
June 15, 2017 8:52 IJAIT S0218213017600132 page 1

International Journal on Artificial Intelligence Tools
Vol. 26, No. 3 (2017) 1760013 (18 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0218213017600132

Parallel Multi-Label Propagation Based on Influence Model and

Its Application to Overlapping Community Discovery

Qirong Qiu

School of Economics & Management, Fuzhou University

Fujian Provincial Key Laboratory of Network Computing and
Intelligent Information Processing

Fuzhou 350116, China
qqrkyc@fzu.edu.cn

Wenzhong Guo∗, Yuzhong Chen† and Kun Guo‡

College of Mathematics and Computer Science, Fuzhou University

Fujian Provincial Key Laboratory of Network Computing and
Intelligent Information Processing

Key Laboratory of Spatial Data Mining & Information Sharing, Ministry of Education
Fuzhou 350116, China

∗fzugwz@163.com
†yzchen1979@163.com
‡gukn123@163.com

Rongrong Li

College of Mathematics and Computer Science, Fuzhou University

Fujian Provincial Key Laboratory of Network Computing and
Intelligent Information Processing

Fuzhou 350116, China
ditaps@163.com

Received 28 March 2016
Accepted 9 March 2017
Published 23 June 2017

Finding communities in networks is one of the challenging issues in complex network research. We
have to deal with very large networks that contain billions of vertices, which makes community
discovery a computationally intensive work. Moreover, communities usually overlap each other,
which greatly increases the difficulty of identifying the boundaries of communities. In this paper, we
propose a parallel multi-label propagation algorithm (PMLPA) that enhances traditional multi-label
propagation algorithm (MLPA) in two ways. First, the critical steps of MLPA are parallelized based
on the MapReduce model to get higher scalability. Second, new label updating strategy is used
to automatically determine the most valuable labels of each vertex. Furthermore, we study the
improvement of PMLPA through considering the influence of vertices and labels on label updating.

‡Corresponding author

1760013-1

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0218213017600132

Q. Qiu et al.

1760013-2

In this way, the importance of each label can be described with higher precision. Experiments on

artificial and real networks prove that the proposed algorithms can achieve both high discovering

accuracy and high scalability.

Keywords: Community discovery; multi-label propagation; influence model; overlapping community.

1. Introduction

Discovering communities in networks can be regarded as a kind of clustering problem

that aims at finding groups of friends from social networks or protein structures from

biological networks.1 A community is a group of vertices that are more densely connected

to each other than to the rest of the network. More formally, let C be a subgraph of a graph

G that represents a network. We define the internal degree
C

ink of C as the sum of the

internal degrees of its vertices and the external degree
C

outk of C as the sum of the external

degrees of its vertices. The internal and external degree of a vertex is the number of edges

connecting it to other vertices of C or to the rest of the graph, respectively. From
C

ink and
C

outk , we define the intra-cluster density
C

in and inter-cluster density
C

out of cluster C as

follows:

(1)

(1) 2

C
C in
in

c c

C
C out
out

c c

k

n n

k

n n

 (1)

where nc is the number of vertices of C. For C to be a community, we expect
C

in to be

appreciably larger than
C

out .

In the real world, communities may be difficult to recognize because they always

overlap with each other. For example, some of a person’s colleagues may also be his/her

schoolmates. Therefore, discovering overlapping communities in networks has become a

hot research topic.

Community discovery algorithms can be roughly divided into the algorithms based

on graph partitioning,1–3 the algorithms based on modularity optimization,4–6 the algo-

rithms based on label propagation,7–9 etc.

Girvan and Newman first proposed a community detection algorithm named GN.1 GN

is an algorithm based on graph partitioning. It considers more about the edges connecting

communities with high betweenness than those edges inside communities. Since its time

complexity is O(n3) on sparse graphs, the algorithm is impractical to process large

networks. However, the GN algorithm inspired many researchers to design more efficient

community discovery algorithms. Later, researchers developed the algorithms2,3 that can

greatly reduce time cost. Nevertheless, some algorithms achieve speedup at the expense of

losing discovering accuracy.

The algorithms based on modularity optimization aims at maximizing the modularity

proposed by Newman et al.4 Modularity is a widely applied index to measure the quality

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 Parallel Multi-Label Propagation Algorithm

1760013-3

of the community discovery algorithms. However, modularity has its own drawbacks like

the resolution limit10 and the extreme degeneracy.11

Label Propagation Algorithm (LPA) is one of the fastest community discovery

algorithms that can process large networks.7 Each vertex in LPA is initialized with a

unique label. The label of each vertex is updated iteratively by selecting the most

appropriate label of its neighbors. The principles of LPA are simple. It does not require

setting the heuristic rules or a predefined object function. Neither does it need prior

information about the communities. Therefore, LPA has soon attracted attentions of

many researchers. Gregory first applied LPA to find overlapping communities and

proposed Community Overlap PRopagation Algorithm (COPRA).8 COPRA allows each

vertex belong to at most v communities. However, it is not easy to set a suitable value

of v for a particular network. Wu et al.9 proposed a method named BMLPA to avoid

restricting the number of communities a vertex can belong to. BMLPA uses a threshold

parameter p to restrict the number of labels a vertex can have.

As network scale grows up, it becomes more and more difficult for traditional single-

machine algorithms to discover communities in reasonable time. Parallel computation

model like MapReduce10 emerges as a good option to adapt the community discovery

algorithms to large networks. Leung et al.11 proved that LPA was suitable to be

parallelized, as it did not need much information about network structures. Zhao et al.13

proposed Parallel Structural Clustering Algorithm (PSCAN) for community detection in

large networks. PSCAN implements parallel LPA and structural clustering based on the

MapReduce model. However, PSCAN cannot find overlapping communities.

In our previous work,14 we proposed a parallel MLPA for overlapping community

detection in large social networks. In this paper, we extend this work and further study the

influence of vertices and labels on label updating. A new influence model is proposed to

describe the impact of vertices and labels on label updating. The major contributions of

this study are:

(1) The MapReduce model is applied to the parallelization of traditional MLPA. Parallel

operators provided by modern parallel computation frameworks are used to improve

the ability to deal with large networks.

(2) New influence model that considers both the impact of neighboring vertices and the

weights of vertex labels is proposed to assist the evaluation of labels during label

updating.

(3) Comprehensive experiments are conducted to compare the proposed algorithms with

the state-of-the-art algorithms on both artificial and real networks. The experimental

results show the efficiency and effectiveness of our algorithms.

The remainder of the paper is organized as follows. Section 2 introduces the concepts

of multi-label propagation. The proposed algorithms are discussed in detail in Section 3.

Section 4 presents the experimental results on artificial and real networks. Section 5

concludes our work and poses directions for future research.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Q. Qiu et al.

1760013-4

2. Multi-Label Propagation

Label Propagation Algorithm (LPA) was first proposed by Raghavan et al. in Ref. 7.

The ideas behind LPA are as follows.

(1) Each vertex is initialized with a random label.

(2) Each vertex’s label is updated according to its neighbors’ labels. The labels selected

by the most neighbors are usually preferred.

(3) Step (2) is run iteratively until the convergence condition is satisfied or the maximum

iteration is reached.

(4) Finally, the vertices with the same label are collected into a community.

The advantages of LPA include that its run time is nearly linear to network size.

Therefore, it is an algorithm that especially suitable for processing large networks.

However, the LPA proposed in Ref. 7 uses asynchronous updating strategy that may

cause instability of community detection.15 Moreover, it cannot discover overlapping

communities.

Multi-Label Propagation Algorithms (MLPA) were proposed to solve the problems of

LPA, where COPRA proposed by Gregory is a well-known one. The improvements of

COPRA include:

(1) Each vertex can retain more than one label in its label set.

(2) Each label of a vertex is connected with a belonging coefficient that describes the

strength of the vertex to the label.

(3) A new parameter v is used to filter the labels whose belonging coefficients are smaller

than it. In this way, many fragment communities are avoided.

(4) Synchronous updating strategy is used to achieve stable results.

With the above modifications, COPRA performs much better than traditional LPA.

However, COPRA also has its weaknesses. For example, it is inclined to generate some

huge communities that cover many real small communities.9

3. Parallel Multi-Label Propagation Based on the MapReduce Model

3.1. Design ideas

The key point of parallelizing the MLPA algorithm is that the resources required by any

one of its step are separable from the resources required by the others. By inspecting the

steps of MLPA thoroughly, we have the following property for the parallelization of

MLPA.

Property 1. The critical steps of MLPA, i.e. adjacency list generation, vertex label

initialization, label updating, are all parallelizable based on the MapReduce model.

Description: First, the network structure can be read parallelly when each line of the

network file represents an edge. Second, since a vertex selects itself as its initial label,

the step of vertex label initialization can be easily parallelized. Third, a vertex updates its

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 Parallel Multi-Label Propagation Algorithm

1760013-5

label set according to the opinions of its own neighbors. Therefore, each vertex can update

its labels independently.

Detailed schemes for the parallelization of MLPA are listed in the following.

(1) Parallel adjacency list generation

A map/reduce job is used to read the network data and build the adjacency list. The input

of the map task is (key = line offset, value = line string), which means that each line of the

data file is read separately and parallelly. The output of the map task is (key = i, value = j)

and (key = j, value = i) where i and j are neighbors to each other. The output of the map

task is sent to the reduce task. The reduce task collects all the neighbors of each vertex and

output (key = i, value =NB(i)) where NB(i) represents the neighbor set of i. After the

map/reduce job is done, the adjacency list is built.

(2) Parallel vertex label initialization

A vertex’s label is a tuple in the format of (l, bc) where l is the label and bc is the belonging

coefficient that represents the strength of the vertex membership with community l. We

use the rough core algorithm9 to build a rough core set Setrc and initialize each vertex’s

label set with the labels in Setrc. The belonging coefficient of each label is initialized to 1.0.

By broadcasting the Setrc to each machine, the parallelization of vertex label initialization

can finish the job in a single map task. The input of the map task is (key = i, value = NB(i)).

The output of the map task is (key = i, value = L(i)) where L(i) represents the set of

tuples (l, bcl) and l is a label of vertex i selected from Setrc.

(3) Parallel label updating

A vertex’s labels are updated according to the weight of the belonging coefficients of its

neighbors. Therefore, in a map/reduce job, we should join a vertex’s neighbor set and its

label set at first. Then, a map task is used to send the vertex’s label set to its neighbors.

Finally, a reduce task is used to calculate the new label set for each vertex. The detailed of

the parallel label updating is illustrated in Fig. 1.

join map reduce

i (NB(i), L(i))

……

j (NB(j), L(j))

i NB(i)

……

j NB(j)

Fig. 1. Scheme for parallel label updating.

i L(i)

……

j L(j)

j (L(i),…)

……

i (L(j),…)

i L'(i)

……

j L'(j)

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Q. Qiu et al.

1760013-6

As shown in Fig.1, the parallel label updating job requires three operators: join, map

and reduce. The map task is used to let each vertex know the labels of its neighbors. The

reduce task uses an automatic label selecting strategy introduced in Ref. 16 to determine

the new labels of each vertex. The critical ideas of the strategy are as follows.

(a) The labels are sorted according to their accumulated belonging coefficients in a

descending order.

(b) The ankle value ak of the labels and its corresponding label index ia are computed.

(c) Labels whose indices are greater than ia are discarded.

(d) The left labels form new label set L'(i).

The strategy has the advantage that there is no need to use a parameter to filter the

labels like the v parameter of COPRA.

3.2. The PMLPA algorithm

By combining the parallel steps discussed above together, a Parallel Multi-Label

Propagation Algorithm (PMLPA) is designed as in Algorithm 1.

Algorithm 1. PMLPA

 ∈

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 Parallel Multi-Label Propagation Algorithm

1760013-7

3.3. Complexity analysis

The parallel adjacency list generation needs O(m/nc) time where m is the number of

edges and nc represents the number of machines in the cluster. The vertex label initial-

ization needs O(n/nc) time. The vertex label updating procedure needs O(m/nc) time. There-

fore, the total time complexity of PMLPA is O(m/nc). Since each parallel computation

procedure needs to store the whole network in the distributed memory, the total space

complexity of PMLPA is O(m). However, the space occupation is distributed among all

the machines in the cluster. Hence, the scalability of PMLPA is much better than single-

machine system.

4. Parallel Multi-Label Propagation Based on Influence Model

4.1. Design ideas

Each vertex or label in PMLPA is treated equally. In fact, some vertices or labels are always

more important than the others. For example, a recommendation from a famous scholar

usually receives more attentions than the recommendations from an ordinary person.

Therefore, we have the following property for improving PMLPA.

Property 2. The influence of neighboring vertices and their labels should be considered in

multi-label propagation.

Description: First, by putting weight to each vertex, we can develop a scheme to evaluate

the influence of vertices and prevent the weak labels held by a large number of common

vertices from affecting the strong labels hold several important vertices. Hence, the

algorithm can converge more rapidly and more stably. Second, by putting weights to each

label, we extend the vertex influence to the evaluation of labels. Labels recommended by

more influential vertices are more possible to be spread over the network.

In this section, we propose a novel influence model that integrates vertex influence

with label influence. Vertex influence can be calculated in a way similar to Ref. 17.

()

()

2

() ()

()
()

1 ()

() (,) (,)

() ()
(,)

() ()

j NB i

j NB i j NB i k NB j

W i
VI i

W j

W i w i j w j k

NB i NB j
w i j

NB i NB j

 (2)

In Eq. (2), VI(i) and W(i) represent the influence and weight of vertex i, separately.

w(i, j) represents the weight of edge eij and is calculated by the Jaccard index of i and j.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Q. Qiu et al.

1760013-8

The parallelization of vertex influence calculation is composed of three critical steps.

(1) Parallel Jaccard index calculation

Parallel Jaccard index calculation requires more than one map/reduce job. Since Jaccard

index depends on the information of two vertices’ neighbor sets, a map task has to be used

to send the neighbor set of a vertex to each of its neighbor. The input of the map task is

(key = i, value = NB(i)). The output of the map task is (key = (i, j), value = NB(i)). The

reduce task collects NB(i) and NB(j) corresponding to (i, j) and return their Jaccard index

(key = (i, j), value = w(i, j)). Another reduce task is necessary to transform (key = (i, j),

value = w(i, j)) into (key = i, value = set of w(i, j)) for each vertex i.

(2) Parallel vertex weight calculation

The calculation of w(i, j) in Eq. (2) depends on the neighbor set NB(i) and the neighbor

set NB(j) of each of i’s neighbor j. Therefore, we use the following parallel operators to

finish the job.

As shown in Fig. 2, the parallel vertex weight calculation contains four steps. First,

the neighbor set NB(i) and weight set {w(i, j)} are joined together. Second, the sum si

of the weights of i to all its neighbors is calculated by a map task. Third, si is sent to

each of i’s neighbor by another map task. Finally, W(i) is calculated by collecting all

the sums of the weights of i’s neighbors and the neighbors of its neighbors through the

reduce task.

(3) Parallel vertex influence calculation

After joining W(i) and NB(i) for each vertex i, W(i) is sent by a map task to each neighbor

of i where the sum si of the squares of W(i)s is calculated. Then, a reduce task is enough to

calculate each vertex’s influence.

The label influence can be calculated with respect to vertex influence as follows.

join

map

i {(j, w(i, j))}

……

j {(k, w(j, k))}

i NB(i)

……

j NB(j)

Fig. 2. Scheme for parallel vertex weight calculation.

i {w(i, j)}

……

j {w(j, k)}

i {(j, si)}

……

j {(k, sj)}

i {(j, sj)}

……

j {(k, sk)}

i W(i)

……

j W(j)

reduce

map

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 Parallel Multi-Label Propagation Algorithm

1760013-9

22

,

(,) ()

()
(,) ()

l l

l l

j VS j VS

j VS j VS

w i j VI j

LI l
w i j VI j

 (3)

where LI(l) represents the influence of label l of vertex i, and VS(l) is the set of neighbors

of i that contain l in its label set. The parallelization of label influence calculation is

embedded into the parallel label updating step of PMLPA. The new parallel label updating

step is illustrated in Fig. 3.

The differences between Fig. 3 and Fig. 1 are: first, four datasets including vertex

influence and label influence are joined in the new scheme; second, L(i) now represents

(l, LI(l)) instead of (l, bcl); third, the map task is now used to calculate label influence

according to Eq. (3) where sw(li) and sv(li) represent the sum of w2(i, j) and the sum of

VI 2(j), separately.

4.2. The PMLPA-IM algorithm

The new algorithm that based on the new influence model is called PMLPA-IM (PMLPA

with Influence Model), whose details are given in Algorithm 2.

4.3. Complexity analysis

The parallel Jaccard index calculation needs O(nk2/nc) time where n is the number of

vertices and k is the average vertex degree. The parallel vertex weight and vertex influence

join

map

reduce

i{NB(i), L(i), VI(i),{w(i, j)}}

……

j{NB(j), L(j), VI(j),{w(j, k)}}

i NB(i)

……

j NB(j)

Fig. 3. Scheme for parallel label updating based on the new influence model.

I L(i)

……

j L(j)

i{(sw(li), sv (li))}

……

j{(sw(lj), sv (lj))}

I L' (i)

……

j L' (j)
I VI(i)

……

j VI(j)

I {w(i, j)}

……

j {w(j, k)}

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Q. Qiu et al.

1760013-10

Algorithm 2. PMLPA-IM

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 Parallel Multi-Label Propagation Algorithm

1760013-11

calculation needs O(m/nc) time. The new parallel label updating procedure also needs

O(m/nc) time. Therefore, the total time complexity of PMLPA-IM is O(m/nc). The space

complexity of PMLPA-IM is the same as PMLPA.

5. Experiments

We compared PMLPA and PMLPA-IM with COPRA and CFinder18 on both artificial

and real networks to evaluate their performance. The algorithms are written in Java or Scala

on Spark framework,19,20 The artificial networks were generated by the benchmark network

generator designed by Lancichinetti and Fortunato.21 The real networks were obtained from

the SNAP project website.22 The details of the experimental networks are summarized in

Table 1. Parameters n, m, mu, k, maxk, minc, maxc, on, and om represent the number of

vertices and network edges, the mixing parameter required by the network generator, the

minimum and maximum degrees of the vertices, the average and maximum community

sizes, the number of overlapping vertices, and the number of memberships of the

overlapping nodes, respectively.

Table 1. Details of the experimental networks.

Networks Parameters

Artificial networks
n = 100 k ~ 500 k, mu = 0.3, k = 15, maxk=150, minc = 50,

maxc = 100, om = 5, on = 0.1n

Real networks Amazon n = 334863, m = 925872

 DBLP n = 317080, m = 1049866

 Youtube n = 1134890, m = 2987624

The sizes of the artificial networks vary from 100 k (one thousand vertices) to 500 k

(fifty thousand vertices). The ratio of the vertices belonging to multiple communities is 0.3

(30 percent). The average and the maximum vertex degrees are 15 and 150, separately.

Community size varies from 50 to 100.

The accuracy of the algorithms is measured by the Normalized Mutual Information

(NMI)23 if the community structures of a network are known or overlapping modularity

Qov
4,24 if this information is absent. The equations for NMI and Qov are as follows.

1

,

(|) 1 [(|) (|)] / 2

() (log)

()
() (,) log

(,)

n

i

i j

i i

j

i j

i j

H

NMI X Y H X Y H Y X

H X p x x

p y
X p x y

p x y

 (4)

where X and Y denote the sets of true communities and discovered communities,

respectively. xi and yi represent a vertex in X and Y, respectively. H(X) is the entropy

of X, and H(X|Y) is the conditional entropy of X given Y.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Q. Qiu et al.

1760013-12

1 ,

1 1 1

2 2

c

i

n
i j

ov

c i j C i j

k k
Q

m OO m m

 , (5)

where m, nc, Ci, and ki are the edge number, the number of communities, community Ci,

and the degree of vertex i, respectively.

All the experiments are performed on a cluster composed of eight machines with the

same configuration: 2.0 GHz 2 cores CPU, 16GB RAM, Hadoop 2.4.0 and Spark 1.5.0.

5.1. Experimental results on artificial networks

(1) Effect of Network Size

Artificial networks whose sizes vary from 100 k to 500 k were used to evaluate the accuracy

and run time of the algorithms. The experimental results are illustrated in Figs. 4 and 5.

As shown in Fig. 4, the accuracy of PMLPA and PMLPA-IM are consistently better

than COPRA and CFinder. PMLPA-IM performs slightly better than PMLPA because it

considers the influence of vertices and labels in labels updating as suggested by Property 2.

Since the parameters of all the networks are the same except for their sizes, the NMI

values of the algorithms on the networks are close. The only exception is CFinder. The

dependence on the detection of the k-cliques weakens its performance.

Figure 5 shows that PMLPA and PMLPA-IM run consistently faster than the other

algorithms. According to Property 1, PMLPA and PMLPA-IM are both implemented on the

MapReduce mode and efficient parallel operators. Therefore, they exhibit excellent

scalability. PMLPA-IM runs more slowly than PMLPA because it needs to spend extra

time to calculate the influence of vertices and labels according to Property 2. Influence

calculation may be time-consuming if a large number of vertices in the network have high

degrees.

Fig. 4. NMI of the algorithms on artificial networks with varying sizes.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100k 200k 300k 400k 500k

N
M

I

n

COPRA CFinder PMLPA PMLPA-IM

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 Parallel Multi-Label Propagation Algorithm

1760013-13

Fig. 5. Run time of the algorithms on artificial networks with varying sizes.

(2) Effect of Mixing Degree

Identifying highly overlapping communities in large networks is an important capability

for community discovery algorithms. Hence, experiments were conducted on artificial

networks with varying mu values to evaluate the algorithms. We used the 100 k network

in the experiments. The mu values are varied and other parameters are identical to Table 1.

The experimental results are given in Fig. 6.

Fig. 6. NMI of the algorithms on artificial networks with varying mu values.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

100k 200k 300k 400k 500k

R
u
n
 t

im
e

(s
)

n

COPRA CFinder PMLPA PMLPA-IM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

N
M

I

mu

COPRA CFinder PMLPA PMLPA-IM

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Q. Qiu et al.

1760013-14

Figure 6 shows that the new updating strategy developed according to Property 1

and 2 greatly help improve the accuracy of PMLPA and PMLPA-IM. They outperform

COPRA and CFinder more than 20% when the value of mu is smaller than 0.7. It is always

more difficult to detect communities when more communities are mixed up. Therefore, all

the algorithms fail when the value of mu is greater than 0.7. It is interesting to notice that

PMLPA-IM performs better than PMLPA when the value of mu is smaller than 0.4 and

worse than PMLPA when the value of mu is greater than 0.4. The phenomenon reveals the

fact that the influence model may not always beneficial. It is possible to contribute

negatively to community discovery when the number of overlapping communities reaches

a certain value.

(3) Effect of Cluster Scale

Experiments were conducted on the artificial networks with varying number of machines

to evaluate the effect of cluster scale on the performance of PMLPA-IM. The results are

given in Fig. 7.

Each curve in Fig. 7 represents the run time of the algorithm on different size of cluster

for an artificial network. It is easy to find that the run time decreases with the increase of

the number of machines. The more machines are involved in the computation, the faster

the algorithm will run. However, the speedup of the algorithm on different network is

different. On small networks like the 100 k network, the reduction in run time is not

noticeable. On large networks like the 500 k network, on the contrary, the reduction in

run time is significant. It may be explained by the difference in effective workload. The

effective workload is the ratio of run time spent on executing algorithm steps (called work

0

400

800

1200

1600

2000

2 4 8 12 16

R
u
n
 t

im
e

(s
)

Number of cores

100k 200k 300k 400k 500k

Fig. 7. Run time of PMLPA-IM on artificial networks with varying sizes.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 Parallel Multi-Label Propagation Algorithm

1760013-15

time) to the total run time. When the network is not very large, the time spent on cluster

administration and network communication (called extra time) may be comparable to work

time. In this case, increasing the number of machines in the cluster does not lead to the

expected speedup effect. When the network is large enough, work time will be far greater

than extra time. Therefore, the benefit brought by expanding the cluster becomes

remarkable.

5.2. Experimental results on real networks

Networks in real world usually contain more complex community structures than the

artificial networks. Hence, experiments were conducted on the real networks to evaluate

the performance of the algorithms. The results are illustrated in Figs. 8 and 9.

As shown in Fig. 8, the accuracy of PMLPA and PMLPA-IM measured by Qov is

superior to other algorithms on all the real networks. As stated previously, it largely

attributes to the efficient label updating strategy designed according to Property 1 and 2.

PMLPA-IM performs a little better than PMLPA because it additionally considers the

influence of vertices and labels. CFinder runs too slowly on the Youtube network.

Therefore, its Qov value on the network is absent from Fig. 8.

Since real networks may contain complex community structures that greatly affect the

time for community discovery, the vertical axis scale of Fig. 9 is set to the power of 10. As

shown in Fig. 9, PMLPA and PMLPA-IM algorithms run faster than the other algorithms.

PMLPA runs slightly faster than PMLPA-IM because it spends more time on the

calculation of the influence of vertices and labels. We can find by comparing Fig. 9 with

Fig. 5 that the difference between PMLPA and PMLPA-IM on run time on the real

networks is not as remarkable as that on the artificial networks. Real networks are usually

Fig. 8. NMI of the algorithms on the real networks.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Amazon DBLP Youtube

Q
o

v

Datasets

COPRA CFinder PMLPA PMLPA-IM

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Q. Qiu et al.

1760013-16

Fig. 9. Run time of the algorithms on real networks.

sparse and contain only a few vertices with high degrees. Therefore, it does not require too

much time to calculate the influence of vertices and labels.

6. Conclusion

In this paper, a new Multi-Label Propagation Algorithm based on parallel computation

model and its improvement that considers the influence of vertices and labels are proposed.

First, the design ideas behind the algorithms are discussed in detail. Second, the pseudo-

codes of the algorithms based on the parallel operators are presented with the complexity

analysis. Finally, the experiments on artificial and real networks demonstrate that the

proposed algorithms are capable of processing large networks efficiently with high

accuracy. In future, we plan to further improve our algorithms by incorporating more

efficient label updating strategies and more powerful parallel operators.

Acknowledgments

This work is partly supported by the National Natural Science Foundations of China under

Grant Nos. 61300104 and 61672159, the Program for New Century Excellent Talents

in Fujian Province University under Grant No. JA13021, the Key Project of Industry-

Academic Cooperation of Fujian Province under Grant No. 2014H6014, the Fujian Natural

Science Fund for Distinguished Young Scholar under Grant No. 2014J06017, the Fujian

Collaborative Innovation Center for Big Data Application in Governments, and the

Technology Innovation Platform Projects of Fujian Province under Grant Nos. 2014H2005

and 2009J1007, and the Natural Science Foundations of Fujian Province under Grant

Nos. 2013J01230 and 2017J01752.

1

10

100

1000

10000

100000

Amazon DBLP Youtube

R
u
n
 t

im
e

(s
)

Datasets

COPRA CFinder PMLPA PMLPA-IM

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 Parallel Multi-Label Propagation Algorithm

1760013-17

References

1. M. Girvan and M. E. J. Newman, Community structure in social and biological networks, Proc.

of the National Academy of Sciences 99 (2002) 7821–7826.

2. J. R. Tyler and D. M. Wilkinson, B. A. Huberman, E-mail as spectroscopy: Automated discovery

of community structure within organizations, The Information Society 21 (2005) 143–153.

3. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto and D. Parisi, Defining and identifying

communities in networks, Proc. of the National Academy of Sciences of the United States of

America 101 (2004) 2658–2663.

4. M. E. J. Newman and M. Girvan, Finding and evaluating community structure in networks,

Physical Review E 69 (2004) 026113.

5. M. E. J. Newman, Fast algorithm for detecting community structure in networks, Physical

Review E 69 (2004) 066133.

6. V. D. Blondel, J. L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities

in large networks, Journal of Statistical Mechanics: Theory and Experiment 2008 (2008)

P10008.

7. U. N. Raghavan, R. Albert and S. Kumara, Near linear time algorithm to detect community

structures in large-scale networks, Physical Review E 76 (2007) 036106.

8. S. Gregory, Finding overlapping communities in networks by label propagation, New Journal

of Physics 12 (2010) 103018.

9. Z. H. Wu, Y. F. Lin, S. Gregory, H. Y. Wan and S. F. Tian, Balanced multi-label propagation

for overlapping community detection in social networks, Journal of Computer Science and

Technology 27 (2012) 468–479.

10. J. Dean and S. Ghemawat, MapReduce: Simplified data processing on large clusters,

Communications of the ACM 51 (2008) 107–113.

11. S. Fortunato and M. Barthelemy, Resolution limit in community detection, Proc. of the National

Academy of Sciences 104 (2007) 36–41.

12. B. H. Good, Y. A. Montjoye and A. Clauset, Performance of modularity maximization in

practical contexts, Physical Review E 81 (2010) 046106.

13. W. Zhao, V. Martha and X. Xu, PSCAN: A parallel structural clustering algorithm for big

networks in MapReduce, in Proc. 2013 IEEE 27th Int. Conf. on Advanced Information

Networking and Applications (AINA) (Barcelona, Spain, 2013), pp. 862–869.

14. R. R. Li, W. Z. Guo, K. Guo and Q. R. Qiu, Parallel multi-label propagation for overlapping

community detection in large-scale networks, in Proc. Multi-disciplinary Trends in Artificial

Intelligence (Fuzhou, China, 2015), pp. 351–362.

15. I. X. Y. Leung, P. Hui, P. Lio and J. Crowcroft, Towards real-time community detection in large

networks, Physical Review E 79 (2009) 066107.

16. J. B. Huang, H. L. Sun, D. Bortner and Y. G. Liu, Mining hierarchical community structure

within networks from density-connected traveling orders, Journal of Software 22 (2011)

951–961.

17. X. S. Yi, Y. T. Han and X. W. Wang, Algorithm based on vertex influence for detecting local

community structure, Journal of Chinese Computer Systems 34 (2013) 1975–1979.

18. G. Palla, I. Derenyi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure

of complex networks in nature and society, Nature 435 (2005) 814–818.

19. Apache software foundation, Apache Spark (2017), http://spark.apache.org.

20. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley M. J. Franklin, S. Shenker

and I. Stoica, Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing, in 9th USENIX Conf. on Networked Systems Design and Implementation (Lombard,

United States, 2012), pp. 2-2.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Q. Qiu et al.

1760013-18

21. A. Lancichinetti and S. Fortunato, Benchmarks for testing community detection algorithms on

directed and weighted graphs with overlapping communities, Physical Review E 80 (2009)

016118.

22. J. Leskovec and A. Krevl, SNAP datasets: Large network dataset collection (2017),

https://snap.stanford.edu/data.

23. A. Lancichinetti, S. Fortunato and J. Kertesz: Detecting the overlapping and hierarchical

community structure in complex networks, New Journal of Physics 11 (2009) 033015.

24. H. Shen, X. Cheng, K. Cai and M. B. Hu, Detect overlapping and hierarchical community

structure in networks, Physica A: Statistical Mechanics and Its Applications 388 (2009)

1706–1712.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
7.

26
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 O
F

N
E

W
 Y

O
R

K
 @

 B
IN

G
H

A
M

T
O

N
 o

n
06

/2
3/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

