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Abstract Social media networks are playing increasingly
prominent role in people’s daily life. Community structure is
one of the salient features of social media network and has
been applied to practical applications, such as recommenda-
tion system and networkmarketing.With the rapid expansion
of socialmedia size and surge of tremendous amount of infor-
mation, how to identify the communities in big data scenarios
has become a challenge. Based on our previous work and the
map equation (an equation from information theory for com-
munity mining), we develop a novel distributed community
structure mining framework. In the framework, (1) we pro-
pose a new link information update method to try to avoid
datawriting related operations and try to speedup the process.
(2) We use the local information from the nodes and their
neighbors, instead of the pagerank, to calculate the proba-
bility distribution of the nodes. (3) We exclude the network
partitioning process from our previous work and try to run
the map equation directly on MapReduce. Empirical results
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on real-world social media networks and artificial networks
show that the new framework outperforms our previous work
and some well-known algorithms, such as Radetal, FastGN,
in accuracy, velocity and scalability.

Keywords Social media · Community structure mining ·
MapReduce

1 Introduction

Social media network (SMN) has been booming now. BI
Intelligence [6] recently reported that, monthly active users
(MAU) of FaceBook have reached 1.16 billion by the end
of 2013, YouTube has about 1 billion MAUs, and Qzone, a
China’s giant social media network, is running in third place
at 712 million users.

In the study of complex networks, if the nodes of the
network can be grouped into components such that nodes
in each component are densely connected internally via
links or edges and connections among different components
are sparse, the network is said to have community struc-
ture. Nodes in each component along with the links among
the nodes constitute a community. Studying the community
structure has important theoretical and practical value [9,10],
such as information propagation research, product recom-
mendation, link prediction and so on. Given a SMN, the
community structure is not manifest, and the communities
are hidden in the complex structure. How to identify all the
communities is the issue that mining community structure
devotes oneself to solving, especially in big data scenarios.

We have made attempts to reveal the community struc-
ture of big data SMNs in [13,14]. In our previous work,
we (1) divide the network into plenty of subnetworks and
the size of each subnetwork should smaller than the block
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size; (2) upload the subnetworks onto the Hadoop distributed
file system (HDFS) [2]; (3) run MapReduce based infomap
method to process the subnetworks independently. Limita-
tion in this solution lies in the graph partitioning process.
Because networkpartitioning isNP-complete [1], and current
graph partitioning methods are not able to find the optimal
solution in linear time. The links cut off by the graph par-
titioning methods may be far more than the optimal, and
may assign the nodes of a community into several blocks
which will destroy the community structure. In our previous
work, we aim at accelerating the map equation [30] (shown
in Expression (5)) using MapReduce programming model.

In this paper, we extend our previous work: (1) networks
are represented and stored on HDFS in adjacency list for-
mat; (2) there is no network partitioning process and network
integrity is preserved; (3) we only read data from HDFS and
there is no data writing operations, such as append, modify
andwrite, before outputting final results, which coincides the
HDFS’s WORM access model and significantly reduces the
overhead of writing data to the disk; (4) it is easy-to-use and
has high scalability, which makes the community mining in
big data SMNs with MapReduce [7] cluster easier.

The rest of this paper is organized as follows. Section 2
presents terms, definitions and problem formulation, fol-
lowed by the details of the distributed community structure
mining framework. In Sect. 4, we conduct a couple of exper-
iments to evaluate the performance of the framework. We
discuss some related work in Sect. 5. Finally, Sect. 6 pro-
vides some concluding remarks and outlines future research
directions.

2 Problem formulation

2.1 Terms, assumption and definitions

A SMN can be mathematically described as G = (V, E),
where V and E ⊆ V ×V represent the node set and link set,
respectively. n = |V | and m = |E | are the total number of
nodes and links in G. v(i) represents node i and e(i, j) ∈ E
indicates that there is a link between v(i) and v( j). nv(i)
stands for the neighbor node set of v(i) and d(i) = |nv(i)|
represents the degree of v(i).

By now, community definition has not been uniformed in
scientific world. The most approved one is proposed by Yang
[33]:

Definition 1 (community) a community within a network is
a group of nodes, within which the links connecting nodes
are dense but between which they are sparse.

Definition 2 (intra link & inter link) in a community struc-
tured network, a link connecting nodes within the same

Fig. 1 An example of inter links and intra links in a community-
structured network with 3 communities surrounded by the dashed
circles

community is called an intra link, and the links connect-
ing nodes from different communities are inter links.

From Fig. 1, we can see that nodes within a community
are densely connected by intra links and nodes of different
communities are sparely connected by inter links. Therefore,
for a community structured network, it is reasonable to view
it as a collection composed of a series of communities and a
number of inter links.

For the convenience of following discussion, we define
some community related items in Table 1. In SMN data set,
link number is far more than node number, i.e. m � n. Gen-
erally, we can store the node IDs in memory but we cannot
store the links in memory. Assuming that there is 100million
nodes with average degree 100, each node needs 4 bytes and
each links need at least 8 bytes to express in memory, then
will can use 400 MB to record all the node IDs, however the
memory consumption will be more than 8 GB for the links.
Therefore, we assume that the node IDs of SMNs studied in
this paper can resident memory. Besides, for simplicity, we
assume that the networks studied here are connected.

2.2 Community structure mining problem

A community-structured SMN can be seen as a combi-
nation of a series of communities and a number of inter
links. Mathematically, we represent the series of commu-
nities as a set CS = {C1,C2, . . . ,CNC }, where Ci =
{v(i1), v(i2), . . . , v(ini )} means a community of ni nodes
and NC is the total number of communities in the SMN.

Community structure mining aims to solve the problem of
how to identify all the communities in the big data SMNs as
fast and accurately as possible.Networks studied in this paper
are undirected and unweighted. More exactly, our object will
be finding out the community set CS = {C1,C2, . . . ,CNC },
whereCi ∩C j = φ for i �= j . However, without quantitative
indicators, we will not be able to present an intuitive grasp
of the problem. Therefore, with the help of map equation,
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Table 1 Symbol definition and description

Symbol Description

d(Ci )
∑

d( j), where v( j) ∈ Ci , sum of degrees
of nodes in Ci

out Link(Ci ) | ∪ e(s, t)|, where v(s) ∈ Ci and v(t) /∈ Ci ,
sum of links departing from Ci

inLink(Ci ) | ∪ e(s, t)|, where v(s) ∈ Ci and v(t) ∈ Ci ,
sum of links within Ci

inter Link(Ci ,C j ) | ∪ e(s, t)|, where v(s) ∈ Ci and v(t) ∈ C j

inDegree(Ci ) 2*inLink(Ci ), sum of degrees within Ci

out Degree(Ci ) out Link(Ci ), sum of out degrees of nodes
of Ci

we convert the community structure mining problem into a
mathematical optimization problem in Sect. 3.

3 Supporting theory and proposed framework

3.1 MapReduce framework

MapReduce has become an important big data process-
ing tool recently. There are two procedures in MapReduce
programs: Map() and Reduce(). The former performs fil-
tering and sorting, and Reduce() performs a summary
operation. Servers in MapReduce platform are organized in
master/workers architecture. The master is responsible for
interacting with users. It receives programs and splits them
into map works and reduce works, then assigns the works
to the distributed servers (called as mappers and reducers
according to the work type). Workers can only communicate
with the master via the heartbeat protocol.

Data processed in Map() and Reduce() should be in
〈key, value〉 pairs. Map takes one pair of data with a type
in one data domain, and returns a list of pairs in a differ-
ent domain: 〈key1, value1〉 → list〈key2, value2〉. Map
is applied in parallel to every pair in the input data set,
and will generates a list of pairs for each call. Then, the
framework collects all pairs with the same key from all lists
and groups them together, creating one group for each key.
Next, reduce is applied in parallel to each group, which in
turn produces a collection of values in the same domain:
〈k2, list (v2)〉 → 〈k2, list (v3)〉.

3.2 Information coding theory

Information coding is a concept in electrocommunication
field. Essentially, coding theory can be divided into two
aspects according to purpose: source code and channel code.
Source encode attempts to compress the data from a source
in order to transmit it more efficiently [23], and it is that we
are using. Channel code, by adding extra data bits, aims to

make the transmission of data more robust even if some bits
lost or tampered.

Source coding contains two code patterns: fixed-length
code and variable-length code. Given an encoded message,
the most important thing is to decode it to get the original
information and the information should be unique. Fixed-
length codes are always uniquely decipherable. However, the
situation for variable-length codes is completely different.
So, some useful regulations are proposed, of which prefix
code rule is an important one:

Definition 3 (prefix code) A code is called a prefix (free)
code if no codeword is a prefix of another one. for example,
{a = 0, b = 110, c = 10, d = 111} is a prefix code.

Prefix free code is uniquely decipherable code. Since no
codeword is a prefix of any other we can always find the
first codeword in a message, peel it off, and continue decod-
ing. Therefore developing high efficiency prefix free code
interests researchers. Given an alphabet A = {a1, . . . , an}
with probability distribution p(ai ), expected value of bits per
codeword needed for encoding a message of n

∑n
a=1 p(a)

characters by a binary prefix code C is:

B(A) =
n∑

i=1

p(ai ) ∗ l(c(ai )) (1)

where c(ai ) is the codeword for encoding ai , and l(c(ai )) is
the length of the codeword c(ai ).

Explicitly, how to develop a code minimizing B(C) is
the key problem. Huffman developed a minimum-cost (opti-
mum) prefix code (Huffman code) with a greedy algorithm
[11].

Entropy is another important concept in information the-
ory [12]. It is a measure of the uncertainty in a random
variable. The entropy of A used above will be:

H(A) =
n∑

i=1

p(ai ) log2
1

p(ai )
(2)

Kraft-McMillan theorem Let C be a code with n codewords
with length l(1), l(2), . . . , l(n). If C is uniquely decodable,
then

n∑

i=1

2−l(i) ≤ 1 (3)

From (1), (2) and (3), we can deduce that the average length
of codeword for an optimal prefix-free code C satisfies:

H(A) ≤ B(A) ≤ H(A) + 1 (4)

Expression (4) means that the average bits per word B(A)

in Huffman code is bounded below by H(A). Generally, for
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a specified network with specified probability distribution,
when encoded with global Huffman code, B will be a con-
stant. Next, we will discuss two level Huffman code on a
network.

3.3 Random walk and map equation

A random walk on a network can be seen as the trace of the
walker at discrete time points. Assuming the position of the
walker at time t is s(t) = v(i), then, it will choose a node
v( j) ∈ nv(i) randomly to move.

Random walk can be used as a standard tool for mod-
elling spreading processes in social media [28] and map
equation just uses it as a proxy for real flow. SMN prod-
ucts community structure for the aggregation effect caused
by users’ establishing connections with others. When start a
random walk on a social media network, it will imitate peo-
ple’s behaviors and would like to stay in a local community
for a long when entering. Take v(6) in Fig. 2 for example,
when the walker want to leave, it will choose a node from
nv(6) = {v(5), v(7), v(8), v(9)} randomly with the same
probability of 25 %. Nodes v(6), v(7), v(8), v(9) are of the
same community, then the probability of the walker staying
in the current community in next step will be 80 %. Next,
if the walker choose v(9), the probability will be 75 %, and
so on. With this characteristic, we will be able to use a ran-
dom walker as an agent to reveal the network structure and
community structure [29].

From the data management point of view, multidimen-
sional data management model is more efficient than low-
dimensional model to some extent. Actually, multi-level data
organization structure is more common rather than flat struc-
ture in real world. Recalling the administrative division in
real life, we use hierarchical description to tell our friends
where we are or where we live. In this way, low levels may
share the same description. For example, we may use a hier-
archical description model “country name+state name+city
name+street name+building number” to specify a particular
address. People living in the same city share the same coun-
try name and state name, therefore hierarchical description
model is high efficient. Viewed in connection with SMNs, if
given all the community information, we can use the simi-
lar way “community ID+node ID” (C I D + N I D), a two
level description model, to specify a particular node. Nodes
of different C I D can share the same N I D and nodes of
the same C I D share the same C I D. When using random
walk to reveal the community structure, we can generate a
codeword sequence by the two-level model to describe the
walker’s trace.

The core of the community detection is based on the map
equation proposed by Rosvall et. al. [30], which uses a two
level Huffman code to encode the network. The first level
encodes the C I Ds and the second level encodes the N I Ds.

(a)

(b)

(c)

(d)

Fig. 2 A random walk on a weighted social media network of 9 nodes
and with different information codes. a shows a random walk process
with 18 steps from v(1) to v(9). b shows a global fixed-length binary
code on the network. c, d are of two level Huffman code with different
community structure divisions. “1010” and “0101” are the codewords
of C1 and C2, corresponding exit codewords are “0000” and “1111”. In
the case (c), the codeword sequence will be “1010 10 00 111 01 110 10
01 00 10 110 0000 0101 11 01 00 11 10 00 01 10” and 51 bits will be
totally needed. If community structure are divided as (d), the sequence
will be “1010 10 11 00 10 01 11 0000 0101 10 1111 1010 01 00 11
0000 0101 10 111 01 00 111 110 00 01 11” with 69 bits

With this model and given a community partition pattern,
we are able to uniquely describe where a particular node
is. In consideration of coding efficiency and the feature that
random walker prefers to stay in the community for a long
time after entering, we (1) place a C I D and a N I D in the
codeword sequence when the walker enters a new commu-
nity to declare the walker has moved to a certain node of a
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new community, (2) place a N I D and a exit codeword when
it leaves from current community, and (3) just use N I D to
describe the walker’s position, because it shares the same
C I D with previous node. Then, the sequence will be “C I D
N I D . . . N I D exit codeword C I D N I D . . .”. Map equa-
tion describes the average bits needed to describe a single
step in the sequence. For a given social media network G
with community partition pattern D of t communities, the
average length of codeword Lc to describe a step in a steady
random walk process on G with the two level Huffman code
is:

Lc(D) = qout H(Q) +
t∑

i=1

pi H(Pi ) (5)

In Expression (5), there are two parts. The first part,
qout ∗ H(Q), means the average bits needed to describe
the C I Ds in each random walk step (bits of N I D descrip-
tion needed of this situation is moved into the second part
and combined with the first two cases). qout = ∑k

i=1 qi,out ,
where k represents the number of communities in current
community partition pattern and qi,out means the probabil-
ity of leaving from Ci . H(Q) represents the entropy of the
C I Ds in current community partition pattern. According to
the Shannon’s source coding theorem [31], H(Q) can be
expressed as:

H(Q) = −
k∑

i=1

qi,out
∑k

j=1 q j,out
log2

qi,out
∑k

j=1 q j,out
(6)

Figure 2c, d are examples of the two level description
model. In Fig. 2c, to describe a step in the random walk,
51
18 = 2.83bitswill be averagely needed.However, 6918 = 3.83
bits is needed in Fig. 2d, which is about 35 % longer than in
Fig.2c. Then, what does longer Lc mean?

For a fixed-length random walk, longer Lc means longer
total codeword sequence. Since the codeword can be divided
into two parts, N I D part and C I D part, longer codeword
sequence means longer N I D part or/and longer C I D part.
Assuming a node v(i) is assigned to a wrong community Ct

while the groundtruth is that v(i) ∈ Cs where s �= t , connec-
tions between v(i) with nodes in Cs will be denser than with
nodes in Ct . Then from the point view of information code,
v(i) may result in longer codeword in Cs than in Ct , though
v(i)’s codeword may be shorter. Just like v(5) in Fig. 2, its
connection in C1 is denser than in C2. When assigning v(5)
to C2, the average length of N I Ds in C2 grows (2.0 → 2.2).
Besides, incorrect assignment will result in increase of the
length of C I D part. The random walker would have to back
and forth migrate between communities, while this case will
lead to longer C I D part and make it more difficult for com-
munity mining. In Fig. 2d, due to v(5)’s assignment, more

C I Ds appear in the codeword sequence. Finally, comparing
with the two community partition patterns in Fig. 2c, d, the
latter needs more bits to describe a step in random walk. It is
clearly that community partition in Fig. 2c ismore reasonable
than in Fig. 2d.

Assuming the optimal community pattern is D∗, with the
discussion result above, we can infer that Lc(D∗)will be the
shortest. The problem of community structure mining will
become how to find the optimal community partition pattern.
Besides, because for a static network, Lcs for all Huffman
coding strategies are constant. Then, the problem will be
translated into minimum description length (MDL) problem
or a mathematical optimization problem. In next section, we
will detail how to combine MapReduce with map equation
to solve the community structure mining problem.

3.4 Objective function

According to random walk theory, when the random walker
try to move, the next node may be within current community
or outside it. With the information provided in previous sec-
tion, when computing how many bits are needed to describe
this step,weknow that these two situations are quite different.
Behaviors of the walker can be divided into three categories,
staying in current community, moving from current com-
munity, and entering a new community. For the first one,
only N I D is needed. The second situation needs “NID+exit
codeword” and the third needs “CID+NID”. Obviously, the
second and the last one are concomitant, therefore they share
the same probability. For the convenience of description, the
first two situation are combined together to form the second
part of Expression (5), while the third forms the first part.

For the convenience of calculation, exit codeword is
treated as general codeword as N I D and all the N I D code-
words situations are combined together into the second part
in Expression (5). And therefore, the first part means the bits
needed to describe the C I D part in a random walk step and
the second part represents the bits needed to describe the
N I D part in one step of the random walk. pi represents the
probability of staying in the current community Ci during
the next step. Let p(a) represent the probability of visiting
v(a), then pi = qi,out + ∑

v(a)εCi
p(a), where qi,out means

the exit codeword part and 1 ≤ i ≤ k. H(Pi ) expresses the
information entropy of the visiting probability of the vertices
in Ci . H(Pi ) can be expressed as:

H(Pi )

= − qi,out
qi,out + ∑

v(b)εCi
p(b)

log2
qi,out

qi,out + ∑
v(b)εCi

p(b)

−
∑

v(a)εCi

p(a)

qi,out+∑
v(b)εCi

p(b)
log2

p(a)

qi,out+∑
v(b)εCi

p(b)

(7)
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In Expression (7), the first term represents the information
entropy of the exit codeword, and the second term represents
the entropy of the nodes inCi , because all the three behaviors
of the randomwalker need N I D codeword when describing.

After the discussion, we can give the object with the map
equation. It is minimizing the average amount of information
to describe each step in the random walk process:

f (G) = min{Lc(D)} (8)

From the discussion of Expression (5) and its terms, we
can find that the steady visiting probability plays the key role
in the calculation of Lc. The probability indicates the pos-
sibility of the the random walker moving from one node to
another or leaving from current community. In our previous
work, we first get the steady visiting probability distribution
by pagerank calculation onMapReduce, which results in lots
of time consumption. Then we divide the network into sev-
eral subnetworks. Next we use the MapReduce to speed up
the map equation on the subnetworks to detect the commu-
nity structure independently. In our previous work, network
partitioning produce unnecessary performance loss, however
it is inevitable in that situation.

After our analysis and discussion, we find that we can
use some simple calculation to replace the pagerank calcu-
lation to get the probability distribution. For example, the
probability of node v(a) should be proportional to its degree
divided by the sum of node degree in the network, that is
to say we can use d(a)/sumDegree to approximate p(a),
where sumDegree = ∑n

i=1 d(i). For a big data SMN, find-
ing out all community partition pattern and computing all
the Lcs is not realistic and not suitable for computing even
withMapReduce. To discover all the communities in the net-
work, we still use the greedy search method to find a suitable
node for current node to combine, which is applicable on
MapReduce.

3.5 Proposed framework

We analyze the practicability of combining map equation
with MapReduce in this section and detail our new frame-
work. It is clear that if we compute all the community
partition patterns and then search in the partition pattern
space, we will be able to compute the Lcs for each parti-
tion pattern. Finally, the partition pattern with the minimal
Lc will be the optimal partition pattern and all the commu-
nities can be derived then. However, for a big data SMN, the
size of the community partition pattern space will be huge.
Take a SMNwith just 100 nodes for example, supposing that
there are two equal communities in the SMN, then there will
be C2

100 potential community partition patterns. For a larger
network with more community number and less community
size constraint, the potential community partition patterns

will be much more than that. Therefore, this way to find all
the communities is unworkable.

For simplicity, we refer to a node as a community and all
the symbols in Table 1 and variables applied to nodes are still
valid to communities. In the initialization phase, each node is
considered as a community. Then an iterative process will be
performed. In each iteration, randomly select several com-
munities, and then carry out a local greedy search inspired
frommap equation in their neighbors to find a community for
each community that minimizes�Lc, where�Lc < 0, then
merge the community pairs to generate new communities.

For the expression qout = ∑k
i=0 qi,out in Lc, we use

out Link(Ci )�
∑

Ci∈CS d(Ci ) to replace qi,out and when Ci

contains only one node, out Link(Ci ) = d(Ci ).

qout =
∑

Ci∈CS

out Link(Ci )
∑

Ci∈CS
d(Ci )

= 1

2m

∑

Ci∈CS

out Link(Ci ) (9)

It is easy derive H(Q) based on qout :

H(Q) = −
∑

Ci∈CS

out Link(Ci )
∑

Ci∈CS
out Link(Ci )

∗ log out Link(Ci )
∑

Ci∈CS
out Link(Ci )

(10)

Next, we can write pi and H(Pi ) as:

pi = d(Ci ) + out Link(Ci )
∑

Ci∈CS
d(Ci )

= d(Ci ) + out Link(Ci )

2m
(11)

H(Pi )

= − out Link(Ci )

out Link(Ci ) + d(Ci )
log

out Link(Ci )

out Link(Ci ) + d(Ci )

−
∑

v(a)∈Ci

d(a)

out Link(Ci )+d(Ci )
log

d(a)

out Link(Ci )+d(Ci )

(12)

We store the network in adjacency list format onHDFS. Each
record is in “n(i), nv(i)” format containing a node and all its
neighbors. To avoid computing the degrees for each node, we
compute the degree of each node and write them into a file
aforehand. In the initialization phase, we define and initialize
some global variables. cid[ ] represents the community id of
each node during the iterations. d[ ] records node degree. n
integers from 1 to n are randomly stored in rand[ ], which is
used to ensure that the community is randomly selected and
to avoid the situations that communities in front become too
large and posterior communities keep starving. More details
about initialization process are as follows:

123



Cluster Comput

1: Initialization phase:
2: read degree.dat and initialize d[ ];
3: initialize cid[ ], set cid[i] = i ;
4: initialize rand[ ];
5: initialize lock[ ], for all i , lock[i]=false;//means the node is not

locked
6: initialize K // maximum of communities processed in each itera-

tion

During the iterations, a community may be composed of
several nodes and only K communities will be processed
in each iteration, because too many communities assigned
to a reduce task may cause overload problem. When two
communities combine together, the cid value for each node
in the two communities should be updated, and the inter links
between the two communities will become intra links in the
newcommunity. For the cid update, ifweupdate all the nodes
of the two communities, it would result in congestion because
many mapper clients are running at the same time and cid[ ]
is a global variable. So, we use a new method to find and
update the cid value for each node (When two communities,
cid1 and cid2, are combined together, the ID, cid, assigned
to the new community: cid = min{cid1, cid2}). The process
is shown in line 3 and line 4 in the following description:

1: Map phase 1:
2: read a record 〈of f set, record〉 and parse record into node IDs

and store them in ids[], find all the true cid for elements in ids[]:
3: while(cid[ids[i]]! = [ids[i]])
4: ids[i] = cid[ids[i]];
5: encode current source ID ids[0] with the alphabet rand[ ], select

the top-K smallest as candidates and emit the node with its links to
map phase2:

6: i f (rand[ids[0] <= K ) hs.add(〈ids[0], ids〉);
7: emit (ids[0], ids);

Here, we have to explain the record 〈of f set, record〉 in
the line 1 described above. It relates to the design detail of the
MapReduce.When the network has beenwritten ontoHDFS,
each line contains a record. The offset of the start position of
the record is the default key, and the record itself is the value.
When amapper receives a record, it has to filter the long inte-
ger - offset, and get the real key and value from the record.

Next, after we get all the real < key, value > for each
record (key is a node and value is the neighbors), we use the
alphabet rand[] to encode the keys to ensure each node has
the same probability to combine with other nodes (shown in
line 5). Thenwe can randomly select somenodes as candidate
to combine with other nodes (shown in line 5, 6). Next, the
selected records will be sent to the map phase 2 (shown in
line 7).

When updating the link information of the new commu-
nity, it will need lots of time consumption to write data. In
our framework, we do not modify the network data, reduce

phase collects the link information and reconstructs the com-
munity and its neighbors. To make it workable, we have
to override the get Parti tion() function of the partitioner
in MapReduce, and to make it able to read a global vari-
able Set〈int, hashSet〈int〉〉 hs to ensure a 〈key, value〉 can
be sent to multiple reducers. Here, hs records the keys and
the reducer IDs that the keys are assigned to (the first int
is a cid, and the hashSet〈int〉 records the its neighbors).
key.is I nHs() returns whether the key is in the hs.

1: Map phase 2:
2: receive a record 〈key, value〉, i.e. 〈v(i), nv(i)〉;
3: emit the node with its links to reduce phase (partitioner guarantees

to send the data to the right reducer):
4: i f (key.is I nHs()) emit (key, value);

Since only two communities are involved during a com-
bination, we can calculate the Lc changes caused by the
combination of the two communities. When trying to com-
bine Ci and Ck , only some inter links between Ci and Ck

become intra links. Then we will be able to compute the
changes caused by the two communities. During this process,
we assume that the other communities keep unchanged.Now,
for a randomly selected community Ci , our object becomes
to find a neighbor community satisfying:

min{�Lc} = min{Lc(Ci,k) − Lc(Ci ) − Lc(Ck)} (13)

where Ck ∈ nb(Ci ) and �Lc < 0.

1: Reduce phase:
2: receive all the 〈sid, list〈value〉〉, sort and compress them.
3: Set st = get Assigned(sid) //partitioner will write the assign-

ment to a global variable Set〈int, HashSet〈int〉〉 hs
4: sparer received values and construct the community Csid and get

all its inter links and intra links.
5: initialize variables, such as inLink, out Link, d, inDegree and

out Degree.
6: iteratively select a community C j from nvCsid and compute the

δLc according to Expressions (9)–(13)
7: choose the community Cmin that minimizes the δLc to combine,

where δLc < 0
8: i f there is no community to make δLc < 0, do
9: lock[sid] = true;
10: else update cid[min] and cid[sid] and lock the combined one.

11: cid[min] = cid[sid] = min(min, sid);
12: lock[max(min, sid)] = true;
13: endi f

To explain the process clearly, wewill present an example.
Assuming there is a community cidi and its neighbors nv(i),
during the second map phase, we can get cid and all its
neighbors from hs. Then, all the links of the nodes belonging
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Fig. 3 Community mining process in the MapReduce framework

to nv(i) will be sent to the reducer which is assigned to
process the community cid. Then, during the reduce phase,
the local connections between the community cid and its
neighbors will be reconstructed. Next, the reducer will select
one neighbor for cid to combine with the help of Expression
(13)

The whole process is implemented with ChainMap-
per/ChainReducer strategy, and themain framework is shown
in Fig. 3. The framework will startover new chain process
before all nodes are locked. Finally, the value in cid[ ] will
be the community partition result.

4 Empirical experiments and analysis

Experimental platform is a Hadoop-1.1.1 cluster of Antivi-
sion Software Ltd. The cluster consists of 20 PowerEdge
R320 servers (Intel Xeon CPU E5-1410 @2.80 GHz, mem-
ory 8 GB) with 64-bit NeoKylin Linux OS, and servers are
connected by a Cisco 3750G-48TS-S switch.

4.1 Accuracy tests and analysis

The algorithm proposed in this paper is compared with the
Fast GN algorithm [21], the Infomap algorithm , Radetal
method [26] and our previous work InfoMR. We take the
normalized mutual information (NMI) [21] and recall rate as
evaluating indicators. Recall rate is defined as the percentage
of nodes assigned to the correct communities. NMI is usually
used for precision contrast to evaluate the calculation accu-

racy of the algorithms, the equation is shown in Expression
(14). Besides, because NMI is derived from matrix opera-
tion, it is not suitable for very large dataset. We use NMI
to evaluate performance on small datasets and recall rate to
evaluate the large datasets.

NMI (X; Y ) = I (X; Y )√
H(X)H(Y )

(14)

where I (X; Y ) represents the mutual information between
two discrete random variables X and Y .

In order to test the accuracy of the algorithms, we use LFR
[17] to generate some artificial networks with groundtruth
information of all communities, and the configuration is
shown in Table 2. Parameters are described as follows: m
represents the number of links; d represents average degree;
max(d) represents themaximal degree;u represents the aver-
age ratio of inter-community links of a vertex, so, larger
u corresponds to vaguer community structure; min(c) rep-
resents the number of vertices in the smallest community;
max(c) represents the size of the largest community. Because
the data sets in the accuracy test are small, both the number
of reducers and K is set to 1 during the tests.

Figure 4 shows the results of experiments on the four data
sets,NMIvalue changeswith different u value. FromFig. 4a–
d we can see, accuracy of the Fast GN algorithm decreases
rapidlywhen network community structure becoming dim (u
value increases). This is because there exists a “resolution”
restriction in the objective function of the “modularity” based
greedy searching algorithm, and the algorithm tends to dis-
cover communities with similar size.

The infomap algorithm is one of state-of-the-art commu-
nity detection method. It maintains a high accuracy before
u grows to 0.7, and the performance is rarely affected by
the community size. As u grows up, community structure
becomesmore andmoreunsharp.Whenu > 0.7, the network
generated by LFR would be more like a random network
rather than a community-structured network. The reasonwhy
NMI still keeps at high level even if uis more than 0.7 is that
LFR will generate lots of small communities when u is high
and all the community detected are small, too. Due to the

Table 2 Description of LFR
generated datasets

Data set m n d max(d) min(c) max(c)

5000(S) 41,125 5000 20 40 10 40

5000(B) 45,722 5000 20 80 20 80

50,000(S) 832,980 50,000 40 80 10 80

50,000(B) 882,453 50,000 40 160 10 160

D1 5,000,000 100,950,931 40 160 40 200

D2 8,000,000 208,472,382 50 200 50 250

D3 10,000,000 232,038,266 45 200 50 250
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(a) (b)

(c) (d)

Fig. 4 Accuracy comparison of different algorithms on 4 data sets

(a) (b)

Fig. 5 Comparison of the methods on running time test on 50,000(B)
and 50,000(S) data sets

NMI’s shortcomings in processing lots of small communi-
ties, the NMI will remain at a high level.

Radetal method uses edge clustering to distinguish inter
from intra links, its output consists of a dendogram reporting
the internal hierarchical structure of the network analyzed.
Splits on the dendogram are then considered as significant
or not depending on whether the split communities satisfy or
not the definition of weak (or strong) community.

InfoMR is our previous work, and it performs better than
fast GN and radetal algorithms in all the four datasets. The
new framework proposed in this paper has archived a better
clustering precision both in the four different networks and
approximates infomap. This indicates that our modified two
level description model is able to highlight the community
structures in the network and effectively help to discover the
communities.

Next, we test the time consumption for eachmethod on the
two networks with 50,000 nodes. And the results are shown
in Fig. 5

From the results shown in Fig. 5, we can see that our
methods requires much more time than the others. Because

(a) (b)

Fig. 6 Running time and recall rate tests of the new framework on 3
large-scale artificial data sets

the networks are so small that they can be stored in just one
block on HDFS. So for InfoMR, we do not need to divide
the network into several subnetworks. Then the process on
InfoMR is like starting the MapReduce framework and then
calls infomap tofind the communities in the network.Consid-
ering the initialization ofMapReduce framework needs about
more than 10 s, the real time consumption for community
detection in InfoMR is very close to infomap. FastGN, ear-
lier than the other methods, is a greedy method and requires
more time consumption. Our method needs more iterations
and needs more data transmission among the servers, which
will need more time consumption. If we use only one server,
the time consumption will be much more than that shown in
the figure.

Furthermore, we conduct an experiment on large-scale
datasets to evaluate the recall rate of the new framework
affected by different K values. Results are shown in Fig. 6.
During the experiments, the number of reducer is set to 20.

From Fig. 6a, we can find that running time is not steadily
dropping as K increases and all curves present carryover
effects. When K is small, such as the case K = 50, very
few communities are combined. For a certain network, num-
ber of communities and the community structure in it are
changeless. Smaller K corresponds more iterations and will
causemore time consumption. In the new framework, reducer
is responsible for community combination. To do this, a
reducer have to receive a community with all its neigh-
bors from map phase. When K grows to very large value,
such as K = 50, 000, each reducer have to handle about
2500 communities. Taking the amount of neighbors of each
community into consideration, the amount of communities
assigned to one reducer will be far more than 2500. On one
hand, receiving so many community data and reconstruct all
the communities will take lots of time. On the other hand,
if the data is too large, it has to be written to the local
disk of the reducer, which will introduce a great deal of
unnecessary time consumption. Finally, lose more than gain.
Besides, optimal K varies in different datasets and different
clusters with different configurations. In Fig. 6b, recall rate
increases as K grows. That is because the new framework
adopts an asynchronous update mechanism during the iter-
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Table 3 Three real social network used in accuracy test

Data set n m

LiveJournal 3,997,962 34,681,189

ASkitter 1,696,415 11,095,298

com-Orkut 3,072,441 117,185,083

ative process. Assuming one community C is used by more
than one reducer, if status of C is updated in one reducer, the
others are still using the old C .

4.2 Acceleration performance test

We use 6 different data sets including 3 real data sets—
LiveJounrnal,1 ASKitter,2 com-Orkut3 and three artificial
networks—D1, D2 and D3, to test the acceleration perfor-
mance, and the number of severs in the cluster varies from 6
to 20. LiveJournal is an online dating blog network. ASkitter
is a network describing the topology of Internet. Orkut is a
free online social network where users form friendship with
each other. Table 3 shows the details of the three real SMN.

Figure 7 shows the result of the tests on the 6 datasets.
From Fig. 5, we get the information that for the artificial
networks of several million nodes, when K varies from 1000
to 10,000, we can get a relative balance between running time
and recall rate. Therefore, during the acceleration test, we set
K = 5000, and the number of reducers is set to equal the
number of servers.

From Fig. 7, we can conclude: for a certain network, the
running time and the number of reducers is linear approx-
imation, running time decreases as the number of reducer
increases. The running time of the new framework will be
affected significantly when the number of reducers is small
for two reasons: (1) for a fixed K , when reducer number
is small, the average number of communities assigned to
each reducer will be very large. When increasing the reducer
number, the load on each reducer will decrease steeply. (2)
Add new severs into the cluster means the computational
capabilities of the cluster will be enhanced, then the time
consumption will decrease. As number of reducer increases,
speedup of gains from these reasons given above will slow
down. Besides, MapReduce needs some time to initialize,
and the ratio of MapReduce’s initialization time to the total
running time changes as reducer number changes. In case
of smaller number of reducers, for a specific data set, the
new framework will need longer running time, and MapRe-
duce’s initialization time will account for lower proportion
of the total running time. When reducer number increases

1 http://snap.stanford.edu/data/com-LiveJournal.html.
2 http://snap.stanford.edu/data/as-skitter.html.
3 http://snap.stanford.edu/data/com-Orkut.html.

(a) (b)

Fig. 7 Time consumption tests on 6 data sets with different number of
servers

to a “critical point”, the proportion of the initialization time
will not be negligible.

From Fig. 7, we can get that the running time of the three
LFR generated networks is less than that of the three real
networks, which signifies that the new framework runs faster
on artificial networks than on real networks. From the sta-
tistical information collected from the data sets, we find that
community structure in real networks is much more complex
than in LFR generated networks. For example, the maximum
of degree in LiveJounal is 785,930, which means that more
than 20 % of the vertices are connecting with a certain node.
While in D1, although the total number of node reaches up
to 5 million, the maximum of degree is only 160, the degree
distribution is limited in a relatively narrow range as a result
of LFR.

All in all, the results of tests on both artificial data sets and
real networks show that the new framework has good scala-
bility and is well workable on community structure mining
in big data social media networks.

5 Related work

During the past several years, researchers in several research
domains, such as computer science, complex system, infor-
mation science have proposed lots of work on community
detection [24], including standalone methods, parallel meth-
ods and distributed methods.

Most of community mining methods [3,8] are standalone,
which just use one core/processor of the server to detect the
community structure in networks. Standalone method has
been studied for a long period. The earliest methods are
based on clustering like k-means [20] and others applications
[16]. Later, divisive algorithms mainly based on hierarchical
clustering, modularity-based algorithms [5,9,21] and other
similar algorithms have been proposed. And then, spectral
algorithms [25], information coding based methods [28–30]
come out. At the beginning, the methods are used to process
real-world small network, such as Zachary’s karate club net-
work, dolphins networks,et al. And the methods usually have
high computational complexity (GN’s complexity is O(m3)
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[9]) and the accuracy is low (GN, FastGN [21], et al.). Then,
researchers try to improve the complexity and the accuracy,
and try to mining community structure in large networks
with millions of nodes, and have achieved excellent results
(such as infomap [29]).Comparisonof themethods described
above has been discussed in [18,19,22].

Then, some parallel methods [27,32] have been proposed
to dealwith large scale networks.Most of themare runningon
a single HPC server even supercomputer, and all the proces-
sors share the same centralized huge capacity memory. The
network and its statuses aremaintained in thememory during
the process. We can think that these methods just speed up
the community mining process, and are highly dependent on
the hardware.

MapReduce has become widely used in big data process-
ing scenarios. Recently, some researchers try to use MapRe-
duce to speedup existed methods (such as Shingling method,
GN method) to reveal the community structure in very large
scale networks [4,15]. However, MapReduce is not good at
graph processing, due to the complex connections within the
nodes. The network is stored in distributed memory, so how
to exchange the nodes and links information among thework-
ers, and how to get the global information about the graph is
a challenge.

6 Conclusion and future work

SMNs are expanding rapidly and playing important roles
in people’s daily life. Research on community structure has
major theory significance and strong application value. In the
big data age, how to quickly identify the hidden communities
has become a challenge. Based on our previous work and
the map equation, we design and implement a distributed
community structure mining framework using MapReduce.
Empirical experiments show that the new framework is able
to tackle the challenge, and its performance approximates the
state-of-the-art methods.

During the experiments, we found that the greedy search
method has some room for improvement. We will solve this
problem and improve the performance in the future work.
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