
Complex Network Theory

Lecture 6

Small world networks

Instructor: S. Mehdi Vahidipour

(Vahidipour@kashanu.ac.ir)

Spring 2018

Thanks A. Rezvanian

A. Barabasi, L.Adamic, 



Outline

 Milgram’s small world experiment

 Watts & Strogatz small world model

 Kleinberg small world model

 Watts, Dodds & Newman community model

 Network models: a few examples

 Next class

 Scale free networks
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Milgram’s experiment (1960’s):

Given a target individual and a particular property, pass the message to a 

person you correspond with who is “closest” to the target.

Small world experiments then
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Small-world experiment

 Start

 Omaha, 

Nebraska, and 

Wichita, Kansas

 End

 Boston, 

Massachusetts
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Milgram’s experiment

 Instructions:

 Given a target individual (stockbroker in Boston), pass the 

message to a person you correspond with who is “closest” to the 

target.

 some letters: From Wichita (Kansas) and Omaha (Nebraska) to 

Sharon (Mass)

 If you do not know the target person on a personal basis, do not 

try to contact him directly. Instead, mail this folder to a personal 

acquaintance who is more likely than you to know the target 

person.

 Outcome:

 20% of initiated chains reached

 Target average chain length = 6.5

 “Six degrees of separation
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Milgram’s small world experiment

 Target person worked in Boston as a stockbroker.

 296 senders from Boston and Omaha.

 232 of the 296 letters never reached the destination

 64 letters (20%) of senders reached target.

 average path length = 6.5.

 “Six degrees of separation”

 The Small World concept

in simple terms describes

the fact despite their often

large size, in most networks 

there is a relatively short path

between any two nodes.
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Degrees of separation in real networks

 In 2001, Watts attempted to recreate Milgram's

experiment on the internet, using an e-mail message as 

the "package" that needed to be delivered, with 48,000 

senders and 19 targets (in 157 countries). Watts found 

that the average (though not maximum) number of 

intermediaries was around 6.

 A 2007 study by Leskovec and Horvitz examined a data 

set of instant messages composed of 30 billion 

conversations among 240 million people. They found the 

average path length among Microsoft Messenger users 

to be 6.6 (some now call the theory, "the seven degrees 

of separation" because of this)
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Small world experiments now

Email experiment by Dodds, 

Muhamad, Watts, Science 

301, (2003)

• 18 targets

• 13 different countries

• 60,000+ participants

• 24,163 message chains 

• 384 reached their targets

• average path length 4.0

image by Stephen G. Eick 

http://www.bell-labs.com/user/eick/index.html

(unrelated to small world experiment…) 
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Degrees of separation in real networks

 Species in food webs appear to be on average 2 links 

away from each other.

 Molecules in the cell are separated on average by 3 

chemical reactions.

 Scientists in different fields of science are separated by 4 

to 6 co-authorship links.

 The neurons in the brain of the C. elegans worm are 

separated by 14 synapses.

 The Web holds the absolute highest record of 20 to 22 

 The Internet, a network of hundreds of thousands of 

routers, has a separation of 10 to 12

Complex Network Theory, S. M. Vahidipour, Spring 2018. 10



Interpreting Milgram’s experiment

 Is 6 a surprising number?
 In the 1960s? Today? Why?

 If social networks were random… ?
 Pool and Kochen (1978) - ~500-1500 

acquaintances/person

 ~ 1,000 choices 1st link

 ~ 10002 = 1,000,000 potential 2nd links

 ~ 10003 = 1,000,000,000 potential 3rd links

 If networks are completely cliquish?
 all my friends’ friends are my friends

 what would happen?

Is 6 an accurate number?
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High node degrees in real networks

 How do networks achieve such a uniformly short path 

despite consisting of billions of nodes?

 The answer lies in the highly interconnected nature of 

these networks.

 Why in real networks, nodes have many more links than 

one (the threshold for connectivity)?

 At the critical point when the average connectivity is 

around one per node, the separation between nodes 

could be rather large.

 But as we add more links, the distance between the 

nodes suddenly collapses.
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Small-world networks

 Watts and Strogtaz showed that many real-world 

networks:

 Have small characteristic path length compared to random 

networks

 At the same time, have high clustering coefficient that is much 

larger than that of random networks

 There are indeed small-worlds

 This discovery had huge impact on the various 

developments in Network fields

 Search in complex networks

 Communication in networks

 Synchronization and consensus
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Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442.

The small world model

High clustering: my friends’ friends tend to be my friends

Watts & Strogatz (1998) - a few random links in an 

otherwise clustered graph give an average shortest path

close to that of a random graph
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Watts-Strogatz model

 The construction algorithm:

 Consider a ring graph where each node is connected to its k

nearest neighbors with undirected edges (k-regular)

 Choose a node and one of the edges that connects it to its 

nearest neighbors and then with probability P reconnect this 

edge to a node randomly chosen over the graph

 provided that the duplication of edges and self-loops are forbidden

 The process is repeated until all nodes and nearest neighbor 

connecting edges are met

 Next, the edges that connect the nodes to their second nearest 

neighbors are reconnected and the rewiring process is 

performed on them with the same conditions as above

 The same procedure is then repeated for the remaining edges 

connecting the nodes to their k nearest neighbors
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Watts-Strogatz model (WS model)

 The resulting graph is so that

 for the value of P = 0 we will have the original ring graph

 for the value of P = 1 produces a pure random graph

 For some values of P between these two extremes the resulting 

network has small characteristics path length, and at the same 

time, high clustering coefficient

 The average degree will be <k> = k , edges: nk/2
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Networks in nature (empirical observations)

)ln(network Nl 

graph randomnetwork CC 

neural network of C. elegans,

semantic networks of languages,

actor collaboration graph,

food webs.
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Newman-Watts model

 Starting with a k-ring graph

 N nodes

 Non-connected nodes get connected with probability P

 P = 1 results in complete graph

 for some small values of P

 small-world property

 high transitivity

 The networks are always connected

Complex Network Theory, S. M. Vahidipour, Spring 2018. 27



Newman-Watts model

20 nodes in a 2-regular

ring with

 a) P = 0

 b) P = 0.05

 c) P = 0.15

 d) P = 1
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Two ways of constructing a small world graph

 As in many network generating algorithms

 Disallow self-edges

 Disallow multiple edges

Select a fraction p of edges

Reposition on of their endpoints

Add a fraction p of additional

edges leaving underlying lattice

intact

(Newman-Watts model)

(Watts-Strogatz model)
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Original model

 Each node has K nearest neighbors (local)

 Probability p of rewiring to randomly chosen nodes

 p small: regular lattice

 p large: classical random graph
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p=0 Ordered lattice

 Compute the clustering coefficient as follows

 each node is connected to K neighbors, who can have K*(K-1)/2 

pairwise connections between them

 some of the connections between them are present in the lattice

Caution: sometimes the lattice will be specified as

each node connects to K closest neighbors

each node connects to all neighbors within distance k (k = K/2)
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Clustering coefficient for regular lattice

 In general, can have any K

 a neighbor K/2 hops away from i
can connect to (K/2 – 1) of i’s 
neighbors

 a neighbor K/2-1 hops away can 
connect to (1 + K/2 – 1) neighbors

 K/2 – 2 hops away

 (2 + K/2 – 1) neighbors

 1 hop away

 2*(K/2 – 1)

 Sum this up

 multiply by factor of 2 because i
has neighbors on both sides

 divide by a factor of 2 because 
edges are undirected

i

i

i
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Clustering coefficient for regular lattice

 The number of connections 

between neighbors is given by

i

i
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 The maximum number of 

connections is K*(K-1)/2

 → clustering coefficient is
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Average shortest path – regular lattice

 Average node is N/4 hops away (a quarter of the way 

around the ring), and you can hop over K/2 nodes at a 

time

1
2


K

N
l
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p=1 Random graph

small             
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There are an average of K links per node.

The probability that any two nodes are connected is p = K/N. 

The probability that two nodes which share in a neighbor in common

are connected themselves is the same as any two random nodes: K/N

(actually (K-1)/N because they have already expended one edge on their 

common neighbor.
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What happens in between?

 Small shortest path means small clustering?

 Large shortest path means large clustering?

 Through numerical simulation

 As we increase p from 0 to 1

 Fast decrease of mean distance

 Slow decrease in clustering
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Change in clustering coefficient and average path length 

as a function of the proportion of rewired edges

l(p)/l(0)

C(p)/C(0)

10% of links rewired1% of links rewired

No exact analytical solution

Exact analytical solution
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Clustering coefficient: addition of random edges

 How does C depend on p?

 C’(p)= 3  number of triangles / number of connected

triples

 C’(p) computed analytically for the small world model

without rewiring
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Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442.
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nodes are placed on a lattice and

connect to nearest neighbors

additional links placed with puv~ 

Kleinberg’s geographical small world model

r

uvd 

Source: Kleinberg, ‘The Small World Phenomenon, An Algorithmic Perspective’ (Nature 2000)

exponent that will determine navigability
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Small-worlds: algorithmic view

 Probability [u has v as its long range contact] :

 Infinite family of networks:

 r = 0: each node’s long-range contacts are chosen independently 

of its position on the grid

 As r increases, the long range contacts of a node become 

clustered in its vicinity on the grid
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When r=0, links are randomly distributed, ASP ~ log(n), n size of grid

no locality

0~p p
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Links highly localized links on a lattice

4

1
~p

d
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Links balanced between long and short range

2

1
~p

d
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slide by Mark Newman
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slide by Mark Newman
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Roads Air routes

slide by Mark Newman
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Summary

 The world is small! 

 Watts & Strogatz came up with a simple model to explain 

why

 Later, more sophisticated models of social structure 

were developed

 There are many, many more models that can be thought 

up and that give useful insights
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(Chapters 20)

 Newman, Mark EJ. "Random graphs as models of 
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Genome to the Internet (2006). 

 Watts DJ, Strogatz SH (1998) Collective dynamics of 

‘small-world’ networks. Nature 393:440-442.
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