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Ensemble Methods: Increasing the Accuracy

 Ensemble methods

 Use a combination of models to increase accuracy

 Combine a series of k learned models, M1, M2, …, Mk, with 
the aim of creating an improved model M*

 Popular ensemble methods

 Bagging: averaging the prediction over a collection of 
classifiers

 Boosting: weighted vote with a collection of classifiers

 Ensemble: combining a set of heterogeneous classifiers
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Bagging: Boostrap Aggregation

 Analogy: Diagnosis based on multiple doctors’ majority vote

 Training

 Given a set D of d tuples, at each iteration i, a training set Di of d tuples 
is sampled with replacement from D (i.e., bootstrap)

 A classifier model Mi is learned for each training set Di

 Classification: classify an unknown sample X

 Each classifier Mi returns its class prediction

 The bagged classifier M* counts the votes and assigns the class with the 
most votes to X

 Prediction: can be applied to the prediction of continuous values by taking 
the average value of each prediction for a given test tuple

 Accuracy

 Often significantly better than a single classifier derived from D

 For noise data: not considerably worse, more robust 

 Proved improved accuracy in prediction
70

Boosting

 Analogy: Consult several doctors, based on a combination of 
weighted diagnoses—weight assigned based on the previous 
diagnosis accuracy

 How boosting works?

 Weights are assigned to each training tuple

 A series of k classifiers is iteratively learned

 After a classifier Mi is learned, the weights are updated to 
allow the subsequent classifier, Mi+1, to pay more attention to 
the training tuples that were misclassified by Mi

 The final M* combines the votes of each individual classifier, 
where the weight of each classifier's vote is a function of its 
accuracy

 Comparing with bagging: Boosting tends to have greater accuracy, 
but it also risks overfitting the model to misclassified data
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Adaboost (Freund and Schapire, 1997)

 Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd)

 Initially, all the weights of tuples are set the same (1/d)

 Generate k classifiers in k rounds.  At round i,

 Tuples from D are sampled (with replacement) to form a training set 
Di of the same size

 Each tuple’s chance of being selected is based on its weight

 A classification model Mi is derived from Di

 Its error rate is calculated using Di as a test set

 If a tuple is misclassified, its weight is increased, o.w. it is decreased

 Error rate: err(Xj) is the misclassification error of tuple Xj. Classifier Mi
error rate is the sum of the weights of the misclassified tuples: 

 The weight of classifier Mi’s vote is
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Random Forest (Breiman 2001) 

 Random Forest: 

 Each classifier in the ensemble is a decision tree classifier and is 
generated using a random selection of attributes at each node to 
determine the split

 During classification, each tree votes and the most popular class is 
returned

 Two Methods to construct Random Forest: (Project for students)

 Forest-RI (random input selection):  Randomly select, at each node, F 
attributes as candidates for the split at the node. The CART methodology 
is used to grow the trees to maximum size

 Forest-RC (random linear combinations): Creates new attributes (or 
features) that are a linear combination of the existing attributes 
(reduces the correlation between individual classifiers)

 Comparable in accuracy to Adaboost, but more robust to errors and outliers 

 Insensitive to the number of attributes selected for consideration at each 
split, and faster than bagging or boosting
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Classification of Class-Imbalanced Data Sets

 Class-imbalance problem: Rare positive example but numerous 
negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc. 

 Traditional methods assume a balanced distribution of classes 
and equal error costs: not suitable for class-imbalanced data

 Typical methods for imbalance data in 2-class classification: 

 Oversampling: re-sampling of data from positive class

 Under-sampling: randomly eliminate  tuples from negative 
class

 Threshold-moving: moves the decision threshold, t, so that 
the rare class tuples are easier to classify, and hence, less 
chance of costly false negative errors

 Ensemble techniques: Ensemble multiple classifiers 
introduced above

 Still difficult for class imbalance problem on multiclass tasks
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Summary (I)

 Classification is a form of data analysis that extracts models

describing important data classes. 

 Effective and scalable methods have been developed for decision 

tree induction, Naive Bayesian classification, rule-based 

classification, and many other classification methods.

 Evaluation metrics include: accuracy, sensitivity, specificity, 

precision, recall, F measure, and Fß measure.

 Stratified k-fold cross-validation is recommended for accuracy 

estimation.  Bagging and boosting can be used to increase overall 

accuracy by learning and combining a series of individual models.
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Summary (II)

 Significance tests and ROC curves are useful for model selection.

 There have been numerous comparisons of the different 

classification methods; the matter remains a research topic

 No single method has been found to be superior over all others 

for all data sets

 Issues such as accuracy, training time, robustness, scalability, 

and interpretability must be considered and can involve trade-

offs, further complicating the quest for an overall superior 

method
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