
Appl Intell
https://doi.org/10.1007/s10489-017-1089-7

Efficient data distribution and results merging for parallel
data clustering in mapreduce environment

Abdelhak Bousbaci1 ·Nadjet Kamel2

© Springer Science+Business Media, LLC 2017

Abstract Clustering data consists in partitioning it into
clusters such that there is a strong similarity between data
in the same cluster and a weak similarity between data
in different clusters. With the significant increase in data
volume, the clustering process becomes an expensive task
in terms of computation. Therefore, several solutions have
been proposed to overcome this issue using parallelism with
the MapReduce paradigm. The proposed solutions in the
literature aim to optimize the execution time while keep-
ing the clustering quality close or identical to the sequential
execution. One of the commonly used parallel clustering
strategies when using the MapReduce framework consists
in partitioning data and processing each partition separately.
The results obtained from each partition are merged to
obtain the final clusters configuration. Using a random data
distribution strategy and an inappropriate merging technique
will lead to an inaccurate final centroids and a rather average
clustering quality. Hence, in this paper we propose a par-
allel scheme for partitional clustering algorithms based on
MapReduce with a non-conventional data distribution and
results merging strategies to improve the clustering quality.
With this solution, in addition to optimizing the execution
time, we exploit the parallel environment to enhance the

� Abdelhak Bousbaci
abousbaci@usthb.dz

Nadjet Kamel
nkamel@univ-setif.dz

1 LRIA, Computer Science Department, USTHB, BP 32 El Alia
16111 Bab Ezzouar, Algiers, Algeria

2 Computer Science Department, Faculty of Sciences, UFAS,
Ferhat Abbas Setif University 1, Campus El Bez, Setif 1900,
Algeria

clustering quality. The experimental results demonstrate the
effectiveness and scalability of our solution in compari-
son with other recently proposed works. We also proposed
an application of our approach to the community detection
problem. The results demonstrate the ability of our approach
to provide effective and relevant results.

Keywords Data clustering · Parallelism · MapReduce ·
Results merging · Data distribution · Genetic algorithm

1 Introduction

Clustering data consists in partitioning it into clusters such
that there is a strong similarity between data in the same
cluster and a weak similarity between data in different
clusters. The main challenge of clustering is to find a com-
promise between clustering quality and execution time, and
most works in the literature attempt to do just that.

Numerous clustering algorithms have been proposed
using different techniques [13, 16, 18, 22, 30, 35]. With the
significant increase in data volume, some clustering tech-
niques become unsuitable to achieve the clustering task.
For example, the hierarchical or the density-based cluster-
ing algorithms require an import execution time, due to
their quadratic time complexity [25, 33]. Whereas, parti-
tional clustering algorithms provide a reasonable execution
time thanks to their linear complexity [30], with the excep-
tion of some cases like the K-medoids algorithm which has
a quadratic complexity [36].

For these reasons, our study is based on partitional
clustering algorithms.

The K-means algorithm [30] is the most common parti-
tional clustering algorithm due to its simple implementation
and effectiveness. Its complexity is O(n ∗ K ∗ I ∗ d) where

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-017-1089-7&domain=pdf
http://orcid.org/0000-0002-0850-9587
mailto:abousbaci@usthb.dz
mailto:nkamel@univ-setif.dz

A. Bousbaci, N. Kamel

n is the number of data points, K the number of clusters, I

the number of iterations and d the data dimension.
Even with partitional clustering algorithms, clustering a

large data amount requires an important execution time.
To overcome this issue, several solutions have been pro-
posed. Some works proposed to optimize the algorithm
itself, whereas others opted for the use of parallelism. Par-
allelism can be applied using two major methods. The first
method uses a network of connected machines [12, 20, 39]
where the clustering algorithm is executed on a cluster of
computers. The second method uses shared memory [23,
38](use of threads on a single multi-core processor).

Actually, applying a parallelism strategy for a cluster-
ing algorithm can have two different forms. The first one
consists in parallelizing the algorithm tasks. To apply this
strategy, the independent tasks are identified and executed
simultaneously and independently. Hence, the said clus-
tering algorithm has to be customized to fit this parallel
form. For example in the K-means algorithm, the distance
calculation and the centroids update are done by different
processors or machines.

As this strategy follows the same behavior as the sequen-
tial algorithm, the resulted clustering quality is identical to
that of the sequential execution. The only difference is the
execution time.

In the second strategy, the processed data is divided into
smaller data samples. Each one is processed independently
with the given sequential clustering algorithm on a single
processor or machine. With this strategy, we obtain interme-
diate results from each data partition, which are combined
to obtain a global final result. This strategy can be applied
with almost all partitional clustering algorithms. The paral-
lel execution flow in this strategy differs from the sequential
one. Hence, the generated clusters will be different from the
ones obtained from a sequential execution. The clusters gen-
erated with this strategy are considered in most cases less
accurate than the ones generated by the sequential execu-
tion. The difference in clustering quality is influenced by
methods used in the data distribution and results merging
phases. For the reasons cited above, most of the recent lit-
erature works on parallel clustering are based on the first
parallelism strategy.

However, when applying the first strategy with iterative
algorithms such as the K-means algorithm, the process will
require as many MapReduce jobs as there are iterations in
the sequential algorithm version. Indeed, the MapReduce
model is not adapted for iterative algorithms as they require
many MapReduce jobs, thus increasing the amount of data
flow through the network, which in turn, will increase
both the communication cost between the nodes and the
execution time. Moreover, restarting MapReduce jobs on
each iteration slows down the process. The second strat-
egy, on the other hand, requires only one MapReduce job,

which avoids the drawbacks of the first strategy. But, as
cited above, the second strategy cannot provide a clustering
quality equal to the sequential algorithm.

For these reasons, we propose a solution based on the
second strategy to avoid the iterative MapReduce jobs. At
the same time, we want to overcome the second strategy
clustering quality issues.

Hence, our contribution is to propose a novel data flow
model in MapReduce environment based on the second
strategy using a non-conventional data distribution and
results merging strategies. This will assure a good execution
time and a clustering quality superior to the one obtained
with the already cited strategies or with a sequential execu-
tion.

Thus, the improvement provided by our approach resides
in the used data distribution and results merging methods.
In this solution, our objective is to maximize the distance
between the data point of the generated partitions, which
is assured by the K-means algorithm. For the results merg-
ing process, we use the genetic meta-heuristic to exploit
the results generated on each partition and avoid the irrel-
evant centroids. We illustrate our approach through the
parallelization of the Sampling-PSO-Kmeans (SPKM) algo-
rithm [21]. Our approach is tested and compared with recent
works on parallel data clustering in the MapReduce envi-
ronment. To investigate the effectiveness and the relevance
of our proposed approach, we applied it to the commu-
nity detection problem in Bibsonomy social bookmarking
network. The conducted experimentations demonstrated the
effectiveness and the scalability of our solution. Further-
more it outweighs the other tested methods in term of
clustering quality.

The rest of the paper is organized as follows: Section 2
presents the related works. In Section 3, our proposed par-
allel clustering approach is detailed. Section 4 presents
the implemented algorithms to validate our approach.
Section 5 contains experimentations and obtained results. In
Section 6, the application of our approach to the community
detection problem is detailed. Finally, Section 7 presents the
conclusion of our work and perspectives for future works.

2 Related work

Parallel clustering can be categorized into two major cate-
gories: parallel clustering using shared memory and parallel
clustering using machines network.

2.1 Shared memory parallelism

Many works with different approaches have been proposed
to parallelize the clustering process using shared memory
[6, 23, 24, 38]. In [23], the authors proposed a solution

Efficient data distribution and results merging for parallel data clustering in mapreduce environment

based on messaging between the processes. In [40] a parallel
implementation for the fuzzy minimals clustering algorithm
using shared memory has been proposed. Other works pro-
posed to use multi-agent systems instead of simple threads
as in [6].

In [8], a parallel clustering solution based on GPU is
proposed. The authors presented a solution for paralleliz-
ing the flocking high dimensional data clustering problem
(FHDC). The FHDC is an agent-based algorithm which
means it is a computational intensive process. Hence, the
solution was to parallelize it using GPU. The results showed
that using a GPU provided an execution time 30 times faster
than the one obtained using a CPU. GPUs provide a low
cost/performance ratio.

Another solution based on GPU is proposed in [28].
The authors proposed to parallelize the Clustering Affin-
ity Search Technique using GPU. The solution exploits the
individual memory units of the GPU cores. The results
demonstrated that by using a low performance GPU (250
Mb GPU memory) the algorithm performs 21 % faster than
the sequential one.

In [42], the authors proposed a parallel documents clus-
tering algorithm using a multi-core CPU. The proposed
solution consists in hybridizing a parallel implementation of
the K-means algorithm with a parallel version of the Prin-
cipal Direction Divisive Partitioning (PDDP). The solution
consists in using the PDDP algorithm to choose the initial
centroids for the K-means algorithm. As both algorithms
are computationally intensive when applied on large data
sets, using parallelism was inevitable. The results proved
once again that the parallel implementation surpasses the
sequential one while keeping a good clustering quality.

In [24], the authors presented an approach based on the
use of multi-cores processors and exploiting their cores
to parallelize clustering algorithms. They parallelized K-
means and K-nodes algorithms to cluster gene expressions.
They opted for shared memory parallelism to avoid network
communication and to be able to simulate a master-slave
architecture. However, the disadvantage of this kind of par-
allelism lies in data access concurrency. To remedy this
problem, using data locks is necessary, but at the same
time it can create deadlock problems. The authors proposed
McK-means, a parallelization of the K-means algorithm
using shared memory. The proposed solution avoids dead-
locks problems in addition to improving the execution time.

In McK-means algorithm, K-means is parallelized by
simultaneously calculating the minimum distance and the
centroids update.

Therefore, in this approach the initial data set is split
into subsets, and the calculations of the minimum distance
of the subsets are performed simultaneously by threads. On
the other hand, each centroids is updated in parallel by an
independent thread.

The most important parameter in this proposition is the
choice of the number of threads. For the minimum distance
search, the number of threads is equal to the number of
available physical cores, and the number of threads for the
centroids update phase is equal to K , where K is the number
of clusters.

In this section several works presenting parallel solu-
tions for clustering problems using CPU or GPU have been
cited. The common point between them is the use of tasks
parallelism. Only the algorithms independent tasks were
parallelized and the datasets were treated entirely. This, will
improve the CPU time compared to a sequential execution,
whereas the clustering quality remains the same.

It has been demonstrated that a GPU has a better
cost/performance ratio than a CPU due to the large number
of cores contained in a GPU compared to a CPU, but not
all computers are equipped with a dedicated GPU, whereas
the CPU is a fundamental component in a computer. Hence,
using solutions based on multi-core CPUs still have some
advantages compared to the use of GPUs. Another solution
for parallel clustering is the use of machines network. This
method proved its efficiency as it combines the process-
ing power of many machines to perform a single parallel
process. In the next section, several parallel clustering algo-
rithms will be presented and discussed.

2.2 Machines network parallelism

Parallel clustering using a network of machines is used
generally to cluster large amounts of data. It consists in par-
titioning the data on the network nodes and processing each
partition apart or distributing the clustering tasks among
the machines of the network. Several methods were pro-
posed for this, such as in [17] and [19]. The common factor
between these works is that the authors proposed their own
approach for the communication between machines and the
definition of the parallelism, which requires advanced net-
work programming skills. To avoid this, many authors, such
as [12] and [43], opted for the MapReduce framework [11].
In this section we focus on the works based on MapReduce
paradigm.

MapReduce is a software framework for processing very
large amounts of data using a network of machines. In its
simplest form, MapReduce is a two-phase process: a Map
phase and a Reduce phase. In the Map phase a master node
divides a problem into a number of independent parts that
are assigned to Map tasks. Each Map task processes its
part of the problem and outputs results as key-value pairs.
The Reduce phase receives the outputs of the maps, where
a particular reducer will receive only maps outputs with a
particular key and process them. The power of MapReduce
comes from the fact that Map and Reduce tasks can be dis-
tributed across different nodes. Therefore, MapReduce is

A. Bousbaci, N. Kamel

by design a distributed sorting platform. Since Map tasks
are independent, they can be run in parallel similarly to
Reduce tasks, which can be completed after the Map tasks
are completed.

In [43], a parallel implementation of the K-means algo-
rithm based on MapReduce was proposed. The solution
consists in distributing the independents algorithm tasks
among the machines of the network. In this work, the Map
phase consists in calculating the minimal distance of each
data point from the k centroids and assigning it to the clos-
est one. In the Reduce phase the data points belonging to the
same cluster are collected by a single reducer where the new
centroid is calculated. The new generated centroids are sent
again to the Mappers for a new iteration until the algorithm
converges or the number of maximal number of iterations is
reached.

In [12], the authors presented a solution for the K-means
algorithm that differs from the one presented in [43]. This
solution consists in dividing the initial dataset to many sub-
sets, and each one is processed by a Reducer using the
sequential K-means algorithm. The results generated from
each Reducer are merged using the k-medoids algorithm on
a single machine. Contrary to [43], this algorithm consists
of one Map phase and one Reduce phase.

In [41], a MapReduce-based hybrid PSO K-means algo-
rithm was proposed. The work uses the PSO to refine the
initial centroids which are used by MapReduce based K-
means as proposed in [43]. In [2], a parallel artificial bee
colony algorithm for data clustering was proposed. The
solution is based on the MapReduce paradigm, where only
the computation of solutions fitness is parallelized. The
results obtained demonstrated the efficiency of the solution
and its scalability to large data sets.

Another parallel clustering solution is presented in [29].
This paper presented a parallel implementation of fuzzy
C-means algorithm. The solution consists of two MapRe-
duce jobs. The first one consists in computing the centroids
matrix and the second one iterates over the data records and
computes the distances between each record and the cen-
troids. The results show that the proposed solution outper-
forms the sequential execution while keeping an identical
clustering accuracy.

In [14], the authors used many connected machines to
improve the execution of the K-means algorithm. They pro-
posed ParC Algorithm. It consists in dividing the initial data
on many connected machines and using the K-means algo-
rithm on each one. At the end, the results obtained on each
machine are merged together to get a final clusters configu-
ration. The ParC algorithm can be summarized in three main
phases:

1. Partitioning the initial Data on machines set.

2. Applying a clustering algorithm on each machine using
its data partition to find the local clusters (β-clusters).

3. Merging the clusters found in the previous step that
overlap together to get the final clusters configuration.

The difference between these propositions is that in some
works like in [2, 41, 43] and in [29], the authors parallelized
the algorithm tasks and used the entire dataset at once. In
this category the parallelization improves the execution time
and keeps a clustering quality identical to the sequential exe-
cution, whereas in the other works like in [12, 32, 37] or
in [14], the processed data is divided randomly and each
part is processed by a single machine, then the intermedi-
ate results are collected and merged on a single machine.
With this approach, we improve the execution time, and,
compared to the sequential execution, the clustering quality
either increase or decrease according to the used data distri-
bution and results merging strategies. All of the four cited
works used a random data distribution.

For the results merging step, [32] used a simple merg-
ing strategy which consists in merging the centroids from
the different partitions, such that each centroid from a given
partition is merged with the N-1 nearest centroids from each
of the other partitions; where N is the number of all the
partitions.

In [37] and [14], the authors used the overlap results
merging strategy. This method consists in gathering the
clusters that overlap in data space, according to a defined
threshold. If we have two clusters A and B, and there are
some data points from one of these two clusters that belong
also to the other one, then these two clusters are merged
together and constitute a new single cluster [5].

In the solution presented in [12], the authors used clus-
tering results merging technique. This solution consists in
clustering the centroids obtained from the different parti-
tions and considering them as if they represent the entire
data set. In this case, the K-medoids algorithm was used as
it treated categorical data.

In the following, we present the algorithms we used to
compare our approach (see Section 5.6).

2.2.1 Optimized big data K-means clustering using
MapReduce (Opt MR-Kmeans)

Opt MR-Kmeans algorithm [9] is a parallel implementa-
tion of the K-means algorithm based on the MapReduce
framework. It is a solution to avoid the K-means itera-
tive processing dependency. In the classical MapReduce
based K-means algorithm, each iteration is executed during
a MapReduce job. This process requires a lot of network
flow which will have negative impact on the overall exe-
cution time of the algorithm. To avoid this issue, the Opt
MR-Kmeans algorithm consists in applying a sampling

Efficient data distribution and results merging for parallel data clustering in mapreduce environment

phase on the processed data to reduce its size during a sin-
gle MapReduce job. Then, the sampled data is clustered
using the K-means algorithm during a second MapReduce
job. In a final MapReduce job, the results obtained from
the previous step are merged to obtain the final solution.
All the processes require three MapReduce jobs, whereas
the classical iterative MapReduce based K-means algorithm
requires I MapReduce jobs; where I is the number of max-
imum iterations of the K-means algorithm. This algorithm
greatly optimizes CPU time compared to the sequential K-
means algorithm. As of the clustering quality, the results are
identical or close to the ones resulted from the sequential
K-means.

2.2.2 Parallel K-PSO based on MapReduce (Parallel
KPSO)

In this work [41], the authors proposed a MapReduce
based parallelization for the hybrid PSO-kmeans algorithm.
The sequential PSO-Kmeans algorithm consists in refin-
ing the initial centroid for the K-means algorithm using
the PSO algorithm. In this proposed parallel implementa-
tion, a sequential instance of the PSO algorithm is executed
to refine the initial centroids. Next, the resulted centroids
are used by a MapReduce based parallel K-means algo-
rithm. The proposed parallel K-means algorithm consists
in distributing the distance computing phase and centroids
update phase on the network nodes. Data points are dis-
tributed on Mappers. Each Mapper calculates the distance
between its data points and the centroids of the clusters
and allocates each one to the closest cluster. In the Reduce
phase, each reducer receives all the data points that belong
to the same cluster and calculates its new centroid. The
new centroids calculated by the reducers are used in a new
MapReduce job until the maximum number of iterations is
reached. This solution optimizes the execution time of the
sequential hybrid PSO-kmeans algorithm. Contrary to the
K-means phase, the PSO execution is not parallelized which
will affect the overall algorithm performances. Moreover,
the parallelization of the K-means algorithm is based on the
iterative MapReduce K-means, where each iteration from
the K-means algorithm is executed by a MapReduce job.
This paradigm requires a lot of network communications
and increases the connections cost.

3 Proposed approach

In this section, we present our proposed parallel clustering appr-
oach. First we present the global phases of the approach.

Then, before detailing each phase apart, we point out the
differences between our solution and the literature works

cited in Section 2. Finally, we go into the details of each
phase of our approach.

The following three phases summarize the process of the
parallel data clustering by partitioning we proposed.

S.1 Distributing data on the cluster nodes in the Map phase
such that we maximize the distance between the data
points of the different partitions (Map phase).

S.2 Applying clustering on each Reducer (Reduce phase).
S.3 Merging the intermediate results obtained from the

Reducers on a single machine using the genetic algo-
rithm.

As we can see, the first difference from the previous
works is the method used to distribute data across the net-
work machines. Almost all the proposed works neglected
the data distribution step and used a random data distri-
bution. On the contrary, we propose to use a non-random
distribution. We propose to distribute data such as the sim-
ilarity between the data instances of the different partition
is low and between the data instances from the same parti-
tion is high. The second difference resides in the technique
used to merge the intermediate results obtained from all the
reducers. The literature works use merging techniques such
as simple merging like in [32]. This simple merging method
is not efficient, according to [9]. Using such merging tech-
niques leads to inaccurate new centroids. If there are two
centroids A and B to merge, which have respectively M

and N data points in their clusters; with M > N , the new
centroid will be closer to A cluster data points [5]. Other
works used overlap technique like in [14] and [37]. This
method showed its efficiency, but the obtained final num-
ber of centroids can differ from the number set initially (K).
This can affect the clustering quality when the initial chosen
number of clusters (K) is the optimal one. In [12], the merg-
ing strategy used consisted in clustering the intermediate
results to generate the final solution. Beside the shortcom-
ings cited above, all these merging techniques involve all the
intermediate centroids including the irrelevant and inaccu-
rate ones to generate the final solution. This will affect the
performance of the algorithm.

After testing these techniques and analyzing each of the
data partitions centroids (see Section 5), we noticed in some
cases that the centroids resulted from a single partition give
better results than the ones obtained after the merging pro-
cess. This proved that the used merging technique failed
to exploit the intermediate results and to obtain an opti-
mal solution from the intermediate results. Hence, using
an inappropriate merging technique provides inaccurate and
malformed centroids.

From these observations, we propose to avoid using the
standard fusion strategies and instead use a new method to
merge the intermediate clustering results in a MapReduce

A. Bousbaci, N. Kamel

environment based on the genetic algorithm. This solution
allows us to select only the most relevant centroids to con-
stitute the final clusters configuration, which will improve
the overall clustering quality.

In the following the proposed data distribution and results
merging solution are detailed.

3.1 Data distribution module

In a parallel data clustering process, some data partitions
can result in inaccurate and irrelevant clusters configuration,
due to the data partitions creation method. These partitions
affect the quality of the global clustering or in the best
cases provide results identical or barely better than sequen-
tial execution. Part of this problem was solved using the
genetic algorithm in the results merging step. To improve
our last proposition, we suggest avoiding the random data
distribution and propose a different method.

As data clustering aims to maximize the dissimilarity and
the distance between data points of the different clusters,
we propose to distribute data so as to increase the dis-
tance between the data instances of the different partitions.
With this strategy, we expect that the centroids generated
on each reducer will be as distant as possible from the cen-
troids generated by the other Reducers with their own data
partitions.

To achieve this, we propose to cluster data among the
reducers (machines) instead of distributing it randomly.
Each Reducer will process the data instances of a single
cluster.

By clustering data among the machines, data points on
each one will be most dissimilar to the other data points on
the rest of the machines. By applying this data distribution
strategy, the distance between the resulted centroids from
the different partitions will also be maximized, which is the
main goal of data clustering.

This solution consists in clustering the entire data set
on the machines network. Although, this solution needs an
important execution time. In [10], the authors proved that
clustering a sample which represents 25% of the entire data
set results in a pattern as precise as the one obtained from
the entire data set. Therefore, to remedy the stand-off of the
execution time, we propose to cluster only a sample from the
data set. This step will allow us to create a clustering pattern
which we use in the data distribution phase to classify data
points of the entire dataset between the network machines.
The K-means algorithm is used in this clustering step.

The proposed distribution process can be summarized in
the following steps:

– Extracting a data sample representing 25% of the entire
dataset.

– Clustering the data sample using the K-means algo-
rithm with K equals to the number of machines (data
partitions/Reducers).

– Sending the clusters pattern to the Mappers.
– During the Map phase, the Mappers compute the dis-

tance of each data sample and send it to the closest
cluster (Reducer).

The Map (Data distribution phase) and Reduce phases
are described in Algorithms 1 and 2 respectively.

By applying the K-means algorithm on the dataset, the
distribution of data points on the machines may be unbal-
anced, resulting in partitions with a relatively small amount
of data. In this case the data present on these partitions may
not be sufficient to generate precise patterns. This can affect

Efficient data distribution and results merging for parallel data clustering in mapreduce environment

the final clustering quality after the merging step if all the
centroids are used in the final configuration. These observa-
tions drove us to avoid the standard merging strategies and
propose the GA merging method.

3.2 Genetic algorithm based results merging module

In this section, we present our proposed solution for the
results merging step [5].

As mentioned earlier, involving all the centroids may not
be the optimal solution. Some centroids can be malformed
due to a bad initialization in the clustering step (S.2), or due
to the random data distribution on the machines.

We propose to select, from the set of centroids the K

best ones. This can be seen as the K-means centroids ini-
tialization problem [26] which is an optimization problem.
Therefore, we propose to use the genetic algorithm to select
the best K centroids from the ones resulted from each data
partition.

The Genetic Algorithm is a bio-inspired meta-heuristic
used in optimization problems. The GA reproduces the
behavior of the natural evolution system in order to generate
solutions for a given optimization problem. By combining
(crossover) and mutating solutions of a population, the GA
generates new solutions from the original ones [31].

The merging step occurs after gathering the collection of
results from the different partitions on a single machine.

In this solution, the genetic algorithm takes the centroids
collection, from the clustering in step S.2 on the differ-
ent data partitions, as input data for the generation of the
population.

To optimize the evaluation step of the generated chro-
mosomes (potential solutions) from the population, only a
sample from the initial data set is used so that the evaluation
step will not require an important execution time. In a final
step, the best generated chromosome will be applied on the
entire data set to obtain the final fitness value representative
of the solution.

3.2.1 Population and chromosomes

The genetic algorithm takes as input data the centroids set
C̄ where C̄ = ⋃n

i Ci , with ci the centroids set from the
ith data partition. The initial population of the genetic algo-
rithm is generated randomly from the centroids set C̄. N

chromosome are generated, and at each iteration the best N

ones are selected. Each chromosome from the population
is a vector of K random centroids selected from the cen-
troids set. Figure 1 represents a potential solution in the case
where the number of clusters k is equal to 6, and C25 is the
5th centroids from the second data partition and so on. Each
chromosome is a potential clusters solution.

Fig. 1 Chromosome solution

3.2.2 Crossover and mutation operations

At each iteration of the genetic algorithm, new chromo-
somes are obtained by applying mutation and crossover
operations on the population. The crossover operation com-
bines two randomly selected solutions and generates two
new solutions as shown in Fig. 2. The mutation operation in
our case consists in changing randomly one of the K ele-
ments of a given chromosome and replacing it by another
from the set of centroids. The best solutions are selected
for the next iteration and so on until the last iteration. At
the end of the genetic algorithm, the best obtained solution
represents the final clusters configuration.

The entire process of our proposition can be illustrated
by Fig. 3.

In the following, we study the complexity of our proposal.

3.3 Algorithm complexity

In this section we detail and discuss the complexity of our
proposed solution. Our solution consists in three main steps:

1. Data distribution using K-means.
2. Clustering data partitions using SPKM.
3. Merging intermediate results using GA.

Fig. 2 Chromosomes crossover

A. Bousbaci, N. Kamel

Fig. 3 Parallel architecture

Let n be the size of the processed dataset, d the dimension of
the data instances (number of attributes), and k the number
of clusters. With n >> k and n >> d . In the following the
complexity of each phase of the proposed parallel scheme is
presented.

3.3.1 Data distribution phase complexity

In the first phase, the initial data set is divided into N par-
titions using a clustering pattern, where N is the number of
the used nodes. The pattern is created using the K-means
algorithm with a data sample from the initial data set. The
time complexity of this step is O(k′ ∗m∗n′ ∗d); with k′ the
number of clusters which is equal to the number of nodes in

this case; m: is the number of iterations; n′: is the size of the
data sample (n′ << n).

After generating the pattern, we use it to distribute the
data points of the initial dataset among the network nodes.
Therefore, the distance between each data point and the cen-
troids of the generated pattern is calculated. The complexity
of this step is O(k′ ∗ n ∗ d); where k′: is the number of clus-
ters (nodes); n: is the size of the initial data set; and d is the
data dimension. The data distribution process is executed
in parallel by the Mappers. Hence, the complexity becomes
O(k′ ∗ n ∗ d/nb Nodes). As the number of clusters (k′)
in this step is equal to the number of nodes, the complex-
ity will be O(k′ ∗ n ∗ d/k′) = O(n ∗ d). The entire first
step complexity is equal to O(k′ ∗ m ∗ n′ ∗ d) + O(n ∗ d) .

Efficient data distribution and results merging for parallel data clustering in mapreduce environment

Assuming that k′ ∗ m ∗ n′ is larger than n the complexity
becomes O(k′ ∗ m ∗ n′ ∗ d).

3.3.2 Clustering phase complexity

The second phase takes most of the execution time of the
entire solution as it represents the core of the clustering
process. As our proposed parallel scheme can be imple-
mented with different partitional clustering algorithms, the
complexity of this phase depends on the used clustering
algorithm. Therefore, in this analysis we present the com-
plexity of the SPKmMR algorithm in order to study the
complexity of the entire proposed scheme. The SPKmMR
algorithm consists of three phases: a) A sampling phase
using the K-means algorithm; b) Initial centroids refinement
using the PSO algorithm; c) A final clustering phase using
the K-means algorithm with the centroids obtained from the
execution of the PSO algorithm.

The complexity of the sampling phase (a) is O(k ∗ m ∗
n∗d), which is the same as the K-means algorithm , with k:
the number of clusters; m: the number of iterations; n: the
dataset size and d: number of attributes.

In the PSO algorithm phase (b), the most time-
consuming operations are the population generation and
the solutions evaluation which use the fitness formula (1).
Therefore, the PSO complexity is defined by the com-
plexities of these operations. The population generation
complexity is O(d ∗ k ∗ p), with d the number of attributes
and k the number of clusters(d ∗k represents the dimension
of the problem) and p the size of the population. The fit-
ness function assigns each data point to the closest centroid
and calculates the average distance between each data point
and its centroids. This process is applied for each particle
from the swarm until the maximum number of iterations
is reached, so the complexity of this phase is defined by
O(k ∗ n ∗ d ∗ p ∗ i) where p is the number of particles
and i is the maximum number iterations. The complexity
of the PSO algorithm will then be O(d ∗ k ∗ p) + O(k ∗
n ∗ d ∗ p ∗ i). The population generation complexity will
be neglected compared to the particles evaluation, therefore
the PSO algorithm complexity will be O(k ∗ n ∗ d ∗ p ∗ i).

The final step is a K-means execution using the centroids
resulted from the PSO algorithm. As mentioned earlier
the K-means complexity is O(k ∗ m ∗ d ∗ n). The global
complexity of the clustering step is the sum of the sam-
pling,PSO and K-means algorithms complexities which is:
O(k∗m∗n∗d)+O(k∗n∗d ∗p∗ i)+O(k∗m∗d ∗n) − >

O(k∗n∗d ∗p∗ i)+O(k∗m∗d ∗n) − > O(k∗n∗d ∗p∗ i).
All the clustering process is parallelized using MapRe-

duce, thus the complexity becomes: O(k ∗ n ∗ d ∗ p ∗
i/Nb Nodes). From this complexity we can notice that the

time complexity decreases linearly with the increasing of
the number of nodes which is illustrated in Figs. 4a, 5a, 6a
and 7a.

3.3.3 GA merging phase complexity

In this phase the genetic algorithm is used to select the final
clusters configuration. Similarly to the PSO algorithm, the
GA complexity is represented by the complexity of the pop-
ulation generation and the fitness evaluation. The population
generation complexity is O(d ∗ k ∗ p), with d is the num-
ber of attributes and k the number of clusters and p is the
number of chromosomes in the population.

The fitness function is the same used with the PSO algo-
rithm, hence its complexity is O(k ∗ n′′ ∗ d ∗ p ∗ g), where
k: the number of clusters; n′′: the size of the used data
sample to evaluate the solutions; d: number of attributes;
p: size of the population and g: the number of genera-
tions. So the complexity of the results merging phase is
O(d ∗ k ∗ p) + O(k ∗ n′′ ∗ d ∗ p ∗ g). The time complex-
ity of the population generation is neglected because it is
much smaller than the time complexity of the solutions eval-
uation. Therefore, the time complexity of the GA algorithm
becomes O(k ∗ n′′ ∗ d ∗ p ∗ g).

The global complexity of the parallel scheme is the sum
of the 3 presented phases: O(k′ ∗ m ∗ n′ ∗ d) + O(k ∗ n ∗
d ∗ p ∗ i/Nb Nodes) + O(k ∗ n′′ ∗ d ∗ p ∗ g). Assuming
that k′ << k and n′′ << n′ << n, the complexities of data
distribution and results merging phases become negligible.
The global complexity is represented then by O(k ∗ n ∗ d ∗
p ∗ i/Nb Nodes).

4 Implementation

To test and validate our proposition, we implemented two
parallel clustering algorithms. the first is the parallel K-
means using MapReduce (KmeansMR), and the second is
our proposed algorithm in [4] the SPKmMR algorithm. In
the following we details the SPKmMR algorithm.

In [4], we proposed a parallelization of the SPKM algo-
rithm [21] which we called Parallel Sampling-PSO-Multi-
Core-K-means using MapReduce (SPKmMR). The SPKM
algorithm is based on hybrid PSO-K-means algorithm [7]
and the sampling process. It improves the results by sam-
pling the initial data set before using PSO algorithm. It
divides data into S subsets and applies K-means on each
subset. After that, each subset is represented by only its cen-
troids. This step will reduce the global amount of data by
keeping only the most representative data points. This pro-
cess improves the execution time and the efficiency of the

A. Bousbaci, N. Kamel

PSO algorithm, which represents an upswing of the entire
approach.

This algorithm can be summarized by the following four
steps:

1. S sub-samples are selected from the initial data set.
2. K-means is applied on each sub-sample.
3. The resulted centroids from precedent step are used

with PSO algorithm considering them as swarm parti-
cles (S particles).

4. K-means is applied on the entire data set using the
initial configuration obtained from the PSO algorithm.

We use numerous machines to parallelize SPKM algo-
rithm, and exploit each of the CPUs cores by locally
parallelizing SPKM algorithm.

We describe this process by the following three steps:

1. Distributing data randomly on the cluster nodes in the
Map phase.

2. Applying sampling-PSO-MultiCoreK-means on each
Reducer.

3. Merging results obtained from the Reducers on a single
machine using the simple merging.

The PSO algorithm is sensitive to large datasets. With the
sampling method presented in [21], the size of the data set
is reduced and PSO can reach an optimal solution with a
smaller number of iterations, which means a shorter execu-
tion time. Therefore, in our approach, we proposed to reduce
the initial data set by splitting it to several machines before
starting to apply SPKM algorithm. In a final step, the results
are merged with the simple method.

Sequential processes are executed on many machines
in parallel. Since the used CPUs have many cores, using
a sequential program on them does not exploit all their
potential. So, we use local parallelism instead of the global
network parallelism. In Sample-PSO-K-means, K-means
algorithm is used twice. First, it is used in the sample step,
and then in the final clustering step. Thus the local par-
allelism will focus on K-means. This parallelism is done
through the following steps:

1. Data instances are separated on P partitions according
to the number of available physical cores, and a thread
is created for each part (P threads).

2. Each of the P threads is charged to compute the minimal
distance of its partition.

3. Other K threads are created and attributed to the K
cluster; K is equal to the number of centroids.

4. Each of the K threads is responsible of computing the
centroid of its own cluster after each update.

The entire process of the algorithm can be defined as
follows:

1. Initial data is divided on the set of machines in the Map
phase, and each data partition is sent to a particular
reducer.

2. On each Reducer(machine), the following steps are
applied using its own data partition:

(a) Data is divided again into S sub-partitions.
(b) A sampling algorithm is applied on each data parti-

tion using McK-means.
(c) Results from sampling algorithm are used as initial

data for the PSO algorithm.
(d) Apply McK-means algorithm using the results

obtained from PSO algorithm as initial centroids.

3. The Reducers sent their results (intermediate centroids)
to a single machine, where clusters of each configura-
tion are merged using a simple merging process to get
the final configuration.

5 Experiments

In this section, the different approaches and steps of our
proposal are experimented and evaluated.

First, the implemented algorithms, SPKmMR and the
KmeansMR, are tested with different solutions for data
distribution and results merging including our proposed
solution. Through these experimentations, we study and
analyze the influence of these techniques in term of clus-
tering quality on the parallel data clustering in MapReduce
environment.

Secondly, we experiment the performances of the
SPKmMR with our proposed parallelism scheme in terms
of CPU time. Thirdly, we analyze and discuss our algorithm
convergence.

Finally, we compare our global proposition which is
the SPKmMR using the no-random data distribution and
the GA merging with recently proposed parallel clustering
algorithms.

5.1 Experiments setup

For the experimentations, we used a cluster of 16 machines.
Each node is equipped with a Dual Core CPU (2 physical
cores) and 2 GB of RAM. The cluster runs on Linux Ubuntu
10.04. We used the Hadoop 1.2.1 framework which is an
open source implementation of the MapReduce framework.

The experiments were applied on a synthetic dataset
(DataSet1) [15] and a real dataset “The Individual house-
hold electric power consumption”(DataSet2) [27] which
represents the electrical consumption. The dataset repre-
sents the measurements of electric power consumption in
household over a period of almost 4 years.

Efficient data distribution and results merging for parallel data clustering in mapreduce environment

To test the scalability of our approach and study its
behavior with different datasets sizes, we generated two
other synthetic data sets DataSet3 and DataSet4 from
DataSet1 and DataSet2, respectively, by duplicating them
multiple times. Table 1 describes the four data sets used.

5.2 Solution evaluation

Many metrics have been proposed to evaluate and vali-
date a clustering solution. Through the realized experiments
we used two clustering validation metrics. The first metric
determines how compact the clusters are. It calculates the
average distance between each centroid and the data points
belonging to its cluster. We minimize this value for a better
clustering. We use formula (1) to calculate this metric which
represents the average sum of squares within cluster (SSW).

SSW =
∑k

i=1

{∑ni
j=1 d(oi ,pij)

ni

}

K
(1)

where: pij is the j th data point in the ith cluster; oi is the
center of the ith cluster; d(oi, pij) is the distance between
the data point pij and the centroid oi ; ni is the number of
data instances in the cluster Ci and K is number of clusters.
The Euclidean distance is calculated with formula (2).

d(ii , ij) =
√
√
√
√

ia∑

m=1

(iim − ijm)2 (2)

where ii and ij are two vector instances; ia the size of
an instance; iim and ijm are the mth attributes of the two
instances.

We note that formula (1) is used to calculate the fitness
for the PSO algorithm particles as well as the GA solutions
(chromosomes) fitness.

The second metrics we used is the Davies−Bouldin index
(DBI), which represents a ratio between intra-clusters dis-
tance and inter-clusters distance. The lower the DBI value
the better the clustering solution. It can be calculated with
formula (3)

DBI = 1

K

K∑

i=1

Ri (3)

Table 1 DataSets description

DataSets Number of records Dimensions

DataSet1 164860 3

DataSet2 2075259 9

DataSet3 989160 3

DataSet4 10376295 9

where Ri is the maximum ratio between the cluster i and the
other k clusters with i �= j . Rij is calculated using formula
(4) where Si and Sj represent respectively the average dis-
tance between the points within cluster i and j as calculated
in formula (1). dij is the distance between the centroids of
the cluster i and j .

Rij = Si − Sj

dij

(4)

5.3 Data distribution and results merging experiments
(Clustering quality)

To evaluate the data distribution and results merging pro-
cesses, we compared them with the standard random data
distribution and simple merging and clustering merging (K-
means) techniques. All these techniques are applied on the
SPKmMR and the KmeansMR algorithms (Section 4) to
demonstrate the improvement provided by our proposal to
different partitional parallel clustering algorithms. In the
following we conduct 3 different experiments. The first
concerns the baseline algorithm. The second is about the
proposed GA results merging technique compared to the
standard techniques. In the third and last experiment, we
demonstrate the influence of the proposed data distribution
technique in a MapReduce environment.

5.3.1 Experiment 1: baseline algorithms

In this first experiment we analyze the sequential versions
of the parallel algorithms SPKmMR and KmeansMR which
are the SPKM algorithm and the standard K-means algo-
rithm. The experiments are conducted on DataSet1 and
DataSet2.

Tables 2 and 3 represent the parameters set for the
PSO and the K-means algorithms used in SPKM and K-
means algorithm. These parameters are used for all the next
implemented algorithms.

Table 4 shows the results obtained after the execution of
the K-means algorithm, the SPKM and its parallel version
SPKmMR using simple results merging on both DataSet1
and DataSet2.

Table 2 PSO algorithm parameters

Parameter Value

DataSet1 DataSet2

Inertia factor 0.5 0.3

Confident coefficient at its best position 0.1 0.72

Confident coefficient at its neighboring 3.0 1.49

A. Bousbaci, N. Kamel

Table 3 K-means parameters

Parameters Value

Number of Data partitions (for 16 (number of machines)

MapReduce implementation)

Number of clusters 11 (DataSet 1-3) / 50–100

(DataSet 2-4)

Number of iterations in K-means 15 (DataSet 1-3) / 25

(DataSet 2-4)

Number of threads(for Multi-core 2 (dynamic according to the

K-means) used CPU)

Results discussion The results presented in Table 4 show
that with DataSet2 the SPKM and the SPKmMR algorithms
give better fitness values than the K-means algorithm does.
This is due to the use of PSO and sampling for selecting the
initial centroids. We can note also that the SPKmMR algo-
rithm improves the fitness value comparing to the SPKM
algorithm. In fact, dividing the data on the network nodes
reduces the dataset size on each machine. Therefore, the
PSO algorithm produces an optimal solution with the same
number of iterations to the one obtained when processing
the entire dataset.

On the DataSet1, we can notice that the SPKM algorithm
gives improvement compared to the K-means algorithm.
Unlike the results obtained on the DataSet2, we can see
that SPKM algorithm provides a slightly better results than
its parallel implementation (SPKmMR). This unexpected
result is due to the results merging strategy that we used
(See next section).

Indeed, the improvement obtained with the parallel
implementation of the SPKM algorithm on both DataSets
can be improved by changing the results merging strat-
egy. In the following we discuss the results obtained after
applying our proposed results fusion strategy.

5.3.2 Experiment 2: results merging comparison

In this second experiment, we analyze the influence of the
merging step in parallel clustering and the improvement
provided by the proposed results merging technique using
GA. To evaluate our approach we compared it with sim-
ple merging and K-means merging techniques. All of the

Table 4 Clustering quality (SSW)

Algorithms Data sets

DataSet1 DataSet2 (k = 50) DataSet2 (k = 100)

K-means 0.079604 0.079233 0.067021

SPKM 0.077303 0.073251 0.063955

Table 5 Genetic algorithm parameters

Parameter Value

DataSet1 DataSet2

Population size 100 200

Number of generations 100 50

Crossover % 100% 100%

Mutation % 80 % 80%

three implemented merging techniques: Simple merging, K-
means merging and GA merging are used with our proposed
SPKmMR algorithm and the KmeansMR algorithm.

Table 5 represents the parameters used in the GA in the
merging step.

Table 6 presents the results obtained by the SPKmMR
and KmeansMR algorithms using the simple, K-means and
GA merging techniques on DataSet1 and DataSet2.

Results discussion From Table 6, we can notice that the
K-means merging technique provides better results than
the simple merging technique. If we compare the fitness
obtained by the sequential SPKM on DataSet2 when k =
100 from Table 4 to the fitness obtained by SPKmMR where
k = 100 in Table 6, we note that the difference between the
fitness values is not important. The same results can be seen
for DataSet1 in Tables 4 and 6. This is due to the inability
of the simple merging to exploit the results obtained from
the different data partitions. Subsequently, we notice that
the GA merging strategy outperforms the simple and the K-
means merging in all cases with both of the DataSets used.
This is because this technique selects only the best K cen-
troids, from the centroids set obtained from the different
data partitions, and it avoids the malformed ones.

If we compare the results obtained from the KmeansMR
and the SPKmMR algorithms, on Table 6 for DataSet2, we
can notice that improvements obtained by using SPKmMR
algorithm over KmeansMR are more important when we
use the GA merging than when we use the K-means or
the simple merging. For example, when we use GA merg-
ing with K = 100, SPKmMR fitness is equal to 0.049195
and KmeansMR fitness is equal to 0.051913. The differ-
ence of fitness values is more important than it is when
we use K-means merging, where SPKmMR fitness is equal
to 0.059569 and KmeansMR fitness is equal to 0.061751.
This case demonstrates that GA merging exploits the results
generated by SPKM on each of the data partitions.

5.3.3 Experiment 3: data distribution results

In this final step, we test our approach for improving the
data distribution process in a MapReduce environment.

Efficient data distribution and results merging for parallel data clustering in mapreduce environment

Table 6 Clustering quality with the different merging strategies

Merging techniques KmeansMR SPKmMR

DataSet1 DataSet2 (k = 50) DataSet2 (k = 100) DataSet1 DataSet2 (k = 50) DataSet2 (k = 100)

Simple merging 0.079888 0.077204 0.064242 0.0775832 0.071459 0.063574

Kmeans merging 0.0788292 0.071763 0.061751 0.077153 0.070317 0.059569

GA merging 0.077211 0.057541 0.051913 0.0767487 0.054363 0.049195

To evaluate the data distribution process, we implemented
the KmeansMR, the SPKmMR algorithms and the results
merging techniques discussed in the previous section (sim-
ple, K-means and GA merging). As the used MapReduce
cluster is composed of 16 machines, we clustered the
dataset sample (% 25 of the initial dataset) on K = 16
clusters for both used DataSets using the K-means algo-
rithm. The obtained clusters patterns are used with the two
implemented parallel clustering algorithms (KmeansMR
and SPKmMR) to distribute data on the machines network.

Table 7 represents the results obtained by KmeansMR
and SPKmMR algorithms using the Simple, K-means and
GA merging after applying our data distribution strategy
with both DataSets.

Results discussion By analyzing these results, we note
that, in all cases, the fitness values obtained with the sim-
ple and K-means merging are inaccurate, with the different
clustering algorithm and the different DataSets. If we com-
pare the results from Table 7 when using the simple and
the K-means merging with the results from Table 4 for
DataSet2, we can see that the fitness values returned by
the sequential SPKM algorithm outperform those obtained
by the parallel algorithms KmeansMR and SPKmMR while
using the simple or the K-means merging. Furthermore,
the sequential K-means algorithm provides better results.
We notice the same remark for DataSet1. These results
are due to the merging technique used and not to the data
distribution process.

In the following (Table 8), we analyze the intermedi-
ate results obtained with the centroids configuration from
each data partition of the used DataSets while using the

SPKmMR and KmeansMR algorithms. For DataSet1 we
present the intermediate results of SPKmMR algorithm, and
for DataSet2 we present intermediate results of KmeansMR
in the case when K = 100.

From Table 8, we notice that some partitions from
DataSet2 provides better results than the ones obtained
after the merging process (using simple or K-means
merging), like the partitions P 3, P 4, P 11.. etc., whereas,
some partitions provide bad clusters configuration, like in
P 1, P 2, P 5, .. etc. That is because, in some cases when
applying our proposed data distribution method, some par-
titions will have a relatively small size. This is insufficient
to generate a correct clustering pattern.

Contrary to the previous cases, on Table 7 we can see
that when we use the GA merging we obtain the best
results. By choosing and merging the best clusters config-
uration from the different data partitions, we obtained the
best fitness value with the SPKmMR algorithm while using
the GA merging. An important point to highlight, is that
the KmeansMR algorithm provides better results than the
sequential SPKM algorithm (see Table 4 DataSet2). The
KmeansMR algorithm also outperformed the SPKmMR
algorithm when applied after a random data distribution
with all the merging strategies. From all the results we
can see that the improvement obtained in DataSet2 is more
important that the one obtained in DataSet1. This is due
to the datasets size. DataSet1 is relatively smaller than
DataSet2, so the improvement after applying the partition-
ing was less important than with DataSet2, because the
clustering algorithms can reach a sufficient result with-
out the data size reduction benefit provided by the parallel
implementation.

Table 7 Results after applying our data distribution with different merging strategies

Merging techniques KmeansMR SPKmMR

DataSet1 DataSet2 (k = 50) DataSet2 (k = 100) DataSet1 DataSet2 (k = 50) DataSet2 (k = 100)

Simple merging 0.159748 0.270103 0.277858 0.156695 0.3009458 0.2812698

Kmeans merging 0.101498 0.094805 0.080865 0.097269 0.092251 0.079740

GA merging 0.076442 0.045391 0.037061 0.075649 0.043310 0.034448

A. Bousbaci, N. Kamel

Table 8 Intermediate results from SPKmMR

Data partitions DataSet1 DataSet2

P1 0.159275 0.134110

P2 0.136808 0.111946

P3 0.123890 0.077897

P4 0.149114 0.043421

P5 0.123619 0.129709

P6 0.141003 0.074752

P7 0.134218 0.076125

P8 0.146532 0.057816

P9 0.146205 0.185012

P10 0.121721 0.070572

P11 0.150959 0.062136

P12 0.176330 0.122667

P13 0.155793 0.245486

P14 0.129691 0.105169

P15 0.155635 0.054617

P16 0.134052 0.125209

All these remarks prove the importance of data distribu-
tion and results merging steps in parallel data clustering.

5.4 CPU time and SpeedUp experiments

In this section we analyze and discuss the results in term of
CPU time, SpeedUp and efficiency.

We conducted different experiments to study the behav-
ior of our proposition. The first experiment is a comparison
in term of CPU time between the sequential and the parallel
execution. The second is a study of the comportment of the
SPKmMR algorithm when executed through our proposed
parallel scheme, with a variation in the number of involved
nodes.

5.4.1 Experiment 1: comparison of sequential and parallel
execution(CPU Time)

We compare the CPU time of the parallel execution
(SPKmMR and KmeansMR) with the sequential execution
(SPKM and K-means).

The following results represent the execution time results
from DataSet2 when k = 100 with the different imple-
mented algorithms. Table 9 represents the execution time of
the sequential algorithms compared with the parallel algo-
rithms while using our proposed parallel clustering scheme
(non-random data distribution + GA results merging tech-
nique). From Table 9 we can see that the two implemented
parallel algorithms surpass theirs sequential versions in term
of CPU time. We can see that KmeansMR is more than 61%
faster than its sequential version, and the SPKmMR is more
than 72 % faster than the SPkm.

Table 9 CPU time

Algorithms Execution time (minutes)

Sequential Kmeans 18.46

Sequential SPKM 28.07

KmeansMR 7.11

SPKmMR 7.61

5.4.2 Experiment 2: CPU time and SpeedUP with variation
in number of nodes

In the following, we study the performance of our approach
in term of execution time and speedup by varying the num-
ber of the involved nodes (2, 4, 8 and 16). The experiments
are conducted with the SPKmMR algorithm which provided
the best clustering quality.

The speedup is a metric which determines how much a
parallel algorithm is faster than a sequential one, or how
much a parallel algorithm using x nodes is faster than the
same algorithm using y nodes where x > y. SpeedUp can
be calculated with formula (5)

SpeedUp = Ty

Tx

(5)

where Ty is the CPU time using y nodes and Tx is the CPU
time using x nodes.

The tests are conducted on the 4 datasets cited in Table 1.
We note that, in these experiments, the execution time of

the merging process (using GA) is not counted because it
is executed on a single machine and takes nearly the same
amount of time with all the datasets. We also note that for
the speedup computation, we considered that the baseline
case is when we use 2 nodes and not when we use the
sequential algorithm, because the sequential and the paral-
lel algorithms do not present the same execution scheme. So
for the case using 2 nodes the speedup will be equal to 1.

Figures 4, 5, 6 and 7 represent the CPU time and
SpeedUp graphs for the 4 datasets.

We can notice that with all the datasets the CPU time
decreases linearly and at the same time the SpeedUp
increases linearly.

We observe that the SpeedUp value is more important on
DataSet3 compared to DataSet1, and also on DataSet4 com-
pared to DataSet2. Thus, with a larger dataset the SpeedUp
increases. But if we compare the results from DataSet1
with the results from DataSet2 we see that speedup with
DataSet1 is more important than with DataSet2 despite
the larger size of DataSet2 (the same between DataSet3
and DataSet4). This unexpected observation is due to the
used non-random data distribution. With this method the
generated data partitions will have different sizes contrary

Efficient data distribution and results merging for parallel data clustering in mapreduce environment

0

20

40

60

80

100

120

140

160

180

200

2 4 8 16

CP
U

 T
im

e
(s

ec
on

ds
)

Number of nodes

CPU Time DataSet1

0

1

2

3

4

5

6

7

2 4 8 16

Sp
ee

d
U

p

Number of nodes

SpeedUp DataSet1

Fig. 4 CPU time and SpeedUp with number of nodes variation on DataSet1

to the random data distribution where all partitions will have
mostly the same size. In fact, with our proposed data dis-
tribution approach, the SpeedUp will depend on the used
dataset. With DataSet1, the smallest generated partition
contains 4072 rows and the largest contains 20445, which
represent approximately 5 times the size of smallest partition.

Therefore, when using 16 machines, for example, the
global execution of the clustering process will be repre-
sented by the time taken by the machine processing the
largest data partition. This will affect the SpeedUp perfor-
mance of the algorithm.

For DataSet2, the largest data partition (280809 rows)
is 10 times larger than the smallest data partition (27933),
which will affect the speedup performances more than it
will on DataSet1.

To clearly visualize this case we compute the efficiency
of our approach with the different datasets. The efficiency of
a parallel algorithm is the ratio of the speedup to the number
of used nodes. We calculate the efficiency using Formula (6)

Eff iciency = SpeedUp

Nb nodes
(6)

Table 10 contains the efficiency values obtained from the
different datasets using the SPKmMR algorithm with our
proposed parallelism scheme.

From Table 10, we can notice that the efficiency is
improved as the data size increases. This can be noticed
clearly with DataSet3 which is a duplication of DataSet1.

0

100

200

300

400

500

600

700

800

900

1000

2 4 8 16

CP
U

 T
im

e
(s

ec
on

ds
)

Number of nodes

CPU Time DataSet2

K = 100 K = 50

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

2 4 8 16

Sp
ee

d
U

p

Number of nodes

SpeedUp DataSet2

k=50 k=100

Fig. 5 CPU time and SpeedUp with number of nodes variation on DataSet2

A. Bousbaci, N. Kamel

0

200

400

600

800

1000

1200

1400

2 4 8 16

CP
U

 T
im

e
(s

ec
on

ds
)

Number of nodes

CPU Time DataSet3

0

1

2

3

4

5

6

7

2 4 8 16

Sp
ee

d
U

p

Number of nodes

SpeedUp DataSet3

Speed Up

Fig. 6 CPU time and SpeedUp with number of nodes variation on DataSet3

A slight improvement is obtained with DataSet4 compared
to DataSet2 which is due to the same problem cited above
(data partitions size).

5.5 Convergence analysis

In this section we analyze and discuss the convergence of
our proposed solution while used with the SPKM algorithm.
We analyze the convergence of the entire parallel scheme
and the local convergence of the different data partitions.
We also compare these measurements with the convergence
of the sequential SPKM algorithm using the entire data
set. The convergence results while using the GA merging

at a given iteration, represents the final result obtained by
merging the intermediate results obtained from the different
partitions at that iteration.

The experiments were conducted on DataSet1 and
DataSet2 (case where k = 50). Figure 8, represents the
convergence graph on DataSet1.

As most of the data partitions present almost the same
convergence behavior, we chose to present only 3 partitions:
the smallest partition P4 with 4072 rows, the largest one P5
with 20445 rows and a third random data partition P9 with
12359 rows. From the graph we can notice that the sequen-
tial algorithm which uses the entire dataset converges until
reaching the 15thiteration, whereas the partitions converge

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 4 8 16

CP
U

 T
im

e
(s

ec
on

ds
)

Number of nodes

CPU Time DataSet4

k=100 k=50

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

2 4 8 16

Sp
ee

d
U

p

Number of nodes

SpeedUp DataSet4

k=50 k=100

Fig. 7 CPU time and SpeedUp with number of nodes variation on DataSet4

Efficient data distribution and results merging for parallel data clustering in mapreduce environment

Table 10 Approach efficiency on different datasets

DataSets Efficiency

DataSet1 0.770

DataSet2 k = 50 0.485 / K = 100 0.496

DataSet3 0.823

DataSet4 k = 50 0.510 / K = 100 0.499

almost within the 10th iteration. The smallest partition P4
converges within 5 iterations due to its small number of
rows. The partition P5 and P9 which have a greater num-
ber of rows than P4 take 10 iterations to converge. We
also notice that the final results obtained from the different
partitions after being merged using the genetic algorithm
converge at the 5th iteration.

Figure 9, illustrates the convergence graph on DataSet2.
As for DataSet1, we present only 3 partitions convergence.
Partition P6 with 48575 rows, partition P10 with 172927
rows and partition P15 with 280809 rows. From Fig. 9 we
notice that the sequential execution of the SPKM algorithm
takes 25 iterations to converge as it processes the entire
dataset at once. Contrary to the sequential execution, we
notice that the partition P6 reaches a stable state after 5 iter-
ations due to its small number of data points. As partitions
P10 and P15 have a greater number of data points, they both
converge after the 15th iteration. We also notice that the
final results obtained after the merging using GA reach a
stable state after the 15th iteration. Besides the improvement
obtained in term of execution time by processing the data
in parallel, we can notice that by dividing the initial dataset
into smaller partitions, the number of iteration required by
each one of those partitions to converge is fewer than the

0,06

0,08

0,1

0,12

0,14

0,16

0 2 4 6 8 10 12 14 16

Fi
tn

es
s v

al
ue

 (S
SW

)

Number of itera�ons

Convergence graph DataSet1

Par��on 4 Par��on 5 Par��on 9 Final result (GA) SPKM

Fig. 8 Convergence on DataSet1

0,04

0,05

0,06

0,07

0,08

0,09

0,1

0,11

0,12

0 5 10 15 20 25 30

Convergence graph DataSet2
Par��on 6 Par��on 10 Par��on 15 Final result (GA) SPKM

Fi
tn

es
s v

al
ue

 (S
SW

)

Number of itera�ons

Fig. 9 Convergence on DataSet2

iterations required to process the entire dataset. This also
improves the execution time.

5.6 Algorithms comparison

In this last section of the experiments, we compare our
parallel approach with some recently proposed parallel clus-
tering algorithms. The conducted experiments concern the
clustering quality and the algorithms parallelism efficiency.

We compared our parallel clustering scheme on the
SPKmMR algorithm with the standard sequential K-means,
a MapReduce-based hybrid PSO K-means algorithm “Par-
allel K-PSO based on MapReduce” (Parallel KPSO) [41]
and an optimized MapReduce K-means algorithm “Opti-
mized big data K-means clustering using MapReduce” (Opt
MR-Kmeans) [9].

The evaluations were conducted on all the 4 datasets
shown in Table 1.

Tables 11 and 12, represent respectively the parame-
ters of the implemented ParallelKPSO and OptMR −
Kmeans algorithms.

In a first test we evaluated the clustering validity using
the SSW and the DBI metrics.

Table 13, summarizes the results obtained in term of
clustering quality.

From Table 13, we notice that our approach once
again provides the best results among all the algorithms
on all the datasets. The difference in clustering quality
between DataSet1 and DataSet3 (the same for DataSet2 and
DataSet4) is minimal, which demonstrates the scalability of
the algorithm to different size problems.

In a final experiment, we compare the efficiency of our
approach with the other algorithms.

A. Bousbaci, N. Kamel

Table 11 Parallel KPSO
parameters Parametre Values

DataSet1/DataSet3 DataSet2/DataSet4

Inertia factor 0.5 0.3

Confidence Best position 0.1 0.72

Confidence neighbor 3.0 1.49

Number of cluster 11 50

Number of iterations (K-means) 15 25

Number of nodes 16 16

The following results are obtained from DataSet4, which
does not present the best efficiency according to Table 10.
We chose to conduct the tests on DataSet4 to avoid the best
case scenario and analyze our approach in its worst case.

From the results in Table 14, we can see that our approach
presents an acceptable and competitive efficiency compared
to the other algorithms.

6 Application to the community detection problem

To demonstrate the effectiveness and relevance of the results
obtained with our approach, we applied it to the community
detection problem in the Bibsonomy social bookmarking
network [3]. The community detection problem consists in
discovering a set of users who share common points of
interest on a social network. Data clustering is one of the
solutions used to solve this problem, whereby each cluster
contains a potential set of similar users. In [34], the authors
proposed a solution based on the k-means in order algo-
rithm to detect users’ communities in the academic social
bookmarking system Bibsonomy.

To do so, the similarity between the different users is cal-
culated and used to create a distance matrix. Each element
of the matrix represents the distance between two users from
the social network.

Table 12 Opt MR-Kmeans parameters

Parameters Values

DataSet1/DataSet3 DataSet2/DataSet4

Number of clusters 11 50

Number of iterations 15 25

Number of nodes 16 16

The similarity between two different users is calculated
using formula (7) [34].

Sim (Useri , Useri) = ∣
∣tagsUi ∩ tagsUj

∣
∣ /

∣
∣tagsUi ∪ tagsUj

∣
∣ (7)

Where tagsUi and tagsUj represent the tags used by
useri and userj respectively, to annotate their bookmarks.
The distance matrix is created using formula (8) [34].

Mat dist [i, j] =
⎧
⎨

⎩

1/Sim
(
Useri , Userj

)
, if Sim

(
Useri , Userj

)
>0

100000, if Sim
(
Useri , Userj

) = 0
0, if i = j

(8)

Where Mat dist[i, j] is the distance between useri and
userj . Therefore, each row i from the matrix represents the
distance values between useri and all the other users of the
collection. The distance matrix will be used as input data for
the used clustering algorithm. This will allow us to find the
users’ communities.

6.1 Experiments

In this section, we present the details of the experiments
realized to apply our approach on the community detection
problem in Bibsonomy.

6.1.1 Bibsonomy dataset

To apply our approach on the community detection in
Bibsonomy we used the “2016-01-01” version of the Bib-
sonomy dataset [1]. The dataset contains 3 different files:
tas,bookmarks and bibtex files. In our experiments we only
use the “tas” file which contains the tags used by each
user to annotate his own bookmarks. The information con-
tained in the “tas” file will be used to calculate the similarity

Efficient data distribution and results merging for parallel data clustering in mapreduce environment

Table 13 Clustering validation

K-means Parallel KPSO Opt MR Kmeans Our Approach

Validation metrics DBI SSW DBI SSW DBI SSW DBI SSW

DataSet1 1.035278 0.079604 0.970420 0.077609 1.030236 0.079442 0.940197 0.075649

DataSet2 1.19255 0.079233 1.165538 0.074396 1.204050 0.080650 1.057580 0.043310

DataSet3 1.031842 0.079399 1.017055 0.077940 1.022694 0.079817 0.946913 0.075928

DataSet4 1.196346 0.080747 1.169648 0.075900 1.192127 0.080011 1.065280 0.04571

between the users and subsequently create the distance
matrix. We used a sample of 1078 users from the dataset,
which resulted in a 1078x1078 distance matrix.

6.1.2 Solution evaluation

To evaluate the results obtained with our approach, we use
the average square of within clusters (SSW) metric using
formula (1). To examine the relevance of the generated
results, we use a human evaluation on the generated clusters.
The human evaluation consists in analyzing the generated
clusters and determining which users are actually similar
according to theirs used tags. With the human evaluation,
we can verify the pertinence between the users of each clus-
ter. When we compare two clustering solutions, the better
one should have a higher number of similar users [34].

6.1.3 Experimentations and results

We implemented the solution for this problem with the
SPKmMR algorithm and compared it with the k-means, the
Opt-Kmeans and the Parallel KPSO algorithms. We con-
ducted numerous tests on the distance matrix using the
K-means algorithm to determine the number of clusters (K).
We chose two different values for K: 10 and 20. The first
experiment consists in applying the implemented algorithm
on the generated distance matrix and evaluating the results
using the SSW metric. Each generated cluster represents a
potential community.

Table 15 represents the results obtained in term of clus-
tering quality using the SSW metric.

Table 14 Algorithms efficiency on DataSet4

Algorithms Efficiency

Parallel KPSO 0.6

Opt MR Kmeans 0.521

Our approach 0.510

From Table 15, we note that the Opt-Kmeans provides
results almost similar to the ones obtained with the k-means
algorithm. The Parallel KPSO provides results slightly
superior to those obtained with the k-means and the Opt-
kmeans algorithms. We note that our approach provides the
best results with the two different values of K .

In the second experiment, we aim to confirm the supe-
riority of our approach seen in the first experiment. To do
this, we use the human evaluation to analyze and compare
the clusters generated with our approach to the ones gen-
erated with the k-means and the Parallel KPSO algorithms.
We analyze the case where K = 10. With the human eval-
uation we can determine the real number of similar users
inside each cluster. A set of users are considered similar if
they have multiple common tags. To realize this, we use the
“tas” file which contains the tags of each user and compare
them.

Table 16 represents the obtained results in term of the
number of similar users on each cluster using the K-means
algorithm, the Parallel KPSO algorithm and our approach.

From the results presented on Table 16, we can distin-
guish again the quality and the superiority of the results
provided by our approach. The total number of similar users
found using our approach is more important than the ones
generated by the k-means and the Parallel KPSO algorithms,
which proves the effectiveness of our solution. The human
evaluation confirmed the results provided by the clustering
analysis using the SSW metric.

From these results we can conclude that our solution
provide effective and relevant results for real clustering
problems.

Table 15 Clustering quality (SSW)

Algorithms K = 10 K = 20

K-means 6.8506 6.6333

Opt-Kmeans 6.8963 6.6205

Parallel KPSO 6.5692 6.3461

Our approach 5.8317 5.2788

A. Bousbaci, N. Kamel

Table 16 Number of similar users on each cluster

Algorithms C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Total

K-means 10 12 14 37 34 7 61 18 101 9 303

Parallel KPSO 45 9 8 16 41 51 101 20 58 17 357

Our approach 5 26 63 20 52 31 16 77 66 30 386

7 Conclusion

In this paper we proposed a parallel scheme for partitional
clustering algorithms based on MapReduce environment.

The objective of our approach is to improve data distri-
bution on clusters nodes and exploit the centroids obtained
from each one using a GA based results merging strategy.

The proposed approach is validated and tested on two
parallel clustering algorithms, SPKmMR and KmeansMR
algorithms.

Using our parallel scheme, the two algorithms pro-
vide improvement in clustering quality compared to when
executed with conventional data distribution and results
merging strategies.

The SPKmMR algorithm using our parallel scheme has
been tested with four data sets of different sizes to test the
scalability of our approach. Furthermore, it was compared
with recent parallel clustering algorithms on four datasets.

The experimental results demonstrated that the
SPKmMR algorithm using our parallel scheme outweighed
the OptMR − Kmeans [9] and the ParallelKPSO [41]
algorithms in clustering quality and provided a competitive
parallelism efficiency in its worst case.

In a final experiment, our approach was applied on the
community detection problem in Bibsonomy and compared
it with the k-means algorithms and the Parallel KPSO
algorithms. Once again, the results demonstrated the effec-
tiveness of our solution.

All the conducted experiments proved the effectiveness
of our proposal and the importance of the data distribution
and results merging processes in parallel data clustering.
As future work, we aim to improve our data distribution
strategy using meta-heuristics.

References

1. (2016) Knowledge and Data Engineering Group, University of
Kassel: Benchmark folksonomy data from bibsonomy version of
January 01st. http://bibsonomy.org/

2. Banharnsakun A (2017) A mapreduce-based artificial bee colony
for large-scale data clustering. Pattern Recogn Lett 93:78–84

3. Benz D, Hotho A, Jäschke R, Krause B, Mitzlaff F, Schmitz C,
Stumme G (2010) The social bookmark and publication manage-
ment system bibsonomy. The VLDB Journal—The International
Journal on Very Large Data Bases 19(6):849–875

4. Bousbaci A, Kamel N (2014) A parallel sampling-pso-multi-
core-k-means algorithm using mapreduce. In: 14th international
conference on hybrid intelligent systems (HIS), 2014. IEEE,
pp 129–134

5. Bousbaci A, Kamel N (2016) Efficient results merging for parallel
data clustering using mapreduce. In: 13th international confer-
ence distributed computing and artificial intelligence. Springer,
pp 349–357

6. Chaimontree S, Atkinson K, Coenen F (2011) A multi-agent based
approach to clustering: harnessing the power of agents. In: Interna-
tional workshop on agents and data mining interaction. Springer,
pp 16–29

7. Cui X, Potok TE (2005) Document clustering analysis based on
hybrid pso+ k-means algorithm. J Comput Sci (special issue)
27:33

8. Cui X, Charles JS, Potok T (2013) Gpu enhanced parallel com-
puting for large scale data clustering. Futur Gener Comput Syst
29(7):1736–1741

9. Cui X, Zhu P, Yang X, Li K, Ji C (2014) Optimized big data k-means
clustering using mapreduce. J Supercomput 70(3):1249–1259

10. Davidson I, Satyanarayana A (2003) Speeding up k-means clus-
tering by bootstrap averaging. In: IEEE data mining workshop on
clustering large data sets

11. Dean J, Ghemawat S (2008) Mapreduce: simplified data process-
ing on large clusters. Commun ACM 51(1):107–113

12. Ene A, Im S, Moseley B (2011) Fast clustering using mapreduce.
In: Proceedings of the 17th ACM SIGKDD international confer-
ence on knowledge discovery and data mining. ACM, pp 681–689

13. Ester M, Kriegel HP, Sander J, Xu X et al. (1996) A density-based
algorithm for discovering clusters in large spatial databases with
noise. In: Kdd, vol 96, pp 226-231

14. Ferreira Cordeiro RL, Traina Junior C, Machado Traina AJ,
López J, Kang U, Faloutsos C (2011) Clustering very large multi-
dimensional datasets with mapreduce. In: Proceedings of the 17th
ACM SIGKDD international conference on knowledge discovery
and data mining. ACM, pp 690–698

15. Fränti P (2015) Clustering datasets. http://cs.uef.fi/sipu/datasets/
16. Goil S, Nagesh H, Choudhary A (1999) Mafia: efficient and scal-

able subspace clustering for very large data sets. In: Proceedings
of the 5th ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, pp 443–452

17. Guerrieri A, Montresor A (2012) Ds-means: distributed data
stream clustering. In: European conference on parallel processing.
Springer, pp 260–271

18. Guha S, Rastogi R, Shim K (1998) Cure: an efficient clustering
algorithm for large databases. In: ACM SIGMOD Record, ACM,
vol 27, pp 73–84

19. Hammouda KM, Kamel MS (2014) Models of distributed
data clustering in peer-to-peer environments. Knowl Inf Syst
38(2):303–329

20. Han D, Giraud-Carrier C, Li S (2015) Efficient mining of high-
speed uncertain data streams. Appl Intell 43(4):773–785

21. Kamel N, Ouchen I, Baali K (2014) A sampling-pso-k-means
algorithm for document clustering. In: Genetic and evolutionary
computing. Springer, pp 45–54

http://bibsonomy.org/
http://cs.uef.fi/sipu/datasets/

Efficient data distribution and results merging for parallel data clustering in mapreduce environment

22. Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an
introduction to cluster analysis, vol 344. Wiley

23. Kerdprasop K, Kerdprasop N (2010) A lightweight method to par-
allel k-means clustering. International Journal of Mathematics and
Computers in Simulation 4(4):144–153

24. Kraus JM, Kestler HA (2010) A highly efficient multi-core algo-
rithm for clustering extremely large datasets. BMC Bioinforma
11(1):1

25. Kriegel HP, Kröger P, Sander J, Zimek A (2011) Density-based
clustering. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 1(3):231–240

26. Kwedlo W, Iwanowicz P (2010) Using genetic algorithm for
selection of initial cluster centers for the k-means method. In:
International conference on artificial intelligence and soft comput-
ing. Springer, pp 165–172

27. Lichman M (2013) UCI machine learning repository. http://
archive.ics.uci.edu/ml

28. Lin KW, Lin CH, Hsiao CY (2014) A parallel and scalable
cast-based clustering algorithm on gpu. Soft Comput 18(3):539–
547

29. Ludwig SA (2015) Mapreduce-based fuzzy c-means clustering
algorithm: implementation and scalability. Int J Mach Learn
Cybern 6(6):923–934

30. MacQueen J et al. (1967) Some methods for classification and
analysis of multivariate observations. In: Proceedings of the fifth
berkeley symposium on mathematical statistics and probability,
Oakland, CA, USA, vol 1, pp 281–297

31. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based
clustering technique. Pattern Recogn 33(9):1455–1465

32. More P, Hall LO (2004) Scalable clustering: a distributed
approach. In: IEEE international conference on fuzzy systems,
2004. Proceedings. 2004, IEEE, vol 1, pp 143–148

33. Rokach L, Maimon O (2005) Clustering methods. In: Data mining
and knowledge discovery handbook. Springer, pp 321–352

34. Saoud Z, Platoš J (2017) Community detection in bibsonomy
using data clustering. In: International conference on information
systems architecture and technology. Springer, pp 149–158

35. Sheikholeslami G, Chatterjee S, Zhang A (1998) Waveclus-
ter: a multi-resolution clustering approach for very large spatial
databases. In: VLDB, vol 98, pp 428–439

36. Shirkhorshidi AS, Aghabozorgi S, Wah TY, Herawan T (2014)
Big data clustering: a review. In: International conference on
computational science and its applications. Springer, pp 707–720

37. Sinha A, Jana PK (2016) A novel k-means based clustering algo-
rithm for big data. In: International conference on advances in
computing, communications and informatics (ICACCI), 2016.
IEEE, pp 1875–1879

38. Stoffel K, Belkoniene A (1999) Parallel k/h-means clustering for
large data sets. In: European conference on parallel processing.
Springer, pp 1451–1454

39. Sun Z (2013) A parallel clustering method study based on mapre-
duce. In: 1st international workshop on cloud computing and
information security. Atlantis Press

40. Timón I, Soto J, Pérez-Sánchez H, Cecilia JM (2016) Parallel
implementation of fuzzy minimals clustering algorithm. Expert
Syst Appl 48:35–41

41. Wang J, Yuan D, Jiang M (2012) Parallel k-pso based on mapre-
duce. In: IEEE 14th international conference on communication
technology (ICCT), 2012. IEEE, pp 1203–1208

42. Xu S, Zhang J (2004) A parallel hybrid web document clustering algo-
rithm and its performance study. J Supercomput 30(2):117–131

43. Zhao W, Ma H, He Q (2009) Parallel k-means clustering based on
mapreduce. In: IEEE international conference on cloud comput-
ing. Springer, pp 674–679

Abdelhak Bousbaci is a PhD. student in computer science at the Uni-
versity of Sciences and Technology Houari Boumediene (USTHB),
Algeria, since 2012. He received his Master degree in Intelligent Com-
puter Systems from the USTHB in 2012. His research interests are
related to Data Mining, Data Clustering and Parallel Data Clustering.

Nadjet Kamel is a full professor at the department of computer sci-
ence of the University Ferhat Abbes of Setif 1 (UFAS1), Algeria,
since 2011. She received her Magister and the Phd degree in Com-
puter Science from the University of Science and Technology Houari
Boumediene (USTHB), Algeria, respectively in 1995 and 2007. She
has been a Postdoctoral Researcher at the University of Moncton,
in Canada from August 2007 to August 2009 and a Lecturer at the
USTHB from 1995 to 2007. From 2009 to 2011 she was an asso-
ciate professor at the same university. She has been involved in many
research projects (PNR and CNEPRU). Since 2011, she is the head of
the team research “Data Mining and Machine Learning” at the Labora-
tory of Research in Artificial Intelligence (LRIA) at USTHB. She has
been the Head of the department of computer science of UFAS1 from
2014 to 2015. Since 2015, she is the Vice President of the UFAS1. Her
main interests are related to Computational intelligence and Data Min-
ing. She organized and served as program commitee member of many
international conferences.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Efficient data distribution and results merging for parallel data clustering in mapreduce environment
	Abstract
	Introduction
	Related work
	Shared memory parallelism
	Machines network parallelism
	Optimized big data K-means clustering using MapReduce (Opt MR-Kmeans)
	Parallel K-PSO based on MapReduce (Parallel KPSO)

	Proposed approach
	Data distribution module
	Genetic algorithm based results merging module
	Population and chromosomes
	Crossover and mutation operations

	Algorithm complexity
	Data distribution phase complexity
	Clustering phase complexity
	GA merging phase complexity

	Implementation
	Experiments
	Experiments setup
	Solution evaluation
	Data distribution and results merging experiments (Clustering quality)
	Experiment 1: baseline algorithms
	Results discussion

	Experiment 2: results merging comparison
	Results discussion

	Experiment 3: data distribution results
	Results discussion

	CPU time and SpeedUp experiments
	Experiment 1: comparison of sequential and parallel execution(CPU Time)
	Experiment 2: CPU time and SpeedUP with variation in number of nodes

	Convergence analysis
	Algorithms comparison

	Application to the community detection problem
	Experiments
	Bibsonomy dataset
	Solution evaluation
	Experimentations and results

	Conclusion
	References

