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Abstract Community detection is one of the most important ways to reflect the structures and
mechanisms of a social network. The overlapping communities are more in line with the
reality of the social networks. In society, the phenomenon of some members sharing mem-
berships among different communities reflects as overlapping communities in the networks.
Dealing with big data networks, it is a challenging and computationally complex problem to
detect overlapping communities. In this paper, we propose highly scalable variants of a
community-detection algorithm in a parallel manner called Label Propagation with nodes
Confidence (PLPAC). We introduce MapReduce into our scheme to process the big data in a
parallel manner and guarantee the efficiency of community detection. We implemented the
algorithm on artificial networks as well as real networks to evaluate the accuracy and speedup
of the proposed method. Experimental results on datasets from different scenarios illustrate
that the improved label propagation method outperforms the state-of-the-art methods in terms
of accuracy and time efficiency.
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1 Introduction

Many systems in the real word can be considered networks, such as disease transmission
networks, DBLP data resources, protein–protein interaction networks, scientist collabora-
tion networks, and social networks. With the rapid development of the networks, social
networks have become an indispensable part of contemporary society. Social networking
provides online users with a way to share and connect with other online users, and it has
permanently changed the lives of individuals, communities, and societies around the
world. The world has 1.2 billion social networking users, and online social networking
users account for approximately 82% of the Internet users in the world. Facebook is
currently the largest social network in the world and the third largest website overall, only
after Google and Microsoft sites. In October 2011, the number of Facebook users reached
more than half of the global users (about 55%). Facebook is a major social networking site
in most countries, but not in every location. Twitter, the first micro-blog social platform,
emerged in spring 2009, and the number of its users has grown exponentially. As one of
the largest social networks, Twitter now accounts for 1/10 of all Internet users. Social
networks have become an indispensable part of present society. The community represents
the significant property of real-word social networks as it reflects the relationship between
the users. Analyzing network structure and detecting a community of people also play an
important part in research on social networks. Detecting a network community structure is
of very important theoretical significance and practical value for analyzing network
topology structures and network functions and predicting network behavior; it has been
widely used in terrorist organizations, organizational structure management, and some
other fields. The community reflects the local characteristics of the network of individual
behaviors and the relationship between them. It plays a crucial role in the network research
for understanding the structure and function of the whole network and can help us analyze
and forecast the interaction relationships among elements of the whole network.

The label propagation algorithm (LPA) is a very simple and rapid community detec-
tion algorithms [1, 3, 30]. This algorithm is particularly suitable for large social networks
with complex communities for various reasons [42]. Although LPA is suitable for a large
network, it cannot find overlapping communities, and the division results are highly
random. The non-overlapping community means that a node can only divide a commu-
nity in the community division structure, and the results cannot reflect the true structure
of the network. COPRA then extends the LPA and becomes another classical method for
detecting overlapping communities [13]. In addition, several other algorithms have been
designed to overcome the limitations of the LPA algorithm. For example, SLPA [] and
BMLPA [36] alleviate the problem of monster communities by introducing an extra
parameter to control the number of labels that a vertex can hold. The core idea of the
non-overlapping community detection algorithm based on label propagation is choosing
the maximum label value; however, the overlapping community detection has to balance
the label strength. If we are too sensitive to label values, it may create monster
communities. On the contrary, it will be close to a non-overlapping community.

Facing big data analysis, the parallel processing method arises at a historic moment.
Large-scale networks with thousands to millions of nodes are ubiquitous across many
different scientific domains. In order to solve the problem of large data and improve the
efficiency of the algorithm, parallel computing—especially the Hadoop platform—has
attracted more and more scholars’ attention.
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The MapReduce [17, 22] can be used to achieve distributed clustering and has good
scalability and fault tolerance to satisfy the needs of the rapid growth of data. However, in
the distributed framework, the clustering algorithm must be operated in a distributed way.
Many existing algorithms are not distributed and cannot be easily represented as a single
MapReduce process. A parallel clustering algorithm is suggested in [38], which is a
parallelized version of DBSCAN [8]. NSLPA [32] used the node similarity parameter
AdjPageSim to discover community based on label propagation. Konstantin Kuzmin [18]
parallelized SLPA, which can significantly speed up the detection of overlapping communities
in a large social network.

Motivation Discovering the latent communities is one of the most important research
problems in the social network. However, traditional researches on the subject of community
detection in this field have some shortcomings: On the one hand, they neglect the meaning of
users’ influence weight in social network. Most of previous works [3, 4, 9] focus on
topological structure or link analysis of the network. In fact, social network contains rich
relationship value which can be used to measure the label transferred weight between two
nodes. On the other hand, most community detection algorithms [15, 16, 25, 28, 31, 34, 44]
are incapable to analyze large-scale dense network.

In this paper, we enhance the LPA by introducing new update and label propagation
rules that achieve a higher speed of execution and improve the quality of community
detection. Extracting useful knowledge from the modular structure of network data is
also a prolific track of research. We focus on the relationship between nodes, whose aim
is to identify the label weight value in information spread and detect a community of
users usually influenced by the same label.

We summarize the main contribution of this paper as follows: 1) We improve the label
propagation algorithm by node confidence with mutual information in a network (i.e.,
improving the performance of the traditional LPA algorithm by measuring node influence
of label updating and changing the label-choosing mechanism when more than one label
is contained). 2) We combine the data synchronization and asynchronization to update
the label identifier, which can save execution time and avoid label oscillation. 3) We
extend the algorithm to fit the parallel processing mechanism for detecting the large-scale
data network. 4) The proposed algorithm has the ability to detect overlapping and non-
overlapping communities.

The remainder of the paper is organized as follows. In section 2, we review existing
approaches to finding communities in network. Section 3 provide some background informa-
tion on LPA and MapReduce. In section 4, we present the goal of this paper and our proposed
method in detail. The experimental evaluation of performance of this algorithm is discussed in
section 5. Thus, the paper concludes in section 6.

2 Related works

The problem of finding communities in complex networks is very popular among network
scientists, as witnessed by an impressive number of valid works in this field. A huge survey by
Fortunato explores all the most popular techniques to find communities in complex networks
[9]. Traditionally, a community is defined as a dense subgraph, in which the number of edges
among the members of the community is significantly higher than the outgoing edges [4].
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Many community detection algorithms have been proposed in the literatures to
identity complex community structures in social network. The traditional community
refers to a group of nodes in the network with a large similarity, thus forming a close
internal connection, while the external sparse population structure. A non-overlapping
community means that each node can belong to only one community, and there is no
intersection between the communities. In addition to the simple use of similarity to
hierarchical cluster, the spectral method was first used to solve the graph segmentation
problem. It is widely used in community discovery because of the similarity of the
problem [2, 35]. However, the time complexity of spectral method is high, because it
involves many matrix eigenvectors calculation, such as similarity matrix. The time
complexity of spectral method reaches O(n3). The concept of random walk has also
been successfully introduced into community detection, and many researchers have
done a lot of work in this area and got well performance [27, 43]. The basic idea of
random walk is that a “random walker” will always walk within a community for a
long time due to the high degree of tightness and high connectivity within the
community structure. Thus, from one node, the “random walker” will arrive at nodes
within the same community in fewer steps, or can define some similarity to further
make community discoveries. Another important point is that the random walk ap-
proach is easy to extend to community-based discovery of weighted networks, which is
one of its advantages. The study of non-overlapping community discovery algorithms
is largely due to the pioneering work of Girvan and Newman [10]. The GN community
detection algorithm has been cited many times because its research results confirm that
this community structure exists in many realistic networks. The Fast Newman algo-
rithm then improved the performance of GN algorithm [24]. Newman and Girvan first
introduced the quality function Modularity Q to define a stop criterion to detect
community structure. Fast Splitting Algorithm increase the speed of the algorithm by
using clustering coefficient instead of edge degree [29]. Some researchers optimize the
modularity to find the max modularity of community structure. Mainly include the
following categories: Greedy optimization algorithm, Simulated annealing optimization
algorithm, Extreme value optimization algorithm, Spectral optimization algorithm and
some other optimization algorithms. Although these modularity-based algorithms have
been successful in many applications and can find meaningful community structures,
the community detection algorithm based on the optimal modularity function cannot
get rid of congenital defects due to some properties of the modularity function itself.
The process of optimizing modularity may cause the merging small communities
without practical significance. Because of the limitation of modularity, more and more
scholars in recent years have proposed new methods to solve the problems of com-
munity structure detection.

In addition to the methods mentioned above, LPA algorithm is one of the fastest
methods for community detection. The LPA used the network structure alone to guide its
process and requires neither any parameters nor optimization of the objective function. It
starts from a configuration where each node has a distinct label. Each node changes its
label to the one carried by the largest number of its neighbors. One drawback of LPA is
that it returns different result in different realizations. It caused by the randomness when
choosing the multi label case and only consider local minima it reaches. If the node
always chooses the label shared by most neighbors at each step, the result could not be
always optimal. Gregory [12] applied the similar idea to detection of overlapping
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communities. The LPA-S [20] provides the chance to get the global optimal result via
selecting some other labels. Barber [1] defines an equivalent objective function based on
the number of edges that connect node with labels that penalize the low-quality solution.
SLPA [] used speaker-listener model to simulate label propagation with different degree
of diversity. WERW-Kpath [23] computed edge centralities in network by random walk
to optimize LPA algorithm.

In recent years, parallelized data processing systems are widely used to effectively
process large number of data. Following the explosive growth of online social commu-
nities, recently the parallel approaches to community detection has been investigated.
Reference [17] utilizes the MapReduce framework to develop a scalable parallel non-
overlapping community detection method based on infomap. Z Masdarolomoor proposed
an agglomerative parallel algorithm using genetic algorithm and local modularity for
constructing the communities [22]. Reference [41] proposed a parallel algorithm to find
overlapping community structure in directed and weighted complex networks based on
the BSP (Bulk Synchronous Parallel) computing framework.Our research not only
consider the direct neighbor relationship, but also compute the weight of indirect
neighboring users.

3 Preliminaries

Community detection by label propagation belongs to the class of local move heuristics.
In previous work, label propagation algorithm is the most common method to detect the
community structure and it has approximate linear time complexity []. However, LPA
just can find non-overlapping community, so as an extend in COPRA [13], each node
updates its labels and the belonging coefficients from the coefficients of all its neighbors
in a synchronous manner. SLPA is a general speaker–listener based information propa-
gation process. It spreads label information between nodes according to pairwise inter-
action rules. In the SLPA, each node has a memory space to store the received
information. The probability of observing a label in the memory of a node is perceived
as the membership strength [14]. Compared with the existing label propagation methods,
our algorithm introduces the concept of confidence to denote the importance of each
neighbor in the label updating process.

3.1 Label propagation algorithm

A complex network is modeled by a connected and undirected graph G(V, E), where V is
the vertex set and E is the edge set. The label propagation algorithm can be described as
below. Each vertex is associated with a label, which is an identifier such as an integer.
First, the algorithm initializes the network and each node is given a unique label. Then,
every node selects the great number of neighbors’ label as itself label. If more than one
label is used by the same maximum number of neighbors, one of them is chosen
randomly. After several iterations, the same label tends to become associated with all
members of a community. Therefore, we can find that LPA has strong random cause it is
important for the beginning node. This algorithm can only detect the non-overlapping
community structure. Then we will introduce the finding overlapping community with
label propagation algorithm.
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The algorithm defines a set of community identifiers for each vertex. The COPRA label
each vertex x with a set of pairs(c,b), where c is a community identifier and b is a belonging
coefficient, indicating the strength of x’s membership of community c, such that all belonging
coefficient for x sum to 1.

bt c; xð Þ ¼ ∑y∈N xð Þbt−1 c; yð Þ
N xð Þj j ð1Þ

During each propagation step, the algorithm first constructs the vertex label as above and
then deletes the pairs whose belonging coefficient is less than some threshold. They express
this threshold as a reciprocal,1⁄v, where v represents the maximum number of communities to
which any vertex can belong. If v < 2 the algorithm is the same to LPA. In this paper, we
proposed an algorithm based on the LPA and the COPRA. However, it is different from the
classical algorithm proposed previously.

3.2 Big data processing platform

With the advent of the era of cloud computing, more and more people focus on big data, which
brings opportunities for big data processing. Amazon, OpenStack represent virtualization
resources which provide users with a large amount of computing and storage resources
available anytime and anywhere. The distributed computing and storage environment provides
a large scale distributed computing environment such as Hadoop.

Hadoop is a distributed system infrastructure and the distributed storage and distrib-
uted computing is the core of distributed system. The most fundamental objective of
distributed system design is split the large-scale task into many small tasks [6], and then
assign the small tasks to each node with parallel processing, finally generated the results
from each processor as the final result. MapReduce is the mainly programming model of
implementation the Hadoop architecture. MapReduce [6] as a parallel programming
model, is good at dealing with large data and large calculation. The simple MapReduce
has three parts: Map function, Reduce function and the main function. If make traditional
community detection algorithm parallel with MapReduce programming model and make
a good use of cluster computing advantage to handle big users’ data, the execution time
of the algorithm will be shortening [7].

4 Parallelizing label propagation

The label propagation algorithm has approximated linear time complexity and is very
suitable for large network community detecting. As the number of users on social
networking has reached the hundreds of millions, using the classical algorithm has
caused a high computing complex. If we employ the distributed computing algorithm
(i.e., the computing process of the algorithm is distributed) to process the data, the
execution time of the community detection algorithm is much more shortened, and the
efficiency is also significantly improved. MapReduce, as one of the mainstream parallel
computing programming models, is very suitable for processing large-scale data sets.
Therefore, it is one of the effective methods for solving the problem of efficiency in the
community detecting algorithm.
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4.1 Data preprocessing

Paralleling community detection algorithm means distributing data sets into each machine on
an average basis. The algorithm is calculated on each machine, the calculation process of each
machine is independent, and input data sets are also independent and eventually computed on
each machine, thereby generating better results. In the previous discussion, using Hadoop of
the MapReduce programming model algorithm’s parallelization is a better choice, so here we
will utilize Hadoop to parallel the data sets.

In discussing the related work, in the process of synchronous updating, there is a potential
oscillation problem that leads hard to the convergence of the algorithm. In an asynchronous
update, if a node updates its label value during an iteration, the value must be immediately fed
back into all the nodes in the network. This increases the high coupling between the data sets
and is contrary to the principles and design of MapReduce’s original intention.

As each step of MapReduce involves the process of mapping and reducing, if we design the
MapReduce algorithm according to this situation, the mapping process calculates the node
update value and the reduction process feeds back the update value to all neighboring nodes. A
label value update is required to feed back to all the neighbor nodes that contain this label in
the reduction process. If the network contains enormous users and at each node the asynchro-
nous label propagation needs the reduction process, it will require so many reduction processes
that it will reduce the efficiency of the algorithm.

In order to solve this problem, we first need to reduce the coupling between the input data
sets. In this paper, we will build a structure of input data that contains a node and its neighbor
nodes. If we consider the network as the data structure type of node relation, the input set of
Mapreduce is the data sets as <ni : j, θi(j) + s, θi(s) +⋯>. The node j and s are the neighbors of
node i. θi(j) means the confidence between node i and node j. We can distribute the input sets
averagely to each machine to compute the node confidence and update the label identifier at
the same iteration step. As the resulting oscillation and asynchronous updates cost lots of time,
we combine a synchronous update with an asynchronous update to evolve the update method.
In this paper, we divide the network into n equal subsets. We utilize multiple threads to process
a part of the network and feed the results back to the rest of the subsets. This process will be
iterated until the whole network is completed. This method solves the oscillation caused by
synchrony and the problem of high coupling of the dataset caused by asynchrony. The
structure of large social networking is generally sparse [32]; in sparse networks, most of the
nodes are not connected to each other, but many nodes can reach another node in a small
number of steps. Therefore, the above method combing synchronous and asynchronous
updates is feasible.

The mapping step manages a part of the dataset, and the results are fed back to other
datasets in the reduction process. Then the output of the Reduce step will be the input for the
next Map processing. This processing will repeat until all datasets have been computed,
meaning that one iteration execution is completed. The iteration continues until the label value
of user nodes reaches the required convergence condition. Figure 1 shows the structure of the
processing by MapReduce.

4.2 Label propagation with the confidence between nodes

In the processing of label propagation, the most important part is computing label value. In the
classical label propagation algorithm, each node updates its label by replacing it with the label
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used by the greatest number of neighbors. If more than one label is used by the same maximum
number of neighbors, one of them is chosen randomly. In this paper, we consider users’
relationship as an important impact in the computing of label weight value. There are strong
relationships and influence among nodes of the same community. As an analogy to real social
phenomena, the users in the same community always share common interests; hence, the users
in the same community have more rallying points and influence with each other. However, the
influence of different users is different, although they have the same label identification. We
calculate the confidence between a pair of nodes as follows.

Definition 1 The confidence of the node v to its neighbor node u. The confidence is defined as

θu vð Þ ¼ simu vð Þ
∑i∈N uð Þsimu ið Þ ð2Þ

Where N(u) represents the set of neighbors of node u and simu(v) represent the similarity
between nodes u and v. The Jaccard [43] function is an efficient method for measuring user
similarity. The physical meaning of the Jaccard function is very fit for analyzing the similarity
of nodes. The intersection of two nodes means the amount of common friends. The union of
the neighbors of two nodes means the range in the two users. We apply the Jaccard similarity
measure to quantify the similarity between the sets of neighbors for a node. At the same time,
we improved the Jaccard function to get more accurate similarity between different nodes.

simu vð Þ ¼ ∑x∈N uð Þ∩N vð ÞIux
∑y∈N uð Þ∪N vð ÞIuy

ð3Þ

Where Iux means the mutual information between node u and node x. We use Ni/N to express
the probability of the occurrence of vertex i, where Ni is the number of the set containing node
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Figure 1 The structure of the processing by MapReduce
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i and its direct neighbors and indirect neighbors in the network. N represents the vertexes
amount in the network. Pijmeans the probability of the occurrence of intersection of node i and
node j and themselves. We call nij the count of the common neighbor vertex i and vertex j and
themselves. We define some formulas below.

Pi ¼ Ni=N ð4Þ

Pij ¼ nij=N ð5Þ

I ij ¼ Pijlog2
Pij

Pi � Pj
ð6Þ

We use the mutual information to show the relationship between neighbors. If the
relationship between neighbors is close, the value of mutual information will be large. If
the relationship is weak, the value will be close to 0 or even negative. In the simple
network model, as in Figure 2, the mutual information value of node 2 and node 5 is
negative. Furthermore, node 2 and 5 are obviously not in the same community. Node 2
has the same node confidence value with node 1 and 3 because node 1 and 3 are
symmetrical with node 2. The mutual information of the pair of node 2 and 4 is less
than I12 because node 4 has part of a social relationship with another community. Hence,
the idea proposed in this paper to use mutual information to measure the relationship
between users is established. We calculate the mutual information value of each direct
and indirect neighbor in the simple network model, as shown in Table 1.

In the simple network model, the nodes are divided into two communities intuitively.
Nodes 1, 2, 3, and 4 are in the same community while nodes 5, 6, 7, 8, and 9 are in
another community. Table 1 indicates that I14 = I24 = I34 < I12. This phenomenon is
caused by nodes 1, 2, 3, and 4 having a connection with each other, although node 4
connects with another community. Therefore, the influence of node 4 is less than other
nodes in the community for node 1. This phenomenon conforms to the community
definition: The users have a dense connection with each other and a spare connection
with other communities.

For a pair of nodes, we used node confidence to measure the intensity of their
connection. For example, as shown in Figure 2, the confidences of node 2 to its
neighbors are θ2(1) = 0.387, θ2(3) = 0.387,θ2(4) = 0.226, and θ2(5) = 0. As shown in
Table 1, I25 < 0 means nodes 2 and 5 belong to two different communities and the label
will not transfer between the two nodes. Therefore, we consider the label belonging to

1

2 4

3

5

6

7

8

9

Figure 2 A simple network model
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node 5 to have no influence on node 2 and define the confidence value as 0 when the
mutual information value is 0 or negative between a pair of nodes. If a user is a common
node in two communities, the mutual information value will be positive. Therefore, the
elimination standard does not mistake the label.

This paper proposes an overlapping community detection algorithm considering the con-
fidence between users called LPAC. As each node has a sequence of its neighbor node ID, we
create a sequence corresponding to the confidence between the node and its neighbor node.
When the labels propagate, the labels will be sent with node confidence of the two transfer
nodes. We sum up the confidence value of neighbor nodes having the same label sent to the
target node. εl(v) indicates whether the node v has the label l. If it has this label, the value of
εl(v) is 1; otherwise, the value is 0.

wl ið Þ ¼ ∑
v∈N ið Þ

θv ið Þ*εl vð Þ ð7Þ

We then introduce inflation operation φin on conference to control the overlapping rate,
within which the parameter takes real-number values. After applying φin to the labels of node
i, the belonging coefficient rises to the nth power. The inflation operation φin is also a
normalized method and can be considered the label weight for the node. The inflation operator
φin is defined as:

φinwl ið Þ ¼ wl ið Þin
∑i∈N ið Þwl ið Þin

ð8Þ

4.3 Design threshold

In the classical algorithm like LPA and SLPA, the node chooses the label identifier with
the maximum value in the label number. Hence, it will find the non-overlapping
community with one node holding one label identifier. In some other algorithms, the
threshold is set by a constant, which is the better performance on the simulation result.

Our idea was to make the threshold have the actual physical meaning. The retention of
labels depends on the degree of node and the current label’s amount. A high-degree node
may belong to more communities than a low-degree one. If the label weight value is less

than c ið Þ, the label identifier will be deleted. It means the label has a low impact on the

Table 1 Mutual information of every pair of nodes in the simple network

1 2 3 4 5 6 7 8 9

1 – 0.52 0.52 0.38 −0.16 0 0 0 0
2 0.52 – 0.52 0.38 −0.16 0 0 0 0
3 0.52 0.52 – 0.38 −0.16 0 0 0 0
4 0.38 0.38 0.38 – −0.16 −0.13 −0.13 −0.13 −0.13
5 −0.16 −0.16 −0.16 −0.16 – 0.26 0.26 0.26 0.26
6 0 0 0 −0.13 0.26 – 0.25 0.25 0.25
7 0 0 0 −0.13 0.26 0.25 – 0.25 0.25
8 0 0 0 −0.13 0.26 0.25 0.25 – 0.25
9 0 0 0 −0.13 0.26 0.25 0.25 0.25 –
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node, which is less than the average of each label of the node. Hence, the label weight
threshold is defined as:

c ið Þ ¼ c ið Þ
N ið Þj j ð9Þ

where c(i) is the label’s amount of node i and |N(i)| is the number of the neighbors
(including direct neighbors and indirect neighbors) of node i. If the label weight is bigger
than the threshold, the node will keep the label identifier.

Based on the above definitions, the processing of LPAC is as follows:

(1) Initially assign each node in the network a unique label as its own ID, and the confidence
value is set to 1.

(2) Calculate the node confidence for every pair of nodes using Eq. (2).
(3) For each node chosen in a random order, update its label from its neighbors (including

direct neighbors and indirect neighbors) and calculate the label weight value at the same
time by Eq. (8).

(4) Compare the label weight value with threshold as c ið Þ. If the label weight value is bigger than
threshold, the label identifier will be held. On the contrary, the label identifier will be abandon.

(5) When all labels become stable, stop the algorithm. Else, go back to (3) and repeat the
procedure.

The pseudo code describing the LPAC algorithm is reported in Algorithm LPAC:

The input is the network graph G(V,E), where V is the node set and E is the edge set. The
output l(i) is the label identifies of each node i. We defined a set of community identifiers for
each node. The terminating condition mt =mt − 1 will be introduced as follows.
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4.4 Terminating condition

Let the set of community identifiers in the t-th iteration be it = {c ∈ V : ∃ x ∈ V(bt(c, x) > 0)},
where V is the set of all nodes in the network. We can know the it eventually will reach a
minimum value. By the time of it = it − 1, the iteration should not end unless |it| = 1, because it
may decrease again after several propagations. We can get the number of nodes marked by

each community identifier ct ¼ c; ið Þ : c∈V∧i ¼ ∑x∈V ;bt c;xð Þ>01
n o

, but the number often

changes in successive iterations, so we cannot expect ct = ct − 1. Our approach is to calculate
the minimum number of nodes marked by each community identifier beginning with the
reduction of the community identifier. The calculating formula is shown in formula (10).

mt ¼ c; xð Þ : ∃p∃q c; pð Þ∈ct−1∧ c; qð Þ∈ct∧i ¼ minð Þ p; qð Þ; if it ¼ it−1j
ct otherwisej

� �
ð10Þ

where p means the number of nodes labelled with each community identifier at the t ‐
1 th iteration. q means the number of nodes labelled with each community identifier at
the t th iteration. When mt =mt − 1, we stop the propagation. It is easy to know that it
will happen within a finite time, so the algorithm can certainly be terminated. Although
we do not prove that we always can get the best results after the t th iterations, the
COPRA algorithm termination condition performs well in practice, and the calculation
is very simple.

4.5 Parallel community detection with label propagation

The label propagation algorithm is a sequential linear time algorithm for detecting communi-
ties. In the parallelized LPAC, we split the network into n partitions of nodes to be processed
on p processors. Each processor gets its allocation of nodes that contain a user ID and recreates
the network induced by the local node by creating duplicates of nodes. This paper improved
the approach to the label update method.

In the Map process, the Map function is used to generate <key, value > and update the user
ID’s new label. It processes a part of the input data, stores label identifiers in temporary files,
receives feedback data from the Reduce function, and processes other input data until all input
data are processed. Before Map processing, we set the node neighbor and calculate node
confidence as input for Map function. In the Map process, the Map function holds the label fed
back from the Reduce process.

The Reduce process propagates the label and calculates the label weight using
formula (8). By comparing the threshold, the user chooses the label identifiers and

feedback to the Map process. If the φinwl(i) is bigger than the c ið Þ, we assign the new
label variable value to the old label variable oldlabel and assign the new label value
weiLabel to the new label variable newlabel. We store the updated node and its new
label values in the temporary file.

In the Reduce process, the Reduce function is used to calculate label weight and choose
label identifiers. The input of the Reduce function is the output of the Map function. It updates
the label value based on the user ID and its new label weight value. The format of output is
<key (Node ID), value (new and old label value, neighbor ID, the label value of neighbor)>. If
the ratio between the number of the nodes keeps the same new and old labels, the iteration
ends; otherwise, the iteration continues.
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In the detailed implementation process, we first initialize the user ID and label weight.
We then calculate the node confidence and place the user ID with node confidence as the
input for the Reduce process. Next, we propagate the label in the Reduce process.
Meanwhile, we filter the label identifiers using threshold. We then feed the label with
the label weight back to the Map process. If it is temporarily different from the label in
the Map process, we update the label value of the neighbor node with the label value
corresponding to the user ID in the temporary file. This processing of parallelize label
propagation with node confidence called PLPAC as showed in Figure 3.

4.6 Complexity analysis

In this algorithm, initializing every node with unique labels requires O(n) time. The common
neighbors’ number calculation can be formulated as:

∀n∈V Gð Þ;∀ni; n j∈N nð Þ i≠ jð Þ;Pw ni; nj
� �

←Pw ni; nj
� �þ 1 ð11Þ

The complexity is O(n ∗ d2), where d is the average degree of the network. At each node x,
we first group the neighbors according to their labels O(d2). We then calculate the label weight
for node x, requiring a worst-case time of O(d2). This process is repeated at all nodes. In
conclusion, the complexity of our LPAC is O(km2/n) where k is the iteration times. In the spare
network, which is often true in the real social network, the complexity can be neat linear O(n).

In the processing of this algorithm,we need store the results of label of each node. Theworst-case
space of each node is O(d2). Hence, the space complexity of LPAC is S(n) =O(n ∗ d2) =O(m2/n).

5 Performance evaluation

In this section, we first describe the experimental environment and simulation dataset. Then we
describe and analysis the experiments that we performed using PLPAC.

5.1 Experiment setup

The language of choice for all implementations is Java according to the JDK 1.6 standard,
allowing us to use object-oriented and functional programming concepts while also compiling
to native code.

Map processing 

procedure
Set user ID to key

Save the value data

Configure neighbor 

ID and label weight

Output
Reduce processing 

procedure

Calculate label 

weight

Compare the 

threshold
Save  new label output

Termination 

condition

Update <key,value>

YES

NO

input

Figure 3 The processing of PLPAC
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The Hadoop cluster environment is used in this experiment which consists of 10 machines,
a typical master slave mode, (Master-Slaves) structure. The cluster consists of a master node
(Master) and four slave nodes (Slave). In the master-slave structure, the main nodes are
generally responsible for cluster management, task scheduling and load balancing, and the
slave node performs calculation and storage tasks from the main node. For representative
experiments, we average quality and speed values over multiple runs in order to compensate
for fluctuations. Table 1 provides information on the multicore platform used for all experi-
ments (Table 1).

5.2 Datasets and evaluation metrics

This paper performed experiments on a variety of graphs from different categories of real-
world and synthetic data sets. All these networks are treated as unweighted and undirected and
are analyzed using classical community detection algorithm. we compare the result of the
community detection with some classical algorithms. We can use NMI [5] (Normalized
Mutual Information) to measure the performance of parallel LPAC with other algorithms for
the known community structure network.

NMI X ; Yð Þ ¼ 2I X ; Yð Þ
H Xð Þ þ H Yð Þ

I X ; Yð Þ ¼ ∑
y∈Y

∑
x∈X

p x; yð Þlog p x; yð Þ
p xð Þp yð Þ

� �H Xð Þ ¼ − ∑
n

i¼1
p xið Þlogp xið Þ ð12Þ

where A and B denote the two partitions of the network. If the found communities are identical
to the real communities, then NMI(X, Y) takes its maximum value of 1. If the found
communities are totally independent of the real partition, for example when the entire network
is classified to be one community, NMI(X, Y) = 0.

For some real networks, there is unknown community structure at present, so this paper will
use the EQ function to evaluate the results. The EQ function is an extension of Q function to
choose the layer as a community detection result brought out in the tree.

EQ ¼ 1

2m
∑i∑v∈Ci;u∈Ci

1

OvOu
Avu−

kvku
2m

� �
ð13Þ

Where m is the number of the edge, i is the community number, Ov and Ou represent the
community number contains node v or u respectively, A is adjacency matrix of the network. In
the undirected network, kv represents the degree of node v. When then community structure is
non-overlapping, the value of EQ and Q function is the same.

In the real network part, we use some classical dataset to test and compare the performance of
this algorithmwith other algorithms. In the artificial network, we can experiment the efficiency of
the proposed algorithm. The details of the experimental data sets were showed in Table 3.

Table 2 Operating environment

Environmental category Describe

Hardware Intel (R) Xeon () CPU (R), 4G memory
CPU Intel(R) Xeon(R) E5-2620v3 @ 2.40GHz, 64 threads
Development environment Eclipse 32, 64bit java version 1.6.0_02
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5.3 Experimental results

We performed experiments in artificial networks and real networks with several comparison
algorithms as follows.

& LPA (Label Propagation Algorithm) [30]: it is a classical fast find community structure
algorithm, however, it is only divided non-overlapping communities. We can analysis the
overlapping community structure is closer to the reality through the comparison experiments.

& COPRA (Community Overlap PRopagation Algorithm) [13]: it is a classical fast find
overlapping community structure algorithm based on LPA. Our research is based on
COPRA and further consider the relationship between nodes.

& SLPA (Speakerlistener Label Propagation Algorithm) [37]: it is a Speaker-Listener label
propagation algorithm that can handle big scale network data. It considered the nodes as
different roles during label propagation to fit for the real information dissemination
phenomenon.

& NSLPA (node similarity based label propagation algorithm) []: it is a parallel label
propagation algorithm to detect the overlapping community structure. It used PageRank
value to help nodes to choose labels during the propagation. We compared with NSLPA to
show the effectiveness of node similarity in computing label weight.

& PCOPRA (Parallel Community Overlap PRopagation Algorithm): we parallel the COPRA
in our parallel program to show the improvement of the result based on considering the
node similarity.

We study the performance of detecting communities of PLPAC. Our experiments are
conducted on the generated artificial networks. The resulted NMI values are plotted in
Figure 4. We choose SLPA [37], NSLPA [] and parallel COPRA as our comparing
algorithms because both are proposed for handling communities based on label propa-
gation. From Figure 4 we can see that PLPAC achieves the highest NMI values among
the four clustering algorithms. The results of NSLPA and SLPA are close and are higher
than those of PCOPRA. We can find that the performance of SLPA and NSLPA is not
identical. There is different label propagation update way between the classical algorithm
(like SLPA) and the parallelized algorithms (like NSLPA). The synchronization mecha-
nism is necessary for designing the parallel steps of the algorithms. On the contrary,
COPRA and SLPA update the labels asynchronously. Our proposed algorithm combined
synchronization and asynchronization has better performance in varying node number
networks. It means the improvement of update mechanism is successful.

Table 3 datasets

Network Vertices Edges Description

Karate [40] 34 78 Zachary’s karate club
Dolphins [11] 62 159 Dolphins social network
Football [21] 115 613 Football American College football
Netsci [26] 1589 2742 Network scientists
Email-Enron [19] 36,692 183,831 Email communication network from Enron
com-Amazon [39] 334,863 925,872 Amazon product co-purchasing network
Artificial network [5] 100 k to 5 M Mu= 0.1 to 0.8 LFR
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In the Figure 5 illustrates how running time varies with the increasing of network
scale. Clearly, the total running time includes the time spent on communication between
processors and time spent on execution of the algorithm itself. It is obvious that the time
cost of all the algorithms increases nearly linearly with network size. When the number
of network nodes in thousands of counting, the speedup of the other algorithms caused
by parallel computation is not evident. It possible caused by the time spent on data
processing is comparable with the time spent on cluster administration and communica-
tion. However, when the number of network nodes in millions of counting, the speedup
of the parallelized algorithms shows the advantage than classical algorithms. Parallel
computation becomes remarkable when network scale increases beyond the capability of
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a single-machine algorithm. SLPA and NSLPA run faster than PCOPRA because the
speak and listen strategy is simpler than the label updating strategies used in PLPAC.
NSLPA exhibits better scalability than SLPA, which is largely due to the parallel speak
and listen scheme. Although the run time of PLPAC is higher than NSLPA, the high NMI
value shows the algorithm this paper proposed can detect the better communities.

The experimental results for the real networks are presented in Figure 6. The Figure 6
shows the performances of the algorithms on the real networks are considerably different
from those on the artificial networks. The networks known the structure can utilize NMI
to show the performance of community detection. The NMI value is higher, the structure
divided is closer to the real structure. We can find that the algorithm proposed by this
paper has the best performance. It means the community divided is closer to real
community structure than other results. In Figure 6, with the node number of network
raise, the result divided by LPA is poor. It because the traditional label propagation
algorithm cannot handle big data network. The results of COPRA are better than LPA
because it allows node belongs to more than one communities. Thus, the overlapping
community structure is fit for the real-world situation. The different results between
NSLPA and SLPA are caused by the similarity proposed by NSLPA. Hence, we
parallelize the label propagation algorithm and consider nodes confidence to fit the
modern large-scale networks.

In order to detect the performance of the proposed algorithms in large data networks, we
used Email-Enron and com-Amazon datasets with unknown community structure to detect the
performance. Hence, we utilize EQ function to measure the accuracy of the divided result with
big data network.

We show the performance with different algorithms in Figure 7. In the Karate
network, the small size of the network and its limited structure cause a low value of
modularity value. However, the 0.416 is the highest among the results detected by
many algorithms. In Dolphins and Football networks, the performance of each algo-
rithm performs very well caused by the clear community structure in the networks.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Karate Dolphins Football Netsci

COPRA NSLPA SLPA LPA PLPAC

Figure 6 The NMI value in real network

World Wide Web



With the increasing complexity of network relations, the advantages of parallel algo-
rithms become significant. We can see that in the com-Amazon with 334,863 nodes as
a big data network the traditional algorithm LPA [30] and COPRA [13] have the poor
community division. The NSLPA can divided community better than SLPA, which is
parallel the label propagation proceeding to fit for large scale network. The PLPAC
gets high score in EQ function comparing with other algorithms and performs well in
every size network.

We showed the running time in Figure 8 including each step and total running time.
We do not show the running time of dividing by Karate, Dolphin and Football dataset,
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because the number of nodes is too small for the parallel system. We can find the
calculation of node confidence cost more time with the number of network raise.
Meanwhile, we find the execution time of node confidence is only a small proportion
of the total running time. The main running time are cost by label propagation with
iteration repeatedly. The total time not only contains the node confidence and label
weight time. It also contains the time cost by communication and management among
the machines.

In Figure 9, we can find the communities number is reduced with the iteration of label
propagation. In order to intuitive analysis the convergence of the proposed algorithm, we
used Zachary karate club network to show the community detection performance with
the iteration by LPAC. We find the NMI value becomes larger with the convergence of
the number of communities. In our algorithm, we divided this network need 4 iterations,
and the 5th iteration means the communities numbers reaches a steady state.

At the end of each run, we calculated the total execution time and speedup using formula
shown in (14), efficiency according to (15).

Speedup ¼ T1

Tn
ð14Þ

Where, T1 means the running time on the single machine, the Tn means the running time on
the cluster.

Efficiency ¼ Speedup
p ð15Þ

Experiments are conducted on the 1 M network with a varying number of machines to
evaluate the effect of cluster scale on the performance. Figure 10 shows that a boost on
running speed caused by adding machines to the cluster is evident. As the number of
processors increase, the growth rate of speedup is decay. Because the time cost by
communication and management among the machines will rise with more machines.
Therefore, we should balance the number of the processors to detect the accurate
community structure in the shortest time.
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6 Conclusion and future work

In this paper, we proposed a parallel label propagation algorithm with node confidence to
detect communities. In addition, we evaluated the performance of a multi-threaded parallel
implementation of the label propagation algorithm and demonstrated that using a modern
multiprocessor can significantly reduce the time required to analyze the structure of different
networks and output communities. We found that, with the increasing number of processors,
the rate of speedup reduces slowly. This can be explained by the fact that more and more
communication time is spent on the processors, which should be considered. The implemen-
tation of PLPAC proves that it can detect the communities in large networks with high
accuracy. Compared with other algorithms, the simulation result shows that our algorithm
can correctly identify overlapping community structures from real data, and the improved label
propagation with node confidence is very effective. Finally, the speedups on various datasets
and different numbers of machines are satisfactory.

In our future work, we plan to raise a greater number of the processors and evaluate the
experimental performance. In addition, we will explore other parallel programming paradigms
and compare their performance with our parallel approach.
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