Chapter 8. Classification: Basic Concepts

m Classification: Basic Concepts

m Decision Tree Induction

= Bayes Classification Methods

= Rule-Based Classification &
= Model Evaluation and Selection

= Techniques to Improve Classification Accuracy:
Ensemble Methods

= Summary

41

Using IF-THEN Rules for Classification

= Represent the knowledge in the form of IF-THEN rules

R: IF age = youth AND student = yes THEN buys_computer = yes
= Rule antecedent/precondition vs. rule consequent
= Assessment of a rule: coverage and accuracy

=N = # of tuples covered by R

covers

= N = # Of tuples correctly classified by R

coverage(R) = Ner/I1D| /* D: training data set */

accuracy(R) = ncorrect/ ncovers

= If more than one rule are triggered, need conflict resolution
= Size ordering: assign the highest priority to the triggering rules that has
the “toughest” requirement (i.e., with the most attribute tests)
= Class-based ordering: decreasing order of prevalence or misclassification
cost per class

= Rule-based ordering (decision list): rules are organized into one long

priority list, according to some measure of rule quality or by experts
42

Rule Extraction from a Decision Tree

Rules are easier to understand than large

trees
F\

One rule is created for each path from the

; <=30 31..|4o 40
root to a lea
. . yes
Each attribute-value pair along a path formsz X 7N
. . excellent fair
conjunction: the leaf holds the class - = , .
prediction o yes e e

Rules are mutually exclusive and exhaustive

Example: Rule extraction from our buys_computer decision-tree

IF age = young AND student = no THEN buys_computer = no
IF age = young AND student = yes THEN buys_computer = yes
IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = no

IF age = old AND credit_rating = fair THEN buys_computer = yes
43

Rule Induction: Sequential Covering Method

Sequential covering algorithm: Extracts rules directly from training
data

Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER

Rules are learned sequentially, each for a given class C, will cover
many tuples of C, but none (or few) of the tuples of other classes

Steps:
= Rules are learned one at a time

= Each time a rule is learned, the tuples covered by the rules are
removed

= Repeat the process on the remaining tuples until termination
condition, e.g., when no more training examples or when the
guality of a rule returned is below a user-specified threshold

Comp. w. decision-tree induction: learning a set of rules
simultaneously

Sequential Covering Algorithm

while (enough target tuples left)
generate arule
remove positive target tuples satisfying this rule

Examples covered
by Rule 2

Examples covered
by Rule 1

s covered

45

Rule Generation

m To generate arule
while(true)
find the best predicate p
if foil-gain(p) > threshold then add p to current rule

else break

A3=18&8AI= l

&aAss P

Positive Negative
examples examples

46

Y
i
| ® 3
n b,
;-

N
w

D

(6,

(o)}

~

[ee]

©

S

a;
a;
a
a
as
as
as
as

as

b,
b,
b,
b,
b,
b,
b,
b,
b,

Cy
G
Cy
C3
G
<
Cy
C3

C3

Y1
Y2
Y2
Y2
Y2
Y1
Y2
Y2
Y1

Example

=2/3
r /2
t/l'Tr;OVe =0,
_ ec e /5
Y=y1>:?§zec"2°§3ef'§/5
Y=y, =a,, =y,)=n, rrect/ e Ver=1/5
en (A_ Y=)=ng, tNeo =
, Th uracy A_aZ Y:yl =Neorre Neover 3/5
If 7 ACcurfﬂcy(A="‘3' =y1)_n o"ed;n oVe'=0/2
Accuracy(Bblzw)ncarr’d/ncove’l/s
A=:1 AcguraCYEBbZYy1;nzorr9d/nzoV°r
A=a, Ac racy =Cy, =Y)= ect
SR
B= 1 Ac racy =C3,
=b2 ccu (C
B A racy
:Cl Cccu
C Al
=C,
C=
=C3
C=

=Y
Then Y
=a,

IfA=

47

Y
ﬂ-w
n“ ()
H b,
a
1

N
w

N

wv

(<)}

~N

[o2)

©

S

a;
a;
a
aQ
as
as
as
as

as

b,
b,
b,
b,
b,

b,
b,
b,

<
G
¢
C3
G
<
¢
C3

(&}

Y1
Y2
Y2
Y2
Y2
Y1
Y2
Y2
Y1

Example

:yl
2 Then ¥
=a,

If A=

=1/1
/ncoverzllz
=Neorrect ncO"er—Z/ 2
. YY:yl;=nco,-reC://nCO\,ef;O/].
o szszzyl)zncofre;/nco"erzolo
A and o ,Y=y1)=”C°'rect/”°°ver
uracy(Azal and C=c1’Y=y1)=ncorre
Acﬁufacy((A=a, an Cch,Yzyl
Ac racy =a, d C=
:bl ccu (A an
B A racyi =a;
:bZ ccu (A
B Al racy
C:Cl Accu
C:CZ
C:CS

Y=y,
hen

d C:Cl) T
an

:al

If (A

48

How to Learn-One-Rule?

Start with the most general rule possible: condition = empty

Adding new attributes by adopting a greedy depth-first strategy
= Picks the one that most improves the rule quality

Rule-Quality measures: consider both coverage and accuracy

= Foil-gain (in FOIL & RIPPER): assesses info_gain by extending

condition '
FOIL _Gain = pos'x(log, F?OS -—log, POs
pos‘+neg pos + neg

= favors rules that have high accuracy and cover many positive tuples
Rule pruning based on an independent set of test tuples
pos — neg
pos + neg

FOIL _Prune(R) =

Pos/neg are # of positive/negative tuples covered by R.

If FOIL_Prune is higher for the pruned version of R, prune R
49

