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Measuring Data Similarity and 
Dissimilarity

 Topic is borrowed from Chapter 2: Getting to 

Know Your Data
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Similarity and Dissimilarity

 Similarity

 Numerical measure of how alike two data objects are

 Value is higher when objects are more alike

 Often falls in the range [0,1]

 Dissimilarity (e.g., distance)

 Numerical measure of how different two data objects 
are

 Lower when objects are more alike

 Minimum dissimilarity is often 0

 Upper limit varies

 Proximity refers to a similarity or dissimilarity
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Data Matrix and Dissimilarity Matrix

 Data matrix

 n data points with p 
dimensions

 Two modes

 Dissimilarity matrix

 n data points, but 
registers only the 
distance 

 A triangular matrix

 Single mode
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Proximity Measure for Nominal Attributes

 Can take 2 or more states, e.g., red, yellow, blue, 

green (generalization of a binary attribute)

 Method 1: Simple matching

 m: # of matches, p: total # of variables

 Method 2: Use a large number of binary attributes

 creating a new binary attribute for each of the 
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Proximity Measure for Binary Attributes

 A contingency table for binary data

 Distance measure for symmetric 

binary variables: 

 Distance measure for asymmetric 

binary variables: 

 Jaccard coefficient (similarity

measure for asymmetric binary 

variables): 

 Note: Jaccard coefficient is the same as “coherence”:

Object i

Object j
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Dissimilarity between Binary 
Variables

 Example

 Gender is a symmetric attribute

 The remaining attributes are asymmetric binary

 Let the values Y and P be 1, and the value N 0

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N
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Standardizing Numeric Data

 Z-score: 

 X: raw score to be standardized, μ: mean of the population, σ: standard 

deviation

 the distance between the raw score and the population mean in units 

of the standard deviation

 negative when the raw score is below the mean, “+” when above

 An alternative way: Calculate the mean absolute deviation

where

 standardized measure (z-score):

 Using mean absolute deviation is more robust than using standard 

deviation 
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Example: 
Data Matrix and Dissimilarity Matrix

point attribute1 attribute2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

Dissimilarity Matrix 

(with Euclidean Distance)

x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

Data Matrix
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Distance on Numeric Data: Minkowski Distance

 Minkowski distance: A popular distance measure

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two 
p-dimensional data objects, and h is the order (the 
distance so defined is also called L-h norm)

 Properties

 d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)

 d(i, j) = d(j, i) (Symmetry)

 d(i, j)  d(i, k) + d(k, j) (Triangle Inequality)

 A distance that satisfies these properties is a metric
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Special Cases of Minkowski Distance

 h = 1:  Manhattan (city block, L1 norm) distance

 E.g., the Hamming distance: the number of bits that are different 
between two binary vectors

 h = 2:  (L2 norm) Euclidean distance

 h .  “supremum” (Lmax norm, Lnorm) distance. 

 This is the maximum difference between any component (attribute) 
of the vectors
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Example: Minkowski Distance

Dissimilarity Matrices

point attribute 1 attribute 2

x1 1 2

x2 3 5

x3 2 0

x4 4 5

L x1 x2 x3 x4

x1 0

x2 5 0

x3 3 6 0

x4 6 1 7 0

L2 x1 x2 x3 x4

x1 0

x2 3.61 0

x3 2.24 5.1 0

x4 4.24 1 5.39 0

L x1 x2 x3 x4

x1 0

x2 3 0

x3 2 5 0

x4 3 1 5 0

Manhattan (L1)

Euclidean (L2)

Supremum 
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Ordinal Variables

 An ordinal variable can be discrete or continuous

 Order is important, e.g., rank

 Can be treated like interval-scaled 

 replace xif by their rank 

 map the range of each variable onto [0, 1] by replacing

i-th object in the f-th variable by

 compute the dissimilarity using methods for interval-

scaled variables
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Attributes of Mixed Type

 A database may contain all attribute types

 Nominal, symmetric binary, asymmetric binary, numeric, 
ordinal

 One may use a weighted formula to combine their effects

 f is binary or nominal:

dij
(f) = 0  if xif = xjf , or dij

(f) = 1 otherwise

 f is numeric: use the normalized distance

 f is ordinal 

 Compute ranks rif and  

 Treat zif as interval-scaled
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Cosine Similarity

 A document can be represented by thousands of attributes, each 
recording the frequency of a particular word (such as keywords) or 
phrase in the document.

 Other vector objects: gene features in micro-arrays, …

 Applications: information retrieval, biologic taxonomy, gene feature 
mapping, ...

 Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency 
vectors), then

cos(d1, d2) = (d1  d2) /||d1|| ||d2|| ,

where  indicates vector dot product, ||d||: the length of vector d
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Example: Cosine Similarity

 cos(d1, d2) =  (d1  d2) /||d1|| ||d2|| , 

where  indicates vector dot product, ||d|: the length of vector d

 Ex: Find the similarity between documents 1 and 2.

d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)

d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)

d1d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25

||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5

= 6.481

||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5

= 4.12

cos(d1, d2 ) = 0.94


