Outline

- Language modeling
- Language models for IR
- Smoothing
- Alternative models
- Comparison with traditional models

Laplace Smoothing

- Count events in observed data
- Add 1 to every count
- Renormalize to obtain probabilities

- If event counts are $(m_1, m_2, ..., m_k)$ with $\sum_i^k m_i = N$ then
 - Max likelihood estimates are $(\frac{m_1}{N}, ..., \frac{m_K}{N})$

• Laplace estimates are
$$(\frac{m_1+1}{N+k}, \dots, \frac{m_K+1}{N+k})$$

Discounting Methods

- Laplace smoothing
- Lindstone correction
 - Add ε to all counts
 - Re-normalize
 - $\bullet \quad = > \quad \frac{m_i + \varepsilon}{N + k\varepsilon}$
- Absolute discounting
 - Subtract ε
 - Re-distribute probability mass

Background Probability

- Key intuition: A nonoccurring term is possible (even though it didn't occur), ...
- . . . but no more likely than would be expected by chance in the collection

- Problem with all discounting methods:
 - Discounting treats unseen words equally (add or subtract ε)
 - Some words are more frequent than others

Background Probability

- Idea: use background probabilities
 - Smooth ML estimates with general English expectations

(computed as relative frequency of a word in a large collection)

• Reflects expected frequency of events by background probability $P(w|M_c)$

$$P(w|M_c) = \frac{CF_w}{|c|}$$

- M_c : the collection model
- CF_w : the number of occurrences of w in the collection
- $|c| = \sum_{w} CF_{w}$ the total number of tokens in the collection

=background probab

Interpolation vs. Back off Smoothing

- Two possible approaches to smoothing
- Interpolation:
 - Adjust probabilities for all events, both seen and unseen
- Back-off:
 - Adjust probabilities only for unseen events
 - Leave non-zero probabilities as they are
 - Rescale everything to sum to one: rescales "seen" probabilities by a constant
- Interpolation tends to work better
 - And has a cleaner probabilistic interpretation

Jelinek-Mercer Smoothing

- Basic interpolation method
- Mixes the probability from the document with the general collection frequency of the word
- Correctly setting λ is very important for good performance
 - High value of λ : "conjunctive-like" search tends to retrieve documents containing all query words
 - Low value of λ : more disjunctive, suitable for long queries

$$P(w|D) = \lambda \frac{TF_{w,D}}{|D|} + (1 - \lambda) \frac{CF_w}{|c|}$$

Smoothing for N-gram Model (Jelinek-Mercer)

 Mixes different n-gram probabilities from the document with the general collection frequency of the word

• Unigram:
$$P(w|D) = \lambda \frac{TF_{w,D}}{|D|} + (1-\lambda) \frac{CF_w}{|c|}$$

Bigram:
$$P(w_i|w_{i-1}, D) = \lambda_1 \left[\lambda_2 \frac{TF_{w_{i-1}w_i, D}}{TF_{w_{i-1}, D}} + (1 - \lambda_2) \frac{TF_{w_i, D}}{|D|}\right] + (1 - \lambda_1) \frac{CF_{w_i, D}}{|c|}$$

or
$$P(w_i|w_{i-1}, D) = \lambda_1 \frac{TF_{w_{i-1}w_i, D}}{TF_{w_{i-1}, D}} + \lambda_2 \frac{TF_{w_i, D}}{|D|} + (1 - \lambda_1 - \lambda_2) \frac{CF_w}{|c|}$$

Outline

- Language modeling
- Language models for IR
- Smoothing
- Alternative models
- Comparison with traditional models

- BM25/LM: based on probability theory
- Vector space: based on similarity
 - A geometric/linear algebra notion

 All models consider term, document, and collection frequency as well as document length but in different ways

- Term frequency
 - It is directly used in all three models
 - LMs: raw term frequency
 - BM25/Vector space: more complex

Length normalization

- Vector space: cosine or pivot normalization
- LMs: probabilities are inherently length normalized
- BM25: tuning parameters for optimizing length normalization

- Inverse document frequency
 - BM25/Vector space use it directly
 - LMs: mixing term and collection frequencies has an effect similar to IDF
 - Collection frequency (LMs) vs. document frequency (BM25, vector space)

Assumptions in LM

- Simplifying assumption:
 - Terms are conditionally independent
 - => Not true! But works in most cases.
- Vector space model make the same assumption
 - Cleaner statement of assumptions than vector space
 - Thus, better theoretical foundation than vector space
 - Moreover, LM has the flexibility of considering term dependency

Questions?