minsup

2. Rule Generation

� Generate high confidence rules from each frequent 
itemset, where each rule is a binary partitioning of 
a frequent itemset

n Frequent itemset generation is still 
computationally expensive



Frequent Itemset Generation
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there 

are 2d possible 

candidate itemsets



Frequent Itemset Generation

n Brute-force approach: 

n Each itemset in the lattice is a candidate frequent itemset

n Count the support of each candidate by scanning the 
database

n Match each transaction against every candidate

n Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions List of

Candidates

M

w



Computational Complexity

n Given d unique items:
n Total number of itemsets = 2d

n Total number of possible association rules: 
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Frequent Itemset Generation Strategies

n Reduce the number of candidates (M)
n Complete search: M=2d

n Use pruning techniques to reduce M

n Reduce the number of transactions (N)
n Reduce size of N as the size of itemset increases
n Used by DHP and vertical-based mining algorithms

n Reduce the number of comparisons (NM)
n Use efficient data structures to store the 

candidates or transactions
n No need to match every candidate against every 

transaction
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Scalable Frequent Itemset Mining Methods

n Apriori: A Candidate Generation-and-Test Approach

n Improving the Efficiency of Apriori

n FPGrowth:  A Frequent Pattern-Growth Approach

n ECLAT: Frequent Pattern Mining with Vertical 

Data Format
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The Downward Closure Property and Scalable 

Mining Methods

n Scalable mining methods: Three major approaches

n Apriori (Agrawal & Srikant@VLDB�94)

n Freq. pattern growth (FPgrowth�Han, Pei & Yin 
@SIGMOD�00)

n Vertical data format approach (Charm�Zaki & Hsiao 
@SDM�02)

n The downward closure property of frequent patterns

n Any subset of a frequent itemset must be frequent

n If {beer, diaper, nuts} is frequent, so is {beer, 
diaper}

n i.e., every transaction having {beer, diaper, nuts} also 
contains {beer, diaper} 



Found to be 

Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 

supersets
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Apriori: A Candidate Generation & Test Approach

n Apriori pruning principle: If there is any itemset which is 

infrequent, its superset should not be generated/tested! 

(Agrawal & Srikant @VLDB�94, Mannila, et al. @ KDD� 94)

n Method: 

n Initially, scan DB once to get frequent 1-itemset

n Generate length (k+1) candidate itemsets from length k 

frequent itemsets

n Test the candidates against DB

n Terminate when no frequent or candidate set can be 

generated
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The Apriori Algorithm�An Example 

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Supmin = 2
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The Apriori Algorithm (Pseudo-Code)

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=Æ; k++) do begin

Ck+1 = candidates generated from Lk;

for each transaction t in database do

increment the count of all candidates in Ck+1 that 

are contained in t

Lk+1 = candidates in Ck+1 with minsup

end

return Èk Lk;



23

Implementation of Apriori

n How to generate candidates?

n Step 1: self-joining Lk

n Step 2: pruning

n Example of Candidate-generation

n L3={abc, abd, acd, ace, bcd}

n Self-joining: L3*L3

n abcd from abc and abd

n acde from acd and ace

n Pruning:

n acde is removed because ade is not in L3

n C4 = {abcd}
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Scalable Frequent Itemset Mining Methods

n Apriori: A Candidate Generation-and-Test Approach

n Improving the Efficiency of Apriori

n FPGrowth:  A Frequent Pattern-Growth Approach

n ECLAT: Frequent Pattern Mining with Vertical Data Format

n Mining Close Frequent Patterns and Maxpatterns



28

Further Improvement of the Apriori Method

n Major computational challenges

n Multiple scans of transaction database

n Huge number of candidates

n Tedious workload of support counting for candidates

n Improving Apriori: general ideas

n Reduce passes of transaction database scans

n Shrink number of candidates

n Facilitate support counting of candidates



Reducing Number of Comparisons

n Candidate counting:

n Scan the database of transactions to determine the 
support of each candidate itemset

n To reduce the number of comparisons, store the 
candidates in a hash structure

n Instead of matching each transaction against every 
candidate, match it against candidates contained in the 
hashed buckets

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions Hash Structure

k

Buckets



How to Count Supports of Candidates?

n Why counting supports of candidates a problem?

n The total number of candidates can be very huge

n One transaction may contain many candidates

n Method:

n Candidate itemsets are stored in a hash-tree

n Leaf node of hash-tree contains a list of itemsets and counts

n Interior node contains a hash table

n Subset function: finds all the candidates contained in a 

transaction



Generate Hash Tree

2 3 4

5 6 7

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

3 4 5 3 5 6

3 5 7

6 8 9

3 6 7

3 6 8

1,4,7

2,5,8

3,6,9

Hash function

Suppose you have 15 candidate itemsets of length 3: 

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, 

{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

� Hash function 

� Max leaf size: max number of itemsets stored in a leaf node (if number of 

candidate itemsets exceeds max leaf size, split the node)



Generate Hash Tree

1,4,7

2,5,8

3,6,9

Hash function

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, 

{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

1 4 5

1 2 4

4 5 7

1 2 5

4 5 8
1 5 9

1 3 6

2 3 4

5 6 7

3 4 5

3 5 6

3 5 7

6 8 9

3 6 7

3 6 8



Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on 

1, 4 or 7



Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on 

2, 5 or 8



Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on 

3, 6 or 9



Subset Operation

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what 

are the possible subsets of 

size 3?



Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 2 3 5 6

1 + 2 3 5 6
3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction



Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction



Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15 candidates



Improving the Efficiency of Apriori

n Other Methods (Projects for Students)

n Partition: Scan Database Only Twice
n A. Savasere, E. Omiecinski and S. Navathe, VLDB�95

n DHP: Reduce the Number of Candidates
n DHP: Direct Hashing and Pruning

n J. Park, M. Chen, and P. Yu. An effective hash-
based algorithm for mining association rules. 
SIGMOD�95

n DIC: Reduce Number of Scans
n DIC: Dynamic itemset counting

n H. Toivonen. Sampling large databases for 
association rules. In VLDB�96

October 14, 2017 Data Mining: Concepts and Techniques 40



Rule Generation from Frequent Itemsets

n Strong association rulesè minsup and minconf

n !"#$. (% & ') = *('|%) =
+,--/01 (234)

5,--/01 (2)

n Association rules can be generated
n For each frequent itemset 6, generate all nonempty subsets 

of 6
n For every nonempty subset 7, output rule �7 & (6 8 7) if 

+,--/01 (9)

5,--/01 (+)
: ;<#>"#$

n Example
n If {A,B,C,D} is a frequent itemset, candidate rules:
n ABC  D, ABD  C, ACD  B, BCD  A, A  BCD, B  ACD, 

C  ABD, D  ABC, AB  CD, AC  BD, AD  BC, BC 
 AD, BD  AC, CD  AB

n | 6 | = n à n2 � 2 candidate association rules (ignoring L  
? and ?  L) ?

October 14, 2017 Data Mining: Concepts and Techniques 45



Rule Generation from Frequent Itemsets

n How to efficiently generate rules from frequent itemsets?

n In general, confidence does not have an 
antimonotone property

n conf(ABC  D) can be larger or smaller than conf(AB  D)

n But confidence of rules generated from the same 
itemset has an anti-monotone property

n e.g., L = {A,B,C,D}:

n conf(ABC  D) ! conf(AB  CD) ! conf(A  BCD)

October 14, 2017 Data Mining: Concepts and Techniques 46



Rule Generation

n join(CD  AB, BD  AC) 

would produce the candidate 
rule D  ABC

n Prune rule D  ABC if its 
subset AD  BC does not 

have high confidence

October 14, 2017 Data Mining: Concepts and Techniques 47

Candidate rule is generated by merging two rules that share 
the same prefix in the rule antecedent



Rule Pruning

October 14, 2017 Data Mining: Concepts and Techniques 48



Rule Generation Algorithm

Homework #1

Dead time: 96/2/09

Email: Vahidipour@kashanu.ac.ir

October 14, 2017 Data Mining: Concepts and Techniques 49

Moving items from the antecedent to the consequent 
never changes support, and never increases confidence
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Scalable Frequent Itemset Mining Methods

n Projects for Students

n FPGrowth:  A Frequent Pattern-Growth Approach

n ECLAT: Frequent Pattern Mining with Vertical Data Format

n Mining Close Frequent Patterns and Maxpatterns


