= |anguage modeling

= [_anguage models for IR

= Smoothing

= Comparison with traditional models

Laplace Smoothing

= Count events In observed data

= Add 1 to every count

= Renormalize to obtain probabilities

= |f event counts are (im, m,, ..., m;) with Zf’ m; = N then

= Max likelihood estimates are (%, %

. +1 +1
= Laplace estimates are (& K

N+k ' 77 N+k)

Discounting Methods

= |_aplace smoothing

= Lindstone correction

= Add ¢ to all counts

= Re-normalize
ml- + €
N + ke

E =>

= Absolute discounting

= Subtract ¢

= Re-distribute probability mass

Background Probability

= Key intuition: A nonoccurring term is possible (even though it didn’t occur), . . .

= ... but no more likely than would be expected by chance in the collection

= Problem with all discounting methods:

= Discounting treats unseen words equally (add or subtract ¢)

= Some words are more frequent than others

Background Probability

= |dea: use background probabilities
= Smooth ML estimates with general English expectations
(computed as relative frequency of a word in a large collection)

= Reflects expected frequency of events by background probability P(w|M,)

CE,
Pw|M,) = Tl

= M., : the collection model
= CF,: the number of occurrences of w in the collection
= |c| =), CE,the total number of tokens in the collection

. =ML estimate

=background probab

Interpolation vs.Back off Smoothing

= Two possible approaches to smoothing

= |nterpolation:
= Adjust probabilities for all events, both seen and unseen

= Back-off:

= Adjust probabilities only for unseen events
= Leave non-zero probabilities as they are
= Rescale everything to sum to one: rescales “seen’ probabilities by a constant

= |nterpolation tends to work better
= And has a cleaner probabilistic interpretation

Jelinek-Mercer Smoothing

= Basic interpolation method

= Mixes the probability from the document with the general collection frequency of the
word

= Correctly setting A Is very important for good performance

= High value of A: “conjunctive-like” search — tends to retrieve documents containing all query words

= Low value of »: more disjunctive, suitable for long queries

P(w|D) = A Ty 1-1)—% Chy
- |D| Ic] 3 . + (1-A)

Smoothing for N-gram Model (Jelinek-Mercer)

= Mixes different n-gram probabilities from the document with the general collection frequency
of the word

= Unigram: P(w|D) = A |I;V| lc\lzv
= Bigram: P(w;lw;_y,D) = A; [4, T:,, lw;n F(1- 12) 214 (1 — ﬂﬂ CFW
Wi—1
TFw;_ w; . TFy Cy
o Fwilwi-y, D) =4, TFWL-:,:;D 2 |n| + (-4 =) o

= |anguage modeling
= [_anguage models for IR

= Smoothing

= Comparison with traditional models

Vector Space vs.BM25 vs.LM

= BM25/LM: based on probability theory

= \£ctor space: based on similarity

= A geometric/linear algebra notion

= All models consider term, document, and collection frequency as well as document
length but in different ways

Vector Space vs.BM25 vs.LM

= Term frequency

= |t is directly used in all three models

= LMs: raw term frequency

= BM25/\kctor space: more complex

Vector Space vs.BM25 vs.LM

= |ength normalization

= \£ctor space: cosine or pivot normalization

= LMs: probabilities are inherently length normalized

= BM25: tuning parameters for optimizing length normalization

Vector Space vs.BM25 vs.LM

= [nverse document frequency

= BM25/\kctor space use it directly

= LMs: mixing term and collection frequencies has an effect similar to IDF

= Collection frequency (LMs) vs. document frequency (BM25, vector space)

Assumptions in LM

= Simplifying assumption:

= Terms are conditionally independent

=> Not true! But works in most cases.

= \£ctor space model make the same assumption
= Cleaner statement of assumptions than vector space

= Thus, better theoretical foundation than vector space

= Moreover, LM has the flexibility of considering term dependency

Questions?

