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ABSTRACT 

Discovering communities in large-scale social networks efficiently and accurately is one of the challenges in social network 

data mining. We propose a clustering algorithm to discover social network communities based on the propagation of local 

and global information. Three strategies, namely, localizing propagation of affinity messages, relaxing self-exemplar 

constraints, and hierarchical processing, are employed in the algorithm to achieve reasonable time and space complexities in 

social networks. The local and global information is represented by the k-path edge centrality incorporated in the similarity 

calculation. The standalone algorithm is extended to provide parallel implementations based on the MapReduce model to 

accelerate processing in large-scale networks. Two well-known parallel computation frameworks, Hadoop and Spark, are 

adopted to implement the parallel algorithm. Experiments performed on artificial and real social network datasets show that 

the proposed algorithms can achieve near-linear time and space complexities with comparative clustering accuracy. 
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1. Introduction 

Research on social network data mining has attracted increasing attention from both the academic and business 

communities because of the rapid growth of social network service applications such as Twitter, Facebook, and Flickr. 

Discovering communities based on common interests is particularly valuable given the millions of participants in such social 

networks. Online social network analysis can be considered as an extension of data mining and traditional clustering analysis 

[22]. From the business perspective, social networks are profitable for delivering targeted advertisements or disseminating 

recommendations among different social groups [28]. 

The large scale of social networks poses challenges from the viewpoint of clustering methods. First, only algorithms with 

near-linear (o(n)1) time and space complexities can process large numbers of social network vertices. Second, even when an 

algorithm with linear complexity is applied, a single computer is incapable of managing the tremendous computing workload 

involved. Social network data can be processed efficiently using distributed or parallel computation models such as message 
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passing interface (MPI) [35], bulk synchronous parallel (BSP) [44], and MapReduce [11]. 

MapReduce, a framework proposed by Google, is a popular parallel computing model [11]. The model accelerates the 

solution of complex problems by decomposing a big problem into several small ones and devising algorithms comprising 

parallel map and reduce tasks. Apache Hadoop [45], a popular open-source implementation of MapReduce, has proven to be 

effective for managing big data for the following reasons. First, an Apache Hadoop cluster can be extended easily to 

accommodate thousands of computers for providing high computation capability. Second, Apache Hadoop can process both 

structured and unstructured data. Third, the failure tolerance mechanism of the software allows jobs to be completed despite 

computational failures of some machines in the cluster. However, Hadoop has several limitations, for example, Support for 

data sharing among MapReduce jobs is limited, and thus, transforming an iterative algorithm into a Hadoop-based 

MapReduce model is difficult. Apache Spark [48] is another fast-growing open-source parallel computing framework that 

attempts to support a greater number of computation models and run faster than Hadoop. It is a powerful competitor and a 

promising substitute to Hadoop because of its abundant primitives, flexible computation workflows, and in-memory 

computing. 

Parallel analysis of big data has become a significant and promising research topic with the advent of big data and the 

increasing popularity of parallel computation models and frameworks for processing large datasets. However, a challenge 

faced in designing parallel algorithms for the MapReduce model is transforming efficiently sequential, conditional, and loop 

structures into concurrent map and reduce tasks. This study focuses on discovering communities in large-scale social 

networks using the MapReduce model. The local affinity propagation (LAP) algorithm with near-linear time and space 

complexities is proposed. In addition, an extension of the LAP algorithm to the MapReduce (LAPoMR) model is proposed to 

process large-scale social networks efficiently. Design ideas for and complexity analysis of LAPoMR are discussed. Two 

concrete implementations of LAPoMR based on Hadoop and Spark are presented and compared. In the LAP algorithm, the 

similarity of vertices is measured according to the k-path edge centrality [33, 34].  The k-path edge centrality measures the 

importance of an edge by the probability with which the random simple k-paths traverse it. In LAPoMR, a parallel similarity 

calculation based on the k-path edge centrality is proposed. Experiments performed using artificial and real networks 

demonstrate the effectiveness of the algorithms from the viewpoint of community discovery. The key contributions of our 

work are summarized as follows. 

(1) Three new strategies are proposed to develop the LAP algorithm, the time and space complexities of which are 

reduced significantly with comparable accuracy. 

(2) Parallel LAPoMR is proposed by transforming the steps of the LAP algorithm into a series of map and reduce tasks. 

Theoretical analysis and experiment results demonstrate the notable performance speedup of the algorithm in large 

datasets.  

(3) Two implementations of LAPoMR based on Hadoop and Spark are presented and their advantages and disadvantages 

are discussed. 

(4) A new parallel similarity calculation method based on k-path edge centrality, which encompasses local and global 

information of social networks, is proposed. 

The remainder of this paper is organized as follows. Section 2 discusses related work. Section 3 introduces the standard 

affinity propagation (AP) algorithm. Section 4 details the design and analysis of the LAP algorithm. Section 5 discusses 

adaptation of the LAP algorithm to MapReduce and its subsequent implementation on Hadoop and Spark. The parallel 

similarity calculation based on the k-path edge centrality is discussed in Section 6. Section 7 presents the results of 

experiments conducted using artificial and actual social networks. Section 8 concludes our study and presents an outline for 

future research. 
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2. Related work 

Community discovery in social networks can be regarded as a type of complex network clustering [15]. Existing complex 

network clustering methods can be divided into methods based on optimization technologies and those based on heuristic 

rules. 

The methods based on optimization technologies discover communities by iteratively approaching a predefined object 

function. Spectral clustering methods [41] transform community discovery into an optimization problem of a relaxed 

quadratic form. The approximate optimal solution is obtained by solving the eigenvectors of the corresponding Laplacian 

matrix. The modularity proposed by Newman and Girvan [36] is widely used as the object function for optimization in many 

algorithms such as the fast Newman algorithm [19], Clauset algorithm [8], Guimera–Amaral algorithm [20], extremal 

optimization algorithm [13], etc. The definition of the abovementioned modularity is as follows: 

                           2 2
ii i

i

Q e a Trace    e e                    (1) 

where e = (eij) is a symmetric matrix, eij denotes the ratio of the edges between communities i and j to the total edges, and 

ijji
a e  is the fraction of edges that connects to the vertices in community i. Trace(e) is the trace of e, which measures the 

fraction of edges connecting vertices within the same community. ||e2|| is a measure of the expected value of the same 

quantity with random connections among vertices. A high Q value usually indicates a strong community structure. Potts 

model–based algorithms discover communities by minimizing the Hamiltonian of a reduced energy system [42]. Algorithms 

based on vertex or edge centrality discover communities based on network structures [31, 34, 38]. Meo et al. proposed a new 

k-path centrality index [32] and applied it to community detection in large networks [31, 33]. Most optimization-based 

algorithms have a time complexity of O(n2), which is too high for large-scale network clustering. A promising way towards 

enhancing the modularity-based algorithms is the Louvain method [6]. It looks for smaller communities by optimizing 

modularity locally and aggregates nodes of the same community and builds a new network whose nodes are the communities. 

These two steps are repeated iteratively until the modularity value is maximized. In this way, the number of nodes to test 

quickly reduces and the computational cost is reduced in the same order. 

The methods based on heuristic rules discover communities by designing specific heuristics. The Girvan–Newman (GN) 

algorithm is based on the heuristic rule that the "betweenness" [18] of the edges that connect two communities should be 

larger than that of the edges inside a community. Communities are discovered by removing the edges with the highest 

betweenness. The clique percolation method (CPM) algorithm discovers communities as a series of neighboring k-cliques 

and detects overlapping communities [37]. Label propagation algorithms (LPA) broadcast labels among vertices and group 

vertices with the same label into a community [46]. Algorithms based on random walks transform community discovery to 

random walks on a graph [39]. Based on the heuristic rule, the probability of a random walker staying in a community should 

be higher than that between communities. The time complexity of most algorithms is at least O(n2) except for LPA, which is 

applicable only to medium-scale networks. 

Research on the MapReduce model has taken two directions. One direction directly exploits the model’s power to process 

big data. The Hadoop-based diameter and radii estimator algorithm computes the diameters and radii of massive graphs [24]. 

Zhao et al. proposed a Hadoop-based parallel LPA [49]. Gao et al. introduced a MapReduce-based algorithm for e-mail 

network analysis [17]. Zhao et al. developed an algorithm based on Hadoop for relational subgraph analysis [50]. Schultz et 

al. applied MapReduce to detect important graph patterns in large-scale graphs [40]. Apache Mahout is a famous framework 

that implements many data mining algorithms on the Hadoop framework [4]. Spark MLib is a recently proposed library for 

the same purpose, albeit on the Spark framework [3]. Datameer is a powerful, one-stop service application for the 

integration, analysis, and visualization of big data for customers [10]. All studies in this direction have achieved significant 

reductions in running time, particularly in the context of large-scale networks. 
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The second research direction for the MapReduce model is enhancing for or extending it to highly complex machine 

learning algorithms. Bu et al. proposed the HaLoop framework for implementing iterative algorithms efficiently on the 

MapReduce model [7]. Pregel and its open-source counterpart, Giraph, implement the MPI model to process large graphs 

rapidly [5, 29]. The Spark framework was proposed recently for supporting a number of computation models beyond those 

based on the MapReduce model, and it runs at least 10 times faster than Hadoop [14, 48]. Kajdanowicz et al. found the 

MapReduce model to be more suitable for large networks after its efficiency was compared with that of the BSP model [23]. 

Li et al. developed a local iteration MapReduce model and applied it for designing a parallel LPA [27]. Studies on the 

MapReduce model generally involve exploring the model’s power and improving its performance in complex computation 

tasks. 

3. The standard AP algorithm 

Brendan and Delbert [16] proposed the standard AP algorithm as a clustering algorithm by propagating messages between 

a pair of vertices in a graph. The number of communities is not a prerequisite, and a symmetric similarity measure is 

unnecessary. Thus, the algorithm is suitable for a wide variety of applications. The most important parameter of the standard 

AP algorithm is p, i.e., the self-similarity of each vertex because it significantly influences the number of communities 

discovered. Two types of messages are transferred among the vertices during iterations of this algorithm. These are 

responsibility message r(i,k), which expresses the support of vertex i to another vertex k, and availability message a(i,k), 

which expresses the suitability of vertex k as the exemplar of another vertex i. The main procedures of the standard AP 

algorithm include updating r(i,k) and a(i,k) iteratively until convergence, as follows: 

 

. .( , ) ( , ) max { ( , ) ( , ))}k s t k kr i k s i k a i k s i k                             (2) 
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. . { , }

0, ( , )
min

max{0, ( , )}( , )

max{0, ( , )}

i s t i i k

i s t i i k

r k k
i k

r i ka i k

r i k i k

 

 
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


               (3) 

 

In Equation (2), s(i,k') represents the similarity between vertices i and k'. In the standard AP algorithm, this similarity is set as 

the negative of the Euclidean distance between the two vertices. When applied to community discovery in social networks, 

structural similarity measures such as the Jaccard index [15] are used frequently to describe similarity among vertices. The 

Jaccard index considers the similarity between two vertices as the ratio of the number of shared neighbors to the total number 

of neighbors, as expressed below: 

 
   
   

,
NB i NB k

Jaccard i k
NB i NB k





                  (4) 

where NB(i) denotes the neighbor set of vertex i, and 0 ≤ Jaccard(i,k) ≤ 1 can be verified easily. 

4. The LAP algorithm 

The standard AP algorithm propagates messages between each pair of vertices regardless of whether they are connected. 

Therefore, the time complexity of the standard AP algorithm is O(n2), which is unacceptable for large networks with millions 

or even billions of vertices. For example, for a moderate network with 106 vertices, the memory and running time 

requirements are of the order of 1012. In social networks, users typically exchange information with only a small part of the 

network (relatives, friends, colleagues, etc.). Hence propagating responsibility and availability messages to everyone in the 

network is unnecessary. Another weakness of the standard AP algorithm is the self-exemplar constraint that forces each 
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exemplar to select itself as its own exemplar. Sumedha and Weigt [43] pointed out that the performance of the standard AP 

algorithm can be improved by relaxing the constraint. This section presents the design ideas, detailed implementation, and 

complexity analysis of the LAP algorithm. 

4.1 Design ideas 

Two design strategies are proposed to address the weaknesses of the standard AP algorithm. 

Strategy 1 Messages are propagated only between connected vertices, i.e., a vertex can only exchange messages with its 

neighbors. 

Strategy 2 An exemplar is free to select any vertex as its exemplar regardless of whether it is selected as its own 

exemplar. 

The first strategy employs the characteristics of social relationship. Thus, the quantity of messages spread across a network 

is proportional to the total number of neighbors of all vertices, which has been established as useful in the literature [33]. The 

total number of neighbors of all vertices is twice the number of network edges when the network is connected, which is 

frequently true in social networks. Therefore, the time complexity of the algorithm can be reduced to be near linear with 

respect to network size, except that the network is an incomplete graph. Near-linear time complexity is always achieved 

because a social network is seldom a complete graph. Moreover, the strategy shortens the propagation path of a message. 

Therefore, inadequate exchange of messages may adversely affect the algorithm’s clustering accuracy. However, in 

experiments, minimal loss of accuracy and increase in community size were observed. 

The second design strategy aims to discover a more reasonable scheme for assignment of vertices to communities than that 

used in the standard AP algorithm by relaxing the self-exemplar constraint. A vertex specifically belongs to a community 

that is a member of another community, i.e., the community may form hierarchical structures. When the strategy is applied, 

the equations for responsibility and availability calculations are transformed as follows: 

 . .( , ) ( , ) max { ( , ) ( , )}k s t k k k NB ir i k s i k a i k s i k    
                             (5) 

 
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. . { , }

. . { , }
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min

max{0, ( , )}( , )

max{0, ( , )}

i s t i i k i NB k

i s t i i k i NB k

r k k
i k

r i ka i k

r i k i k

   

   

          


 




             (6) 

The equation for selecting the exemplar of a vertex i is now given as 

     . .arg max ( , ) ( , ) | ( , ) ( , ) 0ks t k NB ie i r i k a i k r i k a i k               (7) 

A subtle problem may arise when the constraint on exemplars is relaxed. This issue is expressed in Property 1. 

 Property 1. Relaxation of the self-exemplar constraint can lead to a cyclic structure in exemplars, which can be 

eliminated by selecting one vertex in the circle as the exemplar of all other vertices. 

 Description: As shown in Fig. 1, exemplars may form a circle, which causes the algorithm to run exemplar selection 

ceaselessly. The solution is to break the circle at a specific vertex, thereby transforming it into a path. The vertex that 

functions as the self-exemplar is also selected as the exemplar of all other vertices in the path, as shown in Fig. 2. After 

removing the arrow between vertices 2 and 3 and reversing the direction of the arrow between vertices 1 and 2, vertex 1 is 

selected as the exemplar of vertices 2 and 3. Thus, the circular structure is broken. 
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A common method for managing large social networks is to partition it into layers and then process each layer in a 

hierarchical manner [1, 6, 12, 31, 33]. The AP algorithm can be run iteratively. The exemplars discovered in one iteration are 

regarded as vertices and used to form a super-network for the next iteration. The proportion of the network to be processed in 

one iteration decreases rapidly, and thus, large networks can be managed efficiently. Hence, we suggest an alternative 

strategy to design the new LAP algorithm.  

Strategy 3 Networks can be processed in a hierarchical manner. 

The new LAP algorithm is developed considering all aforementioned strategies. 
Algorithm 1. LAP Algorithm 
Input: network G=(V,E), where V is the vertex set and E is the edge set, the maximum iterations maxIter, the stable convIter, 
preference p 
Output: {e(i)}, where e(i) denotes the exemplar of vertex i 

1.  for each vertex i, calculate the similarity s(i,k) between it and its neighbor k, and build the similarity vector set 
 Sets={si=(s(i,k))}; 

2.  old
eSet =Φ; 

3.  while true do 
4.            stc=0; 
5.            for n=1 to maxIter 
6.                    Sete=Φ; 

7.                    for i=1 to |V| do 
8.                           calculate ri=( r(i,k)) and ai=(a(i,k)) for each vertex i according to equation (5) and equation (6), where 

k={1,2,…, |NB(i)|}; 
9.                   end for 
10.                 for each vertex i, calculate k=e(i) according to equation (7) and add vertex k to Sete; 
11.                 if Sete =Φ  or old

eSet - Sete ≠Φ then 

12.                          stc=1; 
13.                 else 

1 

2 3 

Fig. 1. Circular structure of the exemplars 

1 

2 3 

Fig. 2. Exemplar selection after breaking the circle 
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14.                          stc=stc+1; 
15.                 end if 
16.                if stc=convIter then 
17.                        break; 
18.                 end if 
19.         end for 
20.         call procedure RemoveCircles(V, Sete) to remove the circles in the exemplars; 
21.         if old

eSet ≠Φ  and old
eSet - Sete =Φ  then 

22.                 break; 
23.         end if 
24.         old

eSet = Sete; 

25.         prune Sets to hold only the exemplars; 
26. end while 
27. output Sete; 

The LAP algorithm mainly relies mainly on two loops to find exemplars after the similarity vector si for each vertex i is 

calculated: (1) the outermost while loop and (2) inner for loop spanning steps 5–19. The latter loop runs in iterations similar 

to those in the standard AP algorithm to find the exemplars of the vertices in network G. However, the LAP and standard AP 

algorithms have two key differences. The first difference is presented in steps 7–9, wherein only responsibility and 

availability messages from or to neighbors are calculated for each vertex i according to strategy 1. Therefore, the time and 

space complexities of the iterations are reduced from O(n2) in AP to O(m) (m = |E|). The second difference lies in step 10, 

wherein an exemplar is selected for a vertex without considering the self-exemplar constraint according to strategy 2. Steps 

11–19 are only used for convergence judgment. 

The outer while loop comprises three tasks. First, RemoveCircles() is run to remove possible circles in the exemplars. 

Second, the loop is stopped if the exemplars found in two consecutive loops are the same, which is determined in steps 

21–23. Third, if the exemplars vary, network G is pruned to retain only the exemplars and their edges for the next run of the 

inner for loop. Sets is pruned instead of network G because the network structure is represented by Sets, and the computation 

concerns only Sets. 

The details of RemoveCircles() are as follows: 
Procedure 1. RemoveCircles() 
Input: V, {e(i)} 

1.  for each i V do 

2.           initial hash table H; 
3.           j=i; 
4.          while j ≠e(i) do 
5.                  if H contains vertex j then 
6.                          break; 
7.                  end if 
8.                  put vertex j to H; 
9.                  j= e(i); 
10.         end while 
11.         if H is not empty then 
12.                 for each vertex k H do 
13.                         e(k)=j; 
14.                 end for 
15.         end if 
16. end for 
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We provide the property for this procedure as follows. 

Property 2. RemoveCircles() can remove circles in the exemplars properly. 

Description: RemoveCircles() checks whether the exemplar for each vertex i is a self-exemplar. If it is, then hash table H 

would be empty or without a circle. Otherwise, the while loop spanning steps 4–10 is executed to find a path from vertex i to 

its real exemplar. Two situations are considered. First, a self-exemplar is found at the end of the path, i.e., no circle is formed. 

In this case, the exemplar of each vertex in the path is set to the self-exemplar by following steps 11–15. Second, a vertex is 

met twice during the search for the real exemplar, which indicates that a circular path exists. In this case, the exemplar of 

each vertex in the path is set to a specific vertex by following steps 11–15. 

 

 

Fig. 3 shows an example of the solutions to the two conditions. We do not distinguish which vertex is selected as the 

exemplar because, as found in our experiments, this choice has no effect on the discovered communities. 

4.2 Similarity calculation 

In [33] and [34], Pasquale et al. proposed that the edges can be weighted according to their centrality to enhance 

community detection. Specifically, edge weights are represented by the k-path edge centrality, which considers both local 

and global information of the network. The k-path edge centrality of an edge is the sum of the probabilities with which a 

message originating from any vertex traverses the edge which passes only random simple k-paths. A simple k-path is a path 

in a network made up of k random unique edges at most. The probability of selecting an edge for a path is proportional to its 

current weights (initially set to 1.0), which can be expressed as Equation (8). 

   
 

Pr
i e

i
i

ie T

w e
e

w e





                    (8) 

where ei is the neighboring edge of the last edge in the path, w(ei) is the weight of ei, and Te is the set of traversed edges in the 

path. An algorithm called WERW-Kpath was proposed in [34] to calculate the edge weights based on k-path edge centrality, 

the main steps of which can be summarized as follows: 

(1) for i = 1 to ρ do 

(2)       randomly select the first edge for path Pi; 

(3)       for j = 2 to k do 

1 2 3 

4 

1 2 3 

4 

1 2 3 

4 

1 2 3 

4 

(a) first condition (before) (b) first condition (after) 

(d) second condition (after) (c) second condition (before) 

Fig. 3. Solutions to the two conditions 
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(4)            select the next edge for Pi according to Equation (8); 

(5)            update edge weights; 

(6)       end for 

(7)       set the weight of each edge in Pi to w(ej)/ρ; 

(8) end for 

Here, ρ decides the number of random paths used for calculating k-path edge centrality. As suggested in [34], a value of 

|V|log|V| is sufficient to achieve satisfactory accuracy. By considering the edge weights based on k-path edge centrality, we 

can develop a similarity measure similar to the Jaccard index, as follows: 

 

 

     

  

,
ij kj

j NB i NB k

ij ki
j NB i j NB k

w w

s i k
w w

 

 







 

                    (9) 

where NB(i) denotes the neighbor set of vertex i and wij is the weight of edge eij. Therefore, in the first step of the LAP 

algorithm, the similarity of two vertices is calculated according to Equation (9). 

4.3 Complexity Analysis 

Property 3. The time and space complexities of the LAP algorithm are O(m × logn) and O(m), respectively, where n is the 

number of vertices and m is the number of edges. 

Description: Let n = |V|, m = |E|. The similarity calculation is O(m), as demonstrated in [34]. The maximum number of 

iterations of the inner for loop is O(maxIter). Updating responsibility and availability messages and determining the 

exemplars in each iteration require O(m) time. Therefore, the time complexity of the inner for loop is O(maxIter × m). 

The number of iterations required by the outer while loop is determined by the period in which the exemplars become 

stable. The number of exemplars (or communities) decrease by at least half after each iteration because the situation wherein 

each vertex selects itself as its exemplar can be avoided by setting parameter p to a value smaller than 0. Therefore, the 

maximum number of iterations of the outer while loop is O(logn). 

Calculating Sets takes O(m) time. The time complexity of RemoveCircles() is O(n × lp), where lp is the length of the longest 

path from a vertex to its real exemplar. The maximum time required to prune Sete is O(m). In summary, the total time 

complexity of the LAP algorithm is O(logn × maxIter × (m + n × lp)), which can be reduced to O(m × logn) for n ≤ m and lp 

<< n. Thus, the LAP algorithm scales near linearly with network size. 

By adopting strategy 1, the space occupied by the similarity, responsibility, and availability vectors of all vertices is O(m). 

Occupation of the hash table and the path in RemoveCircles() is O(n). Therefore, the total space complexity of the LAP 

algorithm is O(m). This finding proves that the LAP algorithm, too, has near-linear space complexity. 

5. Local affinity propagation based on the MapReduce model 

Distributed or parallel computation models such as MapReduce are widely applied to process large networks that cannot 

be incorporated into a single machine. Determining and transforming steps of the LAP algorithm to ensure that they can run 

in parallel are central to adapting the algorithm for the MapReduce model. The design ideas of LAPoMR (LAP algorithm 

over MapReduce) and the detailed procedures of the algorithm are discussed in this section. The complexity of the algorithm 

is analyzed as well. 

5.1. Design ideas 

The strength of the MapReduce model lies in its parallel execution of independent tasks. Therefore, parallelization of 
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many steps of the LAP algorithm increases performance (speed). As mentioned previously, the biggest challenge in the 

design of MapReduce algorithms is the transformation of sequential, conditional, and loop structures into concurrent map 

and reduce tasks efficiently. We consider four critical steps that for transforming sequential, conditional, and loop structures 

into parallel map or reduce tasks. 

(1) Similarity calculation 

According to Equation (9), the similarity calculation of a pair of vertices requires only information about the neighbors of 

said pair. Thus, similarity calculations for all pairs of vertices can be performed independently so long as the neighbors of 

each pair of vertices are presented. A sketch of the MapReduce model for similarity calculation is then developed, as shown 

in Fig. 4. 

The map tasks are used to collect pairs of vertices and their neighboring sets. The reduce tasks are run to calculate the 

similarity of each pair of vertices. The final reduce tasks are used to gather similarity from all neighbors of each vertex i and 

build similarity vector si. 

(2) Responsibility calculation 

Equation (5) shows that the responsibility calculation involving a vertex and its neighbors depends only on the availability 

sent from and the similarity with its neighbors. Therefore, a sketch of the MapReduce model for the responsibility 

calculation is developed, as shown in Fig. 5. 
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… … 

(i, k)        {NB(i), NB(k)} 
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k           sk 
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Fig. 4. Similarity calculation based on the MapReduce model 
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In the map step, the similarity vector si and availability vector ai of each vertex i are determined for computation using 

Equation (5). In the reduce step, the responsibility r(i,k) of each neighbor k to vertex i is determined and packed into the 

responsibility vector ri. 

(3) Availability calculation 

The availability calculation is similar to the responsibility calculation, but a fundamental difference exists between them. 

Equation (6) reveals that the computation of the availability vector ai does not depend directly on the corresponding 

responsibility vector ri. The calculation of element a(i,k) requires collecting the kth element of rj, where j traverses all 

neighbors of vertex i. This procedure is similar to transposing a matrix consisting of all ris (it is indeed the transposition of 

matrix R = (ri) if all vertices have the same number of neighbors). Therefore, we should extract all r(i,k)s with the same k to 

compute a(i,k), and then all a(i,k)s with the same i should be collected to build vector ai for any vertex i. A sketch of the 

MapReduce model of the availability calculation is shown in Fig. 6. 

Given its complexity, the availability calculation is divided into two stages. The first stage performs transposition and 

calculates a(i,k) for each neighbor k, according to Equation (6). The second stage determines a(i,k) values for each vertex i 

and generates the corresponding availability vector ai. 

(4) Exemplar calculation 

According to Equation (7), an exemplar vector ei = ((r(i,k) + a(i,k))) should be computed initially for each vertex i. The 

neighbor corresponding to the maximum positive element of ei is then selected as its exemplar. Therefore, a sketch of the 

MapReduce model for exemplar calculation with a design similar to that of the responsibility calculation model is developed, 

as shown in Fig. 7. 
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Fig. 5. Responsibility calculation based on the MapReduce model 
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The responsibility vector ri and availability vector ai corresponding to each vertex i are collected in the map step. In the 

reduce step, the exemplar vector ei is calculated according to Equation (7). 

After parallelization of the four calculations, the main body of the LAP algorithm can now be transformed into a parallel 

LAP algorithm based on the MapReduce model. 

5.2. The LAPoMR algorithm 

This subsection details the LAPoMR algorithm that conforms to the design ideas presented in the previous subsection. 

However, implementing this algorithm with the two well-known MapReduce frameworks, i.e., Hadoop and Spark, involves 

certain subtleties. The Hadoop framework requires that the algorithms running on it should be separated into a series of 

MapReduce jobs, wherein each job is divided into a map stage and a reduce stage. Therefore, the similarity calculation 

shown in Fig. 4 should be separated into two jobs, with the map tasks of the second job employing the identity mapper 

pattern [45] to transfer the input directly to the output. In addition, we have to rely on the Hadoop distributed file system 

Map Reduce 

… … 

k                {…,r(i,k), …, r(j,k),…} 

… … 

t                {…,r(i,t), …, r(j,t),…} 

… … 

Fig. 6. Availability calculation based on the MapReduce model 
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Fig. 7. Responsibility calculation based on the MapReduce model 
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(HDFS) or a database to share data between successive jobs, which may severely affect the performance of the algorithm. In 

contrast, Spark provides flexible solutions. This framework offers plenty of primitives (e.g., map, reduce, fold, foreach, 

groupBy, join, etc) to allow for a wider variety of operations than the MapReduce model and supports data sharing by 

caching data in memory or disks, or both. These advantages make Spark a good candidate for implementing the LAPoMR 

algorithm. We implement the LAPoMR algorithm on both Hadoop and Spark to compare the performance of the 

frameworks. 

 Details of the implementation of the LAPoMR algorithm on the two frameworks are presented below. 

Algorithm 2. LAPoMR Algorithm (Hadoop) 
Input: network G=(V,E), where V is the vertex set and E is the edge set, the maximum iterations maxIter, the stable convIter, 
preference p 
Output: {e(i)}, where e(i) denotes the exemplar of vertex i 

1.    //SIMILARITY CALCULATION 
2.            map (key i, value NB(i)) 
3.                   for each neighbor k, output (key (i,k), value NB(i)); (if i>k, change key to (k,i)) 
4.                   output (key(i,i), value -1); 
5.            reduce (key (i,k), values {NB(i),NB(k)})  
6.            if i==k then 
7.                   output (key i, value p); 
8.             else 
9.                   calculate s(i,k) according to equation (4); 
10.               output (key i, value (k,s(i,k))); 
11.               output (key k, value (i,s(i,k))); 
12.        end if 
13.        map (key i, value (k,s(i,k)))  //Identity Mapper pattern 
14.               output (key i, value (k,s(i,k))); 
15.        reduce (key i, values {(k,s(i,k))|k∈NB(i)}) 

16.               output (key i, value {(k,s(i,k))}); 
17. Sets={(i, {(k, s(i,k))})}; 
18. old

eSet =Φ; 

19. while true do 
20.         for iter=1 to maxIter do 
21. //RESPONSIBILITY CALCULATION 
22.                 map (key i, value {(k, s(i,k))}) and  (key i, value {(k, a(i,k))})  
23.                         calculate r(i,k) according to equation (5); 
24.                         output (key i, value (k, r(i,k),0));  
25.                         output (key k, value (i, r(i,k)),1); 
26.                reduce (key i, values {(k, r(i,k),0)}) and (key k, values {(i, r(i,k),1)}) 
27.                         output (key i, value {(k,r(i,k))}); 
28.                         output (key k, value {(k,r(i,k))});  //prepare for availability calculation 
29. //AVAILABILITY CALCULATION 
30.                map (key k, value {(k, r(i,k))})  
31.                        calculate a(i,k) according to equation (6); 
32.                         output (key i, value (k, a(i,k))); 
33.                reduce (key i, values {(k, a(i,k))}) 
34.                        output (key i, value {(k,a(i,k))}); 
35. //EXEMPLAR CALCULATION 
36.               map (key k, value {(k, r(i,k))}) and (key k, value {(k, a(i,k))}) 
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37.                       output (key i, value (k, r(i,k), a(i,k))); 
38.               reduce (key i, values {( k, r(i,k), a(i,k))}) 
39.                         calculate k=e(i) according to equation (7) and add vertex k to Sete;  
40.               call procedure RemoveCircles(V, Sete) to remove the circles in the exemplars; 
41.               if Sete =Φ  or old

eSet - Sete ≠Φ then 

42.                         stc=1; 
28.                else 
43.                         stc=stc+1; 
44.               end if 
45.               if stc=convIter then 
46.                        break; 
47.               end if 
48.        end for 
49.        if old

eSet ≠Φ  and old
eSet - Sete =Φ  then 

50.                break; 
51.       end if 
52.       old

eSet = Sete; 

53.       prune Sets to hold only the exemplars; 
54. end while 

 
Algorithm 3. LAPoMR Algorithm( Spark) 
Input: network G=(V,E), where V is the vertex set and E is the edge set, the maximum iterations maxIter, the stable convIter, 
preference p 
Output: {e(i)}, where e(i) denotes the exemplar of vertex i 

1.   //SIMILARITY CALCULATION 
2.            map (key i, value NB(i)) 
3.                   for each neighbor k, output (key (i,k), value NB(i)); (if i>k, change key to (k,i)) 
4.                   output (key(i,i), value -1); 
5.            reduce (key (i,k), values {NB(i),NB(k)}) 
6.                   if i==k then 
7.                           output (key i, value p); 
8.                   else 
9.                           calculate s(i,k) according to equation (4); 
10.                       output (key i, value (k,s(i,k))); 
11.                       output (key k, value (i,s(i,k))); 
12.               end if 
13.        reduce (key i, values {(k,s(i,k))|k∈NB(i)}) 

14.               output (key i, value {(k,s(i,k))}); 
15. Sets={(i, {(k,s(i,k))})}; 
16. old

eSet =Φ; 

17. while true do 
18.         for iter=1 to maxIter do 
19. //RESPONSIBILITY CALCULATION 
20.                 map (key i, value {(k, s(i,k))}) and  (key i, value {(k, a(i,k))})  
21.                         calculate r(i,k) according to equation (5); 
22.                         output (key i, value (k, r(i,k)));  
23.                 reduce (key i, values {(k, r(i,k))})  
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24.                         output (key i, value {(k,r(i,k))}); 
25. //AVAILABILITY CALCULATION 
26.                map (key i, value {(k, r(i,k))})  
27.                         output (key k, value (i, r(i,k))); 
28.                reduce (key k, values {(i, a(i,k))}) 
29.                        output (key k, value {(i,r(i,k))}); 
30.                map (key k, value {(k, r(i,k))})  
31.                        calculate a(i,k) according to equation (6); 
32.                        output (key i, value (k, a(i,k))); 
33.                reduce (key i, values {(k, a(i,k))}) 
34.                        output (key i, value {(k,a(i,k))}); 
35. //EXEMPLAR CALCULATION 
36.               map (key k, value {(k, r(i,k))}) and (key k, value {(k, a(i,k))}) 
37.                       output (key i, value (k, r(i,k), a(i,k))); 
38.               reduce (key i, values {( k, r(i,k), a(i,k))}) 
39.                         calculate k=e(i) according to equation (7) and add vertex k to Sete;  
40.               call procedure RemoveCircles(V, Sete) to remove the circles in the exemplars; 
41.               if Sete =Φ  or old

eSet - Sete ≠Φ then 

42.                         stc=1; 
29.                else 
43.                         stc=stc+1; 
44.               end if 
45.               if stc=convIter then 
46.                        break; 
47.               end if 
48.        end for 
49.        if old

eSet ≠Φ  and old
eSet - Sete =Φ  then 

50.                break; 
51.       end if 
52.       old

eSet = Sete; 

53.       prune Sets to hold only the exemplars; 
54. end while 

 

Although algorithms 2 and 3 appear similar, two key differences exist between them. The first difference is in the 

similarity calculation. The Hadoop implementation needs two MapReduce jobs to achieve this, whereas the Spark 

implementation can reduce directly a batch of reduce task results. The flexibility afforded by the Spark primitives serves a 

major function at this point. The second difference is in both responsibility and availability calculations. To reduce the 

number of MapReduce jobs and save time, the Hadoop implementation integrates availability calculation steps with the 

responsibility calculation steps. This integration increases the design complexity of the associated map and reduces tasks. An 

additional 0 or 1 has to be appended to the values of the mappers of the responsibility calculation jobs to distinguish 

responsibility calculation data from availability calculation data. Otherwise, the reducers will be unable to determine 

whether the value r(i,k) received by it is for calculating the responsibility vector ri or the availability vector ai. By contrast, 

the Spark implementation can separate responsibility and availability calculations easily and clearly without employing extra 

MapReduce jobs because flexible primitives such as flatMap, groupByKey, and mapValues can complete the computation. 

Two patterns are applied in the LAPoMR algorithm. The first is the identity mapper pattern [45], which is used in the 

second job of the similarity calculation in the Hadoop implementation to transfer input to the reducer directly. The second is 
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the map-side join pattern [45], which is adopted in the availability and exemplar calculations to join the responsibility and 

availability vectors in both implementations. Unlike the responsibility calculation, the availability calculation must employ 

two MapReduce jobs because the responsibility vectors must be transposed to calculate a(i,k) for each k and transpose them 

back to calculate a(i,k) for each i. This transposition cannot be executed in a single job even in the Spark framework. 

5.3. Complexity analysis 

Property 5. The time and space complexities of the LAPoMR algorithm are O(maxIter × logn × m/nm) and O(m), 

respectively, where n is the number of vertices, m is the number of edges, and nm is the number of machines. 

Description: The index of each vertex is an integer that enables the default partitioner of Hadoop and Spark to distribute 

workloads uniformly. Therefore, the time complexity of the similarity, responsibility, availability, and exemplar calculations 

can be reduced to O(m/nm). The outer while loop requires O(logn) time, as discussed in Section 4.3. The total time 

complexity of the LAPoMR algorithm is O(maxIter × logn × m/nm). The space complexity of the LAPoMR algorithm is 

O(m) because the entire network is required to be stored before running the MapReduce jobs. 

6. Parallel similarity calculation based on the MapReduce model 

 The similarity calculation in the LAPoMR algorithm requires transformation of the WER-Kpath algorithm into a parallel 

algorithm. In this section, we describe the design and implementation of the parallel similarity calculation based on the 

k-path edge centrality. When a network is represented as an adjacency list, the selection of edges for a path can be replaced 

with the selection of neighbors of the vertices in the path. We consider three critical steps that can be transformed into 

parallel map or reduce tasks. 

(1) Random selection of starting vertex for each path 

Initially, the first vertex of each path is selected based on the degree of the vertex. Map tasks are employed to determine the 

degrees of all vertices. Then, in the reduce task, ρ starting vertices are selected according to their degrees. The higher the 

degree of a vertex, the greater is the likelihood of its selection. Without doubt, vertices with high degrees can appear on more 

than one path. A sketch of the MapReduce model for random selection of the first vertex for a path is shown in Fig. 8. 

 

 

 

Here, NB(i) is extended to include the weight of the edge connecting each neighbor. Specifically, the elements of NB(i) are 

tuples in the form of <j, wij> that encapsulate not only the neighbor j but also the weight of edge eij. The outputs of the reduce 

task are the starting vertices v1–vρ (as the output keys) and their predecessor lists (as the output values, initially empty). The 

constraint is that there should be only one reduce task for selecting the real high-degree vertices. Otherwise, the selected 

vertices would represent high-degree vertices in each data split, processed by individual reduce tasks. 

(2) Selection of next vertex for each path 

Map Reduce

i |NB(i)| 
… … 

 

i   NB(i) 

… … 

 

Fig. 8. Starting vertex selection for paths based on the MapReduce model 
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After the first vertex is chosen, it is natural to select the next vertex for each path. A sketch of the MapReduce model 

corresponding to this step is shown in Fig. 9.  

 

 

Suppose vertex i is the last vertex in some path. The next vertex should satisfy three requirements: (1) it should be i's 

neighbor; (2) it should not have been selected before in the path; (3) it should be selected according to Equation (8). When 

neighbor q is selected, it is added to the path. The vital consideration here is that the newly chosen q is output as the key and 

the input key i is appended to the predecessor list that is output as value. In this way, we can easily collect paths ending with 

q and q's neighbors using key q to start the next round of selection. Two conditions lead to termination of the selection 

process: number of the edges in the path reaches k, or all neighbors exist in the path. Fulfillment of any aforementioned 

condition implies that the k-path is built. 

(3) Update of edge weights 

When edges are added to the paths, their weights are updated in a parallel fashion. A sketch of the MapReduce model 

corresponding to edge weight updates is shown in Fig. 10. 

 

 

Using the special design of path representation introduced above, it is easy to extract a new edge eip from the key and the 

Reduce 
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Fig. 9. Next vertex selection for paths based on the MapReduce model 
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Fig. 10. Update of edge weights based on the MapReduce model 
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last vertex in the output value list. Combined with the old neighbor information list of i, the neighbor tuple <p, wip> can be 

easily updated to <p, wip+1/ρ>. 

6.1 PKpath algorithm  

This subsection details the PKpath algorithm based on the design ideas presented in the previous subsection. Similar to the 

LAPoMR algorithm, owing to the availability of a greater number primitives, the Spark implementation of the PKpath 

algorithm is more flexible than its Hadoop counterpart. The details of the PKpath algorithm implementation in the two 

frameworks are presented below. 
Algorithm 4.PKpath Algorithm (Hadoop) 

Input: network G=(V,E), where V is the vertex set and E is the edge set, the maximum path length k 
Output: {(i, NB'(i))}, where NB'(i)={<j,w'ij>} and w'ij is the k-path centrality of edge eij 

1.  //STARTING VERTEX SELECTION 
2.             map (key i, value NB(i)) 
3.                    output (key i, |NB(i)|); 
4.             reduce (key i, values {|NB(i)|}) 
5.                    selectρ vertices with high degrees; 
6.                    output (key vi, value {}); //i=1…ρ 

7.  for iter=1 to k do 
8.  //NEXT VERTEX SELECTION 
9.             map (key i, value Pi,p) // Identity Mapper pattern, Pi,p={…,p} is a path ended with i and p is i's predecessor 
10.                 output (key i, value Pi,p); 
11.         map (key i, value NB(i)) // Identity Mapper pattern 
12.                 output (key i, value NB(i)); 
13.         reduce (key i, values { Pi,p, NB(i)}) 
14.                 select the next vertex q for each path ended with i according to equation (8); 
15.                 output (key q, value Pq,i); 
16. //EDGE WEIGHT UPDATE 
17.         map (key i, value Pi,p) 
18.                 output (key i, value p); 
19.                 output (key p, value i); 
20.         reduce (key i, values {p, q, …})  
21.                 output (key i, value{p, q, …}); 
22.         map (key i, value NB(i)) // Identity Mapper pattern 
23.                 output (key i, value NB(i)) 
24.         map (key i, value{p, q, …}) // Identity Mapper pattern 
25.                 output (key i, {p, q, …}) 
26.         reduce(key i, values {NB(i), {p, q, …}} 
27.                 update the weights of the neighbors of i in NB(i) according to the newly added edges; 
28.                 output (key i, value NB'(i)) 
29. end for 

 
Algorithm 5.PKpath Algorithm (Spark) 
Input: network G=(V,E), where V is the vertex set and E is the edge set, the maximum path length k 
Output: {(i, NB'(i))}, where NB'(i)={<j,w'ij>} and w'ij is the k-path centrality of edge eij 

1.  //STARTING VERTEX SELECTION 
2.             map (key i, value NB(i)) 
3.                    output (key i, |NB(i)|); 
4.             reduce (key i, values {|NB(i)|}) 
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5.                    selectρ vertices with high degrees; 
6.                    output (key vi, value {}); //i=1…ρ 

7.  for iter=1 to k do 
8.  //NEXT VERTEX SELECTION 
9.             reduce (key i, values { Pi,p, NB(i)}) // Pi,p={…,p} is a path ended with i and p is i's predecessor 
10.                 select the next vertex q for each path ended with i according to equation (8); 
11.                 output (key q, value Pq,i); 
12. //EDGE WEIGHT UPDATE 
13.         map (key i, value Pi,p) 
14.                 output (key i, value p); 
15.                 output (key p, value i); 
16.         reduce (key i, values {p, q, …})  
17.                 output (key i, value{p, q, …}); 
18.         reduce(key i, values {NB(i), {p, q, …}} 
19.                 update the weights of the neighbors of i in NB(i) according to the newly added edges; 
20.                 output (key i, value NB'(i)) 
21. end for 

 

Two differences exist between algorithms 4 and 5. The first pertains to the next vertex selection. The Hadoop 

implementation employs two map tasks first to collect the data for the reduce task because a job in Hadoop must be started 

with map tasks. In contrast, after using its join primitive to join the required data, the Spark implementation can directly start 

the reduce task. The second difference is in the edge weight update. For the same reason, the results of the first reduce task 

can be sent directly to the second reduce task in the Spark implementation, whereas two extra map tasks are employed in the 

Hadoop implementation. The reductions in the number of map/reduce tasks and the memory-cache mechanism ensures that 

the Spark implementation performs better than the Hadoop implementation, as was demonstrated experimentally in this 

study. When each edge is weighted according to its k-path centrality, the weights can applied to the similarity calculation 

procedure in algorithms 2 and 3. 

6.2 Complexity analysis 

Property 6. The time and space complexities of the PKpath algorithm are O(m /nm) and O(m), respectively, where n is the 

number of vertices, m is the number of edges, and nm is the number of machines. 

Description: The time and space complexities of the WER-Kpath algorithm are O(k × m) [34]. Therefore, when the 

computation is carried out on nm machines, the time complexity will be O(k × m /nm). However, the space occupation remains 

O(m) because the entire network must be stored before running the algorithm. As suggested in [34], k is usually an integer far 

smaller than m. Therefore, the time and space complexities of the PKpath algorithm are O(m /nm) and O(m), respectively. 

7. Experiments 

Comprehensive experiments were conducted on both artificial and real social networks to evaluate the performance of the 

proposed algorithms. The artificial networks were generated using the benchmark network generator developed by 

Lancichinetti and Fortunato [25]. The real social networks were downloaded from the SNAP project website [30]. Table 1 

summarizes the details of the experimental network, with n, m, μ, k, and c denoting the number of vertices and network 

edges, mixing parameter required by the network generator, average degree of the vertices, and community size, 

respectively. 
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Using the network generator, we can develop artificial networks of sizes varying from 1 k (one thousand) to 1 m (one 

million), wherein 10% of the vertices are mixed. The degree of a vertex varies from 20 to 50, and the size of a community 

varies from 10 to 100. All directed networks are transformed into undirected networks by considering two directed edges 

between a pair of vertices as a single edge. 

Clustering accuracy and running time are the most widely used indices to evaluate a clustering algorithm. In this study, the 

clustering accuracies and running times of the proposed algorithms were compared under different network sizes and 

numbers of machines. The clustering accuracy was measured using normalized mutual information (NMI) [9, 26, 47] if the 

community structures of a network were known or the modularity Q [15] if the information was absent. The equations for 

NMI and Q are as follows: 

                   ( | Y) 1 [H(X | Y) H(Y | X)] / 2NMI X                     (10) 

where X and Y denote the set of true communities and the set of discovered communities, respectively. 
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where m, nc, lc, and dc is the edge number, the number of communities, the number of internal edges in community c, and the 

sum of degrees in community c, respectively.   

We compared the LAP algorithm with two well-known community discovery algorithms, the BGLL algorithm [6] and the 

Clauset algorithm [8], on a single machine. In addition, we compared the LAPoMR algorithm with the Mahout and Spark 

implementations of the KMeans algorithm (called KMeans(Mahout) and KMeans(Spark) hereinafter) in terms of their 

clustering accuracy and running time on a cluster. The LAP-based algorithms exhibited fast convergence, and thus, we set 

maxIter = 10 and convIter = 2; p was set to −10.0 for ensuring that all algorithms were insensitive to varying p; for the k-path 

edge centrality calculation, ρ and k were set to nlogn and 5 separately, as suggested in [24]. For the KMeans algorithm, K was 

set to the true cluster number and the input was a sparse matrix (for space saving) with its elements representing the similarity 

between two connected vertices, as calculated using Equation (4). All experiments were performed on a cluster composed of 

eight machines virtualized using VSphere 5.5. All machines were of the same configuration as follows: 2.0 GHz 2-core CPU, 

2 GB RAM, and CentOS 6.4 (64 bit). 

7.1 Experiment results on artificial networks 

(1) Performance of the algorithms on single machine 

The performances of the LAP, standard AP, BGLL, and Clauset algorithms were compared. The experimental results are 

shown in Fig. 11. The standard AP algorithm ran out of memory on a single machine for network sizes greater than 3k 

because of its O(n2) space complexity. Therefore, it was not used in the experiments involving 4k and 5k artificial networks. 

Table 1 

Experimental networks details 

Network Description 

Artificial networks n = 1k~1m(i.e. 1,000 to 1,000,000)   μ = 0.1   k = 20~50    c = 10~100 

  

Real social networks  

CA-HepPh Undirected collaboration network of Arxiv High Energy Physics, n= 12008  m=118505 

Email-Enron Undirected email communication network from Enron, n= 36692  m=183831 

web-Stanford 

com-youtube 

Directed web graph of Stanford.edu, n= 281903  m=3985272 

Undirected Youtube online social network, n=1134890 m=2987624 
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To display the difference among the algorithms in terms of running time, the scale of the vertical axis was set to the power 

of 10. As can be seen in Fig. 11(a), the running time of the LAP, BGLL, and Clauset algorithms is nearly negligible when 

compared with that of the standard AP algorithm. The LAP and BGLL algorithms finished the work in less than 2 seconds in 

all artificial networks. The Clauset algorithm took about tens of seconds. By contrast, the standard AP algorithm required a 

considerable amount of time to finish the same work because of its quadratic time complexity. The clustering accuracy of the 

LAP algorithm is slightly inferior to that of the other algorithms, as shown in Fig. 11(b), because of the local affinity 

propagation strategy employed in it. However, the loss in NMI is less than 0.06.  

 

 (2) Effect of network size 

The running time and clustering accuracy of the LAP, LAPoMR(Hadoop), LAPoMR(Spark), KMeans(Hadoop), and 

KMeans(Spark) algorithms with varying network sizes are shown in Figs. 12 and 13. The LAPoMR(Hadoop), 

LAPoMR(Spark), KMeans(Hadoop), and KMeans(Spark) algorithms were run on a cluster with 8 machines. The 

experimental networks were partitioned into two groups of small and large networks to reveal similarities and differences in 

algorithm performance under different network scales.  

 

 

As shown in Fig. 12(a), the LAPoMR(Hadoop) and KMeans(Mahout) algorithms are slower than the other algorithms 

when run in small networks. Running time varied minimally with respect to network size, which was contrary to our 

expectations (investigation of this phenomenon is discussed later in this section). As shown in Fig. 12(b), the running time of 

(a) small networks (b) large networks 

Fig. 12. Running time of LAP, LAPoMR(Hadoop), LAPoMR(Spark), KMeans(Hadoop) and KMeans(Spark) 
under varying network sizes 

(a) running time (b) NMI 

Fig. 11. Running time and accuracy of AP, LAP, BGLL and Clauset under varying network sizes 
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the LAPoMR algorithm in large networks was close to that of the LAP algorithm, even surpassing it for network sizes larger 

than 300 k. Therefore, the near-linear time complexity of the LAP and LAPoMR algorithms is prominent in sufficiently large 

networks. In addition, we deduce that the workloads of framework maintenance and data exchange among machines affect 

small networks more than large networks. The KMeans(Mahout) algorithm ran out of memory in networks larger than 100 k. 

Moreover, it was the slowest algorithm. The KMeans(Spark) processed all networks except the largest one. However, in 

large networks, it required more time than the other algorithms except KMeans(Mahout). The input matrix to the KMeans 

algorithm was composed of k-dimensional vectors, where k was the average degree of the vertices. Therefore, when both 

network size and average degree are large, the performance of the MapReduce–based KMeans algorithm may be greatly 

affected. Moreover, the Mahout implementation of the KMeans algorithm is always inferior to the Spark implementation. 

Similarly, in all experiments, the performance of the LAPoMR algorithm implementation in Spark was consistently better 

than that of its implementation in Hadoop. The results demonstrate the efficiency of the Spark framework because of its 

abundant MapReduce primitives and the full use of both memory and disks for caching. 

The NMI values of the algorithms under different network sizes are shown in Fig. 13. The values of the LAP and 

LAPoMR algorithms are similar and are consistently better than that of the KMeans algorithms. This finding indicates that 

the strategies employed by the LAP algorithm are effective and well scalable. The basic ideas of the two LAPoMR 

algorithms are the same as that of the LAP algorithm, although the former employ MapReduce for enhancing their parallel 

processing capability. The absence of the results pertaining to the KMeans algorithms in Fig. 13(b) is owing to the 

insufficient memory error encountered by these algorithms on large networks. Moreover, the accuracy of the 

KMeans(Spark) algorithm is always better than that of the KMeans(Mahout) algorithm. 
 

 

To investigate the cause underlying the experimental results shown in Fig. 9(a), experiments were performed to measure 

the actual running time of the algorithms (i.e., effective work time) and the time for extra system maintenance and data 

exchange of the Hadoop/Spark framework (i.e., extra time). In addition, we defined an index called effective ratio to measure 

the amount of effective work done by the Hadoop/Spark framework. The effective ratio was calculated by dividing the 

effective work time with the extra time in the first iteration of the first round. The experimental results are shown in Fig. 14. 

 

 

 

 

 

(a) small networks (b) large networks 

Fig. 13. Clustering accuracy of LAP, LAPoMR(Hadoop), LAPoMR(Spark), KMeans(Hadoop) and 
KMeans(Spark) under varying network sizes 
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 Only a small fraction of the total time was spent on running the 

algorithms in a small network, as shown in Fig. 14. Most work time 

was spent on starting, stopping, scheduling the jobs and tasks, and 

exchanging data among machines. Effective work time increased as 

the network scale increased. Effective work time was comparable 

with extra time, and the effective ratio could be increased to 

approximately 50%, as shown in Fig. 14. In addition, the effective 

ratio of the Spark implementation was higher than that of the Hadoop 

implementation. A large network size revealed further the contrast 

between the two implementations. This phenomenon was ascribed to 

the following two factors. The aforementioned additional map tasks 

and special key/value design of the Hadoop implementation incurred 

greater expenses than those of the Spark implementation. The data exchanged between MapReduce jobs should be stored in 

the HDFS within Hadoop, which reduces the data processing speed of the Hadoop implementation. The situation worsened 

with increasing network size. The Spark framework provides flexible MapReduce primitives, such as flatMap, groupByKey, 

and mapValues. Therefore, the implementation of the LAPoMR algorithm in the Spark framework was more compact and 

efficient than that in the Hadoop framework. Moreover, the Spark framework prefers to store data in memory. Spark stores 

data on disks only in cases where memory is insufficient. Owing to the aforementioned advantages, the Spark 

implementation achieved better results than the Hadoop implementation. 

(3) Effect of number of machines 

The running times of LAP, LAPoMR(Hadoop), and LAPoMR(Spark) under different numbers of machines are shown in 

Fig. 12. The experimental results can be explained from two viewpoints. From the network size perspective, the increase in 

the number of machines did not reduce running time proportionally when the network was small, as shown in Figs. 15(a) and 

15(c). This phenomenon was mainly ascribed to the fact that most of the time was spent on the extra work of the framework 

itself, as shown in Figs. 12 and 14. Therefore, the expected acceleration owing to the addition of machines to the cluster was 

weakened. The time reduction in Fig. 15(c) is more noticeable than that in Fig. 15(a) because of the efficient implementation 

of the Spark framework. For large networks, as shown in Figs. 15(b) and 15(d), the speedup due to the addition of machines 

to the cluster was significant. When the number of machines was increased from 2 to 8, the running time of the 

LAPoMR(Hadoop) algorithm on the 500k network decreased from 2000 to 1200 s. The LAPoMR(Spark) algorithm 

exhibited a significant time reduction from 1500 to 1000 s. Thus, the strength of the parallel computation frameworks is 

demonstrated. The Spark implementation is 2–10x faster than the Hadoop implementation, which is consistent with the 

results in [48]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Effective ratio of LAPoMR(Hadoop) and 

LAPoMR(Spark) 
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We can draw three conclusions from Fig. 15. First, parallel computation frameworks such as Hadoop or Spark may be 

unsuitable for small networks. These frameworks were designed mainly for increasing efficiency in the parallel processing 

of large-scale datasets. Therefore, with small networks, the reduction in running time as the number of machines is increased 

is not significant. Second, there is a tradeoff between the speedup brought about by parallel computation and the cluster 

scale. As can be seen from Figs. 12(b) and (d), when the number of machines was increased from 2 to 4, the running times of 

both the Hadoop and Spark implementations of the LAPoMR algorithm were nearly halved. However, the speedup effect 

weakened when the number of machines was increased from 4 to 8. The greater the number of machines added to the cluster, 

the greater is the amount of communication and administration work required. As can be seen in Fig. 14, the additional work 

weakens the benefits of parallel computation. Third, the Spark framework has a greater number of flexible parallel primitives 

and a more efficient cache mechanism; consequently, it performs better than the Hadoop framework. Thus, the design of 

MapReduce primitives and synthetic application of fast, massive memory are important. 

(4) Number of discovered communities 

Table 2 lists the number of communities discovered by the algorithms against the true number of communities. Two 

inferences can be made using Table 2. First, in all networks, the number of communities determined by the algorithms was 

slightly higher than the true number. This finding can be attributed to the effect of localizing message propagation, which 

limits the extent to which a vertex can broadcast its influence. Second, the numbers of communities discovered by the LAP 

and LAPoMR algorithms were nearly the same. Both algorithms conformed to the strategies introduced in Section 4. 

(a) LAPoMR(Hadoop) on small networks (b) LAPoMR(Hadoop) on large networks 

Fig. 15. Running time of LAPoMR(Hadoop), and LAPoMR(Spark) under varying numbers of machines 

(c) LAPoMR(Spark) on small networks (d) LAPoMR(Spark) on large networks 
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However, the LAP algorithm was run on a single machine, whereas the LAPoMR algorithm was run on a cluster of 

machines. 

 

 

7.2 Experiment results on real social networks 

Real social networks differ significantly in scale and contain complex community structures that can hardly be simulated 

using computer programs. Therefore, experiments were performed on real social networks to evaluate the performance of the 

algorithms in the real-world environment.  

(1) Running time and clustering accuracy 

The running times and clustering accuracies of the LAP, LAPoMR(Hadoop), LAPoMR(Spark), KMeans(Mahout), and 

KMeans(Spark) algorithms in different real social networks are shown in Fig. 16. The NMI index was replaced with the 

modularity index for accuracy measurement because the number of communities in real networks is unknown. The cluster 

used for the experiments included 8 machines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Number of communities discovered by the algorithms 

Network size 
True number of 

communities 
LAP LAPoMR(Hadoop) LAPoMR(Spark) 

1k 

2k 

3k 

4k 

5k 

100k 

200k 

300k 

400k 

500k 

25 28 28 28 

51 59 55 56 

72 82 87 78 

101 116 115 115 

125 142 146 150 

2571 2748 2720 2720 

5169 5431 5407 5549 

7804 8362 8226 8401 

10374 10968 10955 11058 

12935 13702 13471 13761 
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Because the running times of the algorithms vary enormously in different networks, the scale of the vertical axis of Fig. 

16(a) was changed to the power of 10, as in Fig. 11. The running times of the algorithms in the CA-HepPh and Email-Enron 

networks were significantly lower than those in the web-Stanford and com-youtube networks, as shown in Fig. 16(a). The 

running time of the LAPoMR(Spark) algorithm was comparable with that of the LAP algorithm for the same network, 

whereas the running time of the KMeans(Mahout) was slower than that of all other algorithms. The first phenomenon may be 

attributed to the skewed degree distribution of the web-Stanford network, although the number of vertices in the network was 

not large. The network contained a few vertices with large numbers of neighbors, which considerably augmented the number 

of edges in the network. This feature is typical of complex networks called scale-free networks [15]. The second 

phenomenon is attributed to the advantages of the Spark framework over the Hadoop framework and the inefficiency of the 

MapReduce-based KMeans on large networks, as discussed in the preceding subsections. 

The modularities of the algorithms in various real networks were different, as shown in Fig. 16(b). The Email-Enron 

network consists of complex community structures, and thus, all the algorithms attained the lowest modularity in this 

network. The web-Stanford network has a skewed degree distribution that helps identify the core vertices of the network. 

Therefore, clustering accuracy in this network was the highest among the three networks. The three LAP algorithms 

achieved nearly the same modularities in the same network and were consistently superior to the KMeans algorithms, except 

in the CA-HepPh network. This result can be explained using the mechanisms employed by the algorithms. The performance 

of the two KMeans algorithms varied greatly in different networks, owing largely to the randomness inherent in the KMeans 

algorithm. 

(2) Effect of number of machines 

Experiments were carried out in real networks to evaluate the effect of the variation of the number of machines in the 

cluster. The results shown in Fig. 17 are similar to those in Fig. 15, and they reiterate the effectiveness of increasing of the 

cluster size for decreasing the processing time. The greater the number of machines in the cluster, the shorter is the time 

required to run the tests. However, the reduction in time achieved by increasing the cluster size from 4 machines to 8 

machines is not as much as the reduction achieved when increasing the cluster size from 2 machines to 4 machines. This 

result agrees well with the conclusion drawn from Fig. 15. Moreover, with the increase in real network complexity from 

CA-HepPh to Email-Enron to web-Stanford to com-youtube, the running time increases as well. However, by comparing 

Fig. 17(a) with Fig. 17(b), we find that the Spark implementation is consistently faster than the Hadoop implementation in all 

networks. The efficient mechanism of the Spark framework plays a major role here. 

(a) running time (b) modularity 

Fig. 16. Running time and accuracy of LAP, LAPoMR(Haddop), LAPoMR(Spark), KMeans(Hadoop) and 
KMeans(Spark) in real networks 
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(3) Number of discovered communities 

Table 3 lists the number of communities discovered by the algorithms against the true number of communities on the real 

networks. Two inferences can be made using Table 3. First, the numbers of communities discovered by the LAP and 

LAPoMR algorithms were nearly the same. Second, the KMeans algorithms preferred to discover fewer communities, which 

may be the main cause of their poor performance. 

 

 

8. Conclusion 

In anticipation of the era of big data, parallel computation models and frameworks are receiving increasing attention. 

Given that many machine-learning algorithms such as logistic regression, support vector machines, and k-means rely on 

iterative refinement to obtain optimal solutions [21], it is important to provide mechanisms for efficient parallel iteration. 

Modern parallel frameworks such as Hadoop and Spark are moving in this direction [2, 14, 23, 48]. Compared with serial 

algorithms, parallel algorithms that run on clusters of computers have two advantages: the running time can be decreased 

considerably by processing the data in parallel and the large availability of memory and disk space beyond that in a single 

computer ensures that data at the TB or even PB scale can be processed. 

Discovering communities in social networks is a typical application that requires iterative processing of tremendous 

amounts of data. This study proposed a LAP algorithm with near-linear time and space complexities. The algorithm was 

(a) LAPoMR(Haddop) (b) LAPoMR(Spark) 

Fig. 17. Running time of LAPoMR(Haddop) and LAPoMR(Spark) in real networks under varying numbers of 
machines 

Table 3 

Number of communities discovered by the algorithms 

Network LAP LAPoMR(Hadoop) LAPoMR(Spark) KMeans(Mahout) KMeans(Spark) 

CA-HepPh 

Email-Enron 

web-Standard 

com-youtube 

 

1295 1241 1265 545 482 

2408 2384 2423 761 1485 

10954 8867 10965 4989 4497 

21360 21205 21389 1669 1669 
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adapted to the MapReduce model via its implementation in the Hadoop and Spark frameworks. Furthermore, a parallel 

similarity calculation scheme based on k-path edge centrality, which considers the local and global information of entire 

networks, was designed. Experiments were performed on artificial and real networks to demonstrate the community 

discovery performance of the proposed algorithms in both small and large social networks. 

Several issues persist and require further research. First, the strategies employed in the LAP and LAPoMR algorithms 

achieve fast convergence at the expense of minor loss in clustering quality. This loss can be reduced by incorporating 

additional strategies from other perspectives. Second, alternatives to k-path edge centrality can be tested as vertex or edge 

weighting schemes for improving similarity measurement. Third, Hadoop and Spark have their respective advantages and 

disadvantages. Therefore, improving the efficiency of LAP algorithm implementation by considering other parallel 

computation models or frameworks should be expected in future studies. 
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