

Measuring Data Similarity and Dissimilarity

• Topic is borrowed from Chapter 2: Getting to

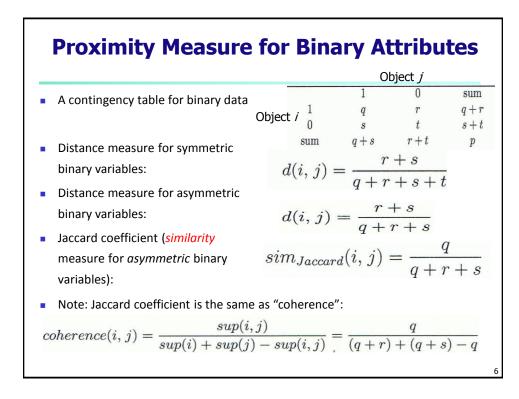
Know Your Data

Similarity and Dissimilarity

Similarity

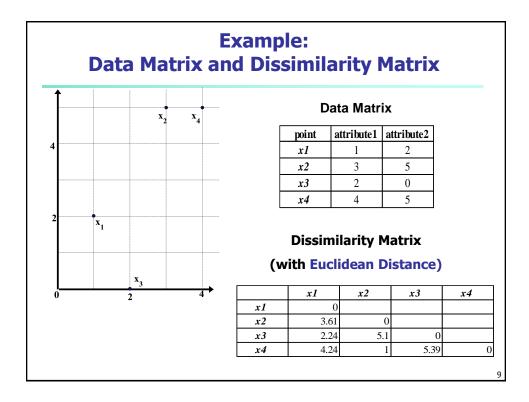
- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- **Dissimilarity** (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

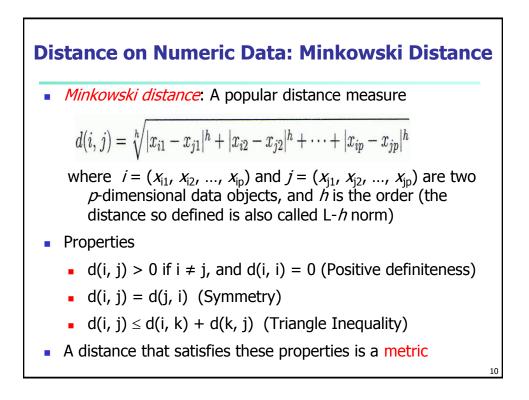
Data Matrix and	Dissimilarity Matrix
Data matrix	
 n data points with p dimensions 	$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$
 Two modes 	$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$
 Dissimilarity matrix n data points, but registers only the distance A triangular matrix Single mode 	$\begin{bmatrix} 0 & & & \\ d(2,1) & 0 & & \\ d(3,1) & d(3,2) & 0 & \\ \vdots & \vdots & \vdots & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$


Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$


Method 2: Use a large number of binary attributes


 creating a new binary attribute for each of the *M* nominal states

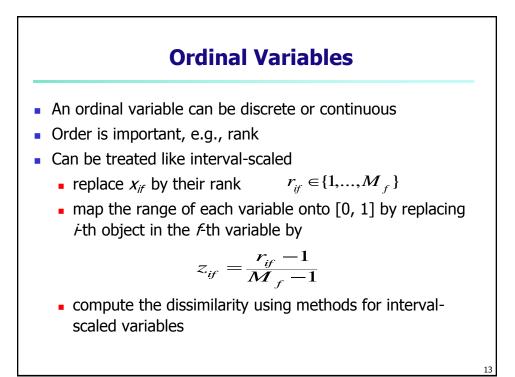
Dissimilarity between Binary Variables							
kample							
Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	М	Y	N	Р	N	N	N
Mary	F	Y	N	Р	Ν	Р	Ν
Jim	М	Y	Р	N	Ν	N	Ν
The rer	is a sym naining a values Y	attribut	es are a	symmet		•	
				$\frac{0+1}{+0+1}$ $\frac{+1}{1+1} =$			
			$(1+1) = \frac{1}{1+1}$				

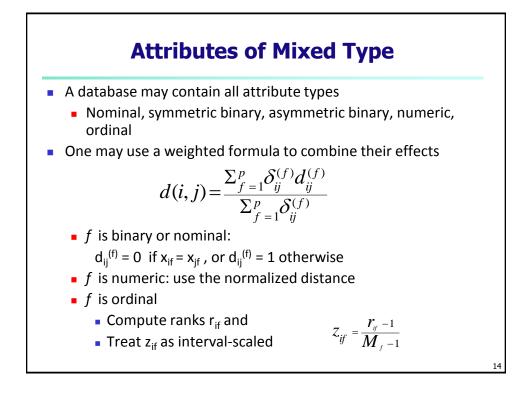
Special Cases of Minkowski Distance

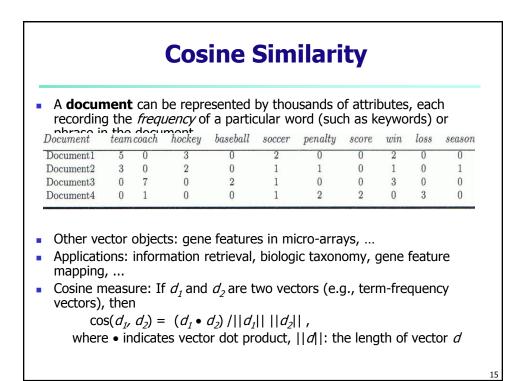
- h = 1: Manhattan (city block, L₁ norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

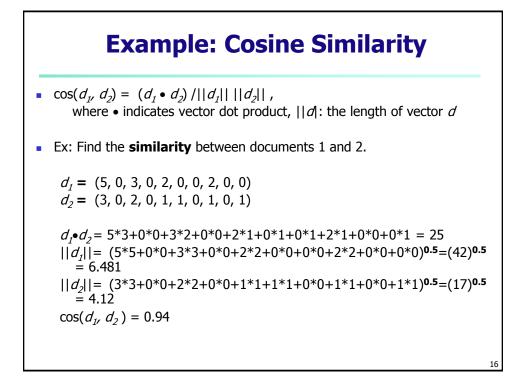
$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

h = 2: (L₂ norm) Euclidean distance


$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \dots + |x_{i_p} - x_{j_p}|^2)}$$


- $h \rightarrow \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component (attribute) of the vectors


$$d(i, j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f}^{p} |x_{if} - x_{jf}|$$


Example: Minkowski Distance Dissimilarity Matrices attribute 1 attribute 2 point Manhattan (L₁) x1 1 2 L x2 x3 x4 x1 x2 3 5 x1 0 x3 2 0 5 0 x2 4 5 x4 0 x3 3 6 x4 6 1 7 0 Euclidean (L₂) x₂ **x**₄ L2 x1 x2 x3 x4 x1 0 x2 3.61 0 2.24 5.1 x3 0 5.39 4.24 x4 1 0 Supremum x₁ x4 x1 x2 x3 L∞ 0 **x1** 3 x2 0 x3 2 5 0 2 x4 3 1 5 0 12

11

