

Complex Network Theory

Lecture 2-2

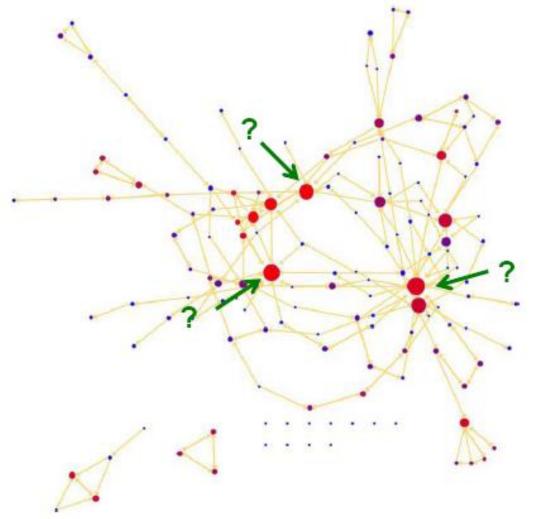
Basic network concepts and metrics

Instructor: S. Mehdi Vahidipour (Vahidipour@kashanu.ac.ir)

Spring 2018
Thanks A. Rezvanian
A. Barabasi, L. Adamic and J. Leskovec

Who is most central?

Who is most important?



Nodes

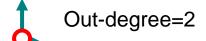
Node network properties

- from immediate connections
 - In-degree (directed) how many directed edges (arcs) are incident on a node
 - Out-degree (directed) how many directed edges (arcs) originate at a node
 - degree (in or out) undirected number of edges incident on a node
- In weighted networks instead of degree, strength of nodes are defined
- If the weighted adjacency matrix is W=(w_{ij}), the strength of node i is defined as
 2 4 strength=12

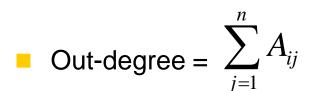
$$\square_{S_i} = \sum_{j=1}^n W_{ij}$$

Average degree (Avg. degree) $\overline{k} = \langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N}$

In-degree=3



Node degree from matrix values



In-degree =
$$\sum_{i=1}^{n} A_{ij}$$

example: the in-degree for node 3 is 1, $\sum_{i=1}^{n} A_{i3}$

example: out-degree for node 3 is 2,
$$\sum_{j=1}^{n} A_{3j}$$

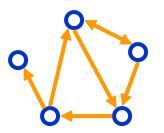
In-degree = $\sum_{i=1}^{n} A_{ij}$

example: the in-degree for node 3 is 1 $\sum_{i=1}^{n} A_{i3}$

$$A = \begin{bmatrix} 0 & 0 & \overline{0} & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Network metrics: degree sequence and distribution

- Degree sequence: An ordered list of the (in,out) degree of each node
 - In-degree sequence:
 - **[**2, 2, 2, 1, 1, 1, 1, 0]
 - Out-degree sequence:
 - **[**2, 2, 2, 2, 1, 1, 1, 0]
 - (undirected) degree sequence:
 - **[**3, 3, 3, 2, 2, 1, 1, 1]



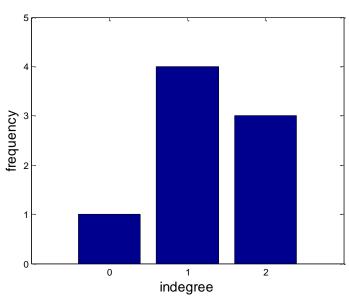
- **Degree distribution:** A frequency count of the occurrence of each degree
- Degree distribution P(k): Probability that a randomly chosen node has degree k

 $N_k = \#$ nodes with degree **k**

Normalized histogram (PDF):

$$P(k) = Nk/N$$

- In-degree distribution:
 - **[**(2,3) (1,4) (0,1)]
- Out-degree distribution:
 - **[**(2,4) (1,3) (0,1)]
- (undirected) distribution:
 - **[**(3,3) (2,2) (1,3)]



Network metrics: Density

The maximum number of edges in an undirected graph on N nodes is

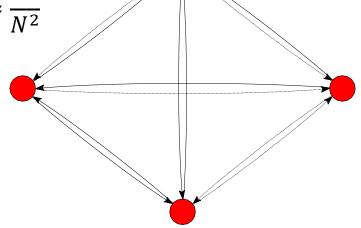
$$E_{\text{max}} = {N \choose 2} = \frac{N(N-1)}{2}$$

- A graph with the number of edges $E = E_{max}$ is a **complete graph**
- density of a graph:

$$\rho = \frac{E}{E_{max}} = \frac{2E}{N(N-1)} = \frac{\overline{K}}{N-1} \cong \frac{\overline{k}}{N}$$

$$\rho = \frac{E}{E_{max}} = \frac{2E}{N(N-1)} \approx \frac{E}{N^2}$$

For example, out of 12 possible connections, this graph has 7, giving it a density of 7/12 = 0.583



Most real-world networks are sparse

$$E \ll E_{max}$$
 (or $\overline{k} \ll N-1$)

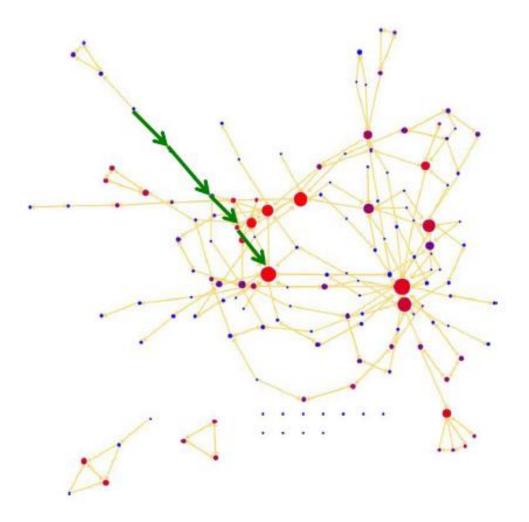
WWW (Stanford-Berkeley): N=319,717 $\langle k \rangle = 9.65$ Social networks (LinkedIn): N=6,946,668 $\langle k \rangle = 8.87$ $\langle k \rangle = 11.1$ N=242,720,596 Communication (MSN IM): Coauthorships (DBLP): N=317,080⟨k⟩=6.62 (k)=14.91Internet (AS-Skitter): N=1,719,037Roads (California): ⟨k⟩=2.82 N=1,957,027Proteins (S. Cerevisiae): N=1,870⟨k⟩=2.39

(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros!

(Density of the matrix (E/N^2): WWW=1.51×10⁻⁵, MSN IM = 2.27×10⁻⁸)

How far apart are nodes?

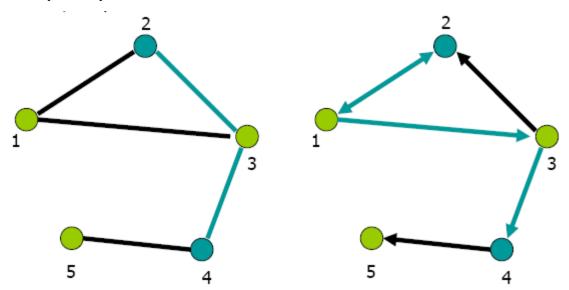


Paths

Path from node i to node j: a sequence of edges (directed or undirected from node i to node j)

$$P_n = \{i_0, i_1, i_2, ..., i_n\} \qquad P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), ..., (i_{n-1}, i_n)\}$$

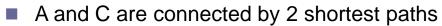
- path length: number of edges on the path (unweighted networks)
- nodes i and j are connected
- Cycle (loop): a path that starts and ends at the same node
- Self-loop: a path from a node to itself

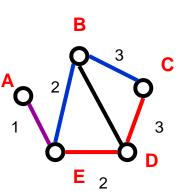


Complex Network Theory, S. Mehdi Vahidipour, Spring 2018.

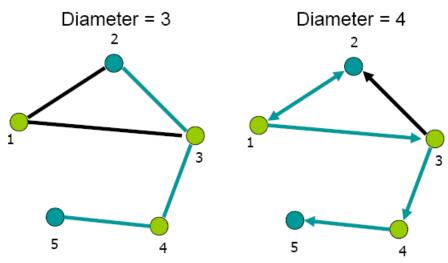
Network metrics: shortest paths

- Shortest path (also called a geodesic path, BFS path)
 - The shortest sequence of links connecting two nodes
 - Not always unique





- Diameter: the largest geodesic distance in the graph (Maximum shortest path)
 - The distance between A and C is the maximum for the graph: 3



Caution: some people use the term 'diameter' to be the average shortest path distance, in this class we will use it only to refer to the maximal distance

Network metrics: shortest paths

 Average path length for a connected graph (component) or a strongly connected (component of a) directed graph

$$\overline{h} = \frac{1}{2E_{\max}} \sum_{i,j \neq i} h_{ij}$$
where h_{ij} is the distance from node i to node j

Many times we compute the average only over the

 Many times we compute the average only over the connected pairs of nodes (we ignore "infinite" length paths)

Network metrics: connected components

- Connected graph: a graph where every pair of nodes is connected
- Disconnected graph: a graph that is not connected
- Connected Components: subsets of vertices that are connected
- Strongly connected components: Each node within the component can be reached from every other node in the component by following directed links.

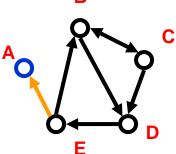
Strongly connected components

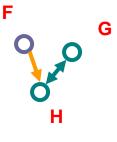
BCDE

A

G H

F



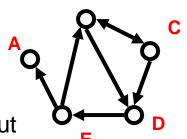


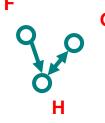
- Weakly connected components: every node can be reached from every other node by following links in either direction
 - Weakly connected components

ABCDE

GHF

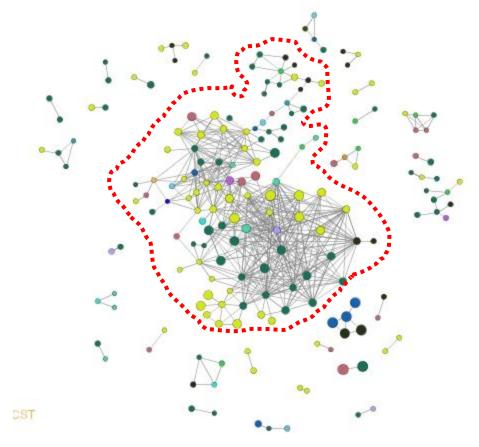
In undirected networks one talks simply about 'connected components'





Giant components and the web graph

- Largest Connected Component: the connected component with the largest number of nodes
- if the largest component encompasses a significant fraction of the graph, it is called the giant component



The bowtie model of the web

- The Web is a directed graph:
 - webpages link to other webpages
- The connected components tell us what set of pages can be reached from any other just by surfing (no 'jumping' around by typing in a URL or using a search engine)
- Broder et al. 1999 crawl of over 200 million pages and 1.5 billion links.
- SCC 27.5%
- IN and OUT 21.5%
- Tendrils and tubes 21.5%
- Disconnected 8%

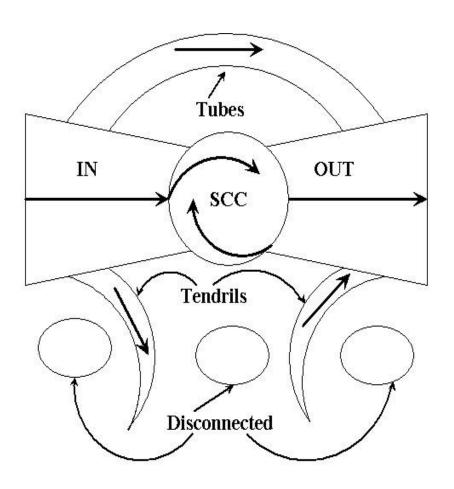
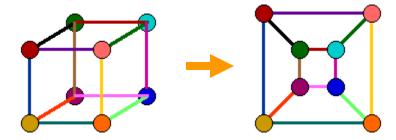


image: Mark Levene

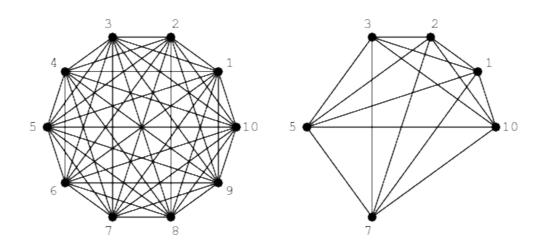
Planar graphs

A graph is planar if it can be drawn on a plane without any edges crossing



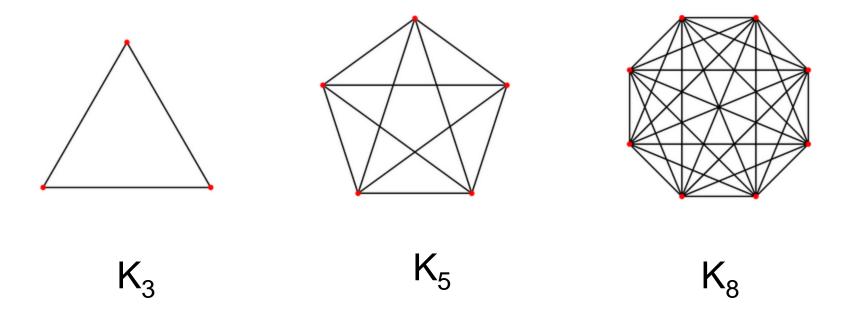
Subgraphs

- Subgraph: Given V' ⊂ V, and E' ⊂ E, the graph G'=(V',E') is a subgraph of G.
- Induced subgraph: Given V' ⊂ V, let E' ⊂ E is the set of all edges between the nodes V' in G. The graph G'=(V',E'), is an induced subgraph of G.



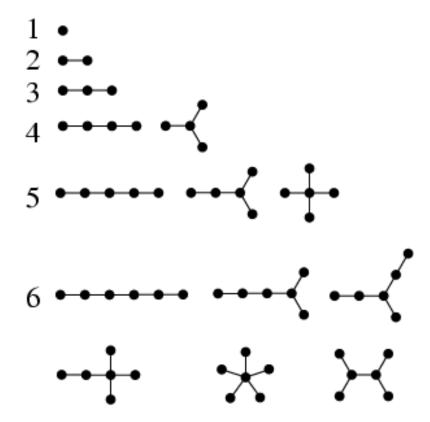
Cliques and complete graphs

- K_n is the complete graph (clique) with K vertices
 - each vertex is connected to every other vertex
 - there are n*(n-1)/2 undirected edges



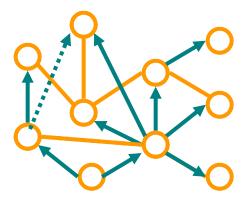
Trees

Trees are undirected graphs that contain no cycles (loops)



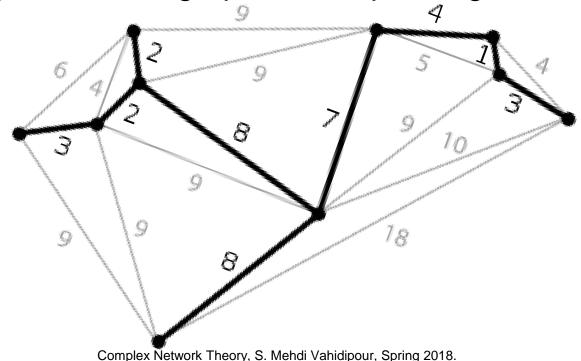
examples of trees

- In nature
 - trees
 - river networks
 - arteries (or veins, but not both)
- Man made
 - sewer system
- Computer science
 - binary search trees
 - decision trees (AI)
- Network analysis
 - minimum spanning trees
 - from one node how to reach all other nodes most quickly
 - may not be unique, because shortest paths are not always unique
 - depends on weight of edges



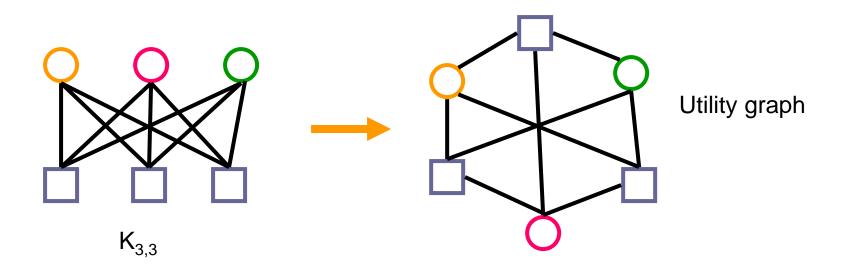
Spanning tree of a graph

■ If G(V,E) is a graph and T(V,F) is a subgraph of G and is a tree, then T is a spanning tree of G. That is, T is a tree that includes every vertex of G and has only edges to be found in G. Using a procedure (remove edges from cycles until only a tree remains), we can easily prove that every connected graph has a spanning tree.



Bi-cliques (cliques in bipartite graphs)

- K_{m,n} is the complete bipartite graph with m and n vertices of the two different types
- \blacksquare K_{3,3} maps to the utility graph
 - Is there a way to connect three utilities, e.g. gas, water, electricity to three houses without having any of the pipes cross?



Eigenvalues and Eigenvectors

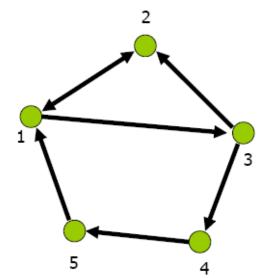
- The value λ is an eigenvalue of matrix A if there exists a non-zero vector x, such that Ax=λx.
 Vector x is an eigenvector of matrix A
 - The largest eigenvalue is called the principal eigenvalue
 - The corresponding eigenvector is the principal eigenvector
 - Corresponds to the direction of maximum change
 - $Ax = \lambda x \rightarrow Ax \lambda x = 0 \rightarrow (A-\lambda I)x = 0$
 - Eig function in MATALB

Random Walks

- Start from a node, and follow links uniformly at random.
- Stationary distribution: The fraction of times that you visit node i, as the number of steps of the random walk approaches infinity
 - if the graph is strongly connected, the stationary distribution converges to a unique vector.
 - stationary distribution: principal left eigenvector of the normalized adjacency matrix
 - $\mathbf{x} = \mathbf{x} \mathbf{P}$
 - for undirected graphs, the degree distribution

Transition matrix P

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$



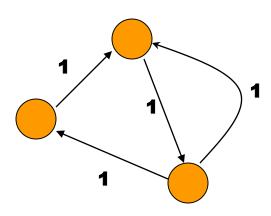
Random walks (Example)

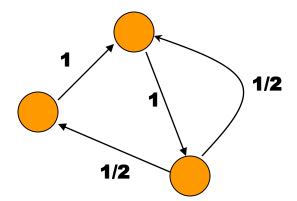
0	1	0
0	0	1
1	1	0

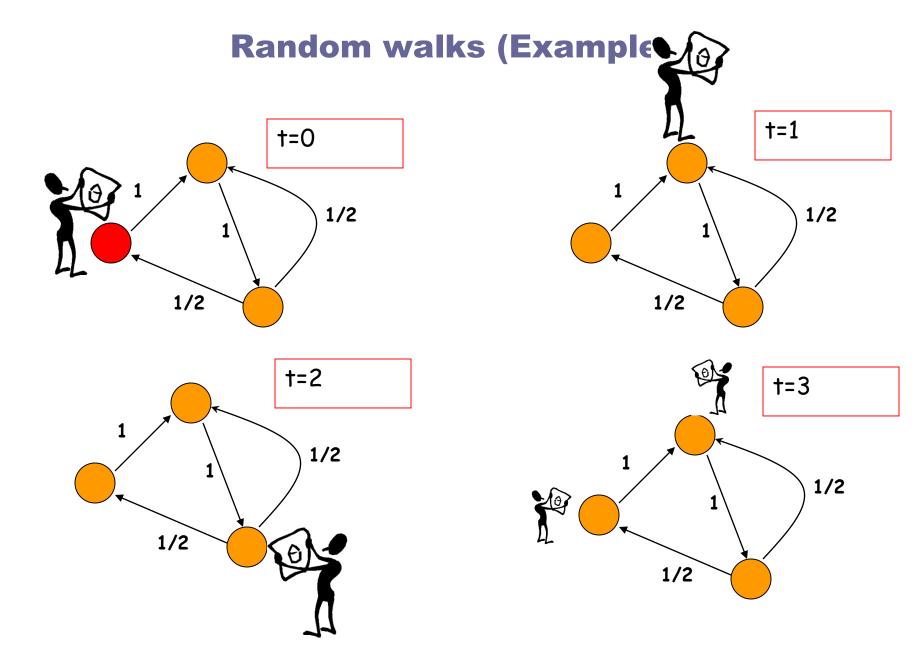
0	1	0
0	0	1
1/2	1/2	0

Adjacency matrix A

Transition matrix P







Probability Distributions

- $x_t(i)$ = probability that the surfer is at node *i* at time *t*
- $x_{t+1}(i) = \sum_{j} (Probability of being at node j)*Pr(j->i)$ = $\sum_{j} x_{t}(j)*P(j,i)$
- $X_{t+1} = X_t P = X_{t-1} P^* P = X_{t-2} P^* P^* P = \dots = X_0 P^t$
- What happens when the surfer keeps walking for a long time?
- Stationary Distribution
 - When the surfer keeps walking for a long time
 - When the distribution does not change anymore

■ i.e.
$$X_{T+1} = X_{T}$$

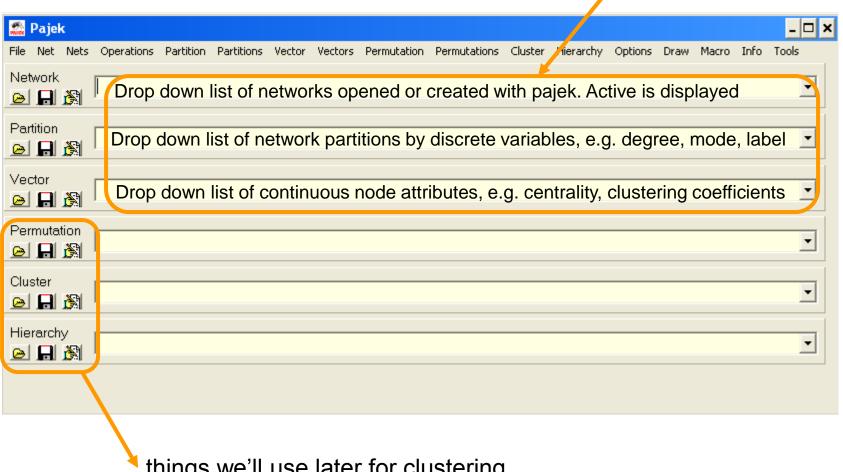
For "well-behaved" graphs this does not depend on the start distribution!!

Using Pajek for exploratory social network analysis

- Pajek (pronounced in Slovenian as Pah-yek) means 'spider'
- website: vlado.fmf.uni-lj.si/pub/networks/pajek/
 - download application (free)
 - tutorials
 - lectures
 - data sets
- Windows only (works on Linux via Wine)
- can be installed via NAL in the student lab (DIAD)
- helpful book: 'Exploratory Social Network Analysis with Pajek' by Wouter de Nooy, Andrej Mrvar and Vladimir Batagelj
 - first 2 chapters are required reading and on cTools
- Pajek
 - Opening a network
 - Visualization
 - Essential measurements

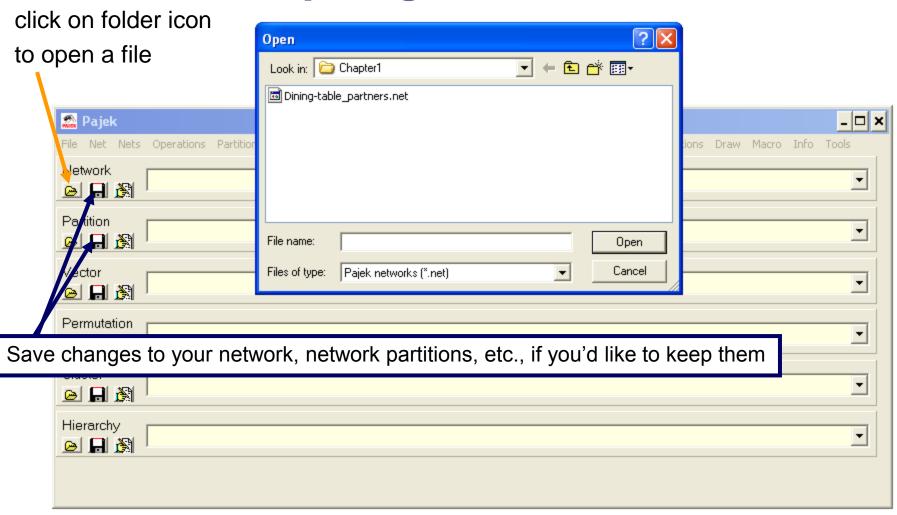
Pajek interface

things we'll use right away



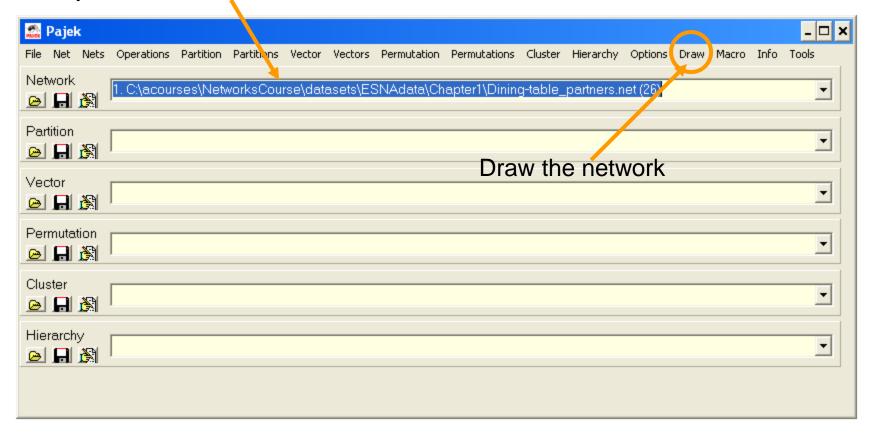
things we'll use later for clustering

opening a network file

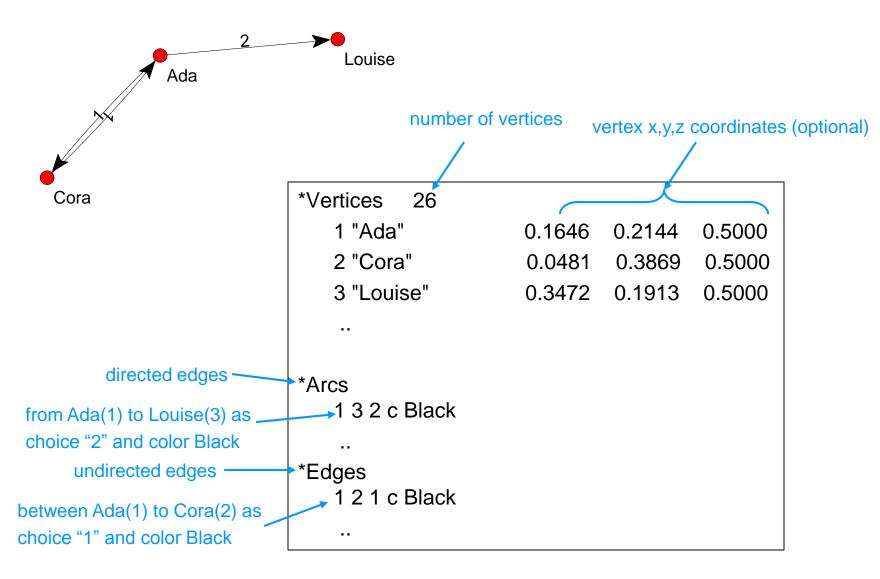


Working with network files in Pajek

The active network, partition, etc is shown on top of the drop down list



Pajek data format



Readings

- Easley, David, and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010. (Ch.1-2)
- Newman, Mark. Networks: an introduction. Oxford University Press, 2010. (Ch. 6)
- L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1):167 242, 2007.