Complex Network Theory

Lecture 4

Network analysis

Instructor: S. Mehdi Vahidipour
(vahidipour@kashanu.ac.ir)
Spring 2017
Thanks A. Rezvanian
A. Barabasi, L.Adamic and J. Leskovec

Outline

- Overview of class topics

■ Homophily in social networks

- Triadic closure

■ Clustering coefficient

- Bridge
- The strength of weak ties
- Signed Networks

■ Structural balance

- Cohesive subgroups
- Next class

■ Network Models

Homophily in social networks

- Homophily: tendency of people to connect to other people similar to themselves
- Certainly not a new observation: Aristoteles: "people love those who are like themselves", Plato: "similarity begins friendship"
- Early studies: school friendships (1929). Homophily in play is observed in race, gender, age, intelligence, attitudes.
- Mid-century: strong interest in homophily driven by school segregation and peer effects on behavior.
- From '70s: application of statistical inference allows to study large networks.

Homophily in social networks

- Hypothesizing intrinsic mechanisms:

■ Individuals B and C have a common friend A

- So, there are increased opportunities and sources of trust on which to base their interactions,
- As a results, A will also have incentives to facilitate their friendship.
- Since we know that A-B and A-C friendships already exist, the principle of homophily suggests that B and C are each likely to be similar to A in a number of dimensions
- As a result, based purely on this similarity, there is an elevated chance that a B-C friendship will form; and this is true even if neither of them is aware that the other one knows A.

- U.S. Midwest Urban school. Red = Black, Blue = White, Yellow = Hispanic, Grey = Asian. A link means a nominated friendship.
- Source: Add Health Dataset and Currarini-Jackson-Pin (2009).

Triadic closure

- Triadic closure principle:
- If two people in a social network have a friend in common, then there is an increased likelihood that they will become friends themselves at some point in the future.
- If three nodes are all-to-all connected, they form a triangle.
- If we observe snapshots of a social network at two distinct points in time, then in the later snapshot, we generally find a significant number of new edges that have formed through this triangle-closing operation, between two people who had a common neighbor in the earlier snapshot.

Triadic closure

(a)

(b)

(c)

Reasons for Triadic Closure

- Opportunity: If \mathbf{A} spends time with both \mathbf{B} and \mathbf{C}, then there is an increased chance that they will end up knowing each other and potentially becoming friends.
- Trust: The fact that each of \mathbf{B} and \mathbf{C} is friends with \mathbf{A} (provided they are mutually aware of this) gives them a basis for trusting each other that an arbitrary pair of unconnected people might lack.
\square Incentive: If \mathbf{A} is friends with \mathbf{B} and \mathbf{C}, then it becomes a source of latent stress in these relationships if \mathbf{B} and \mathbf{C} are not friends with each other.

Focal closure

- B and C represent people, but A represents a focus
- Foci, or "focal points" of social interaction - social, psychological, legal, or physical entities around which joint activities are organized (workplaces, hangouts, etc.)
- It is the tendency of two people to form a link when they have a focus in common.
- This is an aspect of the more general principle of selection, forming links to others who share characteristics with you.
- This process has been called focal-closure

closures

Tracking Link Formation in Online Data

- How much more likely is a link to form between 2 people in a social network if they have a friend in common? Multiple (k) friends in common?

Answer empirically:

- Snapshots of network at different times
- For each k, find all pairs of nodes with exactly k friends in common in 1st snapshot, but not directly connected by edge.
- $T(k)=$ fraction of these pairs that formed an edge by $2^{\text {nd }}$ snapshot
- Plot $T(k)$ as function of k to show effect of common friends

Quantifying the effects of triadic closure in an email dataset. The curve determined from the data is shown in the solid black line; the dotted curves show a comparison to probabilities computed according to two simple baseline models in which common friends provide independent probabilities of link formation

Clustering coefficient

- It is to measure the local connectivity in the network
- Shows somehow the local information exchange
\square Originally comes from social sciences
- Shows to how much extent the friends (neighbors) of two connected nodes are connected themselves
\square Measures the density of triangles (local clusters) in the networks
- Two different ways to measure it

Global Clustering coefficient

$$
\left\{\begin{array}{l}
C=\frac{3 N_{\Delta}}{N_{3}} \\
N_{\Delta}=\sum_{k>j>i} a_{i j} a_{i k} a_{j k} \\
N_{3}=\sum_{k>j>i}\left(a_{i j} a_{i k}+a_{j i} a_{j k}+a_{k i} a_{k j}\right)
\end{array}\right.
$$

- C is clustering coefficient and $A=\left(a_{i j}\right)$ is the adjacency matrix
$-N_{\Delta}$ is the number of triangles (local clusters) in the network
- N_{3} is the number of connected triples is the network

$$
\left\{\begin{array}{l}
N_{\Delta}=1 \\
N_{3}=8 \\
C=\frac{3}{8}
\end{array}\right.
$$

Local Clustering coefficient

$$
\left\{\begin{array}{l}
C_{i}=\frac{N_{\Delta}(i)}{N_{3}(i)} ; C=\frac{1}{N} \sum_{i} C_{i} \\
N_{\Delta}=\sum_{k>j} a_{i j} a_{i k} a_{j k} \\
N_{3}=\sum_{k>j} a_{i j} a_{i k} \quad C_{i}=\frac{2\left|\left\{e_{j k}: v_{j}, v_{k} \in N_{i}, e_{j k} \in E\right\}\right|}{k_{i}\left(k_{i}-1\right)} . \text { Undirected networks } \\
C_{i}=\frac{\left|\left\{e_{j k}: v_{j}, v_{k} \in N_{i}, e_{j k} \in E\right\}\right|}{k_{i}\left(k_{i}-1\right)} . \text { Directed networks } \\
C_{5} \quad\left\{\begin{array}{l}
C_{1}=1 \\
C_{2}=1 \\
C_{3}=\frac{1}{6} \Rightarrow C=\frac{1}{5}\left(1+1+\frac{1}{6}\right)=\frac{13}{30} \\
C_{4}=0 \\
C_{5}=0
\end{array}\right.
\end{array}\right.
$$

Clustering coefficient of weighted networks

$$
\left\{\begin{array}{l}
s_{i}=\sum_{i} w_{i j} \\
k_{i}=\sum_{i} a_{i j} \\
C_{i}^{w}=\frac{1}{s_{i}\left(k_{i}-1\right)} \sum_{j, k} \frac{w_{i j}+w_{i k}}{2} a_{i j} a_{i k} a_{j k} \\
C^{w}=\frac{1}{N} \sum_{i} C_{i}^{w}
\end{array}\right.
$$

$\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ is the adjacency matrix and $\mathrm{W}=\left(\mathrm{w}_{\mathrm{ij}}\right)$ is the weight matrix

- k_{i} is the degree and s_{i} is the strength of node i

Clustering coefficient of real networks

Table 1: Clustering coefficients s_{9}, for a number of different networks; n is the number of node, z is the mean degree. Taken from [146].

Network	n	z	C measured	C for random graph
Internet [153]	6,374	3.8	0.24	0.00060
World Wide Web (sites] [2]	153,127	35.2	0.11	0.00023
power grid [192]	4,941	2.7	0.080	0.00054
biology collaborations [140]	$1,520,251$	15.5	0.081	0.000010
mathematics collaborations [141]	253,339	3.9	0.15	0.000015
film actor collaborations [149]	449,913	113.4	0.20	0.00025
company directors [149]	7,673	14.4	0.59	0.0019
word co-occurrence [90]	460,902	70.1	0.44	0.00015
neural network [192]	282	14.0	0.28	0.049
metabolic network [69]	315	28.3	0.59	0.090
food web [138]	134	8.7	0.22	0.065

Signed Networks and Structural balance

- A rich part of social network theory involves annotating edges with positive and negative signs representing friendship and antagonism.
- An important problem in social networks is to understand the tension between these two forces.
- Signed graphs: we can label graph edges with positive (+) and negative (-) signs
- + signs show positive aspects of relationships
\square Friend, like, trust, follow, ...
- - sigs show negative aspects of relationships
\square Antagonistic, dislike, distrust, ...
- The way in which local effects can have global consequences

Assumptions

Given:

- A complete graph
- Edges labeled with + Or - expressing
- Assumption:
- all nodes know each other that each pair
- Nodes are either friends or enemies
- The model makes sense for a group of people small enough to have this level of mutual awareness
- E.g. a classroom, a small company, a sports team, a fraternity or sorority, international relations
- Patterns of relations
- If we look at any two people in the group in isolation, the edge between them can be labeled + or -; that is, they are either friends or enemies.
- But when we look at sets of three people at a time, certain configurations of +'s and -'s are socially and psychologically more plausible than others.

Structural Balance

- Theories in social Psychology by Heider, Cartwright and Harary
- Balanced Triangles: we can classify triads in this graph into two categories, balanced \& unbalanced

(a) A, B, and C are mutual friends: balanced.

(d) A, B, and C are mutual enemies. not balanced.

(c) A and B are friends with C as a mutual enemy: balanced.

structural balance theorists

- Argument of structural balance theorists

■ Unbalanced triangles are sources of stress or psychological dissonance

- People strive to minimize them in their personal relationships
- They will be less abundant in real social settings than balanced triangles
- Structural Balance Property
- We say that a signed complete graph is balanced if every one of its triangles is balanced
- For every set of three nodes, if we consider the three edges connecting them,
■ either all three of these edges are labeled + , or else
- exactly one of them is labeled +

Balanced/Unbalanced Graphs

- Signed graphs are balanced iff all of its triads are balanced
- $(+) \times(+)=(+)$
- $(-) \times(+)=(-)$

balanced

$$
1,1+10
$$

$$
\text { - } 1011-1
$$

Balanced networks

- Suppose:

■ we have a signed complete graph

- The nodes can be divided into two groups, X and Y
- Every pair of people in X like each other
- Every pair of people in Y like each other,
- Everyone in X is the enemy of everyone in Y
- Such a network is balanced:
- a triangle contained entirely in one group has three + labels,
- and a triangle with two people in one group and one in the other has exactly one + label

Structural Balance in Arbitrary Graphs

- Theorem: A signed graph is balanced if and only if it contains no cycle with an odd number of negative edges
- Algorithm

1. Convert the graph to a reduced one in which there are only negative edges.
2. Solve the problem on the reduced graph

International Relations

- The evolution of alliances in Europe, 1872-1907 (the nations GB, Fr, Ru, It, Ge, and AH are Great Britain, France, Russia, Italy, Germany, and Austria-Hungary respectively). Solid dark edges indicate friendship while dotted red edges indicate enmity. Note how the network slides into a balanced labeling - and into World War I

(a) Three Emperors' League 187281

(d) French-Russian Alliance 1891-

(b) Triple Alliance 1882

(e) Entente Cordiale 1904

(c) German-Russian Lapse 1890

(f) British Russian Alliance 1907

Cohesive subgroups

- Informal definition
- Cohesive subgroups are subsets of actors among whom there are relatively strong, direct, intense, frequent, or positive ties
- There are many possible social network subgroup
- One mode networks
- Two mode networks e.g. affiliation networks based on joint membership
- Valuable for studying the emergence of consensus
- Homophily: more homogeneity among cohesive subgroups

Operating factors

- Two operating factors:
- How many links an individual has to the group
- How many links an individual has to the outsiders
- Social forces: operating through
- Direct contact among subgroup members,
- Indirect contact transmitted via intermediaries
- The relative cohesion within as compared to outside the subgroup.

Some Criteria for Cohesion

Distance

- The mutuality and completeness of edges
- The closeness or reachability of subgroups

Density
■ The density of edges among members

- The relative density of edges among subgroup members compared to nonmembers

Subgroups based on Complete Mutuality

- Clique: A subset of nodes, all of which are adjacent to each other, and there are no other nodes that are also adjacent to all of the members of the clique
- Number of nodes: at least three
- Cliques in a graph may overlap

Usefulness of Cliques

- A clique is a very strict definition of cohesive subgroup.
■ The absence of a single edge will prevent a subgraph from being a clique.
- The size of the Cliques will be limited by the degree of the nodes.
- There is no internal differentiation among nodes within a clique
- No place for Internal structure or hierarchy

Some examples

- Perfect may mean impractical.

Subgroups based on Reachability and Diameter

- Relaxing the distance
- There should be relatively short paths of influence or communication between all members of the subgroup.
- Subgroup members might not be adjacent, but if they are not adjacent, then the paths connecting them should be relatively short.

n- clique (Luce 1950)

- A maximal set of nodes such that all pairs of nodes in the set are distance n or less

■ One problem with n-clique is that even a 2-clique is not very cohesive.

- In the graph $\{1,3,5\}$ is a 2-clique, but none are connected to each other.
- From substantive point of view is weird that shortest path between two members required outside intermediary

n-clan

An n-clique such that the induced sub-graph has diameter n or less

2-cliques:
■ \{1,2,3,4,5\},

- $\{2,3,4,5,6\}$;

2-clan:
■ \{2,3,4,5,6\}

n-club (Mokken 1979)

- n-club is a maximal subgraph in which the distance between all nodes within the sub-graph is less than or equal to n (diameter at most n)

2-clubs:

- \{1,2,3,4\},
- \{1,2,3,5\},
- $\{2,3,4,5,6\}$

N-Clique \& N-Club \& N-Clan

- Every n-clan is an n-club
- Every n-clan is an n-clique
- But every n-club is not an n-clan or n-clique, although it is contained in them
- (fail n-clique maximal condition)

Usefulness of subgroups based on distance

- Cohesive subgroups based on indirect connections of relatively short paths provide a reasonable approach for studying network processes such as information diffusion

Subgroups based on nodal degree

- Relaxing the density
- All subgroup members should be adjacent to some minimum number of other subgroup members.
- Useful when network processes require direct contact among nodes, and perhaps repeated, direct, contact to several nodes.
- Multiple redundant channels of communication increase the accuracy of information
- Robustness: The degree to which the structure is vulnerable to the removal of any given individual.

K-core

- Each node has degree at least k (Seidman 1983)
- N-1 core is complete graph

1dxr (photosynthesis)

K-plex

- A k-plex of size n is a maximal sub-set of n nodes within a network such that each node is connected to at least nk of the others. (Seidman \& Foster 1978)
- A 1-plex is the same as a clique.
- Obviously, a k-core of n vertices is also an ($\mathrm{n}-\mathrm{k}$)-plex.

Regular graph

- A regular graph is a graph where each node has the same number of neighbors (i.e. every vertex has the same degree).
- A regular graph with vertices of degree k is called a k-regular graph or regular graph of degree k.

Readings

- Newman, Mark. Networks: an introduction. Oxford University Press, 2010. (Ch. 7, 10)
- Easley, David, and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010. (Ch. 3, 5)
- Van Steen, Maarten. "Graph theory and complex networks." ,2010. (Ch. 6)
- Pattillo, Jeffrey, Nataly Youssef, and Sergiy Butenko. "On clique relaxation models in network analysis." European Journal of Operational Research 226.1 (2013): 9-18.

