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which we call Shortest Path Betweenness Vertex-Centric Algorithm (SPB-VCA), that utilizes the
vertex-centric model. An approximation technique is also developed to further speed up commu-
nity detection processes. We implemented SPB-MRA using Hadoop and SPB-VCA using GraphChi,
and then evaluated the performance of SPB-MRA on Amazon EC2 instances and that of SPB-VCA
on a single commodity PC. The evaluation results showed that the elapsed time of SPB-MRA de-
creased almost linearly as the number of reducers increased, SPB-VCA outperformed SPB-MRA
just on a single PC by 4-6 times, and the approximation technique introduced negligible errors.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As social networking services (SNSs) such as Facebook and Twitter are getting more popular, analyzing social network data has be-
come one of the most important issues in various areas [1]. Among those analysis jobs, community detection from social network data
gains much attention from academia and industry since it has many real-world applications such as friend recommendation and target
marketing [2,3].

Community detection is to partition the set of network vertices into multiple groups such that the vertices within a group are connect-
ed densely, but connections between groups are sparse [4]. There have been many studies regarding community detection [5]. The
Girvan-Newman (GN) algorithm proposed by Girvan and Newman [6] exploits the concept of edge betweenness, which is a measure
of the centrality and influence of an edge in a network. Though the GN algorithm is being widely used, it has limitations in supporting
large-scale networks since it needs to calculate the shortest path between every pair of vertices. The number of vertex pairs in a large-
scale network is really prohibitive.
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In the era of Big Data, the amount of available data is growing unprecedentedly. Thus, data analysis calls for very scalable methods
that can cope with huge data sets. MapReduce is a programming model for processing large data sets with a parallel, distributed al-
gorithm on a cluster. MapReduce has been widely used owing to its scalability and ease of use [7-11]. It has been the driving force
behind big data analysis in recent years. In addition, as graph (or network) data become more prevalent, totally new parallel comput-
ing platforms based on the vertex-centric model are being developed especially for graph data [12-14].

In this paper, we develop two parallel versions of the GN algorithm to solve its scalability issues. First, we propose a new algorithm,
which we call Shortest Path Betweenness MapReduce Algorithm (SPB-MRA), that utilizes the MapReduce model. Second, we propose
another new algorithm, which we call Shortest Path Betweenness Vertex-Centric Algorithm (SPB-VCA), that utilizes the vertex-centric
model [12]. In addition, we suggest an approximation technique to further speed up community detection processes. Our preliminary
work [15]! contains the former algorithm only, and this paper contains the latter algorithm as well.

Our first algorithm, SPB-MRA, consists of four major stages, and all operations are executed in parallel on a cluster. In the first stage,
all-pair shortest paths on a network are calculated. In the second stage, the edge betweennesses of all edges in the network are cal-
culated. In the third stage, k;.., edges are selected by edge betweenness, and they get removed. In the final stage, the network is up-
dated, and this new network is provided to the next iteration. These four stages repeat until the quality of communities does not
improve any more. SPB-MRA is implemented on top of Apache Hadoop [16].

Our second algorithm, SPB-VCA, consists of three major stages without the last one of SPB-MRA. That is, the update of a network
after an edge removal is not explicitly necessary. SPB-VCA is implemented on top of GraphChi [14] and thus runs on a single PC.

SPB-VCA has two main advantages over SPB-MRA by virtue of the vertex-centric model. (i) Since the algorithm is represented directly
on a graph, which is the underlying data structure, it looks more natural and intuitive. On the other hand, in SPB-MRA, a graph is
decomposed into its constituent edges, and the algorithm manipulates the edges (i.e., key-value pairs). Accordingly, there is no need
to generate and merge key-value pairs in SPB-VCA. (ii) As a result, the performance of SPB-VCA is dramatically higher than that of
SPB-MRA.

The major contributions of this paper are as follows.

* We propose two algorithms—SPB-MRA and SPB-VCA—and demonstrate performance improvement. The results of performance
tests showed that the elapsed time of SPB-MRA decreased almost linearly as more reducers were added to a cluster. In addition,
we confirmed that the vertex-centric model, which is dedicated to graph data, allows us to achieve much higher performance
than the MapReduce model. In fact, SPB-VCA was shown to outperform SPB-MRA by 4-6 times just on a single PC.

» We suggest an approximation technique to further speed up community detection processes. Instead of removing a single edge per
iteration, we remove multiple edges that have the top-k;., highest edge betweenness at once. The results of accuracy tests showed
that a negligible error was introduced by the approximation.

The rest of this paper is organized as follows. Section 2 summarizes the background knowledge required for this study. Sections 3 and
4 propose SPB-MRA and SPB-VCA respectively. Section 5 presents the results of performance tests. Finally, Section 6 concludes this study.

2. Background and related work
2.1. MapReduce and Hadoop

MapReduce is a programming model for processing large-scale data in a parallel way [7]. Users can easily implement distributed,
parallel processing software by writing only two functions: map and reduce. Fig. 1 shows the control flow of MapReduce. The map
function processes a sub-problem for input data and emits intermediate (key, value) pairs. The reduce function combines the values
associated with the same key and produces the final output. Apache Hadoop [16] is the most popular open-source implementation
of MapReduce. However, despite its popularity for big data processing, MapReduce is known to be awkward at supporting iterative
graph algorithms [17].

2.2. Vertex-centric model and GraphChi

The vertex-centric model is a programming model for iterative graph computation. It is easy to program since a programmer just
needs to “think like a vertex.” Thus, this model has been adopted by parallel graph computing platforms, including Pregel [12],
GraphlLab [18], and GraphChi [14]. In the vertex-centric model, every vertex and edge is associated with a value, and computation
is performed on a vertex by a user-specified function.

GraphChi is a disk-based system exploiting the vertex-centric model for processing graph computations on just a single machine
[14]. A novel parallel sliding windows (PSW) method enables GraphChi to execute graph mining algorithms on very large graphs. The
PSW method splits vertices in a graph into multiple intervals, where each interval is associated with a shard which stores all edges
whose destination vertex is contained in that interval. The subgraphs divided by the PSW method are processed in three steps: 1) load-
ing a subgraph from disk; 2) updating the values of vertices and edges; and 3) writing the updated results to disk.

Fig. 2 illustrates the operation of the PSW method on a toy graph. In this example, a toy graph with four vertices, which is split into two
intervals, is used. First, the subgraph with Vertex 1, 2 for the execution interval, Interval 1, is stored in a memory-shard (Shard 1)

1 This work received the best paper award at BigComp 2014.
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Fig. 1. The execution flow of MapReduce.

consisting of all in-edges to the interval and a sliding-shard (Shard 2) containing all out-edges from the interval. Second, a user-specified
update function is executed for the vertices in the execution interval. Third, the updated values of the vertices and edges are written to
disk. As in the right half of Fig. 2, these three steps are repeated for Interval 2 to get full computation results for the given graph.

2.3. Girvan—-Newman (GN) algorithm

The GN algorithm is a divisive hierarchical clustering algorithm exploiting the concept of edge betweenness [6]. Three methods were
proposed for the calculation of edge betweenness. Among them, the shortest-path method typically shows the best results. The edge
betweenness of an edge is informally the number of shortest paths between pairs of vertices that pass through it. Since communities
are loosely connected by a few “intergroup” edges, all shortest paths between different communities must pass through one of these
few edges. Then, those edges connecting communities will have high edge betweenness. Thus, the communities are detected by eliminat-
ing such edges repeatedly. However, since the shortest path should be obtained for every pair of vertices, the GN algorithm is very costly.

24. Parallel community detection

There have been a number of studies on parallelizing the algorithms of identifying community structures in networks. Bahmani
et al. [19] proposed an algorithm of finding the densest subgraph in the streaming model and implemented it using the MapReduce
model. Li et al. [20] proposed MR-LPA, which is a parallel version of the label propagation algorithm using the MapReduce model. In
addition, Yang and Lonardi [21] presented a parallel implementation of the GN algorithm using the message passing interface (MPI)
standard. Since their algorithm requires storing all edges and vertices of a graph in main memory of each computing node in the clus-
ter, it has limitations in supporting large-scale graphs. On the contrary, our algorithms proposed in this paper efficiently divide a graph
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Fig. 2. The operation of PSW on a toy graph.
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into subgraphs and store them in distributed file systems (in SPB-MRA) or in local file systems (in SPB-VCA) to support big data
graphs. Furthermore, SPB-MRA and SPB-VCA exploit an approximation technique to further speed up community detection processes.

3. Proposed algorithm: SPB-MRA
3.1. Overview

SPB-MRA goes through four stages, as described in Fig. 3. The output of a stage is chained to the input of its next stage. Each stage ex-
ecutes its own map and reduce tasks. An iteration of these four stages produces a community detection result. In each iteration, Stage1 is
executed multiple times, and the other stages are executed only once. The four stages repeat until the result quality no longer improves.

A tuple of 7 elements below is maintained for each pair of vertices in the process of community detection. It holds the network
structure (i.e., an adjacency list), the shortest path obtained so far, and so on. The term “tuple” in this section refers to a tuple of
these elements.

* targetld indicates the destination vertex of a shortest path and is initially set to be sourceld.

« sourceld indicates the source vertex of a shortest path and is initially set to be targetId.

« distance indicates the length of a shortest path and is initially set to be 0. The value of distance is updated in each iteration of Stage1.
« status indicates the status of a specific path. a is “active”, and i is “inactive” meaning that the shortest path is already detected.
 weight indicates the number of the shortest paths from sourceld to targetld and is initially set to be 1.

« pathInfo indicates the list of the vertices on a shortest path and is initially set to be null.

* adjList indicates the list of the vertices adjacent to targetld.

3.2. Stagel: finding all-pair shortest paths

In this stage, the shortest paths between every pair of vertices in the network are calculated. For this purpose, we adopted a multi-
source message passing model proposed by Zeng et al. [22].

In the map stage, the frontiers are expanded from every vertex in the network to its adjacent vertices. For an input tuple, if status is
i, no operation is needed; if status is a, status is changed to i, 1 is added to distance, and targetId is added to pathinfo. The tuple is emitted
to the reduce stage. In addition, new tuples are generated by assigning each vertex in adjList to targetld. For these newly generated
tuples, status is set to be a, adjList is set to be null, and the other elements are set to be the same as those of the tuple emitted just be-
fore. In this way, all shortest paths between sourceld and targetld are generated and sent to a reducer. Fig. 4 shows an example of the
map stage.

In the reduce stage, among the tuples sharing sourceld and targetld, only the tuple that has the minimum value of distance survives.
If two or more tuples have the same minimum, weight is changed to the number of such tuples to remember the multiplicity of the
shortest path. Fig. 5 shows an example of the reduce stage. These map and reduce stages repeat until all tuples have i for status.

3.3. Stage2: calculating edge betweenness

In this stage, the edge betweennesses of all edges in the network are calculated. In the map stage, unity is divided to each edge on a
shortest path according to the total number (i.e., weight) of the shortest paths sharing sourceld and targetld. In the reduce stage, the
contribution of each shortest path is summed up for each edge. Fig. 6 shows an example of the map stage and the reduce stage.

Stage1: Stage2: Stage4:
Finding All -Pair Calculating Edge Removing the

Input Shortest Paths Betweenness Edges

Map / Reduce Map / Reduce Map / Reduce

Distributed
Cache

Stage3:
Selecting the Edges
to be Removed
Map / Reduce

Iterate

Fig. 3. An overview of the SPB-MRA algorithm.
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Fig. 4. Map stage of Stage1.

3.4. Stage3: selecting the edges to be removed

In this stage, k;..r edges are selected according to edge betweenness. k., is specified by a user as a tuning parameter. In the map
stage, no operation is needed. In the reduce stage, edges are sorted in the decreasing order of edge betweenness, and the top-kiz
edges are selected. We simply run only one reducer to get the globally sorted result. The selected edges and their value of edge be-
tweenness are stored in the distributed cache such that all mappers of Stage4 can access the information. Fig. 7 shows an example
of the map stage and the reduce stage.

Note that SPB-MRA selects multiple edges per iteration whereas the GN algorithm only one edge. That is, we remove k;., edges in
one iteration instead of iterating k;., times. Thus, this approximation can speed up community detection by k;., times. Our reasoning
is that the edge with the highest value of edge betweenness in the next iteration tends to have a high value in the current iteration, too.
Section 5.5 empirically proves that our reasoning is indeed correct.

3.5. Stage4: removing the edges

In this stage, the edges selected by Stage3 are removed from the network. Then, a new set of tuples are generated to reflect the
removed edges since edge betweenness needs to be recalculated in the next iteration. Note that edge betweenness changes if a
shortest path ran along one of the removed edges. In the map stage, if targetld of a tuple from Stage?2 is affected by the edges selected
in Stage3, its adjList is updated to represent a new network by removing the corresponding vertex. Then, a new tuple is created such
that its key is set to sourceld with other elements initialized since the shortest path from that sourceld needs to be recalculated. In the
reduce stage, duplicate tuples are first removed, and then the initial value of adjList is replaced with the updated value. These tuples
are provided to the input of Stage1 for the next iteration. Figs. 8 and 9 show an example of the map stage and the reduce stage.
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Fig. 5. Reduce stage of Stage1.
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Fig. 8. Map stage of Stage4.
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3.6. Summary

Algorithm 1 describes the pseudocode of SPB-MRA, which is self-explanatory. Stage1, Stage2, Stage3, and Stage4 are executed se-
quentially. That is, the next stage starts to run after the current stage completes. Each stage is processed in parallel by multiple map-
pers and reducers.

Algorithm 1. SPB-MRA

InpuT: A graph of the form of key-value pairs, ki,
Output: The top-ki., edges

1: repeat

2:  repeat

3 fn Stage1-Map(key &, value v) do

4 if v.status == “a” then

5: v.status < “i”; v.distance + = 1; v.pathlnfo.add(k); emit(k, v);
6: for each adj € v.adjList do

7: k'« adj; V' status <« “a”;v'.adjList < null; emit(k’,Vv");
8: else

9: emit(k, v);

10: fn Stagel-Reduce(key k, values v[1...n]) do

11: for s C v[1...n] and s has the same sourceld do
12: minList « the values which have minimum distance;
13: for each v; € minList do

14: vi.weight « |minList|; emit(k, v;);

15:  until status == “i” for all tuples;

16:  fn Stage2-Map(key k, value v) do

17: for each e € v.pathinfo do

18: k' — e; V' « 1/v.weight, emit(k’,V");

19:  fn Stage2-Reduce(key k, values v[1...n]) do
20: for each v; e v[1...n] do
21: sumo fEbtwness + = v;;
22: emit(k, sumo f Ebtwness);
23:  fn Stage3-Map(key k, value v) do
24: emit(1, v);

25:  fn Stage3-Reduce(key k, v[1...n]) do

26: Sort the values of v[1...n];

27: Add the top-k;,, values to DistributedCache.List;

28:  fn Stage4-Map(key k, value v) do

29: if k € DistributedCache.List then

30: v.adjList.remove(k); emit(k, v);

31: k' « v.sourceld; V' « a default value; emit(k’,V");
32: else

33: emit(k, v);

34:  fn Stage4-Reduce(key k, values v[1...n]) do

35: for cach v; € v[1...n] do

36: if v; is not a duplicate then

37: Update v;.adjList; emit(k, v;);

38: until no edge to cut exists;

4. Proposed algorithm: SPB-VCA
4.1. Overview

SPB-VCA goes through three stages, as described in Fig. 10. The output of a stage is chained to the input of its next stage. Each stage
executes its own update function. An iteration of these three stages produces a community detection result. In each iteration, the pair
of Stage1 and Stage2 is executed multiple times, considering each vertex as a source, whereas Stage3 is executed only once. The three

stages repeat until the result quality no longer improves.
A vertex and an edge are designed to maintain a tuple since it is allowed to customize the data type associated with a vertex or an

edge in GraphChi. A vertex keeps the following two elements.

« dist indicates the length of a shortest path from a source to itself. The value is initially set to be 0 if the vertex is the source and «

otherwise.
« sigma indicates the number of the shortest paths from a source to itself. The value is initially set to be 1 if the vertex is the source and

0 otherwise.

An edge keeps the following five elements. In GraphChi, edges typically play a role of messengers, passing a value between its
adjacent vertices.

Please cite this article as: S. Moon, et al., Parallel community detection on large graphs with MapReduce and GraphChi, Data Knowl.
Eng. (2015), http://dx.doi.org/10.1016/j.datak.2015.05.001
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Fig. 9. Reduce stage of Stage4.

msg_dist indicates the value of dist passed by a vertex to its adjacent vertices.

msg_sigma indicates the value of sigma passed by a vertex to its adjacent vertices. The value is the same as the number of the
shortest paths passing through the edge.

visited indicates whether the edge has been visited and is initially set to be false.

single_eb indicates the value of edge betweenness originated from the current source vertex. The value is reset when a source vertex
is changed.

allpair_eb indicates the value of edge betweenness accumulated. The value is initially set to be 0 and is increased by single_eb when
a source vertex is changed.

4.2. Stagel: finding single source shortest paths

In this stage, the shortest paths from a single source to every vertex in the network are calculated. For this purpose, we implement-
ed breadth first search (BFS) in GraphChi's manner, i.e., by vertex-centric programming.

In the initialization step, the tuples associated with vertices and edges are initialized as shown in Fig. 11. This figure shows the re-
sult of the initialization step when Vertex 0 is the source. For vertices, dist is set to be 0 for a source vertex and « for other vertices;
sigma is set to be 1 for a source vertex and 0 for other vertices. For edges, msg_dist and msg_sigma of an out-edge is the same as its
starting vertex; visited is set to be false initially for all edges; sigle_eb and allpair_eb are set to be 0. Then, the vertices that are adjacent
to the source vertex are scheduled for subsequent operations.

After the initialization step, each vertex scheduled checks whether its in-edges whose visited is false. Let's denote the vertex's cur-
rent dist as currDist and each in-edge's msg_dist + 1 as candDist. For each of such in-edges, the edge is marked as visited
(ie., visited < true), and the vertex compares currDist and candDist as below:

1. candDist < currDist: It means that we find a shorter path than those identified so far. Therefore, we set the vertex's dist to be
candDist and sigma to be the corresponding in-edge's msg_sigma. Then, the vertex copies its new dist and sigma to its out-edges'
msg_dist and msg_sigma and schedules its adjacent vertices except a source vertex.

2. candDist = currDist: It means that we find another path whose length is the same as that of the current shortest path. Therefore,
the vertex's dist is not changed, and only the vertex's sigma is increased by the corresponding in-edge's msg_sigma. Then, the vertex
copies its dist and sigma to its out-edges' msg_dist and msg_sigma.

Staget:

Finding Single :
Source Shortest Calculating Edge
Betweenness

Paths Edges

Stage3:
Selecting and
Removing the

Stage2:

For each
source

Iterate

Fig. 10. An overview of the SPB-VCA algorithm.
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Fig. 11. Initialization of Stage1 (* indicates a source vertex).

3. candDist > currDist: It means that this path is longer than the current shortest path. Thus, we do not have to do anything.

Fig. 12 shows a snapshot of the graph after executing an update function on Vertex 1. Here, currDist is «, and candDist is 1. Thus, dist
is changed to 1, and sigma is changed to 1. Also, msg_dist and msg_sigma of Edge (1, 0), (1, 2), (1, 3) are changed to all 1's. The procedure
continues until there is no more vertex to schedule, and a result of BFS is shown in Fig. 13. In addition, the leaf vertices of the BFS tree
are also identified in this stage.

4.3. Stage2: calculating edge betweenness

In this stage, edge betweenness is calculated using the shortest paths obtained from the previous stage. The leaf vertices are first
scheduled. For a vertex v and each in-edge ie on the shortest path, single_eb of ie is computed by Eq. (1). Here, % is the ratio of
the number of the shortest paths passing through ie to that of the shortest paths passing through v, meaning the fraction of edge be-
tweenness that this edge ie absorbs. In parenthesis, the value 1 indicates the value of edge betweenness originated from v; and the

summation indicates the sum of edge betweennesses originated from the previous vertices.

L ie.msg_sigma .
iesingleeb=——3—"2""(1+ oe.single_eb 1
£ v.sigma ( aeE\;utedge ¢ ) ( )

Then, single_eb is accumulated into allpair_eb to calculate the final score which all vertices are considered as a source. SPB-VCA
finds an edge to accumulate the computed betweenness as follows. If the identifier of an in-edge's ending vertex is greater than
that of the in-edge’s starting vertex, i.e., the in-edge follows the direction of BFS, single_eb is added to the in-edge's allpair_eb. Other-
wise, SPB-VCA selects an edge whose direction is opposite to the in-edge and adds single_eb to that edge's allpair_eb. Fig. 14 shows a
snapshot of the graph after the update function is executed on Vertex 4. Then, the vertices adjacent to the current vertex via its in-
edges on the shortest paths are scheduled for subsequent operations.

This procedure goes on until the source vertex is scheduled. Thus, the order of scheduling vertices in Stage2 is opposite to that of
scheduling vertices in Stage1. After both Stage1 and Stage2 for a specific source vertex are finished, the next vertex becomes a source,
and the same procedures are carried out. Fig. 15 shows the final status of the graph when both Stage1 and Stage2 are finished for all
vertices Vertex 0-4. The value of allpair_eb in each edge indicates the final edge betweenness score.

scheduling o (=, 0)

(1,1, false, 0, 0) 2 (=, 0, false, 0, 0)

©.1) (0, 1,true, 0, 0) (.1

0 1
(1,1, false, 0, 0)

(=, 0,true, 0,0) (e, 0, false, 0, 0)

(o, O,true, 0,0) (0, O, false, 0, 0)

(1,1, false, 0, 0) (e, 0, false, 0, 0)

3

scheduling @ (2, 0)

Fig. 12. The BFS step of Stage1.
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Fig. 13. The result of BFS (source: Vertex 0).

4.4. Stage3: selecting and removing the edges

In this stage, like SPB-MRA, k;.., edges are selected according to edge betweenness. To facilitate this task, SPB-VCA allocates a heap
of size ki, in main memory. While scanning each edge's betweenness in a graph, SPB-VCA updates the heap to maintain the top-ki,
edges. SPB-VCA also removes multiple edges per iteration, so we expect a speedup by the approximation. Since GraphChi supports an
edge removal directly on a graph,? a new graph is implicitly generated unlike SPB-MRA.

Algorithm 2. SPB-VCA (update function for a vertex v)

INpuT: A graph, ki, a vertex v, a source vertex s
Ourput: The top-ki,., edges
1: if the current stage is STAGE1 then
2:  Initialize the data tuples of vertices and edges;
3:  for each ie € v.inedge do
4 if ie.visited == false then
5 ie.visited « true;
6: currDist « v.dist; candDist « ie.msg_dist + 1;
7 if candDist < currDist then
8 v.dist « candDist; v.sigma « ie.msg_sigma;
9 for each oe € v.outedge do

10: oe.dist < v.dist; oe.sigma « v.sigma;

11: if oe.visited == false and oe.vertex_id # s then
12: addTask(oe.vertex_id);

13: else if candDist == currDist then

14: v.sigma < v.sigma + ie.msg_sigma;

15 for each oe € v.outedge do

16: oe.dist < v.dist; oe.sigma «— v.sigma;

17: else if the current stage is STAGE2 then
18:  tempEB « 0;
19:  if v # s then

20: for each oe € v.outedge do

21: tempEB < tempEB + oe.single_eb;

22: for each ie € v.inedge and ie is on a shortest path to v do

23: EB « (1 + tempEB) - %

24: if ie.vertex_id < v.id then

25: ie.allpair_eb « ie.allpair_eb + EB;

26: else

27: Find the edge e whose direction is opposite to that of ie;
28: e.allpair_eb « e.allpair_eb + EB;

29: else if the current stage is STAGE3 then
30:  for each oe € v.outedge do
31: Update the heap of size k;,, by oe.allpair_eb;

4.5. Summary

Algorithm 2 describes the pseudocode of SPB-VCA, which is self-explanatory. Recall that SPB-MRA needed the two functions map
and reduce. On the other hand, SPB-VCA needs only one function update, which is more intuitive. This function specifies the task that
should be performed on a vertex. Programmers can update the values of a vertex and its adjacent edges, schedule its adjacent vertices,
and even modify the topology of a graph. Our update function triggers one of the three stages according to the stage being executed.

2 This feature is supported only for the edges associated with basic data types in the latest version.
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Fig. 14. A snapshot of the graph during Stage2.
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Fig. 15. The final scores of edge betweenness.

Even though one might think that SPB-VCA is simply an implementation of the GN algorithm using GraphChi, we did some clever
engineering to make SPB-VCA more elegant and efficient.

SPB-VCA shows the possibility of applying the vertex-centric model to an edge-centric task. The vertex-centric model has been mainly
used for the tasks that compute values attached to vertices (e.g., PageRank and vertex centrality). However, edge betweenness is attached
to an edge, not to a vertex. In SPB-VCA, the vertices are delegated to update the edge betweenness of their in-edge(s) on the shortest path.
SPB-VCA reduces the number of times that each vertex is scheduled. SPB-VCA schedules only the leaf vertices when entering into
Stage2. For example, in Fig. 13, Vertex 4 is scheduled. Then, each leaf updates the edge betweennesses of its in-edges on the shortest
paths (Edge (2, 4), (3, 4)) and schedules its adjacent vertices (Vertex 2, 3) for subsequent operations. Here, the scheduled vertices
can be processed in parallel. The process is repeated until a source vertex (Vertex 0) is scheduled. In short, Stage2 is executed in the
following order: Vertex 4 — Vertex 2, 3 — Vertex 1 — Vertex 0. Thus, every vertex is scheduled only once.

5. Performance tests
5.1. Data and environment

We used two sets of collaboration networks available at Stanford Large Network Dataset Collection [23]. Table 1 shows the details
of the data. (i) SPB-MRA: We used Hadoop version 1.0.4 and Java version 1.6.0 to implement SPB-MRA. The performance tests were

Table 1

Data set description.
Data statistics ca-GrQc ca-HepTh
Vertices 5242 9877
Edges 28,980 51,971
Type Undirected Undirected
Average clustering coefficient 0.5296 04714
Number of triangles 48,260 28,339
Fraction of closed triangles 0.6298 0.284
Diameter 17 17
90-percentile effective diameter 7.6 7.5
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Table 2
Amazon EC2 instance specifications for SPB-MRA.

Instance specification

Instance type m1.xlarge

Region US-EAST (N. Virginia)

CPU Intel(R) Xeon(R) CPU E5645 @ 2.40GHz
Memory 15 GB

Instance storage 1,690 GB

Processor architecture 64-bit

# of vCPUs 4

ECU 8

oS Amazon Linux AMI release 2013.03

AMI ami-05355a6¢

conducted on a cluster that consists of 12 Amazon EC2 m1.xlarge instances. Table 2 shows the specifications of the Amazon EC2 in-
stances used for SPB-MRA.

In addition, Fig. 16 shows an example of cluster configuration for running 64 tasks. One instance was dedicated to a master node,
and the other instances were used for running map and reduce tasks. The map and reduce tasks were evenly distributed to the 11 in-
stances (nodes), so the number of tasks on each instance was easily determined by the total number of tasks to invoke.

(ii) SPB-VCA: We used GraphChi's C++ version and g+ + version 4.7.2 to implement SPB-VCA. The performance tests were con-
ducted on a commodity PC equipped with a quad-core 3.40 GHz Intel i5 processor, 8 GB of main memory, and a 500 GB SATA HDD.

'd ~\
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- Namenode
- Jobtracker
Datanode Datanode Datanode Datanode Datanode
Tasktracker Tasktracker Tasktracker feravesssseasns Tasktracker Tasktracker
- 3 Mappers - 3 Mappers - 3 Mappers - 3 Mappers - 2 Mappers
- 3 Reducers - 3 Reducers - 3 Reducers - 3 Reducers - 2 Reducers
11 Instances

Fig. 16. A cluster configuration with 12 Amazon EC2 instances.
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Fig. 17. Total elapsed time for the “ca-HepTh” data set.
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Fig. 18. Total elapsed time for the “ca-GrQc” data set.

5.2. Scalability of SPB-MRA

In order to show the scalability of SPB-MRA, we measured total elapsed time for one iteration of SPB-MRA while varying the num-
ber of reducers from 1 to 32. Figs. 17 and 18 show that elapsed time decreased by 6.6 times and 3.9 times respectively as the number of
reducers increased until 8. This number of reducers was sufficient for these data sets, and adding more reducers was not effective.
Since the “ca-HepTh” data set is twice larger than the “ca-GrQc” data set, the slope of the improvement became flat earlier in
Fig. 18 than in Fig. 17.

5.3. Performance of SPB-VCA

We measured elapsed time for one iteration of SPB-VCA as well. Fig. 19 shows the elapsed time of SPB-MRA and SPB-VCA for the
two data sets. The performance of SPB-VCA is higher than that of SPB-MRA by 4.4 times for the “ca-HepTh” data set and by 5.6 times
for the “ca-GrQc” data set. It is surprising that SPB-VCA running on just a single PC (4 cores) outperformed SPB-MRA running on a clus-
ter of twelve instances (96 cores). This result demonstrates some inefficiency of MapReduce for iterative graph computation and, at
the same time, the benefits of the vertex-centric model.

To compare SPB-VCA with SPB-MRA is to compare apples with oranges. SPB-MRA suffers from the cost of disk I/O’s to and from the
HDFS as well as that of message passing among cluster nodes. Meanwhile, SPB-VCA introduces only local disk I/0's. Thus, if the data set
in hand can fit in just a single machine, SPB-VCA is a better choice than SPB-MRA. On the other hand, if the data set is too large to hold
in a single machine, it is absolutely imperative that we choose SPB-MRA.
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Fig. 19. Performance comparison between SPB-MRA and SPB-VCA.
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Fig. 20. Relative runtime of SPB-VCA while varying the number of threads.

Table 3

Accuracy of the approximation technique.
Kicer Iteration # of edges removed F-score
1 40 40 1.0
2 20 40 0.875
4 10 40 09
5 8 40 0.875
8 5 40 09
10 4 40 0.8

5.4. Scalability of SPB-VCA

To magnify the effect of parallelization in SPB-VCA, the performance of SPB-VCA was tested for the LFR benchmark network data
[24] generated with a high average degree 100.

Then, we measured the relative runtime of SPB-VCA for one iteration while varying the number of threads from 1 to 4, and the
result is reported in Fig. 20. Unfortunately, the performance increased only by 8-10% as the number of threads increased. This phe-
nomenon, however, almost conforms to the result reported for connected components by the GraphChi authors [ 14]. The main reason
is that disk 1/0's take up most of execution time since SPB-VCA is not a computation-demanding algorithm. In addition, we conjecture
that GraphChi is not fully optimized yet as it is in an early stage of development.

5.5. Approximation accuracy of SPB-MRA and SPB-VCA

In order to show the approximation accuracy, we measured the F-score [25] with different k;., values. ki means the number of
edges to be removed for one iteration. The ground truth for the F-score is the set of 40 edges removed by selecting only one edge per
iteration, as described in the original GN algorithm. In Table 3, as the value of k., increased, the error also increased because the edges
not really having the highest edge betweenness could be removed more likely. However, even though we removed four edges at once,
the F-score decreased only by 10%. Thus, it is shown that we can speed up by four times with only 10% error.

6. Conclusion

In this paper, we proposed two novel parallel algorithms, SPB-MRA and SPB-VCA, for discovering communities from large-scale net-
works. We adopted the MapReduce model and the vertex-centric model to parallelize the GN algorithm. Our two algorithms were im-
plemented on top of Hadoop and GraphChi respectively. The results of performance evaluation demonstrated the benefits of parallel
computing of edge betweenness as well as the advantages of the vertex-centric model over the MapReduce model for iterative graph
computation. Our future work includes further improving the performance of SPB-VCA by adopting other parallel computing platforms.
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