ADVANCED TOPICS
IN INFORMATION RETRIEVAL
AND WEB SEARCH

Lecture 3-
Overview of Traditional IR Methods

S. M. Vahidipour
Tanks Dr. Momtazi

= Boolean model
= \ector space model

IR Task

= Vocabulary: V = {w,w, ...,w } of language
= Query: g = qy, o q where g; € V

= Document: d; = d;q, ..., dj Where d;; €V

= Collection: C ={d;, ..., dy }

= Set of relevant documents: R(q) € C

= Generally unknown and user-dependent
= Query is a “hint” on which doc is in R(q)

= Task = compute R'(q), an approximation of R(q)

Boolean Model

= Two possible outcomes for query processing

= TRUE or FALSE

= All matching documents are considered equally relevant

= Query usually specified using Boolean operators

= AND, OR, NOT

= Search for news articles about President Lincoln

lincoln

Result:
cars
places
people

Example

= Search for news articles about President Lincoln

President AND lincoln

Result:
“Ford Motor Company today announced that Darryl Hazel will succeed Brian Kelley as president of
Lincoln Mercury ”

Example

= Search for news articles about President Lincoln

president AND Lincoln AND NOT (automobile OR car)

Not in result:
“President Lincolns body departsVVashingtonin a nine-car funeral train”

= Search for news articles about President Lincoln

presidentAND lincolnAND biographyAND life AND birthplace
AND gettysburgAND NOT (automobile OR car)

Result:
(%)

= Search for news articles about President Lincoln

s

presidentAND lincolnAND (biography OR life OR birthplace OR
gettysburg) AND NOT (automobile OR car)

Top result might be:
“Presidents Day - Holiday activities - crafts,mazes,mazes word searches,... The Life ofWashington’ Read
the entire searchesTheWashington book online! Abraham Lincoln Research Site ..”

Boolean Model

= Advantages
= Results are predictable and relatively easy to explain

= Disadvantages
= Relevant documents have no order
= Complex queries are difficult to write

Document Selection vs Ranking

= Document selection
= R'(q) ={d.|f(d,q) = 1}, where f(d, q) € {0,1} is an indicator function or binary classifier
= System must decide if a doc is relevant or not (absolute relevance)

= Document ranking

= R'(q) = {d.|f(d,q) > 6}, where f(d,q) isarelevance measure function
= @ is a cutoff determined by the user

= System only needs to decide if one doc is more likely relevant than another (relative relevance)

Document Selection vs Ranking

’
Srue) Doc Selection /
= f(d,q)=2 \
s 0
0.98 d, +
Doc Rankin .
> d,q)=? 9 |mms) 095d,+ } R'(q)
0.83 d, -
0.80 d, +
0.76 d, -
0.56 d, -
0.34d, -

0.21 dg +

Document Selection Problem

= The classifier is unlikely accurate
= “Over-constrained” query no relevant documents to return
= “Under-constrained” query over delivery
= Hard to find the right position between these two extremes

= Even If it is accurate, all relevant documents are not equally relevant (relevance is a
matter of degree!)

= Prioritization is needed

= Thus, ranking is generally preferred => Vector Space Model

= Boolean model
= \kctor space model

Ranked Retrieval

= Providing a relevance ranking of the documents with respect to a query
= Assign a score to each query-document pair, say in [0, 1].
= This score measures how well document and query “match”.
= Sort documents according to scores

Vector Space Model

= Represent a doc/query by a term vector
= Term: basic concept, e.g., word
= Each term defines one dimension
= N terms define an N-dimensional space
= Query vector: g = (x4, ..., Xy), X; IS query term weight
= Doc vector: d = (yy, ..., yn), ¥j IS doc term weight

= Relevance (q,d) = similarity(q,d) = f(q,d)

Vector Space Model

= Main items in calculating scores
= The importance of the term in query and document:
= How many times does a query term occur in g and d? => Term Frequency (TF)

= The general importance of the term in the collection:

= |s it a frequent or rare term? How often do we see the query term in the entire collection? =>
Document Frequency (DF)

= Normalization of the scores based on the length of the document:
= How long is d? => Document length (/d))

Term Frequency (TF)

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 1 1 0 0 0 1
BRUTUS 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATRA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0 _
Anthony Julius The Hamlet Othello Macbeth
and Caesar Tempest
Cleopatra
ANTHONY 157 73 0 0 0 1
BRUTUS 4 157 0 2 0 0
CAESAR 232 227 0 2 1 0
CALPURNIA 0 10 0 0 0 0
CLEOPATRA 57 0 0 0 0 0
MERCY 2 0 3 8 5 8
WORSER 2 0 1 1 1 5

Term Frequency (TF)

= The term frequency tf; 5 of term t in document d is defined as the number of
times that t occurs in d.

= Using raw tf for computing query-document match scores, however, is not
appropriate, because

= A document with #f= 10 occurrences of the term is more relevant than a document with #f=1
occurrence of the term.

= But not 10 times more relevant.
= i.e, Relevance does not increase proportionally with term frequency.

=> Raw Term Frequency > Log Term Frequency w,y = { (1)+ 10810 the.a gt;f;d .;O
Wi

Document Frequency

= Rare terms are more informative than frequent terms
= Consider a term in the query that is rare in the collection (e.g., “arachnocentric”).
= Adocument containing this term is very likely to be relevant.

= \\e want high weights for rare terms like “arachnocentric”

= Frequent terms are less informative than rare terms.
= Consider aterm in the query that is frequent in the collection (e.g., “good”, “increase”, “line”).

= A document containing this term is more likely to be relevant than a document that doesn’t, but
these words are not sure indicators of relevance.

= \\e want positive weights for such words, but lower weights than for rare terms.
=> Using document frequency to factor this into computing the matching score.

Inverse Document Frequency (IDF)

1 df; is the document frequency, the number of documents that #occurs in.
 df; I1s an inverse measure of the informativeness of term ¢
) idf weight of term £is defined as follows:

. N
idf: = logyg (d_ft

(NVis the number of documents in the collection.)

[Aogyo (ﬁ)] instead of (i) to “dampen” the effect of /df
daft dft

= Note: we use the log transformation for both 7Fand /DF

IDF Example

= Compute /df; using the formula: /af; =/log,, (1,000,000/ df)

term df; | idf;
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

TF-IDFWeighting

= tf_idf weighting is one of the best known weighting scheme in information retrieval
= tf_idf weight of a term is the product of its tf weight and its idf weight.

Weg = (1 + logtf; g).1og(N/df:)

= increases with the number of occurrences within a document. (term frequency)
= increases with the rarity of the term in the collection. (inverse document frequency)

Document Normalization

= |_ong doc has a better chance to match any query
= Penalize a long documents with a doc length normalizer

Cosine Similarity

L 1%
G-d B Z',:ll qid

B Vv Y
dlldl /5 g2 /s o2

cos(g,d) = sm(g,d) =

Q|

= cosine similarity of g and d
= g; iIsthe tf_idf weight of term i in the query:.

= d;isthe tf_idf weight of term i in the document.

= |§| and |d |are the lengths of § and d

= Also includes doc length normalization

Vector Space Model

= Advantages
= Simple computational framework for ranking
= Any similarity measure or term weighting scheme can be used

= Disadvantages
= Assumption of term independence

= Boolean model
= \£ctor space model

Col :\.»_9;)‘)5 LS‘"; ubgmb axJlas LS‘)-.’ Oy M‘yu ul:z-.».n‘)0 Conwe U"‘ sk

Probabilistics IR Methods

= Classical probabilistic retrieval model
= Probability ranking principle

= Binary Independence Model
= BestMatch25 (Okapi)

= Bayesian networks for text retrieval

= | anguage model approach to IR

= Important recent work, will be covered in the next lecture

Probabilistic vs.Other Models

= \/s. Boolean model

= Probabilistic models support ranking and thus are better than the simple Boolean model

= V/s. \kctor space model
= The vector space model is also a formally defined model that supports ranking
= .. butitranks documents according to similarity to query

= The notion of similarity does not translate directly into an assessment of “is the document a good
document to give to the user or not?”

= The most similar document can be highly relevant or completely nonrelevant

= Probability theory is arguably a cleaner formalization of what we really want an IR system to do:
give relevant documents to the user

Document Relevance

Relevant
Documents

The rain in Spain falls
mainly in the plain
The rain in Spain falls

mainly in the plain
The rain in Spain falls
mainly in the plain
The rain in Spain falls
mainly in the glain

Document

Non-Relevant
Documents

Actually, we just need a ranking

The Document Ranking Problem

= Assume binary notion of relevance: Ry Is a random variable, such that

= Ryq=1ifdocument dis relevant wr.t query g

= Ryq =0 otherwise

= Probabilistic ranking orders documents decreasingly by their estimated probability of
relevance wir.t. query: P(R = 1/d, q)

= Assume that the relevance of each document is independent of the relevance of other
documents

Probability Ranking Principle (PRP)

= |If the retrieved documents (w.r.t a query) are ranked decreasingly on their probability
of relevance, then the effectiveness of the system will be the best that is obtainable

= Models

= Binary Independence Model (BIM)
= Best Match 25 (BM25)

Binary Independence Model (BIM)

= Assumptions:

= “Binary” (equivalent to Boolean): documents and queries represented as binary term incidence
vectors

= “Independence”: no association between terms (not true, but practically works)

= To make a probabilistic retrieval strategy precise, need to estimate how terms in
documents contribute to relevance

= Find measurable statistics (term frequency, document frequency, document length) that affect
judgments about document relevance

= Combine these statistics to estimate the probability P(R|d, q) of document relevance

Binary Independence Model (BIM)

= P(R/d, g)1s modeled using term >~ P(x IR=1,q)P(R=1]q)

Incidence vectorsas P(R| X, Q) P(x |q)

1

P(x |R=0,q)P(R=0|¢q)
P(x |q)

P(R = 1/%,§) + P(R = 0%, d)

P(xIR=179) and A(X|R=0.9) . nonability that if a relevant or nonrelevant
document is retrieved, then that document’s representation is X

= P(R=1|g) and P(R =01]7): prior probability of retrieving a relevant or nonrelevant

document for a query
= Can be estimated from percentage of relevant documents in the collection

BIM Ranking (1)

= Deriving a ranking function for query terms
= Easier: rank documents by their odds of relevance (gives same ranking)

L . P(R=1§P(RIR=13)

O(R|%.g) = DR =114 _ — ~ Pia
V= PR=0|%,q) PR=0 DP(IR=03

X|q

_ P(R=1]q§) P(XR=1,4)

S PR=0 PER=03)

O(R|q9) (can be ignored)

BIM Ranking (2)

= Considering the conditional independence assumption: the presence or absence of a
word in a document is independent of the presence or absence of any other word
(given the query)

P()&'|R _ 1 H P(){'t‘R _ 1 q) Not Realistic
P(%IR =0, g P(x:|R = 0, g)

P(Xt|R—1 q)

O(RI%.q) = O(RIq) H

] _UR-1,q
O(RIx.q) = O(RId) [=D

tx;—

BIM Ranking (3)

document | relevant (R =1) nonrelevant (R = 0)
Term present x; = 1 P+ Uy
Term absent x¢ =0 1— p; 1 — uy
O(RI%.) = O(R|g): [Exe=1R=L4) 11 Plx=0R=14)
tixe= P(xt a 1|R =0 C_f) t:x;=0 P(xt o 0|R - 0? a)
1— p; Over query terms found in

the document

N - Pt
O(RIz.g)=0Rlg)- JI - 11
t:xp=qi=1 xy=0,gr=
Over all query
terms

O(R|x, q) = O(RIq) -

BIM Ranking (4)

= Retrieval Status \alue (RSV)

= To avoid accuracy problems, use log

RSV, = log H pell — ur) - Z log ig : ;3

t:xg=q;=1

= Simplification

= |f no further information about relevant set

= Assume p.constant (e.g., 0.5) the number of
documents that

= Approximate ¢, by entire collection (because number of relevant documents is Wcontain term t

= Get idf-like weight df
= Notf- t b binary feat 0.5(1-———) o
o tf-component, because binary features ‘, N ‘, N-df, f N
(i =loF — ﬁ o
codf, . df, °df,
(1-0.5)
N

Best Match 25 (BM25)

= Okapi BM25 is a probabilistic model that incorporates term frequency (i.e., it’s nonbinary)
and length normalization.

= BIM was originally designed for short catalog records of fairly consistent length, and it works
reasonably in these contexts

= For modern full-text search collections, a model should pay attention to term frequency and
document length

= BM25 is one of the most widely used and robust retrieval models

BM25 Ranking (1)

= The simplest score for document d is just /af weighting of the query terms present in the
document: [log N/df]

= |mprove /df term by factoring in term frequency and document length.

Z lo [N] _ (k1 + Dtf .y
laf, | Kk((X — b) + b x (La/Lave)) + tfeq

teq

tfy - term frequency in document d

Ly (Lave): length of document d (average document length in the whole collection)

k{: tuning parameter controlling the document term frequency scaling

b: tuning parameter controlling the scaling by document length

(The above tuning parameters should ideally be set to optimize performance on a development test collection. In the absence
of such optimization, experiments have shown reasonable values are to set k to a value between 1.2 and 2 and b = 0.75)

BM25 Ranking (2)

Z lo [N] _ (k1 + Dtf gy
— g dfs | ki ((1—b)+ b x (Lg/Lave)) + tfg

Term Frequency Weight Temmrequengy Waigy
y= X —] P V l k
y=TF(w,d) y TFgw,d) . ery ‘arge
t y=log(1+x)
y=log(1+log(1+x)) k+1 (k+1)x
 x+k
2 2
1 0/1 bit vector 1 k=0
0 1 2 3 .. > x=c(W,d) x=c(W,d)

Questions?

