ADVANCED TOPICS IN INFORMATION RETRIEVAL AND WEB SEARCH

Lecture 9:

Expert Finding

Dr. S M Vahidipour

vahidipour@kashanu.ac.ir

Outline

- Introduction
- Approaches
- Evaluation

Knowledge

- Some knowledge is not easy to find
 - Not stored in documents
 - Not stored in databases
 - It is stored in peoples' minds!

Definition

- Search scenario:
 - Let's search for documents that are relevant to topic X.
- Expert finding scenario:
 - Let's search for documents that are relevant to topic X.

People

Expert

Task

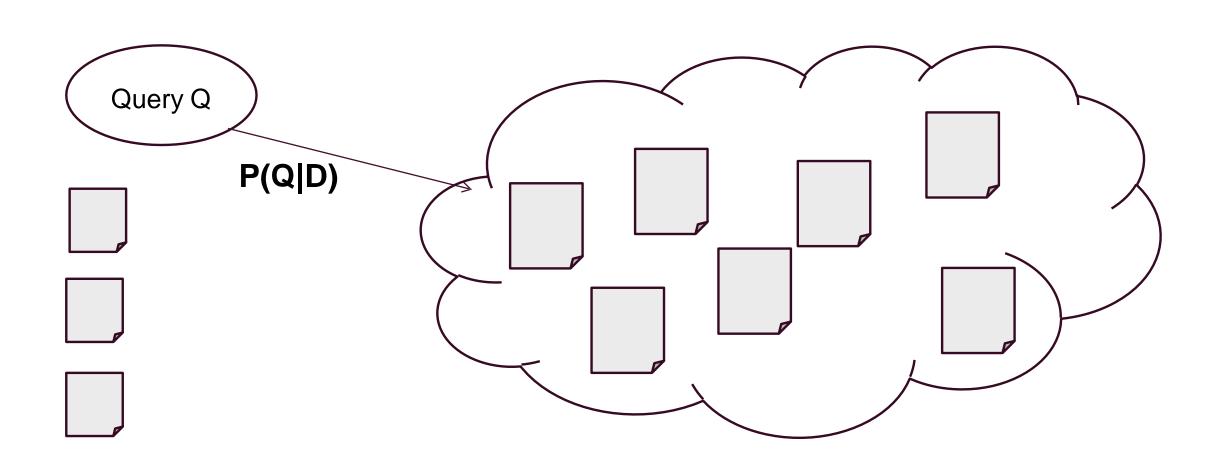
Ranking people based on a topic queried by use

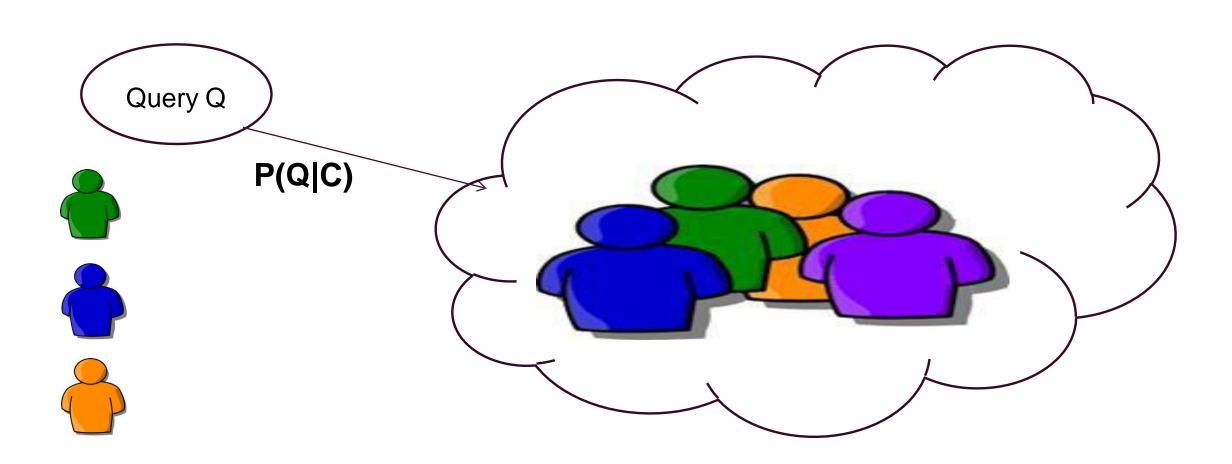
People: Experts

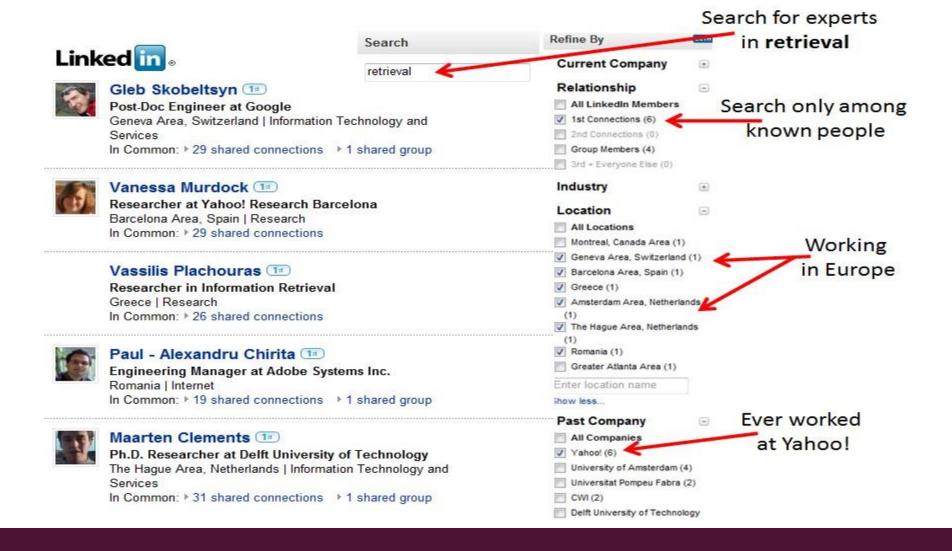
Topic: Subject/Fields

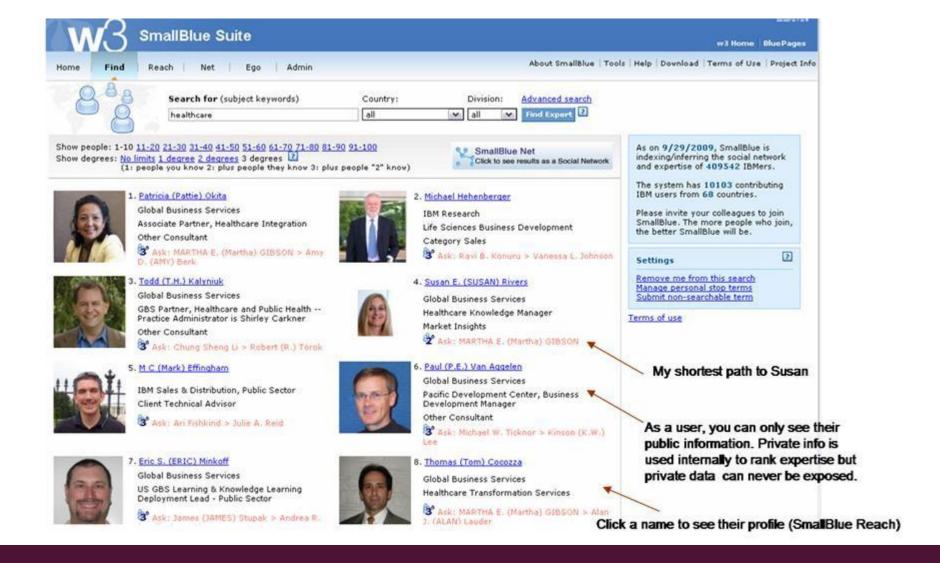
Applications

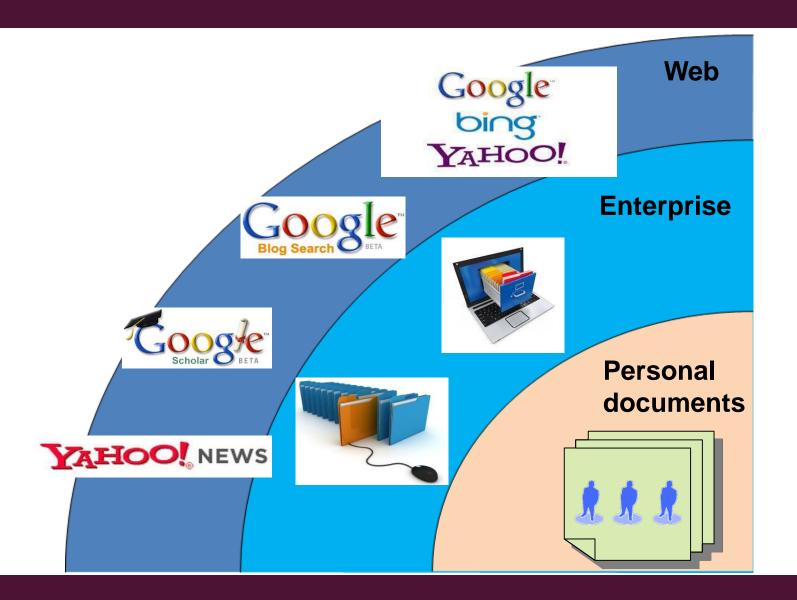
Employers: Employees


Conference Committees: Reviewers


Students: Professors


Document Retrieval vs. Expert Finding


Document Retrieval vs. Expert Finding


Example

Example

Expertise Evidence

Example of Documents

- Internal and external websites
- E-mails
- Database records
- Agendas
- Logs
- Blogs
- Wikis
- Address books
- ...

Outline

- Introduction
- Approaches
- Evaluation

General Framework

$$P(C|Q) = \frac{P(Q|C) P(C)}{P(Q)}$$

$$P(C|Q) \propto P(Q|C) P(C)$$

- *P*(*Q*)
 - Equal for all candidates given a query
- *P*(*C*)
 - Any priority that can be defined on candidates

Approaches

- Profile-based
 - Building a profile for each candidate
 - Matching it with input queries

- Document-based
 - Using documents to connect queries and candidates
 - Finding relevant documents to the input query
 - Finding the association between documents and candidates

Document-based Approach

 Commonly, co-occurrence information of the person mentions with the query words in the same context is assumed to be evidence of expertise

■ In the simplest case, this context is the document itself, so that "all the evidence within the document is descriptive of the candidate's expertise"

Document-based Expert Finding: Candidate Model

$$P(Q|C) = \prod_{q \in Q} \lambda P(q|C) + (1 - \lambda)P(q|Corpus)$$

$$P(q|C) = \sum_{d \in D} P(q|d,C).P(d|C)$$

$$P(q|d,C) \propto P(q|d)$$

$$P(d|C) \propto P(C|d).P(d)$$

$$P(Q|C) = \prod_{q \in Q} \lambda \left[\sum_{d \in D} P(q|d) \cdot P(C|d) \cdot P(d) \right] + (1 - \lambda) P(q|Corpus)$$

Document-based Expert Finding: Document Model

$$P(Q|C) = \sum_{d \in D} P(Q|d,C).P(d|C)$$

$$P(Q|d,C) \propto P(Q|d)$$

$$P(d|C) \propto P(C|d).P(d)$$

$$P(Q|C) = \sum_{d \in D} P(Q|d).P(C|d).P(d)$$

Document-based Expert Finding: Document Model

$$P(Q|C) = \sum_{d \in D} P(Q|d).P(C|d).P(d)$$

$$P(Q|d) = \prod_{q \in Q} \lambda P(q|d) + (1 - \lambda)P(q|Corpus)$$

$$P(Q|C) = \sum_{d \in D} \left[\prod_{q \in Q} \lambda P(q|d) + (1 - \lambda) P(q|Corpus) \right] \cdot P(C|d) \cdot P(d)$$

Candidate-Document Association

- *P*(*C*/*d*)
 - Frequency-based approach
 - Boolean model

$$P(C|d) = \begin{cases} 1 & \text{if } C \text{ exists in } d \\ 0 & \text{Otherwise} \end{cases}$$

Candidates count

$$P(C|d) = \begin{cases} \frac{1}{|C|} & \text{if } C \text{ exists in } d \\ 0 & \text{Otherwise} \end{cases}$$

- *P*(*d*)
 - Any priority that can be defined on documents

Proximity

- The closer a candidate is to a term the more likely that term is associated with their expertise P(Q|d,C)
- Considering the proximity of terms and candidate mentions in the document
 - Terms surrounding candidate mentions form the context of the candidate's expertise
- Defining a window of a fixed size.
 - Small window sizes often lead to high precision but low recall in finding experts
 - Large window sizes lead to high recall but low precision
- It is also possible to consider multiple levels of associations in documents
 - Combining multiple window sizes
 - Exploiting document structure or metadata

Outline

- Introduction
- Approaches
- Evaluation

Questions

■ Which one is better: candidate model or document model?

■ Do we need any proximity in this model? if yes which window size?

Document-candidate association: frequency-based approach or boolean model?

Do we need any prior probability for candidates or documents?

Evaluation

- TREC enterprise track
 - TREC 2005: 50 queries
 - Topics: name of working groups on the W3C
 - Experts: members of the working group
 - TREC 2006: 49 queries
 - Topics and experts: assessed manually

Each person mentioned in documents with name, e-mail, ID number, and abbreviations.

Evaluation

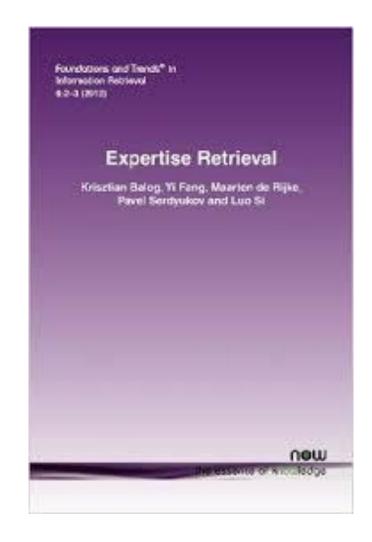
- W3C Corpus
 - **331,037 documents**

- Expert List
 - 1092 experts

- Evaluation Metrics
 - Mean Average Precision (MAP)
 - Mean Reciprocal Rank (MRR)

Results: candidate model vs document model

Model	MAP		MRR	
	2005	2006	2005	2006
Candidate Model	0.1888	0.3206	0.4692	0.7264
Document Model	0.2503	0.4660	0.6088	0.9354


Further Reading

Expertise Retrieval

By Krisztian Balog, Yi Fang, Maarten de Rijke, Pavel Serdyukov and Luo Si

Publisher: now

2012

Questions?