

Decision Tree in Relational Databases

Alireza Mohammadi Sahar Nafisi Data mining Fall 2017 (Course Master: Dr. Vahidipour)

Source Paper: Bentayeb, Fadila, and Jérôme Darmont. "Decision tree modeling with relational views." Foundations of Intelligent Systems (2002): 423-431.

Abstract

Data mining is a useful decision support technique for discovering production rules in warehouses or corporate data.

Data mining research has made much effort to apply various mining algorithms efficiently on large databases.

- Long processing time as a serious problem in such algorithms
- Integrating data mining methods with the framework of traditional databases
- Take advantage of the efficiency provided by SQL engines

Data Mining Presentation

Decision Tree in Relational DBs

Abstract (cont.)	
 In this present for decision tre try to discover of production Define decisio Classical Induct to build the decisio 	ation, we propose an integrating a es within a classical database syst r knowledge from relational databases, i rules, via a procedure embedding SQL q n tree by successive, related relational tion Decision Tree (ID3) algorithm ision tree.	pproach em. n the form ueries views n selected
The output of p existing and val	procedure compared with the outp idated data mining software, SIPI	ut of an NA.

Introductio	on (cont.)	
 To achieve this namely, relation we designed a generate the d 	goal, we only use existing structures, al views. SQL stored procedure that uses SQL queries to ecision tree)
 Main differences ones: existing metho our approach o existing metho 	s between our approach and the existing ds extend SQL to support mining operators whe nly uses existing SQL statements and structure ds use APIs when our approach does not	2n 25
Data Mining Presentation	Decision Tree in Relational DBs	7

Principle of approach (cont.)

These counts are used to determine the criteria that helps either partitioning the current node into a set of disjoint sub-partitions based on the values of a specific attribute or concluding that the node is a leaf, i.e., a terminal node.

Decision Tree in Relational DBs

Implementation (Data Structures) Stack of nodes A node is contains following fields: num nview rule Entropy population

Data Mining Presentation

Decision Tree in Relational DBs

Implementation (Data Structures)

List of candidates

As a consequence, our table of candidates is composed of the following fields:

□Att_name: considered attribute name

- □Gain: information gain
- ■Nodes: embedded list of associated nodes.

Algorithm

□Input parameters

The input parameters of algorithm are given in this table

Parameter	Name	Default value
Data source table name	table_name	
Class attribute (attribute to predict)	class	
Result table name	res_name	BTRES
(Strict) minimum information gain for node building	min_gain	0
Root node view name	root_view	BTROOT
Clean-up views after execution (True/False)	del	TRUE

 Table 1. Algorithm input parameters

 Decision Tree in Relational DBs

17

Algorithm(cont.)

□Pseudo-code

We suppose we can call a procedure named Entropy() that computes both the entropy and the population strength of a node. These data are used when computing the information gain.

Decision Tree in Relational DBs

18

Result Outp	put	
The output of our stored into a relation parameter.	r stored procedure, namely a decisio tional table whose name is specified	n tree, is as an input
The table struct tree.	ure reflects the hierarchical structu	ure of the
□Its fields are: □ node		
□node ID number □ parent, ID numb node ID number e.g., GENDER=FE labelled E V, pop attribute in this	(primary key) er of parent node in the tree (foreign key,); rule, the rule that lead to the creation of EMALE; and for each value V of attribute E ulation strength for the considered value o node.	references a f this node, , a field of the
Data Mining Presentation	Decision Tree in Relational DBs	21

Result	Output
--------	--------

LEVEL	NODE	PARENT	RULE	SURVIVOR_NO	P_NO	SURVIVO_YES	P_YES
1	0			1490	68%	711	32%
2	1	0	GENDER=FEMALE	126	27%	344	73%
3	13	1	CLASS=CREW	3	13%	20	87%
3	14	1	CLASS=1ST	4	3%	141	97%
4	21	14	AGE=CHILD	0	0%	1	100%
4	22	14	AGE=ADULT	4	3%	140	97%
3	15	1	CLASS=2ND	13	12%	93	88%
4	19	15	AGE=CHILD	0	0%	13	100%
4	20	15	AGE=ADULT	13	14%	80	86%
3	16	1	CLASS=3RD	106	54%	90	46%
4	17	16	AGE=CHILD	17	55%	14	45%
4	18	16	AGE=ADULT	89	54%	76	46%
2	2	0	GENDER=MALE	1364	79%	367	21%
3	3	2	CLASS=CREW	670	78%	192	22%
3	4	2	CLASS=1ST	118	66%	62	34%
4	11	4	AGE=CHILD	0	0%	5	100%
4	12	4	AGE=ADULT	118	67%	57	33%
3	5	2	CLASS=2ND	154	86%	25	14%
4	9	5	AGE=CHILD	0	0%	11	100%
4	10	5	AGE=ADULT	154	92%	14	8%
3	6	2	CLASS=3RD	422	83%	88	17%
4	7	6	AGE=CHILD	35	73%	13	27%
4	8	6	AGE=ADULT	387	84%	75	16%

Fig. 5. BuildTree result for TITANIC

Decision Tree in Relational DBs

Data Mining Presentation

