

Complex Network Theory

Lecture 2-1

Basic network concepts and metrics

Instructor: S. Mehdi Vahidipour (Vahidipour@kashanu.ac.ir)

Spring 2018
Thanks A. Rezvanian
A. Barabasi, L. Adamic and J. Leskovec

Outline

- Overview of class topics
 - Basic definitions
 - Basic concepts
 - Representation
 - Metrics
 - Measures
 - Centralities

- Next class:
 - Network centralities and metrics

Understanding large graphs

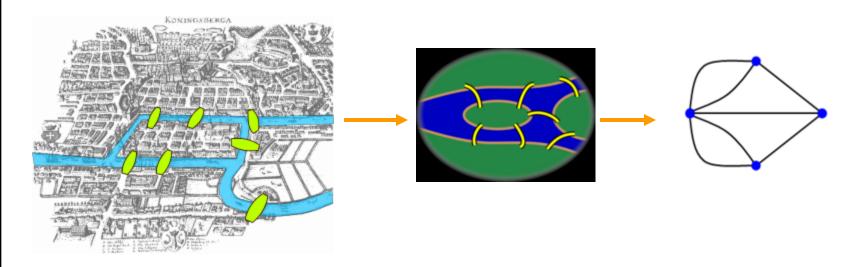
- What are the statistics of real life networks?
- In which terms we can describe the networks?
- How we can measure a large network?
- Can we explain how the networks were generated?
- Can we make models for network construction?
- To how much extent do the artificially
- constructed networks describe real networks?
- First step: Introducing network metrics

Networks became hot topic!

- Around 1999
 - Watts and Strogatz, Collective dynamics of small-world networks
 - Faloutsos³, On power-law relationships of the Internet Topology
 - Kleinberg et al., The Web as a graph
 - Barabasi and Albert, The emergence of scaling in real networks

History: Graph theory

- Euler's Seven Bridges of Königsberg one of the first problems in graph theory
- Is there a route that crosses each bridge only once and returns to the starting point?



Source: http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

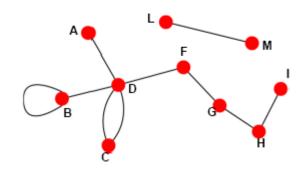
Image 1 - GNU v1.2: Bogdan, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License

Image 2 - GNU v1.2: Booyabazooka, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License

Image 3 - GNU v1.2: Riojajar, Wikipedia; http://commons.wikimedia.org/wiki/Commons:GNU Free Documentation License

Network elements: edges

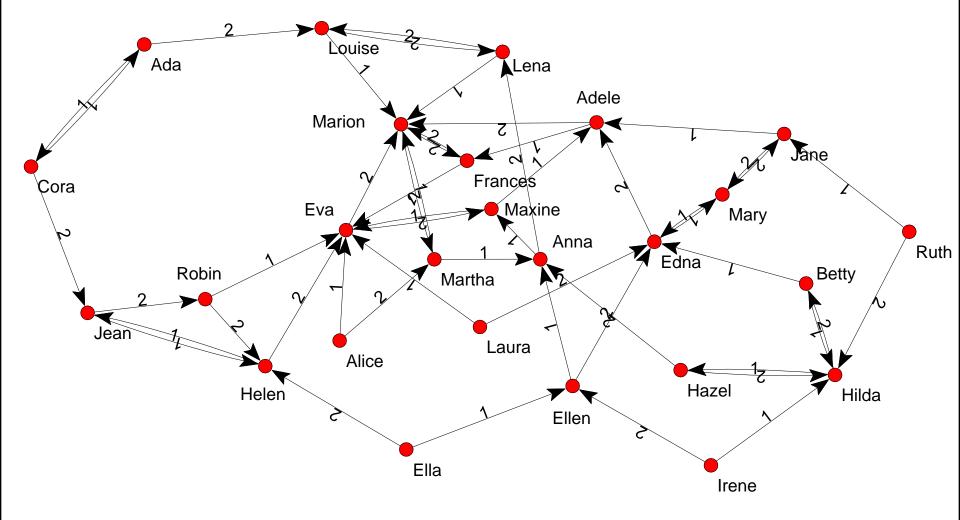
- Directed (also called arcs)-asymmetrical relations
 - \blacksquare A \rightarrow B
 - A likes B, A gave a gift to B, A is B's child,
 - A call B, A follows B
- Undirected (symmetrical, reciprocal relations)
 - \blacksquare A \leftrightarrow B or A B
 - A and B like each other
 - A and B are siblings
 - A and B are co-authors
 - A and B are friend



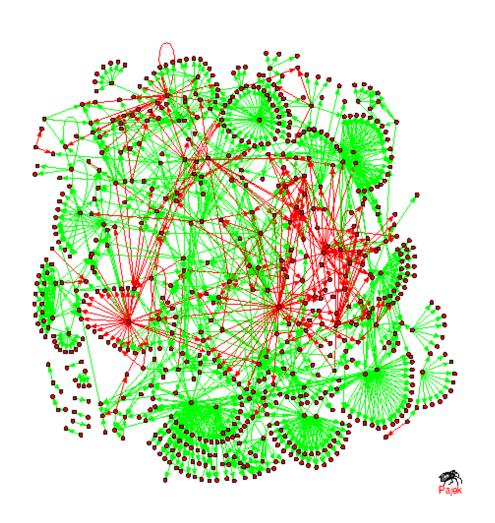
- Edge attributes
 - weight (e.g. frequency of communication)
 - ranking (best friend, second best friend...)
 - type (friend, relative, co-worker)
 - properties depending on the structure of the rest of the graph: e.g. betweenness

Directed networks

- girls' school dormitory dining-table partners (Moreno, *The sociometry reader*, 1960)
- first and second choices shown



Edge weights can have positive or negative values



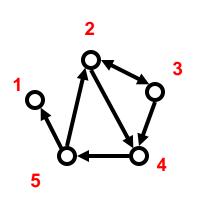
- One gene activates/inhibits another
- One person trusting/distrusting another
 - Research challenge: How does one 'propagate' negative feelings in a social network? Is my enemy's enemy my friend?

Transcription regulatory network in baker's yeast

Adjacency matrices

- Representing edges (who is adjacent to whom) as a matrix
 - A_{ij} = 1 if node i has an edge to node j
 = 0 if node i does not have an edge to j
 - $\mathbf{A}_{ii} = 0$ unless the network has self-loops
 - $A_{ij} = A_{ji}$ if the network is undirected, or if i and j share a reciprocated edge

Example:

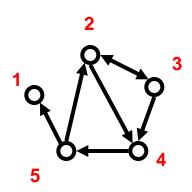


$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Adjacency lists

Edge list

23	2,3	2;3
2 4	2,4	2;4
32	3,2	3;2
3 4	3,4	3;4
4 5	4,5	4;5
	5,2	5;2
5 2	5,1	5;1
5 1	٥, ١	,

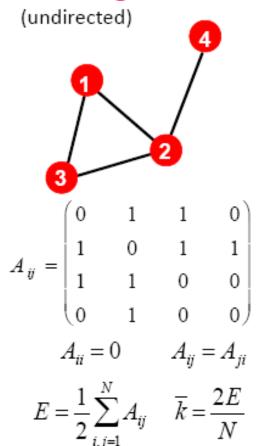


Adjacency list

- is easier to work with if network is
 - large
 - sparse
- quickly retrieve all neighbors for a node
 - **1**:
 - 2:34
 - 3:24
 - 4: 5
 - **5**: 1 2

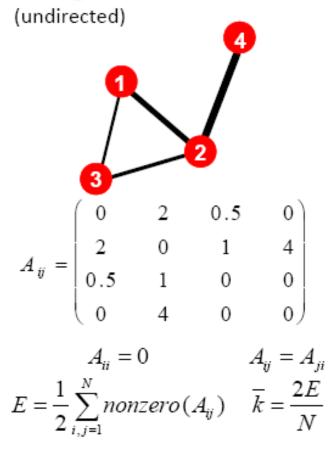
More types of graphs

Unweighted



Examples: Friendship, Hyperlink

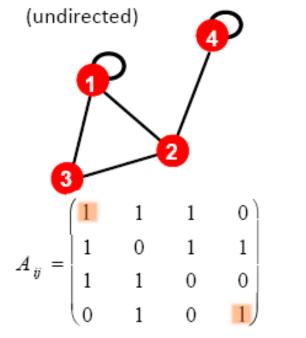
Weighted



Examples: Collaboration, Internet, Roads

More types of graphs

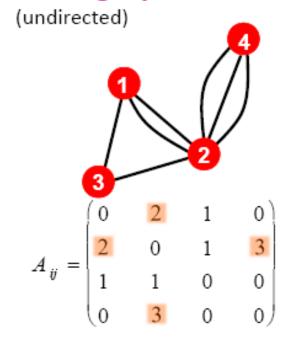
Self-edges (self-loops)Multigraph



$$A_{ii} \neq 0 \qquad A_{ij} = A_{ji}$$

$$E = \frac{1}{2} \sum_{i,j=1,i\neq j}^{N} A_{ij} + \sum_{i=1}^{N} A_{ii} \qquad ?$$

Examples: Proteins, Hyperlink



$$A_{ii} = 0 A_{ij} = A_{ji}$$

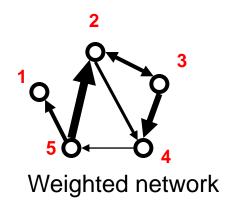
$$E = \frac{1}{2} \sum_{i,j=1}^{N} nonzero(A_{ij}) \overline{k} = \frac{2E}{N}$$

Examples: Communication, Collaboration

Weighted Graph

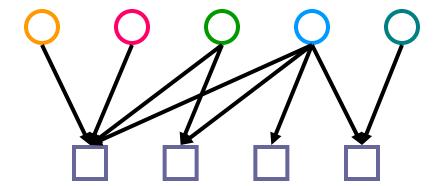
- For weighted directed network the in-strength and outstrength are defined
- The strength distribution of the graph is also correspondingly defined

23	5	2;3; 5
2 4	5	2;4; 5
3 2	5	3;2; 5
3 4	7	3;4; 7
4 5	3	4;5; 3
5 2	9	5;2; 9
5 1	5	5;1; 5

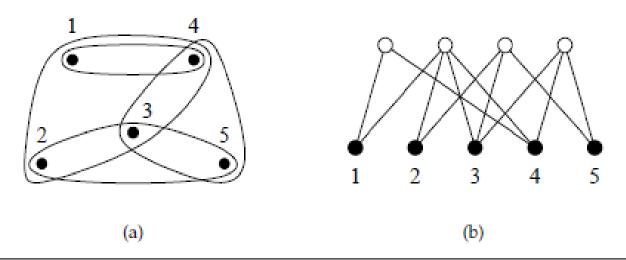


bipartite (two-mode) networks

- edges occur only between two groups of nodes, not within those groups
- for example, we may have individuals and events
 - directors and boards of directors
 - customers and the items they purchase
 - metabolites and the reactions they participate in



A hypergraph and corresponding bipartite graph



(a) And (b) show the same information

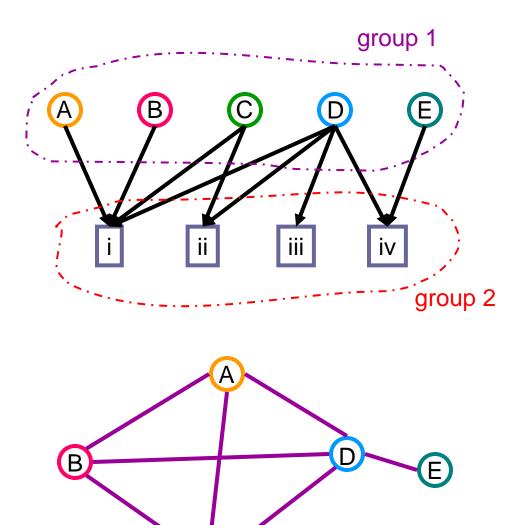
The membership of five vertices in four different groups.

- (a) Hypergraph representation: groups are represented as hyper-edges (loops circling sets of vertices).
- (b) Bipartite representation

going from a bipartite to a one-mode graph

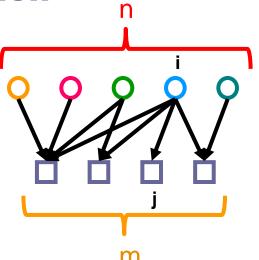
Two-mode network

- One mode projection
 - two nodes from the first group are connected if they link to the same node in the second group
 - some loss of information
 - naturally high occurrence of cliques



Now in matrix notation

- B_{ij}
 - = 1 if node i from the first group links to node j from the second group
 - \blacksquare = 0 otherwise



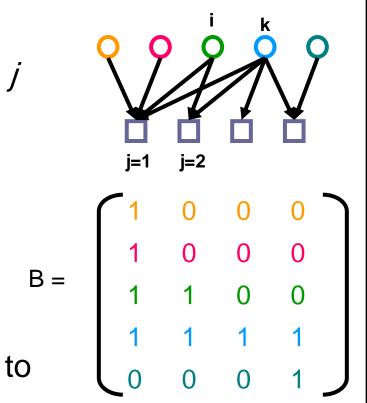
- B is usually not a square matrix!
 - for example: we have n customers and m products

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Collapsing to a one-mode network

- i and k are linked if they both link to j
- $A_{ik} = \sum_{i} B_{ii} B_{ki} \rightarrow A = B.B^{T}$
 - \blacksquare B^T swaps B_{xy} and B_{yx}
 - if B is an $n \times m$, B^T is an $m \times n$

- A_{ii} is equal to the number of groups to which vertex i belongs
- \blacksquare A'=B^TB?



$$B^{T} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Matrix multiplication

- general formula for matrix multiplication $Z_{ij} = \sum_k X_{ik} Y_{kj}$
- let $Z = A, X = B, Y = B^T$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 2 & 0 \\ 1 & 1 & 2 & 2 & 0 \\ 1 & 1 & 2 & 4 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = 1*1+1*1 \\ + 1*0 + 1*0 \\ = 2$$

Collapsing a two-mode network to a one mode-network

- Assume the nodes in group 1 are people and the nodes in group 2 are movies
- The diagonal entries of A give the number of movies each person has seen
- The off-diagonal elements of A give the number of movies that both people have seen
- A is symmetric

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 2 & 0 \\ 1 & 1 & 2 & 4 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Readings

- Easley, David, and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010. (Ch.1-2)
- Newman, Mark. Networks: an introduction. Oxford University Press, 2010. (Ch. 6)
- L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1):167 242, 2007.