Data Mining:

Concepts and Techniques

(3rd ed.)

- Chapter 3 -

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University ©2013 Han, Kamber & Pei. All rights reserved.

1

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Quality: Why Preprocess the Data?

- Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning

- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 - <u>incomplete</u>: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., Occupation = "" (missing data)
 - <u>noisy</u>: containing noise, errors, or outliers
 - e.g., *Salary* = "−10" (an error)
 - inconsistent: containing discrepancies in codes or names, e.g.,
 - Age = "42", Birthday = "03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
 - Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

- Noise: random error or variance in a measured variable
- Incorrect attribute values may be due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- Other data problems which require data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to Handle Noisy Data?

Binning

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration

- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Integration

- Data integration:
 - Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id = B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction

- Data Transformation and Data Discretization
- Summary

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.

Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- The possible combinations of subspaces will grow exponentially

Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Data Reduction Strategies

Dimensionality reduction, e.g., remove unimportant attributes

- Wavelet transforms
- Principal Components Analysis (PCA)
- Feature subset selection, feature creation
- Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
- Data compression

Attribute Subset Selection

- Another way to reduce dimensionality of data
- Redundant attributes
 - Duplicate much or all of the information contained in one or more other attributes
 - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
 - Contain no information that is useful for the data mining task at hand
 - E.g., students' ID is often irrelevant to the task of predicting students' GPA

Heuristic Search in Attribute Selection

- There are 2^d possible attribute combinations of d attributes
- Typical heuristic attribute selection methods:
 - Best single attribute under the attribute independence assumption: choose by significance tests
 - Best step-wise feature selection:
 - The best single-attribute is picked first
 - Then next best attribute condition to the first, ...
 - Step-wise attribute elimination:
 - Repeatedly eliminate the worst attribute
 - Best combined attribute selection and elimination
 - Optimal branch and bound:
 - Use attribute elimination and backtracking

Data Reduction 2: Numerosity Reduction

- Reduce data volume by choosing alternative, *smaller forms* of data representation
- Parametric methods (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
 - Ex.: Log-linear models—obtain value at a point in *m*-D space as the product on appropriate marginal subspaces
- Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, ...

Parametric Data Reduction: Regression and Log-Linear Models

Linear regression

- Data modeled to fit a straight line
- Often uses the least-square method to fit the line

Multiple regression

 Allows a response variable Y to be modeled as a linear function of multidimensional feature vector

Log-linear model

 Approximates discrete multidimensional probability distributions

Regression Analysis

- Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a *dependent variable* (also called *response variable* or *measurement*) and of one or more *independent variables* (aka. *explanatory variables* or *predictors*)
- The parameters are estimated so as to give a "best fit" of the data
- Most commonly the best fit is evaluated by using the *least squares method*, but other criteria have also been used

 Used for prediction (including forecasting of time-series data), inference, hypothesis testing, and modeling of causal relationships

Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling:
- Note: Sampling may not reduce database I/Os (page at a time)

Types of Sampling

- Simple random sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - Once an object is selected, it is removed from the population
- Sampling with replacement
 - A selected object is not removed from the population
- Stratified sampling:
 - Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)

Sampling: With or without Replacement

Sampling: Cluster or Stratified Sampling

Raw Data

Cluster/Stratified Sample

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization

Summary

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_{A}}{max_{A} - min_{A}} (new max_{A} - new min_{A}) + new min_{A}$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- **Z-score normalization** (μ: mean, σ: standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

• Ex. Let μ = 54,000, σ = 16,000. Then

$$\frac{73,600 - 54,000}{16,000} = 1.225$$

Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where *j* is the smallest integer such that Max(|v'|) < 1

Discretization

- Three types of attributes
 - Nominal—values from an unordered set, e.g., color, profession
 - Ordinal—values from an ordered set, e.g., military or academic rank
 - Numeric—real numbers, e.g., integer or real numbers
- Discretization: Divide the range of a continuous attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Reduce data size by discretization
 - Supervised vs. unsupervised
 - Split (top-down) vs. merge (bottom-up)
 - Discretization can be performed recursively on an attribute
 - Prepare for further analysis, e.g., classification

Data Discretization Methods

- Typical methods: All the methods can be applied recursively
 - Binning
 - Top-down split, unsupervised
 - Histogram analysis
 - Top-down split, unsupervised
 - Clustering analysis (unsupervised, top-down split or bottom-up merge)
 - Decision-tree analysis (supervised, top-down split)

Simple Discretization: Binning

- Equal-width (distance) partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B – A)/N.
 - The most straightforward, but outliers may dominate presentation
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction

Summary

Data Transformation and Data Discretization

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- **Data cleaning**: e.g. missing/noisy values, outliers
- **Data integration** from multiple sources:
 - Entity identification problem; Remove redundancies; Detect inconsistencies
- Data reduction
 - Dimensionality reduction; Numerosity reduction; Data compression
- Data transformation and data discretization
 - Normalization; Concept hierarchy generation

References

- D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Comm. of ACM, 42:73-78, 1999
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- T. Dasu, T. Johnson, S. Muthukrishnan, V. Shkapenyuk. <u>Mining Database Structure; Or,</u> <u>How to Build a Data Quality Browser</u>. SIGMOD'02
- H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical Committee on Data Engineering, 20(4), Dec. 1997
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. *IEEE Bulletin of the Technical Committee on Data Engineering. Vol.23, No.4*
- V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and Transformation, VLDB'2001
- T. Redman. Data Quality: Management and Technology. Bantam Books, 1992
- R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans. Knowledge and Data Engineering, 7:623-640, 1995

Chapter 13: Data Mining Trends and Research Frontiers

Mining Complex Types of Data

- Other Methodologies of Data Mining
- Data Mining Applications
- Data Mining and Society
- Data Mining Trends
- Summary

Mining Complex Types of Data

- Mining Sequence Data
 - Mining Time Series
 - Mining Symbolic Sequences
 - Mining Biological Sequences
- Mining Graphs and Networks
- Mining Other Kinds of Data

Mining Sequence Data

- Similarity Search in Time Series Data
 - Subsequence match, dimensionality reduction, query-based similarity search, motif-based similarity search
- Regression and Trend Analysis in Time-Series Data
 - long term + cyclic + seasonal variation + random movements
- Sequential Pattern Mining in Symbolic Sequences
 - GSP, PrefixSpan, constraint-based sequential pattern mining
- Sequence Classification
 - Feature-based vs. sequence-distance-based vs. model-based
- Alignment of Biological Sequences
 - Pair-wise vs. multi-sequence alignment, substitution matirces, BLAST
- Hidden Markov Model for Biological Sequence Analysis
 - Markov chain vs. hidden Markov models, forward vs. Viterbi vs. Baum-Welch algorithms

Mining Graphs and Networks

- Graph Pattern Mining
 - Frequent subgraph patterns, closed graph patterns, gSpan vs. CloseGraph
- Statistical Modeling of Networks
 - Small world phenomenon, power law (log-tail) distribution, densification
- Clustering and Classification of Graphs and Homogeneous Networks
 - Clustering: Fast Modularity vs. SCAN
 - Classification: model vs. pattern-based mining
- Clustering, Ranking and Classification of Heterogeneous Networks
 - RankClus, RankClass, and meta path-based, user-guided methodology
- Role Discovery and Link Prediction in Information Networks
 - PathPredict
- Similarity Search and OLAP in Information Networks: PathSim, GraphCube
- Evolution of Social and Information Networks: EvoNetClus

Mining Other Kinds of Data

- Mining Spatial Data
 - Spatial frequent/co-located patterns, spatial clustering and classification
- Mining Spatiotemporal and Moving Object Data
 - Spatiotemporal data mining, trajectory mining, periodica, swarm, ...
- Mining Cyber-Physical System Data
 - Applications: healthcare, air-traffic control, flood simulation
- Mining Multimedia Data
 - Social media data, geo-tagged spatial clustering, periodicity analysis, ...
- Mining Text Data
 - Topic modeling, i-topic model, integration with geo- and networked data
- Mining Web Data
 - Web content, web structure, and web usage mining
- Mining Data Streams
 - Dynamics, one-pass, patterns, clustering, classification, outlier detection

Chapter 13: Data Mining Trends and Research Frontiers

- Mining Complex Types of Data
- Other Methodologies of Data Mining
- Data Mining Applications
- Data Mining and Society
- Data Mining Trends
- Summary

Other Methodologies of Data Mining

Statistical Data Mining

- Views on Data Mining Foundations
- Visual and Audio Data Mining

Major Statistical Data Mining Methods

- Regression
- Generalized Linear Model
- Analysis of Variance
- Mixed-Effect Models
- Factor Analysis
- Discriminant Analysis
- Survival Analysis

Chapter 13: Data Mining Trends and Research Frontiers

- Mining Complex Types of Data
- Other Methodologies of Data Mining
- Data Mining Applications
- Data Mining and Society
- Data Mining Trends
- Summary

Data Mining Applications

- Data mining: A young discipline with broad and diverse applications
 - There still exists a nontrivial gap between generic data mining methods and effective and scalable data mining tools for domain-specific applications
- Some application domains (briefly discussed here)
 - Data Mining for Financial data analysis
 - Data Mining for Retail and Telecommunication Industries
 - Data Mining in Science and Engineering
 - Data Mining for Intrusion Detection and Prevention
 - Data Mining and Recommender Systems

Data Mining for Financial Data Analysis (I)

- Financial data collected in banks and financial institutions are often relatively complete, reliable, and of high quality
- Design and construction of data warehouses for multidimensional data analysis and data mining
 - View the debt and revenue changes by month, by region, by sector, and by other factors
 - Access statistical information such as max, min, total, average, trend, etc.
- Loan payment prediction/consumer credit policy analysis
 - feature selection and attribute relevance ranking
 - Loan payment performance
 - Consumer credit rating

Data Mining for Financial Data Analysis (II)

- Classification and clustering of customers for targeted marketing
 - multidimensional segmentation by nearest-neighbor, classification, decision trees, etc. to identify customer groups or associate a new customer to an appropriate customer group
- Detection of money laundering and other financial crimes
 - integration of from multiple DBs (e.g., bank transactions, federal/state crime history DBs)
 - Tools: data visualization, linkage analysis, classification, clustering tools, outlier analysis, and sequential pattern analysis tools (find unusual access sequences)

Data Mining for Retail & Telcomm. Industries (I)

- Retail industry: huge amounts of data on sales, customer shopping history, e-commerce, etc.
- Applications of retail data mining
 - Identify customer buying behaviors
 - Discover customer shopping patterns and trends
 - Improve the quality of customer service
 - Achieve better customer retention and satisfaction
 - Enhance goods consumption ratios
 - Design more effective goods transportation and distribution policies
- Telcomm. and many other industries: Share many similar goals and expectations of retail data mining

Data Mining Practice for Retail Industry

- Design and construction of data warehouses
- Multidimensional analysis of sales, customers, products, time, and region
- Analysis of the effectiveness of sales campaigns
- Customer retention: Analysis of customer loyalty
 - Use customer loyalty card information to register sequences of purchases of particular customers
 - Use sequential pattern mining to investigate changes in customer consumption or loyalty
 - Suggest adjustments on the pricing and variety of goods
- Product recommendation and cross-reference of items
- Fraudulent analysis and the identification of usual patterns
- Use of visualization tools in data analysis

Data Mining in Science and Engineering

- Data warehouses and data preprocessing
 - Resolving inconsistencies or incompatible data collected in diverse environments and different periods (e.g. eco-system studies)
- Mining complex data types
 - Spatiotemporal, biological, diverse semantics and relationships
- Graph-based and network-based mining
 - Links, relationships, data flow, etc.
- Visualization tools and domain-specific knowledge
- Other issues
 - Data mining in social sciences and social studies: text and social media
 - Data mining in computer science: monitoring systems, software bugs, network intrusion

Data Mining for Intrusion Detection and Prevention

- Majority of intrusion detection and prevention systems use
 - Signature-based detection: use signatures, attack patterns that are preconfigured and predetermined by domain experts
 - Anomaly-based detection: build profiles (models of normal behavior) and detect those that are substantially deviate from the profiles
- What data mining can help
 - New data mining algorithms for intrusion detection
 - Association, correlation, and discriminative pattern analysis help select and build discriminative classifiers
 - Analysis of stream data: outlier detection, clustering, model shifting
 - Distributed data mining
 - Visualization and querying tools

Data Mining and Recommender Systems

- Recommender systems: Personalization, making product recommendations that are likely to be of interest to a user
- Approaches: Content-based, collaborative, or their hybrid
 - Content-based: Recommends items that are similar to items the user preferred or queried in the past
 - Collaborative filtering: Consider a user's social environment, opinions of other customers who have similar tastes or preferences
- Data mining and recommender systems
 - Users C × items S: extract from known to unknown ratings to predict user-item combinations
 - Memory-based method often uses k-nearest neighbor approach
 - Model-based method uses a collection of ratings to learn a model (e.g., probabilistic models, clustering, Bayesian networks, etc.)
 - Hybrid approaches integrate both to improve performance (e.g., using ensemble)

Chapter 13: Data Mining Trends and Research Frontiers

- Mining Complex Types of Data
- Other Methodologies of Data Mining
- Data Mining Applications
- Data Mining and Society
- Data Mining Trends

Summary

Trends of Data Mining

- Application exploration: Dealing with application-specific problems
- Scalable and interactive data mining methods
- Integration of data mining with Web search engines, database systems, data warehouse systems and cloud computing systems
- Mining social and information networks
- Mining spatiotemporal, moving objects and cyber-physical systems
- Mining multimedia, text and web data
- Mining biological and biomedical data
- Data mining with software engineering and system engineering
- Visual and audio data mining
- Distributed data mining and real-time data stream mining
- Privacy protection and information security in data mining