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Who is most central?

 Who is most important?
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Nodes

 Node network properties

 from immediate connections

 In-degree (directed)
how many directed edges (arcs) are incident on a node

 Out-degree (directed)
how many directed edges (arcs) originate at a node

 degree (in or out) - undirected
number of edges incident on a node

 In weighted networks instead of degree, strength of nodes are defined

 If the weighted adjacency matrix is W=(wij), the strength of node i is 

defined as 

𝑠𝑖 =  𝑗=1
𝑛 𝑊𝑖𝑗

 Average degree (Avg. degree)

Out-degree=2

In-degree=3

degree=5

Complex Network Theory, S. Mehdi Vahidipour.

strength=12
42

5
1



Node degree from matrix values

 Out-degree =

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0
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example: out-degree for node 3 is 2, 

 In-degree =
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 Average In-degree = Average Out-degree ?



Network metrics: degree sequence and distribution
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 Degree sequence: An ordered list of the (in,out) degree of each node

 In-degree sequence:

 [2, 2, 2, 1, 1, 1, 1, 0]

 Out-degree sequence:

 [2, 2, 2, 2, 1, 1, 1, 0]

 (undirected) degree sequence:

 [3, 3, 3, 2, 2, 1, 1, 1]

 Degree distribution: A frequency count of the occurrence of each degree

 Degree distribution P(k): Probability that a randomly chosen node has 
degree k

Nk = # nodes with degree k

 Normalized histogram (PDF):

P(k) = Nk / N

 In-degree distribution:

 [(2,3)  (1,4)  (0,1)]

 Out-degree distribution:

 [(2,4)  (1,3)  (0,1)]

 (undirected) distribution:

 [(3,3) (2,2) (1,3)]
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Network metrics: Density

 The maximum number of edges in an undirected graph on N nodes is

 A graph with the number of edges E = Emax is a complete graph

 density of a graph: 

𝜌 =
𝐸

𝐸𝑚𝑎𝑥
=

2𝐸

𝑁 𝑁 − 1
=

𝐾

𝑁 − 1
≅
𝑘

𝑁

𝜌 =
𝐸

𝐸𝑚𝑎𝑥
=

2𝐸

𝑁 𝑁 − 1
≈
𝐸

𝑁2
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For example, out of 12
possible connections, this graph
has 7, giving it a density of 
7/12 = 0.583



Most real‐world networks are sparse
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How far apart are nodes?
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Paths

 Path from node i to node j: a sequence of edges 

(directed or undirected from node i to node j)

 path length: number of edges on the path (unweighted networks)

 nodes i and j are connected

 Cycle (loop): a path that starts and ends at the same node

 Self-loop: a path from a node to itself
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Network metrics: shortest paths

 Shortest path (also called a geodesic path, BFS path)
 The shortest sequence of links connecting two nodes

 Not always unique

 A and C are connected by 2 shortest paths

 A – E – B - C

 A – E – D - C

 Diameter: the largest geodesic distance in the graph (Maximum shortest path)

 The distance between A and C is the maximum for the graph: 3

A

B

C

D
E

 Caution: some people use the term ‘diameter’ to be the average shortest 
path distance, in this class we will use it only to refer to the maximal distance
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Network metrics: shortest paths
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Network metrics: connected components

 Connected graph: a graph where every pair of nodes is connected

 Disconnected graph: a graph that is not connected

 Connected Components: subsets of vertices that are connected

 Strongly connected components: Each node within the component can 
be reached from every other node in the component by following directed 
links.

 Strongly connected components

 B C D E

 A

 G H

 F

 Weakly connected components: every node can be reached from every 
other node by following links in either direction
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 Weakly connected components

 A B C D E

 G H F

 In undirected networks one talks simply about 
‘connected components’

Complex Network Theory, S. Mehdi Vahidipour.



Giant components and the web graph

 Largest Connected Component: the connected component with the 

largest number of nodes

 if the largest component encompasses a significant fraction of the graph, 

it is called the giant component
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The bowtie model of the web

 The Web is a directed graph:

 webpages link to other 
webpages

 The connected components 
tell us what set of pages can 
be reached from any other just 
by surfing (no ‘jumping’ around 
by typing in a URL or using a 
search engine)

 Broder et al. 1999 – crawl of 
over 200 million pages and 1.5 
billion links.

 SCC – 27.5%

 IN and OUT – 21.5%

 Tendrils and tubes – 21.5%

 Disconnected – 8% image: Mark Levene
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Planar graphs

 A graph is planar if it can be drawn on a plane without 

any edges crossing
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Subgraphs

 Subgraph: Given V’  V, and E’  E, the graph 

G’=(V’,E’) is a subgraph of G.

 Induced subgraph: Given V’  V, let E’  E is the set of 

all edges between the nodes V’ in G. The graph 

G’=(V’,E’), is an induced subgraph of G.
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Cliques and complete graphs

 Kn is the complete graph (clique) with K vertices

 each vertex is connected to every other vertex

 there are n*(n-1)/2 undirected edges

K5 K8K3
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Trees

 Trees are undirected graphs that contain no cycles 

(loops)
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examples of trees

 In nature
 trees

 river networks

 arteries (or veins, but not both)

 Man made
 sewer system

 Computer science
 binary search trees

 decision trees (AI)

 Network analysis
 minimum spanning trees 

 from one node – how to reach all other nodes most quickly

 may not be unique, because shortest paths are not always unique

 depends on weight of edges
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Spanning tree of a graph

 If G(V,E) is a graph and T(V,F) is a subgraph of G and is 

a tree, then T is a spanning tree of G. That is, T is a tree 

that includes every vertex of G and has only edges to be 

found in G. Using a procedure (remove edges from 

cycles until only a tree remains), we can easily prove 

that every connected graph has a spanning tree.
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Bi-cliques (cliques in bipartite graphs)

 Km,n is the complete bipartite graph with m and n vertices of the 

two different types

 K3,3 maps to the utility graph

 Is there a way to connect three utilities, e.g. gas, water, electricity to 

three houses without having any of the pipes cross?

K3,3

Utility graph
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Eigenvalues and Eigenvectors

 The value λ is an eigenvalue of matrix A if there 

exists a non-zero vector x, such that Ax=λx. 

Vector x is an eigenvector of matrix A

 The largest eigenvalue is called the principal 

eigenvalue

 The corresponding eigenvector is the principal 

eigenvector 

 Corresponds to the direction of maximum change

 Ax=λx  Ax – λx = 0  (A-λI)x=0 

 Eig function in MATALB
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Random Walks

 Start from a node, and follow links uniformly at random.

 Stationary distribution: The fraction of times that you visit 

node i, as the number of steps of the random walk 

approaches infinity
 if the graph is strongly connected, the stationary distribution 

converges to a unique vector.

 stationary distribution: principal left eigenvector of the normalized 

adjacency matrix

 x = xP

 for undirected graphs, the degree distribution
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Transition matrix P



Random walks (Example)
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Adjacency matrix A Transition matrix P
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Random walks (Example)
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Probability Distributions

 xt(i) = probability that the surfer is at node i at time t

 xt+1(i) = ∑j(Probability of being at node j)*Pr(j->i) 
=∑jxt(j)*P(j,i)

 xt+1 = xtP = xt-1*P*P= xt-2*P*P*P = …=x0 P
t

 What happens when the surfer keeps walking for a long 
time?

 Stationary Distribution

 When the surfer keeps walking for a long time

 When the distribution does not change anymore

 i.e. xT+1 = xT

 For “well-behaved” graphs this does not depend on the start 

distribution!!
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Using Pajek for exploratory social network analysis

 Pajek – (pronounced in Slovenian as Pah-yek) means ‘spider’

 website: vlado.fmf.uni-lj.si/pub/networks/pajek/ 
 download application (free)

 tutorials

 lectures

 data sets

 Windows only (works on Linux via Wine)

 can be installed via NAL in the student lab (DIAD)

 helpful book: ‘Exploratory Social Network Analysis with Pajek’ by 
Wouter de Nooy, Andrej Mrvar and Vladimir Batagelj
 first 2 chapters are required reading and on cTools

 Pajek
 Opening a network

 Visualization

 Essential measurements
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Pajek interface

Drop down list of networks opened or created with pajek. Active is displayed

Drop down list of network partitions by discrete variables, e.g. degree, mode, label

Drop down list of continuous node attributes, e.g. centrality, clustering coefficients

things we’ll use right away

things we’ll use later for clustering
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opening a network file

click on folder icon

to open a file

Save changes to your network, network partitions, etc., if you’d like to keep them
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Working with network files in Pajek

 The active network, partition, etc is shown on top of the 

drop down list

Draw the network
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Pajek data format

*Vertices 26

1 "Ada"                    0.1646    0.2144    0.5000

2 "Cora"                   0.0481    0.3869    0.5000

3 "Louise"                0.3472    0.1913    0.5000

..

*Arcs 

1 3 2 c Black

..

*Edges 

1 2 1 c Black 

..

Ada

Cora

Louise

number of vertices vertex x,y,z coordinates (optional)

directed edges

undirected edges

from Ada(1) to Louise(3) as

choice “2” and color Black

between Ada(1) to Cora(2) as

choice “1” and color Black
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Readings

 Easley, David, and Jon Kleinberg. Networks, crowds, 

and markets: Reasoning about a highly connected 

world. Cambridge University Press, 2010. (Ch.1-2)

 Newman, Mark. Networks: an introduction. Oxford 

University Press, 2010. (Ch. 6)

 L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. 

Villas Boas. Characterization of complex networks: A 

survey of measurements. Advances in Physics, 

56(1):167 – 242, 2007.
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