Chapter 8. Classification: Basic Concepts

m Classification: Basic Concepts

m Decision Tree Induction

= Bayes Classification Methods

= Rule-Based Classification &
= Model Evaluation and Selection

= Techniques to Improve Classification Accuracy:
Ensemble Methods

= Summary
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Using IF-THEN Rules for Classification

= Represent the knowledge in the form of IF-THEN rules

R: IF age = youth AND student = yes THEN buys_computer = yes
= Rule antecedent/precondition vs. rule consequent
= Assessment of a rule: coverage and accuracy

=N = # of tuples covered by R

covers

= N = # Of tuples correctly classified by R

coverage(R) = Ner/I1D| /* D: training data set */

accuracy(R) = ncorrect/ ncovers

= If more than one rule are triggered, need conflict resolution
= Size ordering: assign the highest priority to the triggering rules that has
the “toughest” requirement (i.e., with the most attribute tests)
= Class-based ordering: decreasing order of prevalence or misclassification
cost per class

= Rule-based ordering (decision list): rules are organized into one long

priority list, according to some measure of rule quality or by experts
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Rule Extraction from a Decision Tree

Rules are easier to understand than large

trees
F\

One rule is created for each path from the

; <=30 31..|4o 40
root to a lea
. . yes
Each attribute-value pair along a path formsz X 7N
. . excellent fair
conjunction: the leaf holds the class - = , .
prediction o yes e e

Rules are mutually exclusive and exhaustive

Example: Rule extraction from our buys_computer decision-tree

IF age = young AND student = no THEN buys_computer = no
IF age = young AND student = yes THEN buys_computer = yes
IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = no

IF age = old AND credit_rating = fair THEN buys_computer = yes
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Rule Induction: Sequential Covering Method

Sequential covering algorithm: Extracts rules directly from training
data

Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER

Rules are learned sequentially, each for a given class C, will cover
many tuples of C, but none (or few) of the tuples of other classes

Steps:
= Rules are learned one at a time

= Each time a rule is learned, the tuples covered by the rules are
removed

= Repeat the process on the remaining tuples until termination
condition, e.g., when no more training examples or when the
guality of a rule returned is below a user-specified threshold

Comp. w. decision-tree induction: learning a set of rules
simultaneously




Sequential Covering Algorithm

while (enough target tuples left)
generate arule
remove positive target tuples satisfying this rule

Examples covered
by Rule 2

Examples covered
by Rule 1

s covered

45

Rule Generation

m To generate arule
while(true)
find the best predicate p
if foil-gain(p) > threshold then add p to current rule

else break

A3=18&8AI= l

&aAss P

Positive Negative
examples examples
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How to Learn-One-Rule?

Start with the most general rule possible: condition = empty

Adding new attributes by adopting a greedy depth-first strategy
= Picks the one that most improves the rule quality

Rule-Quality measures: consider both coverage and accuracy

= Foil-gain (in FOIL & RIPPER): assesses info_gain by extending

condition '
FOIL _Gain = pos'x(log, F?OS -—log, POs
pos‘+neg pos + neg

= favors rules that have high accuracy and cover many positive tuples
Rule pruning based on an independent set of test tuples
pos — neg
pos + neg

FOIL _Prune(R) =

Pos/neg are # of positive/negative tuples covered by R.

If FOIL_Prune is higher for the pruned version of R, prune R
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