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Graph clustering (community finding)

 Community structure:

 Groups of vertices within which connections are 

dense but between which they are sparser.

 Within-group(intra-group) edges.

 High density

 Between-group(inter-group) edges.

 Low density.
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Community Structure

102

Community finding vs. other approaches

 Social and other networks have a natural 
community structure

 We want to discover this structure rather than 
impose a certain size of community or fix the 
number of communities

 Without “looking”, can we discover community 
structure in an automated way?

104



3

Detecting Community Structure (Clustering)

 Cluster analysis seeks grouping of elements 
into subsets based on similarity between 
pairs of elements.

105

Edge betweenness

 Number of shortest paths between pairs of 
vertices that run along it

 The edges connecting communities will have high 
edge betweenness

 Separate communities by removing these edges
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Girvan and Newman(GN) Algorithm

1. Calculate the betweenness for all edges in the network.

2. Remove the edge with the highest betweenness.

3. Recalculate betweenness for all edges affected by the 
removal.

4. Repeat from step 2 until no edges remain.

5. cross cut the dendrogram of components.

 By removing these edges, we separate groups from 
one another as components.
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A B

GN Algorithm- Example

 1. Calculate the betweenness for all edges 
in the network.

a b

c

d

e

ab 4

bc 3

bd 3

ce 3

de 3
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GN Algorithm- Example(cont.)

 2. Remove the edge with the highest 
betweenness.

a b

c

d

e
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GN Algorithm- Example(cont.)

 3. Recalculate betweennesses for all edges 
affected by the removal.

a b

c

d

e

bc 2

bd 2

ce 2

de 2
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GN Algorithm- Example(cont.)

 4. Repeat from step 2 until no edges 
remain.

a b

c

d

e
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GN Algorithm- Example(cont.)

a b

c

d

e

a b c d e
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Determine the Number of Clusters

 Empirical method

 # of clusters: k ≈√n/2 for a dataset of n points, e.g., n = 200, k = 10

 Cross validation method

 Divide a given data set into m parts

 Use m – 1 parts to obtain a clustering model

 Use the remaining part to test the quality of the clustering

 E.g., For each point in the test set, find the closest centroid, and 
use the sum of squared distance between all points in the test set 
and the closest centroids to measure how well the model fits the 
test set

 For any k > 0, repeat it m times, compare the overall quality measure 
w.r.t. different k’s, and find # of clusters that fits the data the best
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Cluster Evaluation and assessment

 Internal evaluation: Unsupervised, criteria derived from data 

itself

 Evaluate the goodness of a clustering by considering how well 
the clusters are separated, and how compact the clusters are

 Methods: Dunn index, Davies–Bouldin, Silhouette coefficient

 External evaluation: supervised, employ criteria not inherent to 

the dataset)

 Compare a clustering against prior or expert-specified knowledge 
(i.e., the ground truth) using certain clustering quality measure

 Methods: Rand measure, F-measure, Jaccard index, Fowlkes–Mallows 

index, Confusion matrix

 Relative: directly compare different clusterings, usually those 

obtained via different parameter settings for the same algorithm
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Clustering Error
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Davies-Bouldin index (DB ↓)

 A function of the ratio of the sum of within-cluster 
(i.e. intra-cluster) scatter to between cluster (i.e. 
inter-cluster) separation

 Let C={C1,….., Ck} be a clustering of a set of N
objects:
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Ci is the ith cluster 
ci is the centroid for cluster i

118

Davies-Bouldin index (DB ↓)
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Davies-Bouldin index example

 Consider the shown clusters (ine one dimension)

 Compute

 var(C1)=0, var(C2)=4.5, var(C3)=2.33

 Centroid is simply the mean here, so c1=3, c2=8.5, c3=18.33

 So, R12=1, R13=0.152, R23=0.797

 Now, compute 

 R1=1 (max of R12 and R13); R2=1 (max of R21 and R23); R3=0.797 
(max of R31 and R32)

 Finally, compute

 DB=0.932
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Davies-Bouldin index example (ctd)

 Consider the shown clusters: for the clusters shown

 Compute

 Only 2 clusters here

 var(C1)=12.33 while var(C2)=2.33; c1=6.67 while c2=18.33

 R12=1.26

 Now compute

 Since we have only 2 clusters here, R1=R12=1.26; R2=R21=1.26

 Finally, compute

 DB=1.26
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Dunn index (D ↑)

 The Dunn index aims to identify dense and well-separated clusters. It is defined 
as the ratio between the minimal inter-cluster distance to maximal intra-cluster 
distance. For each cluster partition, the Dunn index can be calculated by the following 
formula
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Min: Distance between 2 data in inter-cluster

Max: Distance between 2 data among intra-cluster
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Measuring Clustering Quality: External Methods 

 Clustering quality measure: Q(C, T), for a clustering C
given the ground truth T

 Q is good if it satisfies the following 4 essential criteria

 Cluster homogeneity: the purer, the better

 Cluster completeness: should assign objects belong to 
the same category in the ground truth to the same 
cluster

 Rag bag: putting a heterogeneous object into a pure 
cluster should be penalized more than putting it into a 
rag bag (i.e., “miscellaneous” or “other” category)

 Small cluster preservation: splitting a small category 
into pieces is more harmful than splitting a large 
category into pieces
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Some Commonly Used External Measures

 Matching-based measures

 Purity, maximum matching, F-measure

 Entropy-Based Measures

 Conditional entropy, normalized mutual 
information (NMI), variation of information

 Pair-wise measures

 Four possibilities: True positive (TP), FN, FP, TN

 Jaccard coefficient, Rand statistic, Fowlkes-
Mallow measure

 Correlation measures

 Discretized Huber static, normalized discretized 
Huber static
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Ground truth partitioning T1 T2

Cluster C1
Cluster C2

125

External evaluation

 Purity

 Rand measure

 F-measure

 Jaccard index

 Fowlkes–Mallows index

 Confusion matrix

126
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Purity

Ω= {ω1, ω2, . . . , ωK} is the set of clusters and 

C = {c1, c2, . . . , cJ} is the set of classes.

For each cluster ωk : find class cj with most members nkj in ωk

Sum all nkj and divide by total number of points

127

Purity

(class x, cluster 1)  maxj |ω1 ∩ cj | = 5

(class o, cluster 2)  maxj |ω2 ∩ cj | = 4

(class ⋄, cluster 3)  maxj |ω3 ∩ cj |= 3

Purity is 

(1/17) × (5 + 4 + 3) ≈ 0.71
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F-measure
 Precision: exactness – what % of tuples that the classifier labeled as 

positive are actually positive

 Recall: completeness – what % of positive tuples did the classifier 
label as positive?

 Perfect score is 1.0

 Inverse relationship between precision & recall
 F measure (F1 or F-score): harmonic mean of precision and recall,

 Fß:  weighted measure of precision and recall
 assigns ß times as much weight to recall as to precision
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Evaluation Metrics: Confusion Matrix

Actual class\Predicted 
class

buy_computer 
=  yes

buy_computer 
= no

Total

buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

Total 7366 2634 10000

 Given m classes, an entry, CMi,j in a confusion matrix indicates # 
of tuples in class i that were labeled by the classifier as class j

 May have extra rows/columns to provide totals

Confusion Matrix:

Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:

130
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Evaluation Metrics:
Accuracy, Error Rate, Sensitivity and Specificity

 Classifier Accuracy, or 
recognition rate: percentage of 
test set tuples that are 
correctly classified

Accuracy = (TP + TN)/All

 Error rate: 1 – accuracy, or

Error rate = (FP + FN)/All

 Class Imbalance Problem: 

 One class may be rare, e.g. 
fraud, or HIV-positive

 Significant majority of the 
negative class and minority of 
the positive class

 Sensitivity: True Positive 
recognition rate

 Sensitivity = TP/P

 Specificity: True Negative 
recognition rate

 Specificity = TN/N

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All

131

Confusion matrix: Example

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)

 Precision = 90/230 = 39.13%             

 Recall = 90/300 = 30.00%
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Definition:

TP is the number of true positives

TN is the number of true negatives

FP is the number of false positives

FN is the number of false negatives

TP+FN+FP+TN is the total number of pairs.

Rand index

Jaccard index

 The Jaccard index is used to quantify the similarity between two 
datasets. The Jaccard index takes on a value between 0 and 1. An 
index of 1 means that the two dataset are identical, and an index of 
0 indicates that the datasets have no common elements. The 
Jaccard index is defined by the following formula:

 This is simply the number of unique elements common to both sets 
divided by the total number of unique elements in both sets.
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Fowlkes–Mallows index

 The Fowlkes-Mallows index computes the similarity between the 
clusters returned by the clustering algorithm and the benchmark 
classifications. The higher the value of the Fowlkes-Mallows index 
the more similar the clusters and the benchmark classifications are. 
It can be computed using the following formula:

 The index is the geometric mean of the precision and recall and , 
while the F-measure is their harmonic mean

135

Measures for Graph:
Ratio Cut () & Normalized Cut ()

136

Ci,: ith community
|Ci|: number of nodes in Ci (size of community)
vol(Ci): sum of degrees in Ci (volume of community)

Conductance()=

c(𝒞, 𝓰\ 𝒞): cut 
size of 𝒞 from 𝓰\
𝒞
Min(k𝒞, k𝓰\𝒞):
minimum total 
degree in 𝒞 and 
total degree in 𝓰\
𝒞

 A good partitioning should minimize ratio cut and 
normalized cut
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Ratio Cut & Normalized Cut Example

137

For partition in red: 

For partition in green: 
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Summary
 Cluster analysis groups objects based on their similarity and has 

wide applications

 Measure of similarity can be computed for various types of data

 Clustering algorithms can be categorized into partitioning methods, 
hierarchical methods, density-based methods, grid-based methods, 
and model-based methods

 K-means and K-medoids algorithms are popular partitioning-based 
clustering algorithms

 Birch and Chameleon are interesting hierarchical clustering algorithms, 
and there are also probabilistic hierarchical clustering algorithms

 DBSCAN, OPTICS, and DENCLU are interesting density-based 
algorithms

 STING and CLIQUE are grid-based methods, where CLIQUE is also a 
subspace clustering algorithm

 Quality of clustering results can be evaluated in various ways
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