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Graph clustering (community finding)

 Community structure:

 Groups of vertices within which connections are 

dense but between which they are sparser.

 Within-group(intra-group) edges.

 High density

 Between-group(inter-group) edges.

 Low density.
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Community Structure
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Community finding vs. other approaches

 Social and other networks have a natural 
community structure

 We want to discover this structure rather than 
impose a certain size of community or fix the 
number of communities

 Without “looking”, can we discover community 
structure in an automated way?
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Detecting Community Structure (Clustering)

 Cluster analysis seeks grouping of elements 
into subsets based on similarity between 
pairs of elements.
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Edge betweenness

 Number of shortest paths between pairs of 
vertices that run along it

 The edges connecting communities will have high 
edge betweenness

 Separate communities by removing these edges
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Girvan and Newman(GN) Algorithm

1. Calculate the betweenness for all edges in the network.

2. Remove the edge with the highest betweenness.

3. Recalculate betweenness for all edges affected by the 
removal.

4. Repeat from step 2 until no edges remain.

5. cross cut the dendrogram of components.

 By removing these edges, we separate groups from 
one another as components.
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A B

GN Algorithm- Example

 1. Calculate the betweenness for all edges 
in the network.

a b

c

d

e

ab 4

bc 3

bd 3

ce 3

de 3
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GN Algorithm- Example(cont.)

 2. Remove the edge with the highest 
betweenness.

a b

c

d

e
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GN Algorithm- Example(cont.)

 3. Recalculate betweennesses for all edges 
affected by the removal.

a b

c

d

e

bc 2

bd 2

ce 2

de 2
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GN Algorithm- Example(cont.)

 4. Repeat from step 2 until no edges 
remain.

a b

c

d

e
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GN Algorithm- Example(cont.)

a b

c

d

e

a b c d e
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Determine the Number of Clusters

 Empirical method

 # of clusters: k ≈√n/2 for a dataset of n points, e.g., n = 200, k = 10

 Cross validation method

 Divide a given data set into m parts

 Use m – 1 parts to obtain a clustering model

 Use the remaining part to test the quality of the clustering

 E.g., For each point in the test set, find the closest centroid, and 
use the sum of squared distance between all points in the test set 
and the closest centroids to measure how well the model fits the 
test set

 For any k > 0, repeat it m times, compare the overall quality measure 
w.r.t. different k’s, and find # of clusters that fits the data the best
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Cluster Evaluation and assessment

 Internal evaluation: Unsupervised, criteria derived from data 

itself

 Evaluate the goodness of a clustering by considering how well 
the clusters are separated, and how compact the clusters are

 Methods: Dunn index, Davies–Bouldin, Silhouette coefficient

 External evaluation: supervised, employ criteria not inherent to 

the dataset)

 Compare a clustering against prior or expert-specified knowledge 
(i.e., the ground truth) using certain clustering quality measure

 Methods: Rand measure, F-measure, Jaccard index, Fowlkes–Mallows 

index, Confusion matrix

 Relative: directly compare different clusterings, usually those 

obtained via different parameter settings for the same algorithm
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Clustering Error
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Davies-Bouldin index (DB ↓)

 A function of the ratio of the sum of within-cluster 
(i.e. intra-cluster) scatter to between cluster (i.e. 
inter-cluster) separation

 Let C={C1,….., Ck} be a clustering of a set of N
objects:
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Ci is the ith cluster 
ci is the centroid for cluster i
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Davies-Bouldin index (DB ↓)
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Davies-Bouldin index example

 Consider the shown clusters (ine one dimension)

 Compute

 var(C1)=0, var(C2)=4.5, var(C3)=2.33

 Centroid is simply the mean here, so c1=3, c2=8.5, c3=18.33

 So, R12=1, R13=0.152, R23=0.797

 Now, compute 

 R1=1 (max of R12 and R13); R2=1 (max of R21 and R23); R3=0.797 
(max of R31 and R32)

 Finally, compute

 DB=0.932
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Davies-Bouldin index example (ctd)

 Consider the shown clusters: for the clusters shown

 Compute

 Only 2 clusters here

 var(C1)=12.33 while var(C2)=2.33; c1=6.67 while c2=18.33

 R12=1.26

 Now compute

 Since we have only 2 clusters here, R1=R12=1.26; R2=R21=1.26

 Finally, compute

 DB=1.26
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Dunn index (D ↑)

 The Dunn index aims to identify dense and well-separated clusters. It is defined 
as the ratio between the minimal inter-cluster distance to maximal intra-cluster 
distance. For each cluster partition, the Dunn index can be calculated by the following 
formula
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Measuring Clustering Quality: External Methods 

 Clustering quality measure: Q(C, T), for a clustering C
given the ground truth T

 Q is good if it satisfies the following 4 essential criteria

 Cluster homogeneity: the purer, the better

 Cluster completeness: should assign objects belong to 
the same category in the ground truth to the same 
cluster

 Rag bag: putting a heterogeneous object into a pure 
cluster should be penalized more than putting it into a 
rag bag (i.e., “miscellaneous” or “other” category)

 Small cluster preservation: splitting a small category 
into pieces is more harmful than splitting a large 
category into pieces
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Some Commonly Used External Measures

 Matching-based measures

 Purity, maximum matching, F-measure

 Entropy-Based Measures

 Conditional entropy, normalized mutual 
information (NMI), variation of information

 Pair-wise measures

 Four possibilities: True positive (TP), FN, FP, TN

 Jaccard coefficient, Rand statistic, Fowlkes-
Mallow measure

 Correlation measures

 Discretized Huber static, normalized discretized 
Huber static
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Ground truth partitioning T1 T2

Cluster C1
Cluster C2
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External evaluation

 Purity

 Rand measure

 F-measure

 Jaccard index

 Fowlkes–Mallows index

 Confusion matrix
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Purity

Ω= {ω1, ω2, . . . , ωK} is the set of clusters and 

C = {c1, c2, . . . , cJ} is the set of classes.

For each cluster ωk : find class cj with most members nkj in ωk

Sum all nkj and divide by total number of points

127

Purity

(class x, cluster 1)  maxj |ω1 ∩ cj | = 5

(class o, cluster 2)  maxj |ω2 ∩ cj | = 4

(class ⋄, cluster 3)  maxj |ω3 ∩ cj |= 3

Purity is 

(1/17) × (5 + 4 + 3) ≈ 0.71
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F-measure
 Precision: exactness – what % of tuples that the classifier labeled as 

positive are actually positive

 Recall: completeness – what % of positive tuples did the classifier 
label as positive?

 Perfect score is 1.0

 Inverse relationship between precision & recall
 F measure (F1 or F-score): harmonic mean of precision and recall,

 Fß:  weighted measure of precision and recall
 assigns ß times as much weight to recall as to precision
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Evaluation Metrics: Confusion Matrix

Actual class\Predicted 
class

buy_computer 
=  yes

buy_computer 
= no

Total

buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

Total 7366 2634 10000

 Given m classes, an entry, CMi,j in a confusion matrix indicates # 
of tuples in class i that were labeled by the classifier as class j

 May have extra rows/columns to provide totals

Confusion Matrix:

Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:
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Evaluation Metrics:
Accuracy, Error Rate, Sensitivity and Specificity

 Classifier Accuracy, or 
recognition rate: percentage of 
test set tuples that are 
correctly classified

Accuracy = (TP + TN)/All

 Error rate: 1 – accuracy, or

Error rate = (FP + FN)/All

 Class Imbalance Problem: 

 One class may be rare, e.g. 
fraud, or HIV-positive

 Significant majority of the 
negative class and minority of 
the positive class

 Sensitivity: True Positive 
recognition rate

 Sensitivity = TP/P

 Specificity: True Negative 
recognition rate

 Specificity = TN/N

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

131

Confusion matrix: Example

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)

 Precision = 90/230 = 39.13%             

 Recall = 90/300 = 30.00%
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Definition:

TP is the number of true positives

TN is the number of true negatives

FP is the number of false positives

FN is the number of false negatives

TP+FN+FP+TN is the total number of pairs.

Rand index

Jaccard index

 The Jaccard index is used to quantify the similarity between two 
datasets. The Jaccard index takes on a value between 0 and 1. An 
index of 1 means that the two dataset are identical, and an index of 
0 indicates that the datasets have no common elements. The 
Jaccard index is defined by the following formula:

 This is simply the number of unique elements common to both sets 
divided by the total number of unique elements in both sets.
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Fowlkes–Mallows index

 The Fowlkes-Mallows index computes the similarity between the 
clusters returned by the clustering algorithm and the benchmark 
classifications. The higher the value of the Fowlkes-Mallows index 
the more similar the clusters and the benchmark classifications are. 
It can be computed using the following formula:

 The index is the geometric mean of the precision and recall and , 
while the F-measure is their harmonic mean
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Measures for Graph:
Ratio Cut () & Normalized Cut ()
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Ci,: ith community
|Ci|: number of nodes in Ci (size of community)
vol(Ci): sum of degrees in Ci (volume of community)

Conductance()=

c(𝒞, 𝓰\ 𝒞): cut 
size of 𝒞 from 𝓰\
𝒞
Min(k𝒞, k𝓰\𝒞):
minimum total 
degree in 𝒞 and 
total degree in 𝓰\
𝒞

 A good partitioning should minimize ratio cut and 
normalized cut
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Ratio Cut & Normalized Cut Example

137

For partition in red: 

For partition in green: 
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Summary
 Cluster analysis groups objects based on their similarity and has 

wide applications

 Measure of similarity can be computed for various types of data

 Clustering algorithms can be categorized into partitioning methods, 
hierarchical methods, density-based methods, grid-based methods, 
and model-based methods

 K-means and K-medoids algorithms are popular partitioning-based 
clustering algorithms

 Birch and Chameleon are interesting hierarchical clustering algorithms, 
and there are also probabilistic hierarchical clustering algorithms

 DBSCAN, OPTICS, and DENCLU are interesting density-based 
algorithms

 STING and CLIQUE are grid-based methods, where CLIQUE is also a 
subspace clustering algorithm

 Quality of clustering results can be evaluated in various ways
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