
Data Visualization With Chart.js

Alireza Mohammadi

Fall 2017



Introduction To Data Visualization

• You can tell powerful stories with data.

• If your website or application is data-intensive, then you will need to 
find a way to make that data easy to visualize.

• Humans, after all, are not wonderful at understanding long lists of 
raw numbers.

• Charts and graphs can make complicated statistical relationships
obvious and intuitive.

• Using charts when it’s beneficial, will make your website easier to 
understand and visually more appealing.

Chart.js Presentation 2



Why Chart.js

• It can be learned and leveraged quickly.

• It’s designed with simplicity in mind, yet is extremely customizable.

• Chart.js is one of the quickest and easiest libraries to learn that 
doesn’t heavily limit your options.

Chart.js Presentation 3



Why Chart.js (Cont.)

• It comes with eight different chart types that will cover almost all of 
your data visualization needs.

• Chart.js is actively maintained to a high standard by the open source 
community.

• Chart.js provides responsive charts that displayed correctly in any 
device with any display size and resolution.

Chart.js Presentation 4



What you’ll need

• Basic knowledge from HTML, CSS & JavaScript.

• A text editor like Atom, Visual Studio Code or even window notepad.

• Some experience in web API and JS will help you grasp the nuances of 
what’s going on.

Chart.js Presentation 5



Example 1: Bar Chart (Vertical)

Chart.js Presentation 6



Example 2: Line Chart (Basic)

Chart.js Presentation 7



Example 3: Area Chart (Radar)

Chart.js Presentation 8



Example 4: Area Chart (Boundaries)

Chart.js Presentation 9



Example 5: Pie Chart

Chart.js Presentation 10



Example 6: Scatter Chart

Chart.js Presentation 11



Installing Chart.js

• Installing using a package manager like bower as bellow:
1. Create a bower project in console or terminal with bower init command.

2. Download and install Chart.js with bower install --save chart.js
command.

3. Create an empty .html file and link .css and .js files to it.

• You can download source from GitHub and link required files in your 
project.

• You can also use CDN and link files into your project without saving 
them.

Chart.js Presentation 12

https://github.com/chartjs/Chart.js
https://cdnjs.com/libraries/Chart.js


Steps To Draw A Chart

Add Chart.js in 
your project.

Define where on 
your page to 

draw the graph.

Supply Chart.js 
with data, 
labels, and 

other options.

Define what 
type of 

graph you want 
to draw.

Add graphical 
styles to your 

graph.

Chart.js Presentation 13



Step 1: Add Chart.js

• Create an empty .html file, .js file and .css file if needed and link 

them in your .html page.

• If you don’t want to use CDN, install Chart.js using one of the 

methods described in previews slides.

• Link chart.js (or chart.min.js) file in your html page like 

below:

•

Chart.js Presentation 14

<script src="[route prefix]/chart.min.js"></script>



Step 2: Prepare a place in your HTML to 
render the chart
• The last thing we need to prepare before we can start visualizing our 

data is to define an area in our HTML where we want to draw the 
graph.

• For Chart.js you do this by adding a canvas element, and setting 
width and height to define the proportions of your graph.

• Notice that we’ve added an id (myChart) to the canvas element 
that we can later use to reference our designated graph element in 
JavaScript or CSS.

Chart.js Presentation 15

<canvas id="myChart" width="1600" height="900"></canvas>



Step 3: Prepare the data

• Here’s the raw data that we’ll be using:

Chart.js Presentation 16

World historical and predicted populations (in millions)

Country 1500 1600 1700 1750 1800 1850 1900 1950 1999 2050
Africa 86 114 106 106 107 111 133 221 783 2478
Asia 282 350 411 502 635 809 947 1402 3700 5267
Europe 168 170 178 190 203 276 408 547 675 734
Latin America 40 20 10 16 24 38 74 167 508 784 
North America 6 3 2 2 7 26 82 172 312 433



Step 3: Prepare the data (Cont.)

• Chart.js expects the data to be passed in the form of a set of arrays.

• The table in previous slide, reformatted to arrays, looks like so:

Chart.js Presentation 17

// Our labels along the x-axis
var years = [1500, 1600, 1700, 1750, 1800, 1850, 1900, 1950, 1999, 2050];
// For drawing the lines
var africa = [86, 114, 106, 106, 107, 111, 133, 221, 783, 2478];
var asia = [282, 350, 411, 502, 635, 809, 947, 1402, 3700, 5267];
var europe = [168, 170, 178, 190, 203, 276, 408, 547, 675, 734];
var latinAmerica = [40, 20, 10, 16, 24, 38, 74, 167, 508, 784];
var northAmerica = [6, 3, 2, 2, 7, 26, 82, 172, 312, 433];



Step 4: Draw a line!

• All we need to do is define what graph we want to draw, and pass in 
the data that we want to visualize.

• Let’s start by drawing one single line to see if we can get it to work:

Chart.js Presentation 18

var ctx = document.getElementById("myChart");
var myChart = new Chart(ctx, {

type: 'line’,
data: {

labels: years,
datasets: [

{
data: africa

}
]

}
});



Step 4: Draw a line! (Cont.)

• What’s happening in this bit of code?

• First, we locate the canvas element that we added earlier to our

index.html file (notice "myChart"):

Chart.js Presentation 19

var ctx = document.getElementById("myChart");



Step 4: Draw a line! (Cont.)

• Then, using that canvas element, we create a line chart 

(type: 'line'), and pass along some of our data.

• labels: years sets our array of years (that we created earlier) 

for the labels along the x-axis, and data: africa uses our 

africa variable to draw the line.

• You may have noticed that our line is missing a label (it 

says undefined at the top of the graph), and it’s not very colorful. 

Boo! Let’s make it!

Chart.js Presentation 20



Step 5: Style the line

• Start out by giving our first line a name. After data: africa, add a 

comma (hey! I’m serious about the comma (remember the comma!), 

miss it and everything breaks), create a new row, and add 

label: "Africa":

Chart.js Presentation 21

{
data: africa,
label: "Africa"

}



Step 5: Style the line (Cont.)

• To set the border color and remove the big gray area below the graph, 
add another comma after label: "Africa" and add these two lines:

• refresh and you should see a blue line named Africa!

Chart.js Presentation 22

borderColor: "#3e95cd",
fill: false



Step 6: Add the rest of the data

• All we need to do now is copy the code for Africa and paste it another 
four times, adding a comma after every }.

Chart.js Presentation 23

{ 
data: africa,
label: "Africa",
borderColor: "#3e95cd",
fill: false

},
{ 

data: asia,
label: "Asia",
borderColor: "#3e95cd",
fill: false

},
{ 

data: europe,
label: "Europe",
borderColor: "#3e95cd",
fill: false

},
...



Chart.js Presentation

Thank You!


