
11

Data Mining:

Concepts and Techniques

(3rd ed.)

� Chapter 6�

Jiawei Han, Micheline Kamber, and Jian Pei

University of Illinois at Urbana-Champaign &

Simon Fraser University

©2013 Han, Kamber & Pei. All rights reserved.

2

Chapter 6: Mining Frequent Patterns, Association

and Correlations: Basic Concepts and Methods

n Basic Concepts

n Frequent Itemset Mining Methods

n Which Patterns Are Interesting?�Pattern

Evaluation Methods

n Summary

3

What Is Frequent Pattern Analysis?

n Frequent pattern: a pattern (a set of items, subsequences, substructures,

etc.) that occurs frequently in a data set

n First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context

of frequent itemsets and association rule mining

n Motivation: Finding inherent regularities in data

n What products were often purchased together?� Beer and diapers?!

n What are the subsequent purchases after buying a PC?

n What kinds of DNA are sensitive to this new drug?

n Can we automatically classify web documents?

n Applications

n Basket data analysis, cross-marketing, catalog design, sale campaign

analysis, Web log (click stream) analysis, and DNA sequence analysis.

4

Why Is Freq. Pattern Mining Important?

n Freq. pattern: An intrinsic and important property of
datasets

n Foundation for many essential data mining tasks

n Association, correlation, and causality analysis

n Sequential, structural (e.g., sub-graph) patterns

n Pattern analysis in spatiotemporal, multimedia, time-
series, and stream data

n Classification: discriminative, frequent pattern analysis

n Cluster analysis: frequent pattern-based clustering

n Data warehousing: iceberg cube and cube-gradient

n Semantic data compression: fascicles

5

Basic Concepts: Frequent Patterns

n itemset: A set of one or more
items

n k-itemset X = {x1, �, xk}

n (absolute) support, or, support
count of X: Frequency or
occurrence of an itemset X

n (relative) support, s, is the
fraction of transactions that
contains X (i.e., the probability
that a transaction contains X)

n An itemset X is frequent if X�s
support is no less than a minsup
threshold

Customer

buys diaper

Customer

buys both

Customer

buys beer

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

6

Basic Concepts: Association Rules

n Find all the rules X à Y with

minimum support and confidence

n support, s, probability that a
transaction contains X È Y

n confidence, c, conditional
probability that a transaction
having X also contains Y

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3,
{Beer, Diaper}:3

Customer

buys

diaper

Customer

buys both

Customer

buys beer

Nuts, Eggs, Milk40

Nuts, Coffee, Diaper, Eggs, Milk50

Beer, Diaper, Eggs30

Beer, Coffee, Diaper20

Beer, Nuts, Diaper10

Items boughtTid

n Association rules: (many more!)
n Beer à Diaper (60%, 100%)
n Diaper à Beer (60%, 75%)

9

Chapter 5: Mining Frequent Patterns, Association

and Correlations: Basic Concepts and Methods

n Basic Concepts

n Frequent Itemset Mining Methods

n Which Patterns Are Interesting?�Pattern

Evaluation Methods

n Summary

Association Rule Mining Task

n Given a set of transactions T, the goal of association
rule mining is to find all rules having

n support ! minsup threshold

n confidence ! minconf threshold

n Brute-force approach:

n List all possible association rules

n Compute the support and confidence for each rule

n Prune rules that fail the minsup and minconf
thresholds

Þ Computationally prohibitive!

Mining Association Rules

Example of Rules:

{Milk,Diaper} ® {Beer} (s=0.4, c=0.67)

{Milk,Beer} ® {Diaper} (s=0.4, c=1.0)

{Diaper,Beer} ® {Milk} (s=0.4, c=0.67)

{Beer} ® {Milk,Diaper} (s=0.4, c=0.67)

{Diaper} ® {Milk,Beer} (s=0.4, c=0.5)

{Milk} ® {Diaper,Beer} (s=0.4, c=0.5)

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Observations:

� All the above rules are binary partitions of the same itemset:

{Milk, Diaper, Beer}

� Rules originating from the same itemset have identical support but

can have different confidence

� Thus, we may decouple the support and confidence requirements

Mining Association Rules

n Two-step approach:

1. Frequent Itemset Generation

� Generate all itemsets whose support ³ minsup

2. Rule Generation

� Generate high confidence rules from each frequent
itemset, where each rule is a binary partitioning of
a frequent itemset

n Frequent itemset generation is still
computationally expensive

Frequent Itemset Generation
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there

are 2d possible

candidate itemsets

Frequent Itemset Generation

n Brute-force approach:

n Each itemset in the lattice is a candidate frequent itemset

n Count the support of each candidate by scanning the
database

n Match each transaction against every candidate

n Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions List of

Candidates

M

w

Computational Complexity

n Given d unique items:
n Total number of itemsets = 2d

n Total number of possible association rules:

123 1

1

1 1

+-=

ú
û

ù
ê
ë

é
÷
ø

ö
ç
è

æ -
´÷
ø

ö
ç
è

æ
=

+

-

=

-

=
å å

dd

d

k

kd

j j

kd

k

d
R

If d=6, R = 602 rules

Frequent Itemset Generation Strategies

n Reduce the number of candidates (M)
n Complete search: M=2d

n Use pruning techniques to reduce M

n Reduce the number of transactions (N)
n Reduce size of N as the size of itemset increases
n Used by DHP and vertical-based mining algorithms

n Reduce the number of comparisons (NM)
n Use efficient data structures to store the

candidates or transactions
n No need to match every candidate against every

transaction

17

Scalable Frequent Itemset Mining Methods

n Apriori: A Candidate Generation-and-Test Approach

n Improving the Efficiency of Apriori

n FPGrowth: A Frequent Pattern-Growth Approach

n ECLAT: Frequent Pattern Mining with Vertical

Data Format

18

The Downward Closure Property and Scalable

Mining Methods

n Scalable mining methods: Three major approaches

n Apriori (Agrawal & Srikant@VLDB�94)

n Freq. pattern growth (FPgrowth�Han, Pei & Yin
@SIGMOD�00)

n Vertical data format approach (Charm�Zaki & Hsiao
@SDM�02)

n The downward closure property of frequent patterns

n Any subset of a frequent itemset must be frequent

n If {beer, diaper, nuts} is frequent, so is {beer,
diaper}

n i.e., every transaction having {beer, diaper, nuts} also
contains {beer, diaper}

Found to be

Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned

supersets

20

Apriori: A Candidate Generation & Test Approach

n Apriori pruning principle: If there is any itemset which is

infrequent, its superset should not be generated/tested!

(Agrawal & Srikant @VLDB�94, Mannila, et al. @ KDD� 94)

n Method:

n Initially, scan DB once to get frequent 1-itemset

n Generate length (k+1) candidate itemsets from length k

frequent itemsets

n Test the candidates against DB

n Terminate when no frequent or candidate set can be

generated

21

The Apriori Algorithm�An Example

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Supmin = 2

22

The Apriori Algorithm (Pseudo-Code)

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=Æ; k++) do begin

Ck+1 = candidates generated from Lk;

for each transaction t in database do

increment the count of all candidates in Ck+1 that

are contained in t

Lk+1 = candidates in Ck+1 with minsup

end

return Èk Lk;

23

Implementation of Apriori

n How to generate candidates?

n Step 1: self-joining Lk

n Step 2: pruning

n Example of Candidate-generation

n L3={abc, abd, acd, ace, bcd}

n Self-joining: L3*L3

n abcd from abc and abd

n acde from acd and ace

n Pruning:

n acde is removed because ade is not in L3

n C4 = {abcd}

27

Scalable Frequent Itemset Mining Methods

n Apriori: A Candidate Generation-and-Test Approach

n Improving the Efficiency of Apriori

n FPGrowth: A Frequent Pattern-Growth Approach

n ECLAT: Frequent Pattern Mining with Vertical Data Format

n Mining Close Frequent Patterns and Maxpatterns

28

Further Improvement of the Apriori Method

n Major computational challenges

n Multiple scans of transaction database

n Huge number of candidates

n Tedious workload of support counting for candidates

n Improving Apriori: general ideas

n Reduce passes of transaction database scans

n Shrink number of candidates

n Facilitate support counting of candidates

Reducing Number of Comparisons

n Candidate counting:

n Scan the database of transactions to determine the
support of each candidate itemset

n To reduce the number of comparisons, store the
candidates in a hash structure

n Instead of matching each transaction against every
candidate, match it against candidates contained in the
hashed buckets

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions Hash Structure

k

Buckets

How to Count Supports of Candidates?

n Why counting supports of candidates a problem?

n The total number of candidates can be very huge

n One transaction may contain many candidates

n Method:

n Candidate itemsets are stored in a hash-tree

n Leaf node of hash-tree contains a list of itemsets and counts

n Interior node contains a hash table

n Subset function: finds all the candidates contained in a

transaction

Generate Hash Tree

2 3 4

5 6 7

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

3 4 5 3 5 6

3 5 7

6 8 9

3 6 7

3 6 8

1,4,7

2,5,8

3,6,9

Hash function

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},

{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

� Hash function

� Max leaf size: max number of itemsets stored in a leaf node (if number of

candidate itemsets exceeds max leaf size, split the node)

Generate Hash Tree

1,4,7

2,5,8

3,6,9

Hash function

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},

{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

1 4 5

1 2 4

4 5 7

1 2 5

4 5 8
1 5 9

1 3 6

2 3 4

5 6 7

3 4 5

3 5 6

3 5 7

6 8 9

3 6 7

3 6 8

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on

1, 4 or 7

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on

2, 5 or 8

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on

3, 6 or 9

Subset Operation

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what

are the possible subsets of

size 3?

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 2 3 5 6

1 + 2 3 5 6
3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15 candidates

Improving the Efficiency of Apriori

n Other Methods (Projects for Students)

n Partition: Scan Database Only Twice
n A. Savasere, E. Omiecinski and S. Navathe, VLDB�95

n DHP: Reduce the Number of Candidates
n DHP: Direct Hashing and Pruning

n J. Park, M. Chen, and P. Yu. An effective hash-
based algorithm for mining association rules.
SIGMOD�95

n DIC: Reduce Number of Scans
n DIC: Dynamic itemset counting

n H. Toivonen. Sampling large databases for
association rules. In VLDB�96

October 14, 2017 Data Mining: Concepts and Techniques 40

Rule Generation from Frequent Itemsets

n Strong association rulesè minsup and minconf

n !"#$. (% & ') = *('|%) =
+,--/01 (234)

5,--/01 (2)

n Association rules can be generated
n For each frequent itemset 6, generate all nonempty subsets

of 6
n For every nonempty subset 7, output rule �7 & (6 8 7) if

+,--/01 (9)

5,--/01 (+)
: ;<#>"#$

n Example
n If {A,B,C,D} is a frequent itemset, candidate rules:
n ABC D, ABD C, ACD B, BCD A, A BCD, B ACD,

C ABD, D ABC, AB CD, AC BD, AD BC, BC
 AD, BD AC, CD AB

n | 6 | = n à n2 � 2 candidate association rules (ignoring L
? and ? L) ?

October 14, 2017 Data Mining: Concepts and Techniques 45

Rule Generation from Frequent Itemsets

n How to efficiently generate rules from frequent itemsets?

n In general, confidence does not have an
antimonotone property

n conf(ABC D) can be larger or smaller than conf(AB D)

n But confidence of rules generated from the same
itemset has an anti-monotone property

n e.g., L = {A,B,C,D}:

n conf(ABC D) ! conf(AB CD) ! conf(A BCD)

October 14, 2017 Data Mining: Concepts and Techniques 46

Rule Generation

n join(CD AB, BD AC)

would produce the candidate
rule D ABC

n Prune rule D ABC if its
subset AD BC does not

have high confidence

October 14, 2017 Data Mining: Concepts and Techniques 47

Candidate rule is generated by merging two rules that share
the same prefix in the rule antecedent

Rule Pruning

October 14, 2017 Data Mining: Concepts and Techniques 48

Rule Generation Algorithm

Homework #1

Dead time: 96/2/09

Email: Vahidipour@kashanu.ac.ir

October 14, 2017 Data Mining: Concepts and Techniques 49

Moving items from the antecedent to the consequent
never changes support, and never increases confidence

52

Scalable Frequent Itemset Mining Methods

n Projects for Students

n FPGrowth: A Frequent Pattern-Growth Approach

n ECLAT: Frequent Pattern Mining with Vertical Data Format

n Mining Close Frequent Patterns and Maxpatterns

