ADVANCED TOPICS IN INFORMATION RETRIEVAL AND WEB SEARCH

Lecture 3:

Overview of Traditional IR Methods

S. M. Vahidipour

Tanks Dr. Momtazi

Outline

- Boolean model
- Vector space model
- Probabilistic model

IR Task

- Vocabulary: $V = \{w_1, w_2, \dots, w_N\}$ of language
- Query: $q = q_1, \dots, q_m$ where $q_i \in V$
- **Document**: $d_i = d_{i1}, \dots, d_{ik}$ where $d_{ij} \in V$
- **Collection**: $C = \{d_1, ..., d_M\}$
- Set of **relevant documents**: $R(q) \in C$
 - Generally unknown and user-dependent
 - Query is a "hint" on which doc is in R(q)
- Task = compute R'(q), an approximation of R(q)

Boolean Model

- Two possible outcomes for query processing
 - TRUE or FALSE
 - All matching documents are considered equally relevant
- Query usually specified using Boolean operators
 - AND, OR, NOT

• Search for news articles about *President Lincoln*

lincol	n	
Result:		
places		

• Search for news articles about *President Lincoln*

President AND lincoln

Result:

"Ford Motor Company today announced that Darryl Hazel will succeed Brian Kelley as president of Lincoln Mercury "

• Search for news articles about *President Lincoln*

president AND Lincoln AND NOT (automobile OR car)

Not in result: "President Lincoln's body departsWashington in a nine-car funeral train."

• Search for news articles about *President Lincoln*

presidentAND lincolnAND biographyAND life AND birthplace AND gettysburgAND NOT (automobile OR car)

Result: Ø

Search for news articles about *President Lincoln*

presidentAND lincolnAND (biography OR life OR birthplace OR gettysburg)AND NOT (automobile OR car)

Top result might be:

"President's Day - Holiday activities - crafts, mazes, mazes word searches,...'The Life of Washington' Read the entire searches The Washington book online! Abraham Lincoln Research Site ...'

Boolean Model

- Advantages
 - Results are predictable and relatively easy to explain
- Disadvantages
 - Relevant documents have no order
 - Complex queries are difficult to write

Document Selection vs Ranking

- Document selection
 - $R'(q) = \{d_c | f(d,q) = 1\}$, where $f(d,q) \in \{0,1\}$ is an indicator function or binary classifier
 - System must decide if a doc is relevant or not (absolute relevance)
- Document ranking
 - $R'(q) = \{d_c | f(d,q) > \theta\}$, where f(d,q) is a relevance measure function
 - θ is a cutoff determined by the user
 - System only needs to decide if one doc is more likely relevant than another (relative relevance)

Document Selection vs Ranking

Document Selection Problem

- The classifier is unlikely accurate
 - "Over-constrained" query no relevant documents to return
 - "Under-constrained" query over delivery
 - Hard to find the right position between these two extremes
- Even if it is accurate, all relevant documents are not equally relevant (relevance is a matter of degree!)
 - Prioritization is needed
- Thus, ranking is generally preferred => Vector Space Model

Outline

- Boolean model
- Vector space model
- Probabilistic model

Ranked Retrieval

Providing a relevance ranking of the documents with respect to a query

- Assign a score to each query-document pair, say in [0, 1].
- This score measures how well document and query "match".
- Sort documents according to scores

Vector Space Model

- Represent a doc/query by a term vector
 - Term: basic concept, e.g., word
 - Each term defines one dimension
 - *N* terms define an N-dimensional space
 - Query vector: $q = (x_1, ..., x_N), x_i$ is query term weight
 - Doc vector: $d = (y_1, ..., y_N), y_j$ is doc term weight
- Relevance $(q,d) \approx similarity(q,d) = f(q,d)$

Vector Space Model

- Main items in calculating scores
 - The importance of the term in query and document:
 - How many times does a query term occur in q and d? => *Term Frequency (TF)*
 - The general importance of the term in the collection:
 - Is it a frequent or rare term? How often do we see the query term in the entire collection? =>
 Document Frequency (DF)
 - Normalization of the scores based on the length of the document:
 - How long is d? => Document length (/d/)

Term Frequency (TF)

...

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
	Cleopatra					
ANTHONY	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
CAESAR	1	1	0	1	1	1
CALPURNIA	0	1	0	0	0	0
CLEOPATRA	1	0	0	0	0	0
MERCY	1	0	1	1	1	1
WORSER	1	0	1	1	1	0

	٠	
	-	

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
ANTHONY	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
CAESAR	232	227	0	2	1	0	
CALPURNIA	0	10	0	0	0	0	
Cleopatra	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

Term Frequency (TF)

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- Using raw tf for computing query-document match scores, however, is not appropriate, because
 - A document with tf = 10 occurrences of the term is more relevant than a document with tf = 1 occurrence of the term.
 - But not 10 times more relevant.
 - i.e, Relevance does not increase proportionally with term frequency.

 \Rightarrow Raw Term Frequency \rightarrow Log Term Frequency

 $\mathsf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \text{if } \mathsf{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{array} \right.$

Document Frequency

- Rare terms are more informative than frequent terms
 - Consider a term in the query that is rare in the collection (e.g., "arachnocentric").
 - A document containing this term is very likely to be relevant.
 - We want high weights for rare terms like "arachnocentric"
- Frequent terms are less informative than rare terms.
 - Consider a term in the query that is frequent in the collection (e.g., "good", "increase", "line").
 - A document containing this term is more likely to be relevant than a document that doesn't, but these words are not sure indicators of relevance.
 - We want positive weights for such words, but lower weights than for rare terms.
 - => Using document frequency to factor this into computing the matching score.

Inverse Document Frequency (IDF)

 $\Box df_t$ is the document frequency, the number of documents that *t* occurs in.

 \Box df_t is an inverse measure of the informativeness of term t.

□ *idf* weight of term *t* is defined as follows:

$$idf_t = \log_{10}\left(\frac{N}{df_t}\right)$$

(*N* is the number of documents in the collection.) $[\log_{10}(\frac{N}{df_t})]$ instead of $(\frac{N}{df_t})$ to "dampen" the effect of *idf*

• Note: we use the log transformation for both *TF* and *IDF*

IDF Example

• Compute *idf_t* using the formula: $idf_t = log_{10}$ (1,000,000/ df_t)

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

TF-IDFWeighting

tf_idf weighting is one of the best known weighting scheme in information retrieval *tf_idf* weight of a term is the product of its *tf* weight and its *idf* weight.

$$w_{t,d} = (1 + \log t f_{t,d}) \cdot \log(N/df_t)$$

- increases with the number of occurrences within a document. (term frequency)
- increases with the rarity of the term in the collection. (inverse document frequency)

Document Normalization

- Long doc has a better chance to match any query
- Penalize a long documents with a doc length normalizer

Cosine Similarity

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- cosine similarity of \vec{q} and \vec{d}
 - q_i is the tf_idf weight of term *i* in the query.
 - d_i is the tf_idf weight of term *i* in the document.
 - $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d}
- Also includes doc length normalization

Vector Space Model

- Advantages
 - Simple computational framework for ranking
 - Any similarity measure or term weighting scheme can be used
- Disadvantages
 - Assumption of term independence

- Boolean model
- Vector space model
- Probabilistic model*

* این مبحث در امتحان نخواهد بود. برای مطالعه دانشجویان گرامی قرار گرفته است

Probabilistics IR Methods

- Classical probabilistic retrieval model
 - Probability ranking principle
 - Binary Independence Model
 - BestMatch25 (Okapi)
- Bayesian networks for text retrieval
- Language model approach to IR
 - Important recent work, will be covered in the next lecture

Probabilistic vs. Other Models

- Vs. Boolean model
 - Probabilistic models support ranking and thus are better than the simple Boolean model
- Vs. Vector space model
 - The vector space model is also a formally defined model that supports ranking
 - ... but it ranks documents according to similarity to query
 - The notion of similarity does not translate directly into an assessment of "is the document a good document to give to the user or not?"
 - The most similar document can be highly relevant or completely nonrelevant
 - Probability theory is arguably a cleaner formalization of what we really want an IR system to do: give relevant documents to the user

Document Relevance

Actually, we just need a ranking

The Document Ranking Problem

- Assume binary notion of relevance: $R_{d,q}$ is a random variable, such that
 - $R_{d,q} = 1$ if document d is relevant w.r.t query q
 - $R_{d,q} = 0$ otherwise
- Probabilistic ranking orders documents decreasingly by their estimated probability of relevance w.r.t. query: P(R = 1|d, q)

 Assume that the relevance of each document is independent of the relevance of other documents

Probability Ranking Principle (PRP)

• If the retrieved documents (w.r.t a query) are ranked decreasingly on their probability of relevance, then the effectiveness of the system will be the best that is obtainable

Models

- Binary Independence Model (BIM)
- Best Match 25 (BM25)

Binary Independence Model (BIM)

- Assumptions:
 - "Binary" (equivalent to Boolean): documents and queries represented as binary term incidence vectors
 - "Independence": no association between terms (not true, but practically works)
- To make a probabilistic retrieval strategy precise, need to estimate how terms in documents contribute to relevance
 - Find measurable statistics (term frequency, document frequency, document length) that affect judgments about document relevance
 - Combine these statistics to estimate the probability P(R|d, q) of document relevance

Binary Independence Model (BIM)

• P(R/d, q) is modeled using term incidence vectors as $P(R \mid \vec{x}, \vec{q})$

$$P(R=1|\vec{x},\vec{q}) = \frac{P(\vec{x} | R=1,\vec{q})P(R=1|\vec{q})}{P(\vec{x} | \vec{q})}$$

$$P(R = 1 | \vec{x}, \vec{q}) + P(R = 0 | \vec{x}, \vec{q}) = 1$$

$$P(R = 0 | \vec{x}, \vec{q}) = \frac{P(\vec{x} | R = 0, \vec{q})P(R = 0 | \vec{q})}{P(\vec{x} | \vec{q})}$$

- $P(\vec{x} | R = 1, \vec{q})$ and $P(\vec{x} | R = 0, \vec{q})$: probability that if a relevant or nonrelevant document is retrieved, then that document's representation is x
- $P(R = 1 | \vec{q})$ and $P(R = 0 | \vec{q})$: prior probability of retrieving a relevant or nonrelevant document for a query
 - Can be estimated from percentage of relevant documents in the collection

BIM Ranking (I)

- Deriving a ranking function for query terms
- Easier: rank documents by their odds of relevance (gives same ranking)

$$O(R|\vec{x}, \vec{q}) = \frac{P(R = 1|\vec{x}, \vec{q})}{P(R = 0|\vec{x}, \vec{q})} = \frac{\frac{P(R = 1|\vec{q})P(\vec{x}|R = 1, \vec{q})}{P(\vec{x}|\vec{q})}}{\frac{P(R = 0|\vec{q})P(\vec{x}|R = 0, \vec{q})}{P(\vec{x}|\vec{q})}}$$
$$= \frac{P(R = 1|\vec{q})}{P(R = 0|\vec{q})} \cdot \frac{P(\vec{x}|R = 1, \vec{q})}{P(\vec{x}|R = 0, \vec{q})}$$
$$O(R|\vec{q}) \quad \text{(can be ignored)}$$

BIM Ranking (2)

Considering the conditional independence assumption: the presence or absence of a word in a document is independent of the presence or absence of any other word (given the query)

$$\frac{P(\vec{x}|R=1,\vec{q})}{P(\vec{x}|R=0,\vec{q})} = \prod_{t=1}^{M} \frac{P(x_t|R=1,\vec{q})}{P(x_t|R=0,\vec{q})}$$

$$O(R|\vec{x},\vec{q}) = O(R|\vec{q}) \cdot \prod_{t=1}^{M} \frac{P(x_t|R=1,\vec{q})}{P(x_t|R=0,\vec{q})}$$

$$P_t \qquad u_t$$

$$O(R|\vec{x},\vec{q}) = O(R|\vec{q}) \cdot \prod_{t:x_t=1} \frac{P(x_t=1|R=1,\vec{q})}{P(x_t=1|R=0,\vec{q})} \cdot \prod_{t:x_t=0} \frac{P(x_t=0|R=1,\vec{q})}{P(x_t=0|R=0,\vec{q})}$$

BIM Ranking (3)

	document	relevant ($R=1$)	nonrelevant ($R = 0$)
Term present	$x_t = 1$	p _t	u _t
Term absent	$x_t = 0$	$1 - p_t$	$1-u_t$

$$O(R|ec{x},ec{q}) = O(R|ec{q}) \cdot \prod_{t:x_t=1} rac{P(x_t=1|R=1,ec{q})}{P(x_t=1|R=0,ec{q})} \cdot \prod_{t:x_t=0} rac{P(x_t=0|R=1,ec{q})}{P(x_t=0|R=0,ec{q})}$$

$$O(R|\vec{x},\vec{q}) = O(R|\vec{q}) \cdot \prod_{t:x_t=q_t=1}^{p_t} \frac{p_t}{u_t} \cdot \prod_{t:x_t=0,q_t=1}^{q_t-1} \frac{1-p_t}{1-u_t}$$
 Over query terms found in
the document
$$O(R|\vec{x},\vec{q}) = O(R|\vec{q}) \cdot \prod_{t:x_t=q_t=1}^{p_t} \frac{p_t(1-u_t)}{u_t(1-p_t)} \cdot \prod_{t:q_t=1}^{q_t-1} \frac{1-p_t}{1-u_t}$$

BIM Ranking (4)

- Retrieval Status Value (RSV)
 - To avoid accuracy problems, use log

$$RSV_d = \log \prod_{t:x_t = q_t = 1} \frac{p_t(1 - u_t)}{u_t(1 - p_t)} = \sum_{t:x_t = q_t = 1} \log \frac{p_t(1 - u_t)}{u_t(1 - p_t)}$$

 $log \frac{\frac{0.5(1-\frac{df_{i}}{N})}{\log \frac{df_{i}}{M}(1-0.5)}} = log \frac{N-df_{i}}{df_{i}} \approx log \frac{N}{df_{i}}$

- Simplification
 - If no further information about relevant set
 - Assume p_t constant (e.g., 0.5)

• Approximate u_t by entire collection (because number of relevant documents is very small). contain term t

- Get idf-like weight
 - No tf-component, because binary features

the number of

Best Match 25 (BM25)

- Okapi BM25 is a probabilistic model that incorporates term frequency (i.e., it's nonbinary) and length normalization.
- BIM was originally designed for short catalog records of fairly consistent length, and it works reasonably in these contexts
- For modern full-text search collections, a model should pay attention to term frequency and document length
- BM25 is one of the most widely used and robust retrieval models

BM25 Ranking (I)

- The simplest score for document d is just *idf* weighting of the query terms present in the document: [log N/df]
- Improve *idf* term by factoring in term frequency and document length.

$$\sum_{t \in q} \log \left[\frac{N}{\mathrm{df}_t} \right] \cdot \frac{(k_1 + 1) \mathrm{tf}_{td}}{k_1 ((1 - b) + b \times (L_d/L_{\mathsf{ave}})) + \mathrm{tf}_{td}}$$

- tf_{td}: term frequency in document d
- L_d (L_{ave}): length of document d (average document length in the whole collection)
- k₁: tuning parameter controlling the document term frequency scaling
- b: tuning parameter controlling the scaling by document length

(The above tuning parameters should ideally be set to optimize performance on a development test collection. In the absence of such optimization, experiments have shown reasonable values are to set k to a value between 1.2 and 2 and b = 0.75)

BM25 Ranking (2)

$$\sum_{t \in q} \log \left[\frac{N}{\mathrm{df}_t} \right] \cdot \frac{(k_1 + 1) \mathrm{tf}_{td}}{k_1 ((1 - b) + b \times (L_d/L_{\mathsf{ave}})) + \mathrm{tf}_{td}}$$

Questions?