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Abstract—This paper presents a review of recently used direct
torque and flux control (DTC) techniques for voltage inverter-fed
induction and permanent-magnet synchronous motors. A variety
of techniques, different in concept, are described as follows:
switching-table-based hysteresis DTC, direct self control, con-
stant-switching-frequency DTC with space-vector modulation
(DTC-SVM). Also, trends in the DTC-SVM techniques based on
neuro-fuzzy logic controllers are presented. Some oscillograms
that illustrate properties of the presented techniques are shown.

Index Terms—AC motors, direct torque control (DTC), voltage-
source inverters.

I. INTRODUCTION

THE induction motor (IM), thanks to its well-known ad-
vantages of simple construction, reliability, ruggedness,

and low cost, has found very wide industrial applications. Fur-
thermore, in contrast to the commutation dc motor, it can be
used in an aggressive or volatile environment since there are no
problems with spark and corrosion. These advantages, however,
are superseded by control problems when using an IM in in-
dustrial drives with high performance demands. Based on com-
monly adopted complex space-vector description (represented
in a coordinate frame rotating with angular speed and
written in per-unit form), the IM equations are [8], [10], [36],
[40], [77]–[79]

(1)

(2)

(3)

(4)

(5)

where , , , , and are the stator voltage, stator cur-
rent, rotor current, stator flux linkage, and rotor flux linkage
vectors, respectively; is the mechanical angular speed;
is the load torque; , , and are the stator, rotor, and magne-
tizing inductances; Hz for a nominal frequency
of 50 Hz; is the mechanical time constant, and the index
denotes the rotating coordinate system.
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IM control methods can be divided into scalar and vector
control. The general classification of the variable-frequency
methods is presented in Fig. 1. In scalar control, which is based
on relationships valid in steady state, only magnitude and
frequency (angular speed) of voltage, current, and flux linkage
space vectors are controlled. Thus, the scalar control does not
act on space vector position during transients. Contrarily, in
vector control, which is based on relations valid for dynamic
states, not only magnitude and frequency (angular speed) but
also instantaneous positions of voltage, current, and flux space
vectors are controlled. Thus, the vector control acts on the posi-
tions of the space vectors and provides their correct orientation
both in steady state and during transients. According to the
definition above, vector control is a general control philosophy
that can be implemented in many different ways. The most
popular method, known as field-oriented control (FOC) or
vector control, has been proposed by Hasse [28] and Blaschke
[5], and gives the induction motor high performance. In the
vector control the motor equations are transformed in a coor-
dinate system that rotates in synchronism with the rotor flux
vector. These new coordinates are called field coordinates. In
field coordinates—under constant rotor flux amplitude—there
is a linear relationship between control variables and torque.
Moreover, like in a separately excited dc motor, the reference
for the flux amplitude is reduced in the field-weakening region
in order to limit the stator voltage at high speed. Transfor-
mation of IM equations in the field coordinates has a good
physical basis because it corresponds to the decoupled torque
production in a separately excited dc motor. However, from the
theoretical point of view, other types of coordinate transforma-
tions can be selected to achieve decoupling and linearization
of IM equations. This has originated the methods known as
modern nonlinear control [6], [61], [73]. Marino et al. [53]
have proposed a nonlinear transformation of the motor state
variables so that, in the new coordinates, the speed and rotor
flux amplitude are decoupled by feedback; the method is
called feedback linearization control (FLC) or input–output
decoupling [6], [39], [40], [61]. A similar approach, derived
from a multi-scalar model of the induction motor, has been
proposed by Krzeminski [45]. A method based on the variation
theory and energy shaping has been investigated recently and is
called passivity-based control (PBC) [60]. In this case, an IM is
described in terms of the Euler–Lagrange equations expressed
in generalized coordinates.

When, in the mid 1980s, there was a trend toward the stan-
dardization of the control systems on the basis of the FOC phi-
losophy, there appeared the innovative studies of Depenbrock
[2], [19], [20] and of Takahashi and Noguchi [71], which depart
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Fig. 1. Classification of IM control methods (NFO—natural field orientation [34], [35]).

from the idea of coordinate transformation and the analogy with
dc motor control. These innovators proposed to replace the de-
coupling control with the bang-bang control, which meets very
well with on–off operation of the inverter semiconductor power
devices. This control strategy is commonly referred to as direct
torque control (DTC) and since 1985 it has been continuously
developed and improved by many other researchers (see list of
references). The purpose of this paper is to give a short review of
the available DTC techniques and to put in evidence the differ-
ences and peculiarities of each of them. It is devoted basically to
the three-phase two-level inverters. However, some references
are included concerning multilevel topologies [17].

Remark

Since there is no commonly shared terminology regarding
DTC, in this paper under the DTC scheme we refer to control
schemes operating with closed torque and flux loops without
current controllers.

II. BASIC CONCEPTS

A. Basic Principles

In the standard version of FOC schemes, the current compo-
nent is used as the torque control quantity. Under constant
rotor flux amplitude, it adjusts the torque directly as given by

(6)

where is the electromagnetic torque, is the rotor flux
linkage magnitude, is the stator current magnitude, and is
the torque angle [Fig. 2(a)]. This makes the current-controlled
(CC) pulsewidth-modulation (PWM) inverter [40] very conve-
nient for the implementation of the FOC scheme [Fig. 2(a)]. In
the case of voltage-source (VS) PWM inverter-fed IM drives,

however, not only the stator current but also the stator flux may
be used as the torque control quantity [Fig. 2(b)]

(7)

where is the stator flux magnitude, is the torque angle,
and is the leakage factor [Fig. 2(b)]. Note that the stator flux
is a state variable, which can be adjusted by stator voltage.

From the stator voltage (1), for , it is

(8)

where is the inverter output voltage vector [Fig. 3(a) and (b)]
described by the following equation:

for
for

(9)

in which and is the rms value of the
phase voltage. By (9), assumes six nonzero values (active
vectors) and two zero values (zero vectors). It follows from (8)
that

(10)

For six-step operation, the inverter output voltage constitutes a
cyclic and symmetric sequence of active vectors, so that, in ac-
cordance with (10), the stator flux moves with constant speed
along a hexagonal path [Fig. 3(c)]. The introduction of zero vec-
tors stops the flux, an effect known as stop pulse, but does not
change its path. There is only a change of cycle of the voltage
vector sequence. This differs from sinusoidal PWM operation,
where the inverter output voltage constitutes a suitable sequence



746 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 4, AUGUST 2004

Fig. 2. Torque production. (a) FOC. (b) DTC.

Fig. 3. (a) Simplified diagram of the VS inverter feeding an induction motor, (b) representation of output voltage vectors, (c) stator flux path in �–� plane under
six-step operation, and (d) under sinusoidal PWM operation (low switching frequency).

of active and zero vectors and the stator flux moves along a track
resembling a circle [Fig. 3(d)]. In any case, the rotor flux ro-

tates continuously with the actual synchronous speed along a
near-circular path, since it is smoothed by the rotor circuit fil-
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Fig. 4. Stator flux vector    movement relative to rotor flux vector    under
the influence of active and zero voltage vectors.

tering action. Stator and rotor flux vectors are related by the fol-
lowing equation:

(11)

From the point of view of torque production it is the relative mo-
tion of the two vectors that is important, for they form the torque
angle [Fig. 2(b)] that determines the instantaneous motor
torque according to (7). Suppose that the rotor flux moves
slowly in the anticlockwise direction (Fig. 4). In such a case, for-
ward switching of the active voltage vector causes a rapid move-
ment of away from and, at the same time, a motor torque
increase because of the raise of the torque angle . On the other
hand when a zero vector is used, the stator flux comes to a
stop that, since continues to move forward, causes a decrease
in the torque angle and then in the motor torque . If the
duration of the zero state is sufficiently long, will overtake

; as a result, the angle and the motor torque will change
direction. The important conclusion that follows from the above
analysis is that there is a direct relationship between torque os-
cillations and the duration of zero states. By the cyclic switching
of active and zero vectors, the motor torque is controlled. This is
the principle of operation of the self-controlled modulator [19].
In the range of very low speeds ( ), the rotor flux
motion is too slow to achieve rapid torque reduction. In such
a case, an active vector moving backward is selected rather
than a zero vector (Fig. 4). In the field-weakening region, zero
vectors cannot be employed. Torque control is then achieved via
a fast change of torque angle by advancing (to increase the
torque) or retarding (to reduce it) the phase of the stator flux.

Summing up the outcomes so far obtained, the operation of a
VS inverter-fed IM is characterized by the following properties.

• The inverter output voltage can only be in one of
two states, either active (one of the nonzero vectors

) or zero ( ).
• The active forward vectors produce stator flux movement

with constant linear speed while the zero vectors stop the
flux; from the point of view of torque production, the

two states correspond, respectively, to torque increase and
torque reduction conditions.

• The active backward vectors produce stator field move-
ment with constant linear speed in the opposite direction.

• For six-step operation (active vectors only), the stator flux
moves along a hexagonal path with constant linear speed

and an angular speed the average value
of which is inversely proportional to the flux amplitude
( ).

• For sinusoidal PWM operation (active and zero vectors)
and high switching frequency, the stator flux moves along
a near-circular path with nearly constant angular speed
equal to the actual synchronous speed.

• The rotor flux always moves continuously along a circular
path with the actual synchronous angular speed.

B. Generic DTC Scheme

The generic DTC scheme for a VS-PWM inverter-fed IM
drive is shown in Fig. 5(a). According to the previous discus-
sion, the scheme includes two hysteresis controllers. The stator
flux controller imposes the time duration of the active voltage
vectors, which move the stator flux along the reference trajec-
tory, and the torque controller determinates the time duration of
the zero voltage vectors, which keep the motor torque in the de-
fined-by-hysteresis tolerance band. At every sampling time the
voltage vector selection block chooses the inverter switching
state ( , , ), which reduces the instantaneous flux and
torque errors.

Compared to the conventional FOC scheme [Fig. 5(b)], the
DTC scheme has the following features.

• There are no current control loops, hence, the current is
not regulated directly.

• Coordinate transformation is not required.
• There is no separate voltage pulsewidth modulator.
• Stator flux vector and torque estimation is required.

Depending on how the switching sectors are selected, two dif-
ferent DTC schemes are possible. One, proposed by Takahashi
and Noguchi [71], operates with circular stator flux vector path
and the second one, proposed by Depenbrock, operates with
hexagonal stator flux vector path [19]. The two switching sector
selections are illustrated in Fig. 6(a) and (b), respectively.

III. SWITCHING-TABLE-BASED DTC (ST-DTC)

A. Basic ST-DTC Scheme

The block diagram of the ST-DTC scheme is shown in
Fig. 7(a).

The command stator flux and torque values are
compared with the actual and values in hysteresis flux
and torque controllers, respectively. The flux controller is a
two-level comparator while the torque controller is a three-level
comparator. The digitized output signals of the flux controller
are defined as

for (12a)

for (12b)
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Fig. 5. Basic scheme of PWM inverter-fed induction motor with (a) DTC and (b) FOC.

Fig. 6. Sector definition for (a) circular and (b) hexagonal stator flux vector path.

and those of the torque controller as

for (13a)

for (13b)

for (13c)

where is the flux tolerance band and is the torque
tolerance band.

The digitized variables , and the stator flux sector
, obtained from the angular position ,

create a digital word, which is used as the address for accessing
an EPROM. By it, the appropriate voltage vector is selected
according to Table I. The excellent dynamic performance of
torque control is evident in Fig. 7(b), which shows torque
reversal for half rated speed. Thanks to the selection of the
appropriate backward voltage vector, torque reversal of rated
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Fig. 7. ST-based DTC with circular stator flux path according to Takahashi
and Noguchi. (a) Block scheme. (b) Typical transient response to rated torque
reversal.

value takes place in about 1 ms, although it depends on the
inverter supply voltage reserve. The characteristic features of
the ST-DTC scheme of Fig. 7(a) include:

• nearly sinusoidal stator flux and current waveforms; the
harmonic content is determined by the flux and torque con-
troller hysteresis bands and ;

• excellent torque dynamics;
• flux and torque hysteresis bands determine the inverter

switching frequency, which varies with the synchronous
speed and load conditions.

B. Modified ST-DTC

Many modifications of the basic ST-DTC scheme aimed at
improving starting, overload conditions, very-low-speed opera-
tion, torque ripple reduction, variable switching frequency func-
tioning, and noise level attenuation have been proposed during
the last decade.

1) Improvement of Starting Conditions and Very-Low-Speed
Performance: During starting and very-low-speed operation
the basic ST-DTC scheme selects many times the zero voltage
vectors resulting in flux level reduction owing to the stator
resistance drop. This drawback can be avoided by using either a
dither signal [38], [59] or a modified switching table in order to
apply all the available voltage vectors in appropriate sequence
[16], [79]. Also, predictive techniques can be used [2], [43].

2) Torque Ripple Reduction by Increased Number of Gener-
ated Inverter Switching States: Subdivision of the sampling pe-
riod into two or three [14] equal time intervals leads to 12 or 56
voltage vectors, respectively (Fig. 8). The increased number of
available voltage vectors allows both to subdivide the hysteresis
of torque and flux controllers into more levels and to create a
more accurate switching table that also takes into account the
speed value.

3) Rotor Flux Amplitude Control: Under constant rotor flux
operation the IM torque increases linearly with the slip fre-
quency, and the maximum torque is limited only by the max-
imum current of the inverter. Therefore, in order to increase the
torque overload capability of a ST-DTC scheme, the rotor flux
instead of stator flux magnitude should be regulated. For given
commands of rotor flux and torque , the stator flux com-
mand needed by a ST-DTC scheme can be calculated as [14]

(14)

However, the price for better overload capabilities is a higher
parameter sensitivity of rotor flux magnitude control.

IV. DIRECT SELF CONTROL SCHEME (DSC)

A. Basic DSC Scheme

The block diagram of the DSC scheme, proposed by Depen-
brock [19], is shown in Fig. 9(a). Based on stator flux compo-
nents , , and , the flux comparators generate the
digitized variables , , and , which correspond to ac-
tive voltage vectors for six-step operation. The hysteresis torque
controller, on the other hand, generates the digitized signal
that determines the zero states duration. Thus, in the constant
flux region, the control algorithm is as follows:

, , , i.e., an active
voltage vector is selected, defined by the flux comparators;

, , , or , ,
, i.e., a zero voltage vector is selected.

In the field-weakening region, where the inverter is in six-step
operation under rated output voltage, the torque is not deter-
mined by the hysteresis torque controller but by a momentary
change of the stator flux amplitude . In a simple case, it can
be obtained by means of the PI-flux controller of Fig. 9(a). How-
ever, for precise control, more complex calculation is required
[52], [69].

The dynamic performance of the torque control in the DSC
scheme is shown in Fig. 9(b). In the basic version, DSC during
torque reversal selects zero instead of a backward voltage vector
[19]. The characteristic features of the DSC scheme of Fig. 9(a)
are:

• PWM operation in the constant flux region and six-step
operation in the field-weakening region;

• nonsinusoidal stator flux and current waveforms that,
with the exception of the harmonics, are identical for both
PWM and six-step operation;

• stator flux vector moves along a hexagon path also under
PWM operation;
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TABLE I
SELECTION OF VOLTAGE VECTORS IN THE BASIC ST-DTC

Fig. 8. Voltage vectors generated with (a) two and(b) three equal time intervals per cycle period.

• no voltage supply reserve is necessary and the inverter
capability is fully utilized;

• the inverter switching frequency is lower than in the
ST-DTC scheme of Fig. 7(a) because PWM is not of
sinusoidal type as it turns out by comparing the voltage
pattern in Figs. 7(b) and 9(b);

• excellent torque dynamics in constant and weakening field
regions.

Note that the behavior of a DSC scheme can be reproduced by
a ST-DTC scheme when the hysteresis band of the stator flux
comparator is set at [11].

Low switching frequency and fast torque control even in
the field-weakening region are the main reasons why the DSC
scheme is convenient for high power traction drives [70], [80],
[81].

B. Indirect Self Control (ISC)

In contrast to DTC—which, since the publication of [71], has
been constantly developed and improved by many researchers
and research centers—DSC has been studied and developed
mainly by the Power Electronics Group of Ruhr University,
Bochum, Germany, led by Depenbrock [29], [30], [33], [41],
[52], [69]. To improve the DSC performance at the low-speed
region, the method called ISC has been proposed [33]. In the

first stage of development, this method was used in DSC drives
only for starting and for operation up to 20%–30% of the rated
speed [33]. Later, it was expanded as a new control strategy
offered for inverters operated at high switching frequencies ( 2
kHz) [30]. The ISC scheme, however, produces a circular stator
flux path in association with a voltage pulsewidth modulator
and, therefore, will be presented in the next section.

V. CONSTANT SWITCHING FREQUENCY DTC SCHEMES

A. Critical Evaluation of Hysteresis-Based DTC Schemes

The well-known disadvantages of the hysteresis-based DTC
schemes are: variable switching frequency, violence of polarity
consistency rules (to avoid 1 switching over dc-link voltage),
current and torque distortion caused by sector changes, starting
and low-speed operation problems, as well as high sampling
frequency needed for digital implementation of hysteresis con-
trollers.

When a hysteresis controller is implemented in a digital
signal processor (DSP), its operation is quite different from that
of the analog scheme. Fig. 10 illustrates a typical switching
sequence in analog [Fig. 10(a)] and discrete [Fig. 10(b)]
(also called sampled hysteresis) implementation. In analog
implementation the torque ripple are kept exactly within the
hysteresis band and the switching instants are not equally
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Fig. 9. DSC with hexagonal stator flux path according to Depenbroeck. (a) Block scheme. (b) Typical transient response to rated torque reversal.

Fig. 10. Operation of the (a) analog and (b) discrete hysteresis controller.

spaced. In contrast, the discrete system operates at fixed sam-
pling time and if

(15)

the discrete controller will operate like the analog one. However,
it requires fast sampling. All the above difficulties can be elimi-
nated when, instead of the switching table, a voltage pulsewidth
modulator is used.

Basically, the DTC strategies operating at constant switching
frequency can be implemented by means of closed-loop
schemes with PI, predictive/dead-beat or neuro-fuzzy (NF)
controllers. The controllers calculate the required stator voltage
vector, averaged over a sampling period. The voltage vector is
finally synthesized by a PWM technique, which in most cases
is the space-vector modulation (SVM). Therefore, differently
from the conventional DTC solution, in a DTC-SVM scheme
the switching harmonics are neglected in the control algorithm.

B. DTC-SVM Scheme With Closed-Loop Flux Control

In the DTC-SVM scheme of Fig. 11(a), the stator flux com-
ponents in the rotor flux coordinates , are calculated
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Fig. 11. Basic variants of DTC-SVM schemes. (a) DTC-SVM with closed flux control [15]. (b) DTC-SVM with closed-loop torque control [84], [85].
(c) DTC-SVM scheme operated in polar coordinates—ISC [30], [32]. (d) DTC-SVM scheme operated in Cartesian coordinates—stator-flux-oriented control [1],
[88]. (e) Transient response to rated torque reversal of the DTC-SVM scheme from Fig. 11(d).

from the commanded values of torque and rotor flux mag-
nitude according to the following equations:

(16a)

(16b)

where is the rotor time constant. The command value of the
stator flux vector , after coordinate transformation ,

is compared with the estimated value and the error together
with the stator resistance drop, allows for the calculation of the
appropriate stator voltage vector which is applied to the IM
in the next sampling period

(17)

As mentioned in Section III-B.3, the use of rotor instead of
stator flux magnitude improves the torque overload capabilities
of IM.
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C. DTC-SVM Scheme With Closed-Loop Torque Control

The DTC-SVM scheme of Fig. 11(a) requires stator and rotor
flux vector estimators and, therefore, all IM parameters have
to be known. To enhance the dynamic and steady-state per-
formance of the torque response a variant of the scheme with
closed-loop torque control can be used [Fig. 11(b)] [84], [85]. In
this scheme the torque controller generates the command value
of the torque angle increment , which is added to the stator
flux position in the stator reference frame , to calculate
the stator flux vector command according to

(18)

The commanded stator flux vector is compared with the es-
timated one and the resultant error is used for calcula-
tion of the commanded stator voltage vector according to (17).

D. DTC-SVM Scheme With Closed-Loop Torque and Flux
Control Operating in Polar Coordinates—ISC

Further improvement can be achieved when both torque and
stator flux magnitude are controlled in a closed-loop way. The
version operating in polar coordinates is shown in Fig. 11(c)
[29], [30]. In this scheme the error of the stator flux vector
is calculated from the outputs and of the flux and torque
controllers as follows:

(19)

With the approximation

(20)

Equation (19) can be written in the form

(21)

The last equation is used to calculate the commanded stator
voltage vector according to (17). To improve the dynamic per-
formance of the torque control, the angle increment is com-
posed of two parts: the dynamic part delivered by the
torque controller and the stationary part generated by a
feedforward loop.

E. DTC-SVM Scheme With Closed-Loop Torque
and Flux Control Operating in Cartesian
Coordinates—Stator-Flux-Oriented Control

The outputs of the PI flux and torque controllers can be in-
terpreted as the – stator voltage components , in
the stator flux oriented coordinates giving the block scheme
of Fig. 11(d) [1], [88]. The control strategy relies on a simpli-
fied description of the stator voltage components, expressed in
stator-flux-oriented coordinates as

(22a)

(22b)

where and is the angular speed of the stator flux
vector. The above equations show that the component has
influence only on the change of stator flux magnitude, and the
component —if the term is decoupled—can be used
for torque adjustment. Therefore, after coordinate transforma-
tion into the stationary frame, the command values ,

are delivered to SVM.
Note that calculation of the commanded stator voltage vector

by (22) requires the derivative of the stator flux magnitude,
which is a dc quantity. Then, the scheme of Fig. 11(d) is less
noisy than the previously presented schemes of Fig. 11(a)–(c)
that are based on (17). Also, hybrid DTC/DTC-SVM solutions
have been proposed [40], [46], where the conventional ST-DTC
scheme operates only in dynamic states.

F. Dead-Beat DTC-SVM Schemes

The main idea behind a dead-beat DTC scheme is to force
torque and stator flux magnitude to achieve their reference
values in one sampling period by synthesizing a suitable stator
voltage vector applied by SVM.

In the approach proposed by Habetler et al. [25], [26], the
changes of torque and flux over one sampling period are at
first predicted from the motor equations, and then a quadratic
equation is solved to obtain the command value of stator voltage
vector in stationary coordinates. This time-consuming algorithm
is used in steady state. During transients, an alternative algorithm
is adopted and the appropriate voltage vector is selected a priori
from a switching table, which includes only active vectors.
Such a solution guarantees fast elimination of transient errors.

Due to the limitation of inverter voltages and currents, dead-
beat control is not always possible. Based on a discrete model
of an IM, Maes and Melkebeek [51] have proposed an algo-
rithm, called direct time DTC, which uses a prediction of the
back electromotive force (EMF). The DTC algorithm also in-
corporates the limitation of the inverter voltage and current as
well as compensation of the calculation delay.

Lee et al. [47] have developed another interesting approach
based on a dead-beat digital controller instead of a PI controller
for the DTC-SVM scheme of Fig. 11(d). In the paper the

-domain design of the transfer function of the flux
and torque controllers is carried out starting from the desired
closed-loop transfer function

(23)

where is the open-loop transfer function. The DTC-SVM
scheme of Fig. 11(d) with torque and flux controllers imple-
mented by this method exhibits good steady-state and dynamic
performance, even for low switching frequency (0.5–2 kHz).
Therefore, it can be used in high-performance high-power drives
(traction applications).

G. NF DTC-SVM Scheme

In the last decade a fast development of artificial-intelligence-
based controllers has been observed. They have expanded also
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Fig. 12. NF DTC-SVM. (a) Block scheme. (b) Experimental oscillograms
illustrating torque-tracking performance.

in the area of power electronics and drive control [10], [37], [40],
[78]. The combination of fuzzy logic and artificial neural net-
works has been proved to be powerful as it offers all the advan-
tages of both techniques. The initial structure of the controllers
is commonly built up using the human expert knowledge [3],
[36], [54]–[56], [78], [83].

A controller based on Adaptive NF Inference System
(ANFIS) for voltage space-vector generation has been pro-
posed by Grabowski et al. [23]. It combines fuzzy logic and
artificial neural networks for decoupled flux and torque control.
In the scheme, shown in Fig. 12(a), the error signals and

are delivered to the NF controller, which is also entered
by the actual position ( ) of the stator flux vector. The NF
controller determinates the stator voltage command vector in
polar coordinates for the SVM block. The
scheme is characterized by a simple self-tuning procedure and
good steady-state and dynamic performance [Fig. 12(b)].

VI. DIRECT TORQUE CONTROL OF SYNCHRONOUS MOTORS

DTC adjusts motor torque and stator flux magnitude in a
closed-loop fashion where the feedback values are estimated
from stator voltage and current vectors in stator-fixed coordi-
nates. Therefore, it is a general control strategy independent
of rotor parameters and can be applied not only to an IM but
also to all types of synchronous motors: permanent-magnet syn-
chronous motors (PMSMs), field winding excited synchronous

motors (FESMs), reluctance synchronous motors (RSMs), and
switched reluctance motors (SRMs) [8], [40], [68], [79], [91].
In all cases both hysteresis-based DTC [63]–[67], [72], [89] and
DTC-SVM [84]–[87] schemes can be used.

A. DTC of PMSM

In contrast to IMs, the initial value of the stator flux in PMSMs
is not zero and depends on the rotor position. In motion- sensor-
less PMSM drives the initial position of the rotor is unknown and
this often causes initial backward rotation and problems of syn-
chronization. For nonsalient (with surface-mounted magnets)
PMSMs, reliable position estimation is more difficult than for
salient (with buried or inserted magnets) construction [27], [64],
[65], [67], [72], [75], where the initial position can be calculated
univocally by exploiting the sinusoidal inductance variation. For
a nonsalient PMSM to start with light loads, a simple low-pass
filter instead of a pure integrator in the flux estimator can be used
[91], [92]. This solves the problem of flux initial conditions.
Another method used to estimate the initial position of the rotor
is the motor supply by a fixed active voltage vector while
limiting current by applying zero vectors.

B. DTC of FESM

In FESMs the initial rotor position can be estimated using in-
duced stator current variation [8], [10], [22]. During magnetizing
operation the stator flux is estimated from the induced stator
current. Once the stator flux reaches a minimum value, torque
reference is applied. The exciting current can be regulated in
sensorless fashion by extending the classical DTC or DTC-SVM
scheme with a reactive torque closed-loop control [91].

C. DTC of RSM

RSMs are characterized by special rotor configurations, which
are constructed with the aim to realize high ratio, in the
range 2–10, to guarantee high reluctance torque. With

, RSMs are fully competitive with IMs in terms of torque
density, power factor, and efficiency; in addition, the absence of
rotor currents makes control of RSMs simpler than IMs. As in
IMs, the initial flux is zero [8], [10], [40]. The DTC scheme for an
RSM is quite similar to that presented in Fig. 8 for an IM. In order
to reduce torque and current pulsations, the DTC-SVM scheme
or hybrid DTC/DTC-SVM variants have also been proposed for
an RSM [40], [46]. To avoid high startup currents, an initial
magnetization is necessary [91].

D. DTC of SRM

The main motivation in usage of an SRM is its simple
and robust mechanical structure, which is associated with
high torque density. However, an SRM does not have a sinu-
soidal arrangement for the windings, but a concentrated one.
The double-salient structure together with the concentrated
winding arrangement leads to severe torque pulsations and, as
a consequence, to noise trouble. The most popular methods of
torque-ripple reduction are based on current-profiling techniques
with a fast current control loop. However, if the instantaneous
torque of an SRM is estimated by help of the machine charac-
teristics, the DTC scheme without current control loop can be
implemented [16], [32]. A multi-hysteresis-based DTC scheme
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such as that described in [32] is able to compensate for the in-
herent torque ripple during phase commutation and to perform
maximum torque response and control robustness.

VII. CONCLUSION

This paper has reviewed DTC strategies for PWM in-
verter-fed ac motor drives. DTC represents a viable alternative
to FOC, being also a general philosophy for controlling the ac
drives in both motor and generator mode of operation. From
a general perspective, FOC requires an accurate estimation of
the rotor flux vector. However, when an accurate estimation of
the motor flux is available, there is no need to set up a current
control loop and DTC is the natural solution.

The main features of DTC can be summarized as follows.
• DTC operates with closed torque and flux loops but

without current controllers.
• DTC needs stator flux and torque estimation and, there-

fore, is not sensitive to rotor parameters.
• DTC is inherently a motion-sensorless control method.
• DTC has a simple and robust control structure; however,

the performance of DTC strongly depends on the quality
of the estimation of the actual stator flux and torque.

Starting from the IM drives, the DTC strategies have been di-
vided into three groups: hysteresis-based ST DTC, hysteresis-
based DSC, and constant-switching-frequency DTC schemes
operating in association with space-vector modulators (DTC-
SVM). The basic principles and the latest progress of these
strategies have been systematically presented. Their advantages
and limitations have been briefly examined and the application
fields have been indicated.

DSC is preferred for high-power low-switching-frequency
drives and is very effective in the square-wave operation region
where fast flux weakening and torque control are achieved.
Therefore, it is well suited for traction and vehicle drives.

Constant-switching-frequency DTC-SVM schemes improve
considerably the drive performance in terms of reduced torque
and flux pulsations, reliable startup and low-speed operation,
well-defined harmonic spectrum, and radiated noise. Therefore,
DTC-SVM is an excellent solution for general-purpose IM and
PMSM drives in a very wide power range. Instead, the short
sampling time required by the ST-DTC schemes makes them
suited to very fast torque- and flux-controlled drives because
of the simplicity of the control algorithm. As a conclusion of
the survey, it is the belief of the authors that the DTC strategy
will continue to play a strategic role in the development of high-
performance motion-sensorless ac drives.
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