12/6/2017

Decision Tree in Relational
Databases

Alireza Mohammadi
Sahar Nafisi
Data mining Fall 2017
(Course Master: Dr. Vahidipour)

Source Paper: Bentayeb, Fadila, and Jérdme Darmont. "Decision tree modeling with relational views." Foundations of
Intelligent Systems (2002): 423-431.

Abstract

[Data mining is a useful decision support technique for
discovering production rules in warehouses or corporate
data.

Data mining research has made much effort to apply various
mining algorithms efficiently on large databases.
O Long processing time as a serious problem in such algorithms

O Integrating data mining methods with the framework of
traditional databases

0 Take advantage of the efficiency provided by SQL engines

12/6/2017

Abstract (cont.)

In this presentation, we propose an integrating approach
for decision trees within a classical database system.

O try to discover knowledge from relational databases, in the form
of production rules, via a procedure embedding SQL queries

O Define decision free by successive, related relational views

dClassical Induction Decision Tree (ID3) algorithm selected
to build the decision tree.

dThe output of Fr‘ocedure compared with the output of an
existing and validated data mining software, SIPINA.

Introduction

Data mining tool vendors tend to integrate more and more
database features in their products

HLong processing time required by data mining algorithms,
remains a critical issue.

A Current systems consume minutes or even hours to answer simple
mining queries on very large databases

Database vendors recently began to integrate data mining
methods in the heart of their systems.

Integrating data mining algorithms within the traditional
database systems is one of the key challenges for research
in both the databases and data mining fields.

12/6/2017

Introduction (cont.)

dThere are an impressive amount of work related to
association rules, their generalization, and their scalability

Less work has been done in the context of other classical
data analysis techniques from the machine learning field,
e.g., clustering or classification.

O most research focused on scaling data mining techniques to work
with large data sets

Introduction (cont.)

Database vendors developed extensions fo SQL and
Application Programming Interfaces (APIs).

0 These tools allow client applications to explore and manipulate
existing mining models and their applications through an interface
similar to that used for exploring tables, views and ...

In the following, we propose to integrate classical data
analysis techniques (decision tree-based methods) within
relational database systems.

12/6/2017

Introduction (cont.)

To achieve this goal, we only use existing structures,
namely, relational views.

0 we designed a SQL stored procedure that uses SQL queries to
generate the decision tree

JMain differences between our approach and the existing
ones:

0 existing methods extend SQL to support mining operators when
our approach only uses existing SQL statements and structures

O existing methods use APIs when our approach does not

Principle of approach

dInduction graphs produce "if-then"-like rules

They take as input a set of objects (tuples) described by a
collection of attributes

[Each object belongs o one of a set of exclusive classes

A training set of objects whose class (attribute to predict)
is known is needed to build the induction graph.

12/6/2017

Principle of approach (cont.)

dThese methods apply successive criteria on the training

population to obtain groups wherein the size of one class is

maximized

[This process builds a tree, or more generally a graph

[Figure 1 provides an example of decision tree with its
associated rules, where p(Class #i) is the probability of
objects to belong to Class #:i.

Data Mining Presentation

Decision Tree in Relational DBs

Node #2.1

Node #0

Class #1: 50 (50%)
Class #2: 50 (50%)

attl Zml =B

Node #1.1

Class #1: 20 (33%)
Class #2: 40 (67%)

Class #1: 38 (95%)
Class #2: 02 (05%)

at2=0_—" T~ a2~ 1

Class #1: 02 (05%)
Class #2: 38 (95%)

Class #1: 05 (25%)
Class #2: 15 (75%)

Node #2.2

Rule #1: if att]l = A and att2 = 0 then p(Class #2) = 95%
Rule #2: if att]l = A and att2 = 1 then p(Class #2) = 75%
Rule #3: if att] = B then p(Class #1) = 95%

Fig. 1. Example of decision tree

Decision Tree in Relational DBs

Node #1.2

12/6/2017

Principle of approach (cont.)

dThe root node of the decision tree is rerresented by a
relational view corresponding to the whole training dataset.

[Each sub-node in the decision tree represents a sub-
population of its parent node, we build for each node a
relational view that is based on its parent view.

[Then, these views are used to count the population
strength of each class in the node with simple GROUP BY
queries.

Principle of approach (cont.)

[These counts are used to determine the criteria that helps
either partitioning the current node into a set of disjoint
sub-partitions based on the values of a specific attribute or
concluding that the node is a leaf, i.e., a terminal node.

12/6/2017

Principle of approach (cont.)

Node
Node
Node
Node
Node

#0: CREATE VIEW vO AS SELECT attl, att2, class FROM training set
#1.1: CREATE VIEW v11 AS SELECT att2, class FROM vO WHERE attl=’A’
#1.2: CREATE VIEW w12 AS SELECT att2, class FROM v0 WHERE attl1=’B’
#2.1: CREATE VIEW v21 AS SELECT class FROM v11 WHERE att2=0
#2.2: CREATE VIEW v22 AS SELECT class FROM v11 WHERE att2=1

Fig. 2. Relational views associated with sample decision tree

Data Mining Presentation Decision Tree in Relational DBs 13

Implementation (Data Structures)

Stack of nodes

O A node is contains following fields:
Unum
Unview
Urule
UEntropy
Upopulation

Data Mining Presentation Decision Tree in Relational DBs 14

12/6/2017

Implementation (Data Structures)

dList of candidate

O List of candidates must contain a set of attributes, the
information gain associated with these attributes (expressed as a
difference in entropy weighted averages), and a list of the nodes
that would be generated if the current attribute was selected for
splitting the current node.

0 We used a relational table as our principal list, with an embedded
table (collection) as the list of nodes.

Implementation (Data Structures)

dList of candidates

0 As a consequence, our table of candidates is composed of the
following fields:
OAtt_name: considered attribute name
UGain: information gain
ONodes: embedded list of associated nodes.

12/6/2017

Algorithm

JInput parameters

The input parameters of algorithm are given in this table

‘Parameter ‘ Name |Default value|
Data source table name table_name

Class attribute (attribute to predict) class —
Result table name res_name BTRES
(Strict) minimum information gain for node building| min_gain 0

Root node view name root view BTROOT
Clean-up views after execution (True/False) del TRUE

Table 1. Algorithm input parameters

Decision Tree in Relational DBs

Algorithm(cont.)

Pseudo-code

We suppose we can call a procedure named Entropy() that
computes both the entropy and the population strength of a
node. These data are used when computing the information

gain.

Data Mining Presentation

Decision Tree in Relational DBs

12/6/2017

Create result table
Create root node using the data source table
Compute root node entropy and population strength
Push root node
Update result table with root node
While the stack is not empty do
Pop current node
Clean candidate list
For each attribute but the class attribute do
Create a new candidate
For each possible value of current attribute do
Build new node and associated relational view
Compute new node entropy and population strength
Update information gain
Insert new node into current candidate node list
End for (each value)
End for (each attribute)
Search for maximum information gain in candidate list
For each candidate do
If current attribute bears the greater information gain then
For each node in the list of nodes do
Push current node
Update result table with current node
End for (each node)
Else
For each node in the list of nodes do
Destroy current node
End for (each node)
End if
End for (each candidate)
End while (stack not empty)

Data Mining Presentation

Fig. 3. Pseudo-code for the BuildTree stored procedure
Decision Tree in Relational DBs

Algorithm Illustration

(a1 A2 | a3 | class |
Low #1

2. An element pop from stack and all of
possible candidate nodes create from that
node and add to candidates list

3. Items in list of candidates sort by a
measure (gini, information gain, ...)
and the best node based on the
selected measure add to stack and

st be clear.

The selected node with its properties
(#, parent, ...) add to final decision

tree table

ist of candidates

A 0
High A 1 #2
Med B 1 #1
Low A 1 #2
Med B 0 #2
High B 0 #1

Node #1 Node #1 Node #1
(attr1, attr2) (attrl, attr2, (attrl)
(attr3) attr3) (attr2, attr3)

Node #1
(attrl, attr3)
(attr2)

/S‘rack of Nodes

1. At the first, root node
add to the stack

Data Mining Presentation

Root #0
Attrl, Attr2, Attr3

4. Step 2, 3 and 4 repeats while there is no node in the stack

Decision Tree in Relational DBs

20

10

12/6/2017

Result Output

U The output of our stored procedure, namely a decision tree, is
stored into a relational table whose name is specified as an input
parameter.

O The table structure reflects the hierarchical structure of the
tree.

UTIts fields are:
O node
Unode ID number (primary key)

O parent, ID number of parent node in the tree (foreign key, references a
node ID number); rule, the rule that lead to the creation of this node,
e.g., GENDER=FEMALE: and for each value V of attribute E, a field
labelled E V, population strength for the considered value of the
attribute in this node.

Data Mining Presentation Decision Tree in Relational DBs 21

Result Output

LEVEL NODE PARENT RULE SURVIVOR_NO P_NO SURVIVO.YES P_YES
1 o 1490 68% 711 32%
2 1 0 GENDER=FEMALE 126 27} 344 T34
3 13 1 CLASS=CREW 3 13} 20 874
3 14 1 CLASS=1ST 4 3% 141 9T
4 21 14 AGE=CHILD [A 1 100%
4 22 14 AGE=ADULT 4 3% 140 974
3 15 1 CLASS=2ND 13 12% 93 88l
4 19 15 AGE=CHILD [A 13 100%
4 20 15 AGE=ADULT 13 14% 80 86%
3 16 1 CLASS=3RD 106 54% 90 461
4 17 16 AGE=CHILD 17 55% 14 45
4 18 16 AGE=ADULT 89 54y, 76 46}
2 2 0 GENDER=MALE 1364 79% 367 213
3 3 2 CLASS=CREW 670 78% 192 22)
3 4 2 CLASS=1ST 118 66% 62 344
4 11 4 AGE=CHILD 0 0% 5 100%
4 12 4 AGE=ADULT 118 674 57 33}
3 5 2 CLASS=2ND 154 86% 25 14%
4 9 5 AGE=CHILD 0 0% 11 100%
4 10 5 AGE=ADULT 154 924 14 8%
3 6 2 CLASS=3RD 422 83} 88 17%
4 T 6 AGE=CHILD 36 73} 13 27}
4 8 6 AGE=ADULT 387 84 75 16%

Fig. 5. BuildTree result for TITANIC
Data Mining Presentation Decision Tree in Relational DBs 22

11

12/6/2017

Conclusion and perspectives

dWe presented a different approach for integrating data
mining operators into a database system

dSelect ID3 method for its simplicity

dImplemented the ID3 method, as a stored procedure that
builds a decision tree by associating each node of the tree
with a relational view.

12

